

TAMPINES MERIDIAN JUNIOR COLLEGE

JC2 PRELIMINARY EXAMINATION

CANDIDATE NAME: _____

CIVICS GROUP:

H2 MATHEMATICS

Paper 1

9758/01 **13 SEPTEMBER 2022** 3 hours

Candidates answer on the question paper.

Additional material: List of Formulae (MF26)

READ THESE INSTRUCTIONS FIRST

Write your name and Civics Group on all the work you hand in. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer **all** the questions.

Write your answers in the spaces provided in the question paper. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use an approved graphing calculator.

Unsupported answers from a graphing calculator are allowed unless a question specifically states otherwise.

Where unsupported answers from a graphing calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands. You are reminded of the need for clear presentation in your answers.

For Examiners' Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
Total	

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100.

This document consists of 6 printed pages and 0 blank pages.

1 (i) Express
$$\frac{3}{r} + \frac{2}{r+1} - \frac{5}{r+2}$$
 as a single fraction. [1]

(ii) Hence find
$$\sum_{r=1}^{n} \frac{4r+3}{r(r+1)(r+2)}$$
. [3]

(iii) Use your answer to part (ii) to find
$$\sum_{r=3}^{n} \frac{4r-5}{r(r-1)(r-2)}$$
. [2]

2 (a) Find
$$\int \frac{1}{\sqrt{(1-x^2)\sin^{-1}x}} dx$$
. [2]

(b) Find
$$\int \frac{x-3}{x^2-2x+4} \, dx$$
. [3]

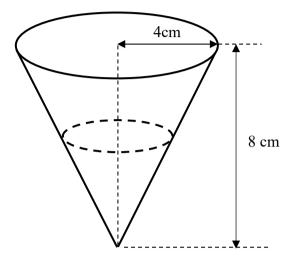
$$x = a^2 t^2, \quad y = e^{at}, \qquad \text{for } t \ge 0,$$

where *a* is a positive constant.

Find the exact area enclosed by *C*, the axes and the line x = 8. [5]

- 4 On the same axes, sketch the curves with equation $y = -x^2 + 5x 3$ and y = |3 x|, labelling the axial intercepts. [2] Hence, without using a calculator, solve the inequality $-x^2 + 5x - 3 < |3 - x|$. [4]
- 5 Given that $\ln y = \sin k x$ where k is a non-zero constant, show that $\frac{d^2 y}{dx^2} + k^2 y \ln y - \frac{1}{y} \left(\frac{dy}{dx}\right)^2 = 0$. Hence obtain the expansion of y in ascending powers of x, up to and including the term in x^2 . [5] Using the standard series given in MF26, verify that the same result is obtained and determine the coefficient of x^3 . [4]

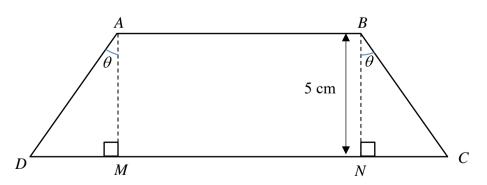
6 (a) Disposable cups in the shape of an inverted right cone of radius 4 cm and height 8 cm are being produced by a factory. For quality check, the factory supervisor took a cup and tested it by filling it completely with water. Water was found leaking at the vertex of the cup at a constant rate of 1.5 cm³ per second. The diagram below shows the cup.



Find the exact rate at which the water level is decreasing when the depth of the water is 2 cm. [4]

[The volume of a cone of base radius r and height h is given by $\frac{1}{3}\pi r^2 h$.]

(b) The diagram below shows a trapezium *ABCD* with height 5 cm such that DA + AB + BC = 20 cm. Points *M* and *N* are the foot of the perpendiculars from points *A* and *B* to line *DC* respectively, and $\angle DAM = \angle CBN = \theta$, where $0 < \theta < \frac{\pi}{2}$.



(i) Show that the area, $A \text{ cm}^2$, of trapezium ABCD is $100-50 \sec \theta + 25 \tan \theta$. [3]

(ii) Hence, by differentiation, find the maximum area of trapezium ABCD, giving your answer in exact form. [You do not need to verify that it is a maximum area.]

7 (a) The function f is defined as

$$f: x \mapsto ax + \frac{a}{x-1}, x \in \mathbb{R}, x \neq 1$$

where *a* is a constant greater than 1.

- (i) Sketch the graph of y = f(x), indicating clearly the coordinates of the turning points and the equations of the asymptotes. [3]
- (ii) Explain why f does not have an inverse.

The function g is defined as

$$g: x \mapsto \frac{1}{x^2 - 1}, x \in \mathbb{R}, x \neq -1, x \neq 1.$$

- (iii) Determine, with a reason, whether gf exists.
- (**b**) A curve *C* has equation $y = e^{\frac{x^2-4}{12}}$, where x > 0.

The curve *C* undergoes the following sequence of transformations:

A: Stretch by factor $\frac{1}{2}$ parallel to the *x*-axis.

B: Translate by 1 unit in the negative y-direction.

C: Reflection in the line y = x.

Find the equation of the new curve in the form y = q(x) and state the domain of q.

[5]

[1]

[2]

- 8 The plane p_1 has cartesian equation x + z = 3. The plane p_2 is perpendicular to p_1 and contains the line l_1 with equation $\frac{x+2}{5} = \frac{y+1}{2} = \frac{3-z}{3}$.
 - (i) Show that the cartesian equation of the plane p_2 is -x+4y+z=1. [2]
 - (ii) Find a vector equation of the line l_2 given that p_1 and p_2 intersect at l_2 . [2]
 - (iii) It is given that the point B with coordinates (0, 4, 3) is on p₁ and the perpendicular distance from B to p₂ is k. Find the position vector of the foot of perpendicular from B to p₂ and deduce the value of k.
 - (iv) Hence, find the vector equations of the lines in p_1 such that the perpendicular distance from each line to p_2 is k. [3]

- 9 (a) The complex number z is given by z = x + yi, where x and y are non-zero real numbers. Given that |z| = 1, find the possible values of z for which $\frac{(z^2)^*}{z}$ is real.
 - (b) Without the use of a calculator, find the roots of the equation $z^2 = 33+56i$, expressing your answer in cartesian form x+iy where x and y are real. [4] Hence, find in cartesian form, the roots of the equation $w^2 = -33+56i$. [2]
- 10 A squirrel falls vertically from a tall tree. The distance, x metres, that the squirrel has fallen from the tree after t seconds is observed. It is given that x = 0 and $\frac{dx}{dt} = 0$ when t = 0.

The motion of the squirrel is modelled by the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 0.1 \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 = 10.$$

(i) By substituting $y = \frac{dx}{dt}$, show that the differential equation can be written as

$$\frac{dy}{dt} = 10 - 0.1y^2.$$
 [1]

- (ii) Find y in terms of t and hence find x in terms of t. [8]
- (iii) How far has the squirrel fallen after 2 seconds? [1]
- (iv) For a falling object, the terminal velocity is the value approached by the velocity after a long time. Find the terminal velocity of the falling squirrel. [2]

[6]

- 11 Mrs Toh intends to invest \$1000 per year in a savings plan, starting from 1 January 2023. Savings plan A allows her to invest a fixed amount of \$1000 into account A on the first day of every year. The amount in account A earns an interest of 3.5% per annum at the end of each year of investment.
 - (i) Show that the total amount in account A at the end of n years is in the form $p(q^n-1)$, where p and q are exact constants to be determined. [3]
 - (ii) On what date will the total amount in account *A* first exceed \$36000? [3]

Savings plan *B* allows Mrs Toh to invest \$1000 into account *B* on 1 January 2023. The amount to be invested on the first day of the subsequent years will increase by k per annum. A fixed annual bonus of \$40 is added to account *B* at the end of each year of investment.

- (iii) If k = 36, find the year in which the total amount in account A first exceeds the total amount in account B. [4]
- (iv) Find the least value of k, giving your answer to the nearest whole number, such that the total amount in account B is more than the total amount in account A at the end of 31 December 2032.

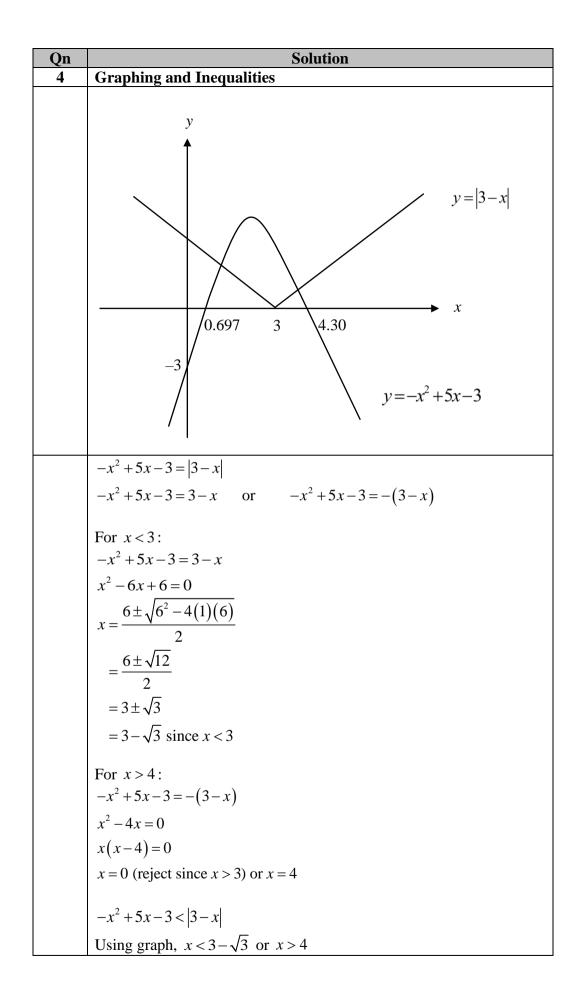
End of Paper

2022 H2 MATH (9758/01) JC 2 PRELIMINARY EXAMINATION SOLUTION

Qn	Solution
1	Sequences and Series
(i)	$\frac{3}{r} + \frac{2}{r+1} - \frac{5}{r+2} = \frac{3(r+1)(r+2) + 2r(r+2) - 5r(r+1)}{r(r+1)(r+2)}$
	$=\frac{3r^2+9r+6+2r^2+4r-5r^2-5r}{r(r+1)(r+2)}$
	$=\frac{8r+6}{r(r+1)(r+2)}$
(ii)	$\sum_{r=1}^{n} \frac{4r+3}{r(r+1)(r+2)} = \frac{1}{2} \sum_{r=1}^{n} \frac{8r+6}{r(r+1)(r+2)}$
	$\sum_{r=1}^{2} r(r+1)(r+2) = 2 \sum_{r=1}^{2} r(r+1)(r+2)$
	$=\frac{1}{2}\sum_{r=1}^{n}\left(\frac{3}{r}+\frac{2}{r+1}-\frac{5}{r+2}\right)$
	$1(3 \ 2 \ 5$
	$=\frac{1}{2}\left(\frac{3}{1}+\frac{2}{2}-\frac{5}{3}\right)$
	$+\frac{3}{2}+\frac{2}{3}-\frac{5}{4}$
	$+\frac{1}{2}+\frac{1}{3}-\frac{1}{4}$
	$+\frac{3}{3}+\frac{2}{4}-\frac{5}{5}$
	$+\frac{3}{4}+\frac{2}{5}-\frac{5}{6}$
	+ :
	$+\frac{3}{n-2}+\frac{2}{n-1}-\frac{5}{n}$
	$+\frac{3}{2}+\frac{2}{5}-\frac{5}{5}$
	$+\frac{n-1}{n-1}+\frac{n-1}{n-1}$
	$+\frac{3}{n}+\frac{2}{n+1}-\frac{5}{n+2}$
	$=\frac{1}{2}\left(\frac{3}{1}+\frac{2}{2}+\frac{3}{2}-\frac{5}{n+1}+\frac{2}{n+1}-\frac{5}{n+2}\right)$
	11 3 5
	$=\frac{11}{4} - \frac{3}{2(n+1)} - \frac{5}{2(n+2)}$
	$\sum_{r=3}^{n} \frac{4r-5}{r(r-1)(r-2)} = \sum_{r=1}^{n-2} \frac{4r+3}{r(r+1)(r+2)}$
	$=\frac{11}{4} - \frac{3}{2(n-1)} - \frac{5}{2n}$
	4 2(n-1) 2n

Qn	Solution
2	Integration
(a)	$\int \frac{1}{\sqrt{(1-x^2)\sin^{-1}x}} \mathrm{d}x = \int \frac{1}{\sqrt{(1-x^2)}} (\sin^{-1}x)^{-\frac{1}{2}} \mathrm{d}x$
	$=\frac{\left(\sin^{-1}x\right)^{\frac{1}{2}}}{\frac{1}{2}}+C$
	$=2\sqrt{\sin^{-1}x}+C$
(b)	$\int \frac{x-3}{x^2-2x+4} \mathrm{d}x = \frac{1}{2} \int \frac{2x-2}{x^2-2x+4} \mathrm{d}x - \int \frac{2}{\left(x-1\right)^2+3} \mathrm{d}x$
	$=\frac{1}{2}\ln\left(x^{2}-2x+4\right)-\frac{2}{\sqrt{3}}\tan^{-1}\frac{x-1}{\sqrt{3}}+C$
	Note: $x^2 - 2x + 4 = (x - 1)^2 + 3 > 0$. Therefore, modulus is not required
	for ln(.)

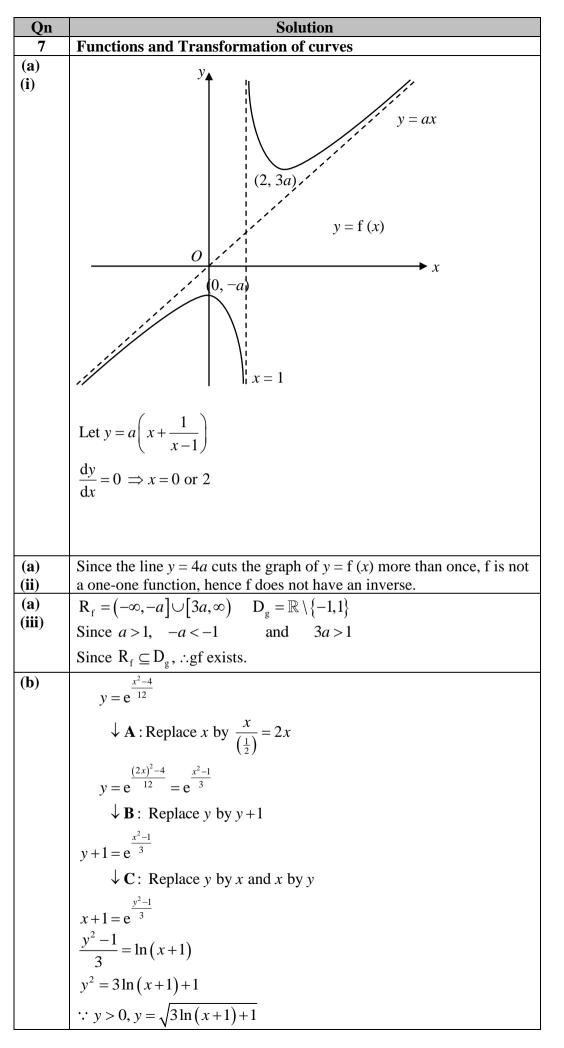
Qn	Soluti	on	
3	Chapter 11 Definite Integral		
	$\int_0^8 y \mathrm{d}x$	when $x = 8$, $(at)^2 = 8 \Rightarrow t = \frac{2\sqrt{2}}{a}$	
	$=\int_{0}^{\frac{2\sqrt{2}}{a}}\mathrm{e}^{at}\left(2a^{2}t\right)\mathrm{d}t$	when $x = 0$, $(at)^2 = 0 \Longrightarrow t = 0$	
	$=2a^{2}\left\{\left[\frac{e^{at}}{a}(t)\right]_{0}^{\frac{2\sqrt{2}}{a}}-\int_{0}^{\frac{2\sqrt{2}}{a}}\frac{e^{at}}{a}(1)dt\right\}$	$x = a^2 t^2$ $\frac{\mathrm{d}x}{\mathrm{d}t} = 2a^2 t$	
	$=2a^{2}\left\{\left[\frac{e^{2\sqrt{2}}}{a}\left(\frac{2\sqrt{2}}{a}\right)-0\right]-\left[\frac{e^{at}}{a^{2}}\right]_{0}^{\frac{2\sqrt{2}}{a}}\right\}$	dt	
	$=2a^{2}\left[\frac{e^{2\sqrt{2}}2\sqrt{2}}{a^{2}}-\left(\frac{e^{2\sqrt{2}}}{a^{2}}-\frac{1}{a^{2}}\right)\right]$		
	$=2e^{2\sqrt{2}}\left(2\sqrt{2}-1\right)+2$		



Qn	Solution		
5	Maclaurin Series		
	$\frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} = k\cos kx$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = ky\cos kx$		
	$\frac{d^2 y}{dx^2} = ky(-k\sin kx) + k\frac{dy}{dx}\cos kx$		
	$= -k^2 y \sin kx + \frac{\mathrm{d}y}{\mathrm{d}x} \left(k \cos kx\right)$		
	$= -k^{2}y\ln y + \frac{\mathrm{d}y}{\mathrm{d}x}\left(\frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x}\right)$		
	$\therefore \frac{d^2 y}{dx^2} + k^2 y \ln y - \frac{1}{y} \left(\frac{dy}{dx}\right)^2 = 0$		
	When $x = 0, y = 1$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = k$		
	$\frac{d^2 y}{d^2 + 2} = k^2$		
	$dx^{2} = 1 + kx + \frac{k^{2}x^{2}}{2} + \dots$		
	$y = \mathbf{e}$ $= \mathbf{e}^{\left(kx - \frac{(kx)^3}{3!} + \dots\right)}$		
	$=1 + \left(kx - \frac{k^3 x^3}{6}\right) + \frac{\left(kx - \frac{k^3 x^3}{6}\right)^2}{2} + \frac{\left(kx - \frac{k^3 x^3}{6}\right)^3}{6} + \dots$		
	$=1+kx-\frac{k^{3}x^{3}}{6}+\frac{1}{2}(k^{2}x^{2})+\frac{1}{6}(k^{3}x^{3})+\dots$		
	= $1 + kx + \frac{k^2 x^2}{2} +$ (verified)		
	Coefficient of $x^3 = 0$		

Qn	Solution		
6	Applications of Differentiation		
(a)	The water forms a smaller cone of radius r and height h .		
	From the diagram, by similar triangles,		
	r _ 4		
	$\frac{r}{h} = \frac{4}{8}$		
	$r = \frac{h}{2}$		
	2		
	Let the volume of water in the cone be V .		
	$V = \frac{1}{3}\pi r^2 h$		
	$=\frac{1}{3}\pi\left(\frac{h}{2}\right)^2h$		
	$=\frac{1}{3}\pi\left(\frac{h^2}{4}\right)h$		
	$=\frac{\pi}{12}h^3$		
	$V = \frac{\pi}{12}h^3$		
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{\pi}{4}h^2$		
	Given: $\frac{\mathrm{d}V}{\mathrm{d}t} = -1.5 \ \mathrm{cm}^3/\mathrm{s}$		
	When $h = 2$,		
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t}$		
	$-1.5 = \frac{\pi}{4} (2)^2 \times \frac{\mathrm{d}h}{\mathrm{d}t}$		
	$\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{3}{2\pi} \mathrm{cm/s}$		
	The rate at which the water level is decreasing at $\frac{3}{2\pi}$ cm/s.		
(b)	$\tan \theta = \frac{DM}{5} \qquad \therefore DM = 5 \tan \theta$ $\cos \theta = \frac{5}{AD} \qquad \therefore AD = 5 \sec \theta$		
	$\cos\theta = \frac{5}{AD}$ $\therefore AD = 5 \sec\theta$		
	DA + AB + BC = 20		
	$5 \sec \theta + AB + 5 \sec \theta = 20$		
	$\therefore AB = 20 - 10 \sec \theta$		
	Area of trapezium ABCD		
	$=\frac{1}{2}(5)(AB+DC)$		
	$=\frac{5}{2}\left(2\left(20-10\sec\theta\right)+2\left(5\tan\theta\right)\right)$		
	$=100-50\sec\theta+25\tan\theta (\text{shown})$		

(ii)	$A = 100 - 50 \sec \theta + 25 \tan \theta$
	$\frac{\mathrm{d}A}{\mathrm{d}\theta} = -50\sec\theta\tan\theta + 25\sec^2\theta = 0$
	$25\sec\theta\left(-2\tan\theta+\sec\theta\right)=0$
	$25 \sec \theta = 0$ or $2 \tan \theta = \sec \theta$
	(NA) $\sin \theta = \frac{1}{2}$
	$\therefore \theta = \frac{\pi}{6}$
	$A = 100 - 50 \sec\left(\frac{\pi}{6}\right) + 25 \tan\left(\frac{\pi}{6}\right)$
	$=100-50\left(\frac{2}{\sqrt{3}}\right)+25\left(\frac{1}{\sqrt{3}}\right)$
	$=100-\frac{75}{\sqrt{3}}$
	$= (100 - 25\sqrt{3}) \mathrm{cm}^2$



$$\therefore y = q(x) = \sqrt{3\ln(x+1)+1}$$

Range of C: $\left(e^{-\frac{1}{3}}, \infty\right)$
 $\left(e^{-\frac{1}{3}}, \infty\right) \xrightarrow{\mathbf{A}} \left(e^{-\frac{1}{3}}, \infty\right) \xrightarrow{\mathbf{B}} \left(e^{-\frac{1}{3}}-1, \infty\right)$
 $\therefore \mathbf{D}_{q} = \left(e^{-\frac{1}{3}}-1, \infty\right)$

Qn	Solution
8	
(i)	Equation of l_1 : $\mathbf{r} = \begin{pmatrix} -2 \\ -1 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 5 \\ 2 \\ -3 \end{pmatrix}$ where $\lambda \in \mathbb{R}$
	Equation of p_1 : $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 3$
	Normal of $p_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} 5 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -2 \\ 8 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}$
	Hence, equation of p_2 : $\mathbf{r} \cdot \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix} = 2 - 4 + 3 = 1$
	Cartesian equation of $p_2: -x+4y+z=1$
(ii)	Solving x + z = 3 (1) -x + 4y + z = 1 (2) $x = 3 - \mu$
	From GC: $y = 1 - \frac{1}{2}\mu$
	$z = \mu$ Hence, equation of l_2 : $\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$ where $\alpha \in \mathbb{R}$
(iii)	Let F be the foot of perpendicular from B to p_2
	Method 1:
	Let l_{BF} : $r = \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix} + t \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}$ where $t \in \mathbb{R}$
	Sub into equation of P_2 : $\begin{pmatrix} -t \\ 4+4t \\ 3+t \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix} = 1$
	t + 16 + 16t + 3 + t = 1
	$t = -1 \tag{1}$
	Hence, $\overrightarrow{OF} = \begin{pmatrix} 0 - (-1) \\ 4 - 4 \\ 3 - 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$
	Perpendicular distance from <i>B</i> to $p_2 = k = \overrightarrow{BF} = \begin{pmatrix} 1 \\ -4 \\ -1 \end{pmatrix} = 3\sqrt{2}$
L	

Method 2: Since *F* is on l_2 as p_1 and p_2 are perpendicular planes, $\overrightarrow{OF} = \mathbf{r} = \begin{pmatrix} 3\\1\\0 \end{pmatrix} + \alpha \begin{pmatrix} -2\\-1\\2 \end{pmatrix}$ $\overrightarrow{BF} = \overrightarrow{OF} - \overrightarrow{OB} = \begin{pmatrix} 3 - 2\alpha \\ 1 - \alpha \\ 2\alpha \end{pmatrix} - \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 - 2\alpha \\ -3 - \alpha \\ -3 + 2\alpha \end{pmatrix}$ $\overrightarrow{BF} \cdot \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} = 0$ $\begin{pmatrix} 3-2\alpha \\ -3-\alpha \\ -3+2\alpha \end{pmatrix} \cdot \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} = 0$ $-6 + 4\alpha + 3 + \alpha - 6 + 4\alpha = 0$ $\alpha = 1$ $\overrightarrow{OF} = \begin{pmatrix} 3-(1)\\ 1-1\\ 2(1) \end{pmatrix} = \begin{pmatrix} 1\\ 0\\ 2 \end{pmatrix}$ Perpendicular distance from *B* to $p_2 = k = \left| \overrightarrow{BF} \right| = \left| \begin{pmatrix} 1 \\ -4 \\ -1 \end{pmatrix} \right| = 3\sqrt{2}$ (iv) Since the perpendicular distance from B to l_2 is $3\sqrt{2}$, the lines on p_1 with a distance of $3\sqrt{2}$ must be parallel to l_2 . Using ratio theorem, find the reflected point B' in the line l_2 $\overrightarrow{OB'} = 2\overrightarrow{OF} - \overrightarrow{OB} = 2 \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} - \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix}$ Hence, equation of lines: $\mathbf{r} = \begin{pmatrix} 0\\4\\3 \end{pmatrix} + \beta \begin{pmatrix} -2\\-1\\2 \end{pmatrix} \qquad \text{where } \beta \in \mathbb{R} \quad \text{or} \qquad \mathbf{r} = \begin{pmatrix} 2\\-4\\1 \end{pmatrix} + \gamma \begin{pmatrix} -2\\-1\\2 \end{pmatrix} \qquad \gamma \in \mathbb{R}$

QnSolution9Complex Numbers(a)Given $z = x + iy$, $x, y \in \mathbb{R}$	
(a) Given $z = x + iy$, $x, y \in \mathbb{R}$	
$\frac{\left(z^2\right)^*}{z} = \frac{\left(z^*\right)^2}{z}$	
z z	
$=\frac{(x-yi)^2}{x+yi}$	
$=\frac{(x-yi)^2(x-yi)}{(x+yi)(x-yi)}$	
$=\frac{\left(x-y\mathbf{i}\right)^{3}}{x^{2}-\left(y\mathbf{i}\right)^{2}}$	
$=\frac{x^{3}-3x^{2}(yi)+3x(yi)^{2}-(yi)^{3}}{x^{2}+y^{2}}$	
$=\frac{x^{3}-3x^{2}yi-3xy^{2}+y^{3}i}{x^{2}+y^{2}}$	
$=\frac{x^3-3xy^2}{x^2+y^2}+\frac{-3x^2y+y^3}{x^2+y^2}\mathbf{i}$	
Given $\frac{(z^2)^*}{z}$ is real $\implies \operatorname{Im}\left[\frac{(z^2)^*}{z}\right] = 0$	
$\Rightarrow \frac{-3x^2y + y^3}{x^2 + y^2} = 0$	
$ \begin{array}{c} -3x^{2}y + y^{3} = 0 \\ y(y^{2} - 3x^{2}) = 0 \end{array} $	
$y(y - \sqrt{3}x) = 0$ $y(y - \sqrt{3}x)(y + \sqrt{3}x) = 0$	
$y = 0$ (rejected as y is non-zero), $y = \sqrt{3}x$ or $y = -3x$	$-\sqrt{3}x$
Since $ z = 1 \Longrightarrow x^2 + y^2 = 1$,	
For $y = \pm \sqrt{3}x$, $x^2 + (\pm \sqrt{3}x)^2 = 1$	
$x^2 = \frac{1}{4}$	
$x = \pm \frac{1}{2} \Rightarrow y = \pm \frac{\sqrt{3}}{2}$	
$\therefore \text{ Possible values of } z \text{ are} \\ 1 \sqrt{3}, 1 \sqrt{3}, 1 \sqrt{3}, 1 \sqrt{3}. \\ 1 $	
$\frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i \text{ or } -\frac{1}{2} - \frac{\sqrt{3}}{2}i.$	

Let z = x + iy, $x, y \in \mathbb{R}$ **(b)** $(x+iy)^2 = 33+56i$ $x^2 + 2xyi - y^2 = 33 + 56i$ Comparing real and imaginary parts, $x^2 - y^2 = 33 --- (1)$ 2xy = 56 $y = \frac{28}{x}$ --- (2) Substitute (2) into (1): $x^2 - \left(\frac{28}{x}\right)^2 = 33$ $x^4 - 33x^2 - 784 = 0$ $(x^2 - 49)(x^2 + 16) = 0$ Since x is real, x = -7 or x = 7When x = -7, y = -4 $\therefore z = -7 - 4i$ When x = 7, y = 4 $\therefore z = 7 + 4i$: the roots of the equation are -7-4i and 7+4i. $w^2 = -33 + 56i$ $-w^2 = 33 - 56i$ $(-w^2)^* = 33 + 56i$ (conjugate both sides) $-(w^*)^2 = 33 + 56i$ $i^2 (w^*)^2 = 33 + 56i$ $(iw^*)^2 = 33 + 56i$ Replace z by iw^* , $iw^* = -7 - 4i$ or $iw^* = 7 + 4i$ $-w^* = -7i + 4$ $-w^* = 7i - 4$ $w^* = 7i - 4$ $w^* = 7i - 4$ $w^* = -7i + 4$ w = -4 - 7iw = 4 + 7i

Qn	Solution
10	Differential Equations
(i)	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 0.1 \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 = 10$
	Since $y = \frac{dx}{dt} \Rightarrow \frac{dy}{dt} = \frac{d^2x}{dt^2}$
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}t} + 0.1y^2 = 10$
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 10 - 0.1y^2 \text{ (shown)}$
(ii)	$\frac{dy}{dt} = 10 - 0.1y^2 = 0.1(100 - y^2)$
	$\frac{1}{100 - y^2} \frac{dy}{dt} = 0.1$
	$\int \frac{1}{10^2 - y^2} \mathrm{d}y = \int 0.1 \mathrm{d}t$
	$\frac{1}{2(10)} \ln \left \frac{10+y}{10-y} \right = 0.1t + C$
	$\ln \left \frac{10 + y}{10 - y} \right = 2t + 20C$
	$\frac{10+y}{10-y} = \pm e^{2t+20C}$
	$\frac{10+y}{10-y} = Ae^{2t}$, where $A = \pm e^{20C}$
	When $t = 0, y = 0, \therefore A = 1$
	$10 + y = e^{2t} (10 - y)$ y(1+e^{2t}) = 10(e^{2t} - 1)
	$y = \frac{10(e^{2t} - 1)}{e^{2t} + 1}$
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{10(\mathrm{e}^{2t}-1)}{\mathrm{e}^{2t}+1}$
	$=10\left(\frac{e^{2t}}{e^{2t}+1}-\frac{1}{e^{2t}+1}\right)$
	$=10\left(\frac{e^{2t}}{e^{2t}+1}-\frac{e^{-2t}}{1+e^{-2t}}\right)$
	$x = 5 \int \left(\frac{2e^{2t}}{e^{2t} + 1} - \frac{2e^{-2t}}{1 + e^{-2t}} \right) dt$
	$= 5\left(\ln\left e^{2t} + 1\right + \ln\left 1 + e^{-2t}\right \right) + D$
	$= 5\left(\ln\left(e^{2t}+1\right) + \ln\left(1+e^{-2t}\right)\right) + D , :: e^{2t}+1 > 0 \text{ and } 1 + e^{-2t} > 0$
	$= 5\ln(2 + e^{2t} + e^{-2t}) + d$

	When $t = 0$, $x = 0$, $d = -5 \ln 4$		
	$x = 5\ln\left(2 + e^{2t} + e^{-2t}\right) - 5\ln 4$		
	$x = 5\ln\left(\frac{2 + e^{2t} + e^{-2t}}{4}\right)$		
(iii)	When $t = 2, x = 13.3 \text{ m} (3 \text{ s.f.}).$		
	The squirrel has fallen 13.3 metres.		
(iv)	Note that $y = \frac{dx}{dt}$ is the velocity of the falling squirrel at any time <i>t</i> .		
	$y = \frac{10(e^{2t} - 1)}{e^{2t} + 1}$ $= \frac{10(1 - e^{-2t})}{1 + e^{-2t}}$		
	$=\frac{10(1-e^{-2t})}{1+e^{-2t}}$		
	As $t \to \infty$, $e^{-2t} \to 0$, $y \to 10$		
	Hence, the terminal velocity of the falling squirrel is 10 m/s.		

Qn		Solution
11	APGP	
(i)	<i>n</i> (no. of	Total amount in account A at the end of n^{th} year
	years)	
	1	1000(1.035)
	2	[1000+1000(1.035)]1.035
		$= 1000(1.035+1.035^2)$
	3	$\left[1000(1.035+1.035^2)\right]1.035$
		$=1000(1.035+1.035^{2}+1.035^{3})$
		·····
	n	$1000(1.035+1.035^{2}+1.035^{3}++1.035^{n})$
		bunt in account A at the end of n years $.035+1.035^{2}+1.035^{3}++1.035^{n}$)
		$\frac{1.035(1-1.035^n)}{1-1.035}$
	$= 1000 \left(\frac{1}{-1} \right)$	$\frac{1.035(1.035^n - 1)}{1.035 - 1} \bigg)$
	$=\frac{207000}{7}(1.035^n-1)$	
	Therefore	$p, p = \frac{207000}{7}$ and $q = 1.035$.
(ii)	Method 1	
		ult from part (i), = 23, $\frac{207000}{7} (1.035^{23} - 1) = 35666.53 < 36000$
		$= 24, \frac{207000}{7} (1.035^{24} - 1) = 37949.86 > 36000$
		= 23, total amount in account A at the end of $2045 =$
	335666.53 Total amount in account <i>A</i> at the start of 2046 = $35666.53 + 1000 = 36666.53$	
	Hence, the total amount in account <i>A</i> first exceed \$36000 on 1 January 2046 .	
	Method 2:	
	$\begin{bmatrix} n \text{ (no.} \\ \text{of} \\ \text{years)} \end{bmatrix}$ Total amount in account A at the start of n th year	
	1	1000
	2 1000+1000(1.035)=1000(1+1.035)	
	3	[1000(1+1.035)]1.035+1000
		$=1000(1+1.035+1.035^2)$

When
$$n = 7$$
,

$$\frac{207000}{7} (1.035^{7} - 1) - 7(1040) + 36 \left[\frac{(7 - 1)7}{2} \right] = 15.687 > 0$$
Least $n = 7$
Therefore, the total amount in account A first exceeds the total amount in account B in 2029.
(iv) At end of 31 Dec 2032, $n = 10$

$$10(1040) + k \left[\frac{(10 - 1)10}{2} \right] > \frac{207000}{7} (1.035^{10} - 1)$$

$$k > \left[\frac{207000(1.035^{10} - 1)}{7} - 10(1040) \right] \frac{1}{45}$$

$$k > 38.711$$
Least $k = 39$ (to the nearest whole number)

TAMPINES MERIDIAN JUNIOR COLLEGE

JC2 PRELIMINARY EXAMINATION

CANDIDATE NAME: _____

CIVICS GROUP:

H2 MATHEMATICS

Paper 2

9758/02 **19 SEPTEMBER 2022** 3 hours

Candidates answer on the question paper.

Additional material: List of Formulae (MF26)

READ THESE INSTRUCTIONS FIRST

Write your name and Civics Group on all the work you hand in. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer **all** the questions.

Write your answers in the spaces provided in the question paper. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use an approved graphing calculator.

Unsupported answers from a graphing calculator are allowed unless a question specifically states otherwise.

Where unsupported answers from a graphing calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands. You are reminded of the need for clear presentation in your answers.

For Examiners' Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
Total		

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100.

This document consists of 6 printed pages and 0 blank pages.

Section A: Pure Mathematics [40 marks]

1 The equation of a curve is given by $y^3 - xy = e^{2x} + 7$.

(i) Find
$$\frac{dy}{dx}$$
 in terms of x and y. [2]

- (ii) Find the equation of the tangent to the curve at the point where x = 0. [2]
- 2 It is given that $z = -\sqrt{6} i\sqrt{2}$ and $w = 3\left(\cos\frac{5\pi}{7} i\sin\frac{5\pi}{7}\right)$. Without the use of a

calculator, find the modulus and argument of $\frac{izw^2}{w^*}$ in exact form. [6]

3 A curve C has equation
$$y = \frac{x}{4+x^2}$$
.

- (i) Sketch the graph of *C*, stating the equations of any asymptotes and the coordinates of any turning points.
- (ii) The region bounded by the curve, the y-axis and the line $y = \frac{1}{4}$ is rotated about the x-axis through 360°. Use the substitution $x = 2 \tan \theta$ to find the exact volume of the solid obtained. [5]

4 In the triangle *ABC*, angle $BAC = \frac{\pi}{4}$ radians and angle $ABC = \left(\frac{\pi}{4} + 2x\right)$ radians. Show that $\frac{AB}{AC} = \frac{\sqrt{2}\cos 2x}{\cos 2x + \sin 2x}$. [3]

Given that x is sufficiently small for which x^3 and higher powers of x can be ignored, find the series expansion of $\frac{AB}{AC}$ in ascending powers of x. [4]

- 5 Referred to the origin *O*, the points *A* and *B* have position vectors **a** and **b** respectively where **a** and **b** are non-zero non-parallel vectors. The point *C* is on *AB* such that AC: CB = 3:2 and the point *D* is such that *A* is the mid-point of *OD*. It is also given that *ODPB* forms a parallelogram.
 - (i) By finding \overrightarrow{OC} and \overrightarrow{OP} in terms of **a** and **b**, show that the area of triangle *OPC* can be written as $k |\mathbf{a} \times \mathbf{b}|$, where k is a constant to be determined. [5]

The lines AB and OP intersect at point E.

- (ii) Find the position vector of E in terms of \mathbf{a} and \mathbf{b} . [4]
- (iii) It is given further that angle *AOB* is acute and **a** is a unit vector. Find the range of values of $|\mathbf{b}|$ such that *E* is the foot of perpendicular from *D* to the line *OP*, giving your answers in exact form. [7]

Section B: Probability and Statistics [60 marks]

6 The probability function of a discrete random variable, X, is given as follows:

$$P(X = x) = \begin{cases} p & \text{if } x = 0\\ \frac{1}{3}P(X = x - 1) & \text{if } x = 2, 4, 6\\ q & \text{if } x = 1, 3, 5 \end{cases}$$

- (i) Given that the expected value of X is 2, find the probability distribution of X. [4]
- (ii) Given that X_1 and X_2 are two independent observations of X, find P($X_1 + X_2 = 4$). [2]

7 (a) A team of 5 people from a family of 7 adults and 3 children is to be selected for a competition. Find the number of teams that can be selected if

- (i) there are no restrictions, [1]
- (ii) at most one child and the oldest adult must be in the team. [2]

(**b**) For events A and B, it is given that
$$P(B) = \frac{17}{30}$$
, $P(A' \cap B') = \frac{1}{3}$ and $P(B|A) = \frac{4}{5}$.

- (i) Find $P(A \cap B)$. [3]
- (ii) Find P(A|B'). [2]

8 To improve the prediction accuracy of earthquakes, a group of seismologists gathered the following information about the crack density ρ , measured in millimetres⁻¹, at different distances away from the fault line *d*, measured in millimetres.

d	1	10	100	200	500	1000
ρ	49	27	16	11	10	9

- (i) Sketch a scatter diagram of the data.
- (ii) Find the product moment correlation coefficient between
 - (a) ρ and d,
 - (b) $\ln \rho$ and $\ln d$. [2]

[1]

- (iii) Using the answers to parts (i) and (ii), explain why the relationship between ρ and *d* is better modelled by $\ln \rho = A + B \ln d$, as compared to $\rho = C + Dd$, where *A*, *B*, *C* and *D* are real constants. Hence, find the equation of a suitable regression line for this better model. [3]
- (iv) Use the regression line found in part (iii) to estimate the distance away from the fault line, to the nearest integer, when the crack density is 8 mm⁻¹ and comment on its reliability.
- (v) Without further calculations, explain whether the product moment correlation coefficient between $\ln \rho$ and $\ln d$ would be different if d was recorded in metres instead. [1]

9

A fruit seller claims that the apples he sells have a mean weight of 200g. A consumer believes the fruit seller is overstating his claim and decides to do a hypothesis test. He buys a random sample of 30 apples from the fruit seller and measures x, the weight of each apple with the following results:

$$\sum (x-200) = -30$$
 and $\sum (x-200)^2 = 1800$.

- (i) Explain why, in this context, the given data is summarised in terms of (x-200) rather than x. [1]
- (ii) Find unbiased estimates for the population mean and variance. [2]
- (iii) Test, at the 10% significance level, whether the fruit seller has overstated the mean weight of apples that he sells. [4]

The fruit seller wishes to test whether the weight of oranges he sells has a mean weight of 120g and it is given that the weights of oranges sold by the fruit seller are normally distributed with a standard deviation of 8g.

(iv) For a random sample of 30 oranges, find the set of possible values of the sample mean weight to conclude that the mean weight of oranges is not 120g at the 10% level of significance. (Answer obtained by trial and improvement from a calculator will obtain no marks.)

- 10 A company produces large batches of key chains. It is known that, on average, 3% of the key chains are defective. The key chains are packed in boxes of n.
 - (i) State, in context, two assumptions needed for the number of defective key chains in a box to be well-modelled by a binomial distribution. [2]

Assume that the assumptions stated above hold.

(ii) The probability that a box contains fewer than 3 defective key chains is less than 0.95. Find the smallest possible integer value of *n*.

As part of the company's quality control process, the company is considering 2 methods for inspection of a batch of key chains.

Method A

The key chains are packed in boxes of 20. A box is randomly selected. If there are 2 or fewer defective key chains, the batch will be accepted, otherwise the batch will be rejected.

Method B

The key chains are packed in boxes of 10. A box is randomly selected. The batch is accepted if there are no defective key chains and rejected if there are 2 or more defective key chains. Otherwise, randomly select another box for inspection. If there are fewer than 2 defective key chains in the second box, the batch will be accepted.

- (iii) For each model, find the probability that the batch will be accepted. [3]
- (iv) By calculating the expected number of keychains to be sampled for each method, give a possible reason why the company would choose method B. [2]

The key chains are packed in boxes of 20.

(v) A random sample of 30 boxes is taken. Given that there are 3 boxes with 3 or more defective key chains, find the probability that the third box with 3 or more defective key chains occurs on the 15th box. [3]

11 In this question you should state clearly all the distributions that you use, together with the values of the appropriate parameters.

In a factory, oil is stored in barrels of different sizes. It is given that the volumes of oil in the barrels can be modelled using normal distributions with means and standard deviations as shown in the table.

	Mean volume (in litres)	Standard deviation (in litres)
Light oil	110	2.5
Heavy oil	145	3.5

- (i) Find the probability that the volume of light oil in a randomly chosen barrel is between 104 litres and 116 litres. [1]
- (ii) Sketch the distribution for the volume of light oil, indicating clearly the probability found in part (i).
- (iii) A random sample of seven barrels of heavy oil is chosen. Find the probability that exactly four barrels of heavy oil have volume between 142 and 150 litres each and exactly one barrel of heavy oil has volume more than 150 litres. [3]
- (iv) A random sample of n barrels of heavy oil is chosen and it is given that the probability that the mean volume of these n barrels of heavy oil exceeding k litres is at least 0.3. Find an inequality, expressing k in terms of n. [3]

A lorry with a maximum laden mass of 6800 kilograms is used to transport 25 barrels of light oil and 30 barrels of heavy oil. It is given that the densities of light oil and heavy oil are 0.83 kilograms per litre and 0.94 kilograms per litre respectively, and the empty barrels for light oil weigh 5 kilograms each and the empty barrels for heavy oil weigh 8 kilograms each.

(v) Find the probability that the load of the lorry exceeds its maximum laden mass. [4]

[Density is defined as
$$\frac{Mass}{Volume}$$
.]

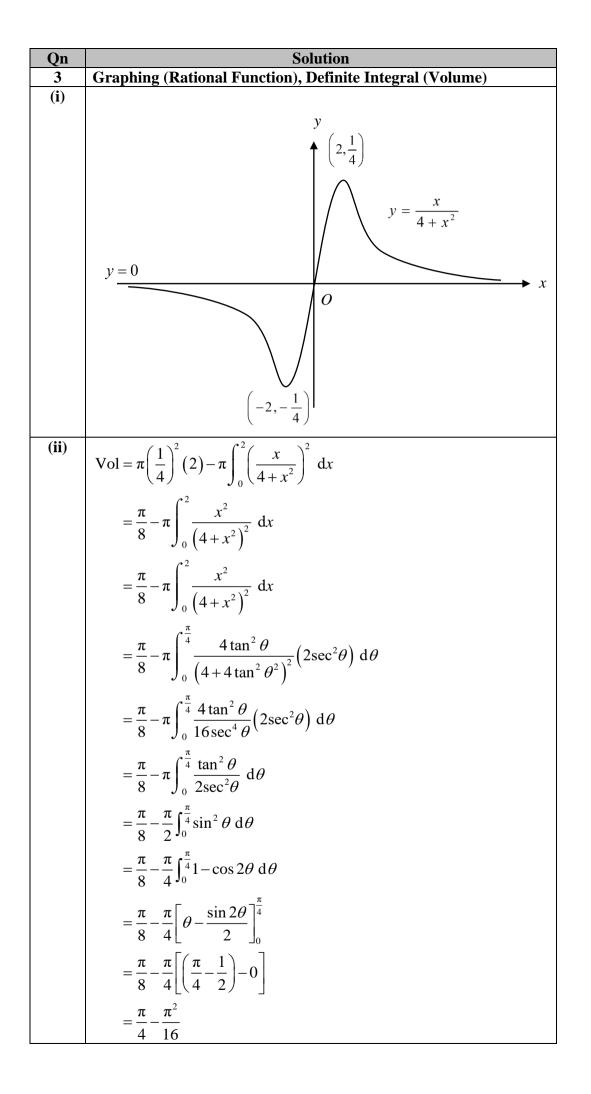
(vi) State an assumption needed for your calculations in part (v). [1]

End of Paper

2022 H2 MATH (9758/02) JC 2 PRELIMINARY EXAMINATION SOLUTIONS

Qn	Solution
1	Differentiation and applications
(i)	$3y^2 \frac{\mathrm{d}y}{\mathrm{d}x} - \left(y + x\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 2\mathrm{e}^{2x}$
	$\left(3y^2 - x\right)\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{2x} + y$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\mathrm{e}^{2x} + y}{3y^2 - x}$
(ii)	When $x = 0$,
(11)	
	$y^{3} - (0) y = e^{2(0)} + 7$
	$y^3 = 8$
	$y^3 = 8$ y = 2
	$\frac{dy}{dx} = \frac{2e^{2(0)} + 2}{3(2)^2 - 0} = \frac{4}{12} = \frac{1}{3}$
	Equation of tangent to the curve at $x = 0$:
	$y-2 = \frac{1}{3}(x-0)$ y = $\frac{1}{3}x+2$
	$y = \frac{1}{3}x + 2$
	3

Qn	Solution
2	Complex Numbers
	$ z = \sqrt{\left(-\sqrt{6}\right)^2 + \left(-\sqrt{2}\right)^2} = \sqrt{8} = 2\sqrt{2}$
	$\arg z = -\pi + \tan^{-1}\left(\frac{\sqrt{2}}{\sqrt{6}}\right) \qquad \qquad$
	$= -\pi + \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \qquad \qquad \text{arg } z$ $z = -\sqrt{6} - i\sqrt{2}$
	$= -\pi + \frac{\pi}{6} = -\frac{5\pi}{6}$ <u>Method 1</u>
	Method 1
	$\left \frac{izw^{2}}{w^{*}}\right = \frac{(1)(2\sqrt{2})(3)^{2}}{(3)}$
	$=6\sqrt{2}$
	$\arg\left(\frac{izw^2}{w^*}\right) = \arg(i) + \arg z + 2\arg w - \arg(w^*)$
	$=\frac{\pi}{2}-\frac{5\pi}{6}+2\left(-\frac{5\pi}{7}\right)-\left(\frac{5\pi}{7}\right)$
	$=-\frac{52\pi}{21}$
	$\equiv -\frac{10\pi}{21}$
	<u>Method 2: Using exponential form</u>
	$z = 2\sqrt{2}e^{-\frac{5\pi}{6}i}$
	$w = 3\left(\cos\frac{5\pi}{7} - i\sin\frac{5\pi}{7}\right) = 3e^{-\frac{5\pi}{7}i}$
	$\frac{izw^2}{w^*} = \frac{e^{\frac{\pi}{2}i} \left(2\sqrt{2}e^{\frac{-5\pi}{6}i}\right) \left(3e^{\frac{-5\pi}{7}i}\right)^2}{3e^{\frac{5\pi}{7}i}}$
	$ \begin{array}{c} w & 3e^{\frac{2\pi}{7}i} \\ = 6\sqrt{2} e^{\left(\frac{\pi}{2} - \frac{5\pi}{6} - \frac{10\pi}{7} - \left(\frac{5\pi}{7}\right)\right)i} \end{array} $
	$= 6\sqrt{2} e^{\frac{-52\pi}{21}i} \equiv 6\sqrt{2} e^{\frac{-10\pi}{21}i}$
	$\left \frac{\mathrm{i}zw^2}{w^*}\right = 6\sqrt{2}$
	$\arg\left(\frac{izw^2}{w^*}\right) = -\frac{10\pi}{21}$



Qn	Solution
4	Maclaurin Series
	$B \qquad C \qquad A \qquad A$
	$\angle ACB = \pi - \frac{\pi}{4} - \left(\frac{\pi}{4} + 2x\right) = \frac{\pi}{4} - 2x$
	Using Sine Rule, $\frac{AB}{\sin\left(\frac{\pi}{2} - 2x\right)} = \frac{AC}{\sin\left(\frac{\pi}{4} + 2x\right)}$ (π)
	$\frac{AB}{AC} = \frac{\sin\left(\frac{\pi}{2} - 2x\right)}{\sin\left(\frac{\pi}{4} + 2x\right)}$ $= \frac{\cos 2x}{\cos 2x}$
	$\sin\frac{\pi}{4}\cos 2x + \cos\frac{\pi}{4}\sin 2x$
	$=\frac{\cos 2x}{\frac{1}{\sqrt{2}}(\cos 2x + \sin 2x)}$
	$\frac{AB}{AC} = \frac{\sqrt{2}\cos 2x}{\cos 2x + \sin 2x} \text{ (shown)}$
	$\frac{AB}{AC} = \frac{\sqrt{2}\cos 2x}{\cos 2x + \sin 2x}$ $\approx \frac{\sqrt{2}\left(1 - \frac{(2x)^2}{2!}\right)}{\left(1 - \frac{(2x)^2}{2!}\right) + (2x)}$ $= \frac{\sqrt{2}\left(1 - 2x^2\right)}{1 + 2x - 2x^2}$
	$1+2x-2x^{2}$ = $\sqrt{2}(1-2x^{2})(1+2x-2x^{2})^{-1}$ = $\sqrt{2}(1-2x^{2})(1+(-1)(2x-2x^{2})+\frac{(-1)(-2)}{2!}(2x-2x^{2})^{2}+)$
	$= \sqrt{2} (1 - 2x^{2})(1 - 2x + 2x^{2} + 4x^{2} +)$ = $\sqrt{2} (1 - 2x^{2})(1 - 2x + 6x^{2} +)$ = $\sqrt{2} (1 - 2x + 6x^{2} - 2x^{2} +)$
	$=\sqrt{2}\left(1-2x+4x^{2}+\right)$

Qn	Solution
5	Vectors
	P
(i)	$\overrightarrow{OC} = \frac{2\overrightarrow{OA} + 3\overrightarrow{OB}}{5} = \frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}$ $\overrightarrow{OP} = \overrightarrow{OD} + \overrightarrow{OB} = 2\overrightarrow{OA} + \overrightarrow{OB} = 2\mathbf{a} + \mathbf{b}$
	$OP = OD + OB = 2OA + OB = 2\mathbf{a} + \mathbf{b}$ Area of triange $OPC = \frac{1}{2} \left \overrightarrow{OP} \times \overrightarrow{OC} \right $ $= \frac{1}{2} \left (2\mathbf{a} + \mathbf{b}) \times \left(\frac{2}{5} \mathbf{a} + \frac{3}{5} \mathbf{b} \right) \right $
	$= \frac{1}{10} 2\mathbf{a} \times 2\mathbf{a} + 2\mathbf{a} \times 3\mathbf{b} + \mathbf{b} \times 2\mathbf{a} + \mathbf{b} \times 3\mathbf{b} $ $= \frac{1}{10} 6\mathbf{a} \times \mathbf{b} - 2\mathbf{a} \times \mathbf{b} $ $= \frac{2}{5} \mathbf{a} \times \mathbf{b} $
	$\therefore k = \frac{2}{5}$
(ii)	Line <i>AB</i> : $\mathbf{r} = \mathbf{a} + \lambda (\mathbf{b} - \mathbf{a}), \ \lambda \in \mathbb{R}$
	Line <i>OP</i> : $\mathbf{r} = \mu (2\mathbf{a} + \mathbf{b}), \ \mu \in \mathbb{R}$
	To find intersection point: $\mathbf{a} + \lambda (\mathbf{b} - \mathbf{a}) = \mu (2\mathbf{a} + \mathbf{b})$ $(1 - \lambda)\mathbf{a} + \lambda \mathbf{b} = 2\mu \mathbf{a} + \mu \mathbf{b}$
	Since, a is not parallel to b and they are nonzero vectors, $1 - \lambda = 2\mu$ $\lambda = \mu$
	Solving, $\lambda = \mu = \frac{1}{3}$
	$\overrightarrow{OE} = \frac{1}{3} (2\mathbf{a} + \mathbf{b})$

(iii) Method 1:
Since *E* is the foot of perpendicular from *D* to the line *OP*,

$$DE \cdot OP = 0$$

$$\left(\frac{1}{3}(2\mathbf{a} + \mathbf{b}) - 2\mathbf{a}\right) \cdot (2\mathbf{a} + \mathbf{b}) = 0$$

$$\mathbf{b} \cdot 2\mathbf{a} + \mathbf{b} \cdot \mathbf{b} - 4\mathbf{a} \cdot 2\mathbf{a} - 4\mathbf{a} \cdot \mathbf{b} = 0$$

$$\mathbf{b} \cdot 2\mathbf{a} + \mathbf{b} \cdot \mathbf{b} - 4\mathbf{a} \cdot 2\mathbf{a} - 4\mathbf{a} \cdot \mathbf{b} = 0$$

$$\mathbf{b} \cdot 2\mathbf{a} + \mathbf{b} \cdot \mathbf{b} - 4\mathbf{a} \cdot 2\mathbf{a} - 4\mathbf{a} \cdot \mathbf{b} = 0$$

$$|\mathbf{b}|^2 - 8|\mathbf{a}|^2 - 2\mathbf{a} \cdot \mathbf{b} = 0$$

$$2\mathbf{a} \cdot \mathbf{b} = |\mathbf{b}|^2 - 8|\mathbf{a}|^2$$

$$2|\mathbf{a}||\mathbf{b}|\cos A\hat{O}B = |\mathbf{b}|^2 - 8|\mathbf{a}|^2$$

$$\cos A\hat{O}B = \frac{|\mathbf{b}|^2 - 8}{2|\mathbf{b}||}$$

$$(\because \mathbf{a} \text{ is a unit vector})$$
Since $A\hat{O}B$ is acute,

$$\frac{|\mathbf{b}|^2 - 8}{2|\mathbf{b}|} > 0$$
and since $|\mathbf{b}| > 0$,

$$|\mathbf{b}| > 2\sqrt{2}$$
Also,

$$\frac{|\mathbf{b}|^2 - 8}{2|\mathbf{b}|} < 1 \quad (\because \mathbf{a} \text{ is not parallel to } \mathbf{b})$$

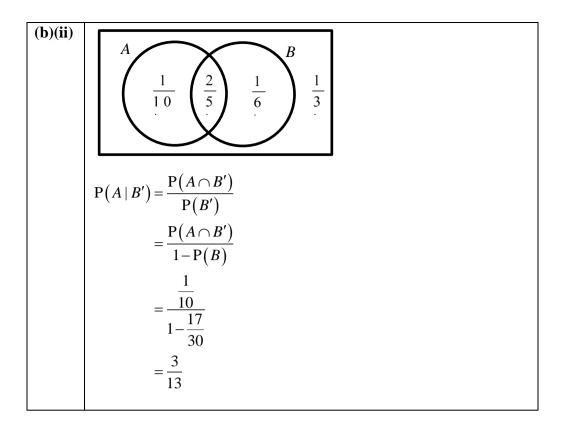
$$|\mathbf{b}|^2 - 2|\mathbf{b}| - 8 < 0$$

$$(|\mathbf{b}| - 4)(|\mathbf{b}| + 2) < 0$$
we get $0 < |\mathbf{b}| < 4$.
Thus, $2\sqrt{2} < |\mathbf{b}| < 4$

Method 2: Since *E* is the foot of perpendicular from *D* to the line *OP*, $\overrightarrow{DE} \cdot \overrightarrow{OP} = 0$ $\left(\frac{1}{3}(2\mathbf{a}+\mathbf{b})-2\mathbf{a}\right)\cdot(2\mathbf{a}+\mathbf{b})=0$ $\frac{1}{3}(\mathbf{b}-4\mathbf{a})\cdot(2\mathbf{a}+\mathbf{b})=0$ $\mathbf{b} \cdot 2\mathbf{a} + \mathbf{b} \cdot \mathbf{b} - 4\mathbf{a} \cdot 2\mathbf{a} - 4\mathbf{a} \cdot \mathbf{b} = 0$ $\left|\mathbf{b}\right|^2 - 8\left|\mathbf{a}\right|^2 - 2\mathbf{a}\cdot\mathbf{b} = 0$ $2\mathbf{a} \cdot \mathbf{b} = \left| \mathbf{b} \right|^2 - 8 \left| \mathbf{a} \right|^2$ $2\left|\mathbf{a}\right|\left|\mathbf{b}\right|\cos A\hat{O}B = \left|\mathbf{b}\right|^2 - 8\left|\mathbf{a}\right|^2$ $|\mathbf{b}|^2 - 2|\mathbf{b}|\cos A\hat{O}B - 8 = 0$ (:: **a** is a unit vector) $|\mathbf{b}| = \frac{2\cos A\hat{O}B \pm \sqrt{4\cos^2 A\hat{O}B - 4(1)(-8)}}{2}$ $= \cos A\hat{O}B \pm \sqrt{\cos^2 A\hat{O}B + 8}$ $= \cos A\hat{O}B + \sqrt{\cos^2 A\hat{O}B + 8} \qquad \text{or} \qquad \cos A\hat{O}B - \sqrt{\cos^2 A\hat{O}B + 8}$ Since $|\mathbf{b}| > 0$, $|\mathbf{b}| = \cos A\hat{O}B + \sqrt{\cos^2 A\hat{O}B + 8}$ Since \hat{AOB} is acute. $0 < \cos A \hat{O} B < 1$ $0 < \cos^2 A \hat{O} B < 1$ And $\cos A\hat{O}B$ is strictly decreasing for the given domain, We have $2\sqrt{2} < |\mathbf{b}| < 4$

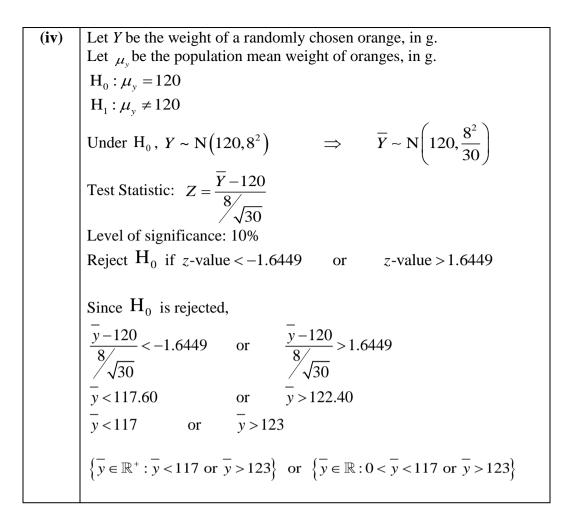
Qn	Solution							
6	Discrete Random Variable							
(i)	Probability Distribution of X							
	x	0	1	2	3	4	5	6
	P(X=x)	р	q	$\frac{q}{3}$	q	$\frac{q}{3}$	q	$\frac{q}{3}$
	$E(X) = 2$ $0 + q + \frac{2q}{3} + 3$	$3a+\frac{4q}{3}$	+5a+	$\frac{6q}{2} = 2$				
	$p+q+\frac{q}{3}+q$	5		5				
	Solving, $p =$	15	15					
	Probability D	oistribut	ion of 2	X		r	1	
	<i>x</i>	0	1	2	3	4	5	6
	$\mathbf{P}(X=x)$	$\frac{5}{13}$	$\frac{2}{13}$	$\frac{2}{39}$	$\frac{2}{13}$	$\frac{2}{39}$	$\frac{2}{13}$	$\frac{2}{39}$
(ii)	$P(X_1+X_2)$	=4)=	$P(X_1)$	$=0, X_{2}$	(2 = 4) +	$- P(X_1 =$	4, X ₂	=0)
		-	+ P(X	x = 1 X	(-3)	$+ \mathbf{P}(X_1 =$	= 3. X	=1)
			(- /	• (*•1	<i>S</i> , <i>1</i> 2	•)
		+	- P(X)	$_{1}=2, X$	$(2_2 = 2)$			
		$=\frac{5}{13}$	$\left(\frac{2}{39}\right)$	$\times 2 + \frac{2}{13}$	$\left(\frac{2}{13}\right) \times 2$	$2 + \frac{2}{39} \left(\frac{2}{39}\right)$	$\left(\frac{2}{9}\right)$	
		$=\frac{13}{15}$	$\frac{36}{21}$ or ().0894 ((3 s.f.)			

Qn	Solution
7	Permutations & Combinations and Probability
(a)(i)	Number of teams $= {}^{10}C_5 = 252$
(a)(ii)	Number of teams = ${}^{6}C_{4} + ({}^{3}C_{1})({}^{6}C_{3}) = 75$
(b)(i)	Method 1:
	$\left(\begin{array}{c} \frac{1}{10} \\ \cdot \\ $
	Let $P(A \cap B) = x$
	$\mathbf{P}(B \mid A) = \frac{4}{5}$
	$\frac{x}{\frac{1}{10} + x} = \frac{4}{5}$
	$x = \frac{2}{5}$
	Method 2:
	$\mathbf{P}(A \cup B) = 1 - \mathbf{P}(A' \cap B') = \frac{2}{3}$
	$P(B A) = \frac{4}{5} = \frac{P(A \cap B)}{P(A)} \Longrightarrow P(A \cap B) = \frac{4}{5}P(A)$
	$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A \cap B)$
	$= P(A) + \frac{17}{30} - \frac{4}{5}P(A)$
	$=\frac{1}{5}P(A)+\frac{17}{30}$
	$\Rightarrow P(A) = \frac{1}{2}$ $\Rightarrow P(A \cap B) = \frac{2}{5}$
	$\Rightarrow P(A \cap B) = \frac{2}{5}$



Qn	Solution			
8	Correlation and Regression			
(i)				
	49 - ×			
	×			
	× ×			
	$9 \xrightarrow{\star} 1$			
	1 1000 d			
(ii)(a)	$r = -0.62016 \approx -0.620$			
(ii)(b)	r = -0.99371 = -0.994			
(iii)	Based on the scatter diagram, as d increases, ρ decreases at a decreasing			
	rate.			
	Also, $ r = -0.99371 = 0.994$ for $\ln \rho$ and $\ln d$ is closer to 1 as compared to			
	$ r = -0.62016 = 0.620$ for ρ and d .			
	Hence, the relationship between ρ and d is better modelled by			
	$\ln \rho = A + B \ln d \; .$			
	$\ln \rho = 3.8793 - 0.25338 \ln d \approx 3.88 - 0.253 \ln d ,$			
	where $A = 3.88, B = -0.253$			
(iv)	$\ln \rho = 3.8793 - 0.25338 \ln d$			
	When $\rho = 8$,			
	$\ln 8 = 3.8793 - 0.25338 \ln d$			
	$d = 1216.1 \approx 1216 \text{ mm}$ (to nearest integer)			
	Even though $ r = 0.994$ is close to 1, since $\rho = 8$ lies outside the data range			
	of ρ , the linear relation may no longer hold, hence the estimate is not			
	reliable.			
(v)	The product moment correlation coefficient will be the same, as r is independent of the scale of measurement.			

Qn	Solution
9	Hypothesis Testing
(i)	Since the weights of apples should be close to the mean of 200g, $\sum_{i=1}^{n} \frac{1}{2}$
	using $\sum (x-200)^2$ instead of $\sum x^2$ ensures the sum is manageable
	and not too large .
	OR
	OK .
	By coding the summarised data of $(x-200)$ with reference to the
	mean of 200, it reduces the value of summarized data into a number
	that can be more easily handled when finding unbiased estimates.
(ii)	
	An unbiased estimate for the population mean is $\bar{x} = \frac{-30}{30} + 200 = 199$
	30
	An unbiased estimate for the population variance is
	$s^{2} = \frac{1}{29} \left(1800 - \frac{(-30)^{2}}{30} \right) = \frac{1770}{29}$
(iii)	Let μ be the population mean weight of apples, in g.
()	$H_0: \mu = 200$
	$H_1: \mu < 200$
	Under H_0 , Since $n = 30$ is large, by Central Limit Theorem,
	$\overline{X} \sim N\left(200, \frac{1770}{(29)(30)}\right)$ approximately.
	Test Statistic: $Z = \frac{X - 200}{1770}$
	Test Statistic: $Z = \frac{\overline{X} - 200}{\sqrt{\frac{1770}{(29)(30)}}}$
	Level of significance: 10%
	Reject H_0 if <i>p</i> -value < 0.1.
	Under H_0 , using GC, <i>p</i> -value = 0.24162 (5 s.f) = 0.242 (3 s.f)
	Since p -value = 0.242 > 0.1, we do not reject H_0 and conclude that
	there is insufficient evidence, at 10% level of significance, that the
	population mean weight of apples sold by the fruit seller is less than
	200g. Thus the fruit's claim is valid.



Qn	Solution
10	Binomial Distribution
(i)	The probability that a randomly chosen key chain is defective remains
	constant at 0.03 for all key chains in a box.
	Whether a randomly chosen key chain is defective is independent of
	any other key chains in a box.
(ii)	Let X be the number of defective key chains out of n key chains in a
	box.
	N D(0.02)
	$X \sim B(n, 0.03)$
	$P(X \le 2) < 0.95$
	when $n = 27$, $P(X \le 2) = 0.9538 > 0.95$
	when $n = 28$, $P(X \le 2) = 0.9494 < 0.95$
	Least value of $n = 28$
(iii)	Method A:
	Let Y be the number of defective key chains out of 20 key chains in a
	box. $Y \sim B(20, 0.03)$
	$P(Y \le 2) = 0.97899 = 0.979$ (3 s.f.)
	Method B:
	Let W be the number of defective key chains out of 10 key chains in a
	box.
	$W \sim B(10, 0.03)$
	P(a batch is accepted)
	$= P(W = 0) + P(W = 1)P(W \le 1)$
	= 0.95762
	= 0.958 (3 s.f.)
(iv)	
	Expected number for Method $A = 20$
	Expected number for Method B
	$= 10 \times (1 - P(W = 1)) + 20 \times P(W = 1)$
	=12.3 (3 s.f.)
	Since the expected number of keychains to be sampled for method B is
	lower, the company might choose B instead of A as it saves time in
	checking (or any other valid reason).
(v)	$P(Y \ge 3) = 1 - P(Y \le 2) = 1 - 0.97899 = 0.02101$
	Let S he the number of house with 2 or more defective how sheins out
	Let S be the number of boxes with 3 or more defective key chains out f^{20} have
	of 30 boxes.
	$S \sim B(30, 0.02101)$
	Let T be the number of boxes with 3 or more defective key chains out
	of 14 boxes.
	$T \sim B(14, 0.02101)$
	Required probability = $\frac{P(T=2) \times 0.02101 \times (0.97899)^{15}}{P(S=3)} = 0.0224$
	P(S=3) = -0.0224

Qn	Solution
11	Normal and Sampling Distribution

(i)	Let X and Y be the volume of oil in a randomly chosen barrel of light
	and heavy oil respectively.
	$X \sim N(110, 2.5^2)$ $Y \sim N(145, 3.5^2)$
	P(104 < X < 116) = 0.984
(ii)	
	0.984
	104 110 116
(iii)	Required Probability
	$= P(142 < Y < 150)^{4} \times P(Y > 150) \times P(Y < 142)^{2} \times \frac{7!}{4!2!}$
	= 0.0863
(iv)	Let $\overline{Y} = \frac{Y_1 + Y_2 + \dots + Y_n}{n}$ and $\overline{Y} \sim N\left(145, \frac{3.5^2}{n}\right)$
	n (n)
	$P(\overline{Y} > k) \ge 0.3$
	$P\left(Z > \frac{k - 145}{\frac{3.5}{\sqrt{n}}}\right) \ge 0.3$
	$\left(\begin{array}{c}\frac{3.5}{\sqrt{n}}\end{array}\right)$
	$\frac{k-145}{25} \le 0.52440$
	$\frac{k - 145}{\frac{3.5}{\sqrt{n}}} \le 0.52440$
	$k \leq 145 + \frac{1.84}{\sqrt{n}}$
	\sqrt{n}
(v)	Let $T = 0.83(X_1 + X_2 + \dots + X_{25}) + 0.94(Y_1 + Y_2 + \dots + Y_{30})$
	$E(T) = 0.83(110 \times 25) + 0.94(145 \times 30) = 6371.5$ (exact)
	$\operatorname{Var}(T) = 0.83^{2} (2.5^{2} \times 25) + 0.94^{2} (3.5^{2} \times 30) = 432.363625 \text{ (exact)}$
	$T \sim N(6371.5, 432.363625)$ (exact)
	P(T+25(5)+30(8)>6800)
	= P(T > 6435)
	= 0.00113
(vi)	The distributions of the volume of all types of oil are independent of one another.
•	