Section A: Pure Mathematics [40 marks]

1 (i) The equation $3z^3 - 7z^2 + 17z + m = 0$, where *m* is a real constant, has a root z = 1+2i. Find the value of *m*. Hence using an algebraic method, find all the roots of the equation $3z^3 - 7z^2 + 17z + m = 0$. Show your working clearly. [4]

(ii) Hence, solve the equation $\frac{3}{w^3} + \frac{7}{w^2} + \frac{17}{w} - m = 0$, giving your answers in the form a + bi, where $a, b \in \mathbb{R}$. [2]

- 2 Relative to the origin *O*, the points *A*, *B* and *C* have position vectors **a**, **b** and **c** respectively. It is given that λ and μ are non-zero numbers such that $\lambda \mathbf{a} + \mu \mathbf{b} \mathbf{c} = \mathbf{0}$ and $\lambda + \mu = 1$.
 - (i) Show that the points A, B and C are collinear. [3]

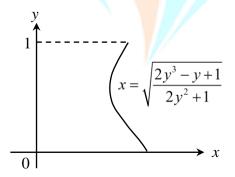
The angle between **a** and **b** is known to be obtuse and that $|\mathbf{a}| = 2$.

(ii) If k denotes the area of triangle OAB, show that $(\mathbf{a} \cdot \mathbf{b})^2 = 4(|\mathbf{b}|^2 - k^2)$. [3]

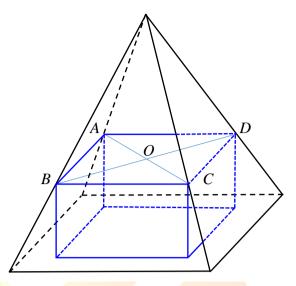
D is a point on the line segment *AB* with position vector **d**.

(iii) It is given that area of triangle *OAB* is 6 units², $|\mathbf{b}| = 10$ and that *AOD* is 90⁰. By finding the value of $\mathbf{a} \cdot \mathbf{b}$, find \mathbf{d} in terms of \mathbf{a} and \mathbf{b} . [4]

3 (a)(i) Use the substitution
$$u = 1 + x^2$$
 to find $\int \frac{x e^{1 + x^2}}{\sqrt{1 + e^{1 + x^2}}} dx$. [4]


(ii) Curves C_1 and C_2 have equations $y = xe^{x^2-2} - \frac{1}{2e}$ and $y = \frac{xe^{1+x^2}}{\sqrt{1+e^{1+x^2}}} - \frac{1}{2e^2}$

respectively. The region bounded by the curves C_1 and C_2 , the y-axis and the line x = 1 is R. Find the exact area of R.


[3]

(**b**) The shape of a vase is formed by rotating the part of the curve $x = \sqrt{\frac{2y^3 - y + 1}{2y^2 + 1}}$

between y=0 and y=1 through 2π radians about the y-axis (see diagram below). Find the exact volume of the vase formed. [5]

The product engineer of a factory crafted the design of a rectangular box, using a right pyramid, that is shown on the diagram above (not drawn to scale). The rectangular box is contained in a right pyramid with a rectangular base such that the upper four corners of the box A, B, C and D touch the slant faces of the pyramid, and the bottom four corners lie on the base of the pyramid. O is the point of intersection of the two diagonals, AC and BD.

The height of the pyramid is $3\sqrt{2}$ units, the length of the diagonal of its rectangular base is $12\sqrt{2}$ units, the height of the box is *b* units, where $b < 3\sqrt{2}$, and the angle *AOB* is θ radians. It is given that the box is made of material with negligible thickness.

(i) By finding the length of *OA* in terms of *b*, show that the volume *V* of the rectangular box is given by $V = 8b(3\sqrt{2}-b)^2 \sin\theta$.

For the rest of the question, it is given that $\theta = \frac{\pi}{3}$.

(ii) Find the exact value of b which maximises V. Hence find the cost of manufacturing one such box if the material used to make the box cost \$0.03 per unit².

When the height of the box is at half the height of the pyramid, it is reducing at a rate of 2 units per second.

(iii) Determine whether the volume of the box is expanding or shrinking and find the rate at which this is happening.

[3]

[6]

[3]

Section B: Probability and Statistics [60 marks]

5 Two families, each consisting of an adult couple and three children visited a carnival together.

The 10 people went to queue for a ride randomly in one straight line.

(i) Find the probability that members of the 2 families stand in alternate positions in that queue.

If the ride is made up of two identical circular carriages of five identical seats each.

- (ii) Find the number of ways the 10 people can be seated if not all the family members are seated together in the same carriage.
- 6 In a soccer practice, the coach instructs the players to practise their penalty kicks. A player scores if he successfully kicks a ball into the net of a goal post. The probability that a player scores on the first kick is $\frac{2}{5}$. For all the subsequent kicks, the probability of scoring on that kick will be $\frac{4}{5}$ if the player scores in the preceding kick, and the

probability of scoring on that kick will be $\frac{1}{6}$ if the player did not score in the

preceding kick.

- (i) Owen kicked the ball three times consecutively for his practice. Find the probability that he scored on the third kick, given that he scored only twice out of the three kicks.
- (ii) Three players each kicked the ball four times consecutively for their practices. Find the probability that one of the players scored on all four kicks, another player scored on the first kick only, while the remaining player only scored on the second and third kicks.
- 7 Grade A and grade B sugar produced by a company are packed and sold in packets. The mass of both grade A and grade B sugar sold follows independent normal distributions with mean 2.05 kg. The standard deviation for the mass of a randomly chosen packet of grade A and grade B sugar are 0.025 kg and σ kg respectively. If the probability that the mass of a randomly chosen packet of grade B sugar being less than 2 kg is 0.01,
 - (i) show that the value of σ is 0.02149<mark>3 correct to 5 significant figures.</mark> It is given that the profit per kilogram of grade A and B sugar sold is 50 cents and 40 cents respectively.
 - (ii) Find the probability that the total profit of three randomly chosen packets of grade A sugar is higher than three times the profit of a randomly chosen packet of grade B sugar by not more than 65 cents.
 - (iii) Two packets of grade A sugar and *n* packets of grade B sugar are selected at random. Find the smallest value of *n* such that the probability that the mean mass of these packets being less than 2.06 kg is at least 0.97.

[2]

[3]

[3]

[3]

[2]

[3]

- 8 In a public swimming centre, the time spent by a randomly chosen user in using its facilities is T minutes, is known to be normally distributed. The centre manager claims that its users spend an average of 50 minutes to use its facilities. To check this claim, time spent by a random sample of 60 users were recorded. The data recorded has an average of 47 minutes and a standard deviation of 16.4 minutes.
 - (i) Find an unbiased estimate of the population variance, giving your answer correct to 2 decimal places.
 - (ii) Test, at the 5% significance level, whether the centre manager overstated the average time spent.
 - (iii) Another sample of size n (n > 30) that was collected independently is now used to test, at the 5% significance level, whether the centre manager's claim is valid. For this sample, the mean time taken is 46 minutes. If the result of the test using this information and the unbiased estimate of the population variance in part (i) is that the null hypothesis is rejected, find the least possible value that n can take. [4]
- 9 (a) A random variable X has a binomial distribution with n = 10 and probability of success p, where p < 0.5.
 - (i) Given that P(X = 3 or 4) = 0.2, write down an equation for the value of p, and find this value numerically. [2]
 - It is given that $p = \frac{1}{5}$.
 - (ii) The mean and standard deviation of X are denoted by μ and σ respectively. Find P($\mu \sigma < X < \mu + \sigma$), correct to 2 decimal places. [3]
 - (b) Mr Chua attempts an online sudoku puzzle each day. The probability that he manages to solve a puzzle on any given day is 0.75, independently of any other day.
 - (i) Find the probability that he solves his third puzzle on the eighth day of his [2] attempt.
 - (ii) Find the probability that, over a period of 8 weeks, Mr Chua manages to solve at least 4 puzzles each week.

10 A bag contains nine numbered discs. Three discs are numbered 3, four discs are numbered 4 and two discs are numbered -1. Two discs are drawn simultaneously. The sum of numbers on them, denoted by X, is recorded.

- (i) Find the probability distribution for X. [3]
- (ii) Find E(X) and Var(X). [2]
- (iii) Two independent observations of X are taken. Find the probability that the difference between these two values is at most 5.
- (iv) Fifty independent observations of *X* are taken. Find the approximate probability that the sum of these fifty observations is between 250 and 260. [3]

[1]

[4]

11 Research is being carried out to study the degradation of a herbicide in soil. The concentration (in percentage) of the herbicide in the soil measured over a period of 120 days is recorded. The observations are listed in the table below. It is given that one of the observations has been recorded wrongly.

61							
Number of days (d)	20	40	60	80	100	120	
Concentration (<i>c</i>)	60	57	41	36	33	31	

(i) Draw a scatter diagram to illustrate the data and circle the incorrect observation. [3] For the rest of the question, you should exclude the incorrect observation.

(ii) Comment on whether a linear model would be appropriate, referring both to the scatter diagram and the context of the question. [2]

It is thought that this set of data can be modelled by one of the following formulae after removing the incorrect observation.

Model A: $c^2 = a + bd$ Model B: $c = ae^{bd}$

- (iii) By calculating the product moment correlation coefficients, explain clearly which of the above models is a more appropriate model for this set of data. [3]
- (iv) Use the model you identified in (iii) to find the equation of a suitable regression line and use your equation to estimate the concentration of the herbicide in the soil after 140 days.
- (v) Comment on the reliability of the estimate obtained in (iv). [1]
- (vi) Give an interpretation of the vertical intercept of the regression line obtained in(iv) in the context of the question.

End of Paper

- 1 (i) For positive real constant c, state a sequence of three transformations in terms of c, that will transform the graph with equation of the form y = f(2x+3)+c onto the graph with equation y = f(x). [3]
 - (ii) The point with coordinates (-2,0) that lies on the curve with equation of the form y = f(2x+3) + c is mapped onto the point with coordinates (0,-1) that is on the curve with equation y = f(x). State the value of *c*. [1]
- 2 The complex numbers z_1 , z_2 and z_3 are given by $z_1 = (1 \sqrt{3}i)^2$, $\begin{bmatrix} -(\pi - \pi)^2 \end{bmatrix}^6$

$$z_2 = \left\lfloor \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \right\rfloor \text{ and } z_3 = -1 + \sqrt{3}i.$$

(i) Using an algebraic method, find $\frac{z_2}{z_1}$ in the form $re^{i\theta}$, where r > 0 and θ is an exact real constant such that $-\pi < \theta \le \pi$.

- (ii) Hence find $\frac{z_2}{z_1} + z_3$ in the form $pe^{i\alpha}$, where both *r* and θ are exact real constants such that r > 0 and $-\pi < \theta \le \pi$.
- 3 It is given that the curve C has equation $y = \frac{x^2 x + 7}{x 2}, x \in \mathbb{R}, x \neq 2.$
 - (i) Without using a calculator, find the set of values that *y* cannot take. [3]
 - (ii) Sketch *C*, stating clearly the equations of any asymptotes, the coordinates of the stationary points and the point(s) where the curve crosses the axes. [3]
- 4 (i) Show that the first two non-zero terms of the Maclaurin series for $\tan \theta$ is given by $\theta + \frac{1}{3}\theta^3$. You may use the standard results given in the List of Formulae (MF26). [2]

In the right-angle triangle *OBC* shown above, point *A* lies on *OB* such that OA = 1, OB = x, where x > 1 and OC = 1. It is given that angle *COB* is $\frac{\pi}{2}$ radians and that angle *ACB* is θ radians (see diagram).

[3]

[3]

(ii) Show that $AB = \frac{2 \tan \theta}{1 - \tan \theta}$.	[2]
(iii) Given that θ is a sufficiently small angle, show that	
$AB \approx a\theta + b\theta^2 + c\theta^3$	
for exact real constants a, b and c to be determined.	[3]

5 (i) By considering
$$u_n - u_{n+1}$$
, where $u_n = \frac{1}{n(n+1)(n+2)}$,
find $\sum_{n=1}^{N} \frac{1}{n(n+1)(n+2)(n+3)}$ in terms of N. [3]
(ii) Hence or otherwise, find $\sum_{n=5}^{N+3} \frac{1}{n(n-1)(n-2)(n-3)}$. [3]
(iii) Deduce that
 $\frac{1}{6^2} + \frac{1}{12^2} + \frac{1}{20^2} + \frac{1}{30^2} + \frac{1}{42^2} + \dots$
is less than $\frac{1}{18}$. Show your workings clearly. [3]

Hence solve the inequality
$$|x^2 - 7| \ge x + 5$$
. [4]

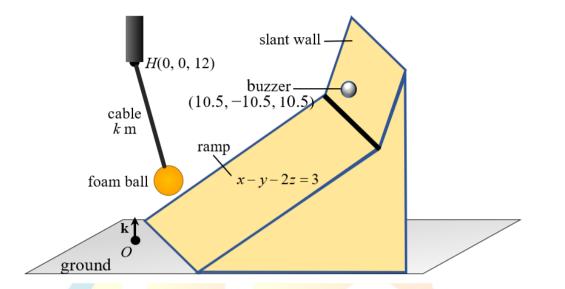
(ii) Hence, for
$$a > 5$$
, find $\int_{3}^{a} |x^{2} - 7| - x - 5| dx$ in terms of a . Leave your answer in exact form. [3]

7 A curve *C* has parametric equations

$$x = \sin^3 t$$
, $y = \cos^2 t$, $-\frac{\pi}{2} < t < 0$.

The tangent at the point $P(\sin^3 p, \cos^2 p)$, $-\frac{\pi}{2} , meets the$ *x*-axis and*y*-axis

at Q and R respectively.


(i) By finding the equation of the tangent at the point P, show that the area of the

triangle OQR is
$$-\frac{1}{12}\sin p (2+\cos^2 p)^2$$
.

12 12 [6]
(ii) Find a cartesian equation of the locus of the mid-point of *QR* as *p* varies. You need not indicate its domain. [5]

8	(a)	Functions f and g are defined by	
		$f: x \mapsto x^2, x < 0,$	
		$g: x \mapsto \frac{1}{x}, x > 0.$	
		(i) Explain why the composite function gf exists.	[1
		(ii) Find the exact value of $f^{-1}g^{-1}(3)$. Show your workings clearly.	[3
	(b)	For real values a, the function h is defined by	L
		$h: x \mapsto ax - \frac{1}{x}, x < 0.$	
		(i) If a is negative, explain clearly with a well-labelled diagram, why h^{-1}	
		does not exist.	[4
		(ii) If $a = 1$, find h^{-1} in similar form.	[3
9	(a)	An arithmetic progression has first term <i>a</i> and common difference <i>d</i> , where $a > 0$ and $d \neq 0$. The eighth, third and second term of the progression are the first three terms of an infinite geometric progression. (i) Find the common ratio of the geometric progression. (ii) Find the exact sum of the odd-numbered terms of the geometric progression	[3
	(b)	in terms of a.	[3
		path to model the actual hunt for a rabbit by a fox. The rabbit first hop is 1.75 m. In each subsequent hop, the distance covered is 1% less than its previous hop. The fox first leaps 3 m. In each subsequent leap, the distance covered is 0.02 m less than its previous leap. Initially the rabbit is 60 m ahead of the fox and assume that the rabbit and the fox start and end each hop and leap at the same time.	
		(i) By finding the total distance travelled by the fox and the rabbit after n leaps and hops respectively, find the minimum number of hops and leaps for the	
		 fox to catch up with the rabbit. (ii) Find the number of leaps the fox takes before it comes to a stop. Hence, find the minimum starting distance, in metre, between the fox and the rabbit such that the fox will never catch up with the rabbit. Leave your answer to 	[4
		the nearest integer.	[2

10 The production team of a popular variety show, *Sprinting Man*, is preparing a site for a segment of the show. In this segment, each participant is to sprint from the starting point, go up a ramp and press a buzzer to complete the challenge.

Referring the starting point as the origin O and the horizontal ground as the x-y plane, the top surface of the ramp has equation x - y - 2z = 3 (see diagram that is not drawn to scale). Distances are measured in metres.

(i) Find the angle of inclination of the ramp.

A spherical polyurethane foam ball of radius 1 m is suspended from a point H with coordinates (0, 0, 12) by a cable of length k m, that is taut all the time. The ball will be swung in various directions during the challenge to increase the level of difficulty. (ii) If the production team wants to ensure that the foam ball will never come in

contact with the ramp, find the range of values that k can take. [3] The buzzer that the participants are to press is located at the point with coordinates (10.5, -10.5, 10.5). This point lies on a flat slant wall which intersects the ramp along the line l with cartesian equation x = y + 20, z = 8.5.

(iii) Find a cartesian equation of the slant wall. A camera is to be placed along a line *L* with equation $\mathbf{r} = 12\mathbf{k} + t(\mathbf{i} + 3\mathbf{j}), t \in \mathbb{R}$, with its position denoted by *C*.

(iv) If the camera is at a distance of $\sqrt{254}$ m from a point P with coordinates (10, -10, 10), determine the possible coordinates of C exactly, showing your workings. Hence deduce the point on L that is nearest to P. [4]

[2]

[3]

- 11 The cylindrical tank in a research laboratory has a cross-sectional area of 4 m^2 . To cool the tank, water is pumped in and out of the tank simultaneously. The volume and height of the water in the tank at any time *t* minutes is given by *V* (litres) and *h* (metres) respectively. Clean water is pumped into the tank at a rate that is proportional to h^2 and the water is pumped out from the tank at a rate that is proportional to *h*.
 - (i) Assume that the water does not overflow and that there is no change to the height

of the water when *h* is 10, show that $\frac{dh}{dt} = \frac{kh(h-10)}{4}$ where *k* is a real constant. [4] The tank was initially filled with clean water to a height of 2 metres. When the height of the water is 5 metres, the volume of water is increasing at a rate of 5.5 litres per minute.

- (ii) Find the exact value of k. Hence find h in terms of t.
- (iii) Sketch a graph of *h* against *t*. Hence write down the minimum height of the cylindrical tank that will not result in the overflow of the water. [3]

[5]

ANDERSON SERANGOON JUNIOR COLLEGE

MATHEMATICS

H2 Math Prelim Paper 2 (100 marks)	19 5000 2022	
		3 hours	
Additional Material(s):	List of Formulae (MF26)		

CANDIDATE NAME

CLASS

READ THESE INSTRUCTIONS FIRST

Write your name and class in the boxes above. Please write clearly and use capital letters.

Write in dark blue or black pen. HB pencil may be used for graphs and diagrams only.

Do not use staples, paper clips, glue or correction fluid.

Answer **all** the questions and write your answers in this booklet. Do not tear out any part of this booklet.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use an approved graphing calculator.

Where unsupported answers from a graphing calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

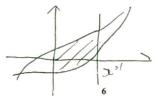
All work must be handed in at the end of the examination. If you have used any additional paper, please insert them inside this booklet.

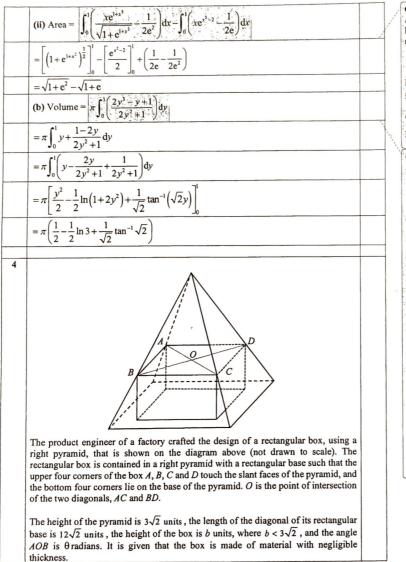
The number of marks is given in brackets [] at the end of each question or part question.

Question number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
Total	

9758


This document consists of 22 printed pages and 2 blank pages.


1	(i) The courting a Section A: Pure Mathematics [40 marks]		7
1	 (i) The equation 3z³ - 7z² + 17z + m = 0, where m is a real constant, has a root z=1+2i. Find the value of m. Hence using an algebraic method, find all the roots of the equation 3z³ - 7z² + 17z + m = 0. Show your working clearly. (ii) Hence, solve the equation 3/w³ + 7/w² + 17/w - m = 0, giving your answers in the form a+bi, where a, b ∈ ℝ. 	[4]	Commented [KW(W1]: <u>Method</u> Students should not use the GC to find the ro as the question requires an algebraic method
	$\frac{1}{w^3} + \frac{1}{w^2} + \frac{1}{w} - m = 0$, giving your answers in the		
		[2]	Commented [KW(W2]: <u>Method</u> Students are required to use the answers in (solve (ii).
	Solution		Solve (ii).
	(i) Since $z=1+2i$ is a root,	+	-
	$3(1+2i)^{3}-7(1+2i)^{2}+17(1+2i)+m=0$		-
	3(-11-2i)-7(-3+4i)+17+34i+m=0	+	-
	5 + m = 0		_
	m = -5		
	$3z^3 - 7z^2 + 17z - 5 = 0$	+	-
	Since coefficients are all real, $z=1-2i$ is also a root.		-
	$(z-(1+2i))(z-(1-2i))(3z-k)=3z^3-7z^2+17z+m$		Commented [KW(W3]: Concepts
	$(z^2 - 2z + 5)(3z - k) = 3z^3 - 7z^2 + 17z + m$		Some students did not recognize that the
	Comparing, $5(-k) = -5$	-	coefficient of z ³ is 3 and wrote z-k instead.
	<i>k</i> = 1		Some others did not know how to express the
	(z-(1+2i))(z-(1-2i))(3z-1)=0		cubic expression as a product of linear factor
	$\therefore z = 1 + 2i, 1 - 2i, \frac{1}{3}$		The highest power is 3 so there should only b roots.
	Alternatively,	-	
	Since coefficients are all real, so $z=1-2i$ is also a root.		
	$\Rightarrow (z - (1 + 2i))(z - (1 - 2i))(3z - k) = 3z^3 - 7z^2 + 17z + m = 0$		
	$(z^2-2z+5)(3z-k)=3z^3-7z^2+17z+m$		
	Comparing coefficients of z		
	-2(-k)+15=17		
	<i>k</i> = 1		
	$(z^2-2z+5)(3z-1)=0$		
	Comparing, $m = 5(-1) = -5$		
	$\therefore z = 1 + 2i, 1 - 2i, \frac{1}{3}$		
	(ii) $\frac{3}{w^3} + \frac{7}{w^2} + \frac{17}{w} + 5 = 0$		
	(ii) $\frac{3}{w^3} + \frac{7}{w^2} + \frac{17}{w} + 5 = 0$ $-\frac{3}{w^3} - \frac{7}{w^2} - \frac{17}{w} - 5 = 0$ $\frac{3}{(-w)^3} - \frac{7}{(-w)^2} + \frac{17}{(-w)} - 5 = 0$		
	$\frac{3}{\sqrt{3}} - \frac{7}{\sqrt{3}} + \frac{17}{\sqrt{3}} - 5 = 0$		


No. of Concession

	3			
	$\left 3\left(-\frac{1}{w}\right)^{3} - 7\left(-\frac{1}{w}\right)^{2} + 17\left(-\frac{1}{w}\right) - 5 = 0 \right $ Let $z = -\frac{1}{w}$			Commented JKW(W4): <u>Concept</u> Note that the sign for the first and third term should be positive so substitution should be -1/w instead of 1/w.
	From (i), $-\frac{1}{w} = 1 + 2i$ or $-\frac{1}{w} = 1 - 2i$ or $-\frac{1}{w} = \frac{1}{3}$ $w = \frac{1}{4i + 2i}$ or $w = \frac{1}{\sqrt{4} + 2i}$ of $w = -3$			(14A
	$\therefore w = -\frac{1}{5}(1-2i), -\frac{1}{5}(1+2i), -3$			$\label{eq:commented_integration} \begin{array}{l} \hline Commented [KW(W5]: \underline{Concept} \\ \text{Some students did not know how to simplify} \\ \hline \\ \hline \\ \frac{1}{1+2\overline{i}} \mbox{ and } -\frac{1}{1+2i} \end{array},$
2	Relative to the origin <i>O</i> , the points <i>A</i> , <i>B</i> and <i>C</i> have position vectors a , b and c respectively. It is given that λ and μ are non-zero numbers such that $\lambda \mathbf{a} + \mu \mathbf{b} - \mathbf{c} = 0$ and $\lambda + \mu = 1$. (i) Show that the points <i>A</i> , <i>B</i> and <i>C</i> are collinear. The angle between a and b is known to be obtase and that $ \mathbf{a} = 2$.	[3]		Commented [LT6]: <u>Misconception</u> Some confused it with the concept of coplanar. A, B and C are collinear means 3 points are on
	(ii) If k denotes the area of triangle OAB, show that $(\mathbf{a} \cdot \mathbf{b})^2 = 4(\mathbf{b} ^2 - k^2)$.	[3]		the same straight line while 3 points being coplanar means they are on the same plane.
	<i>D</i> is a point on the line segment <i>AB</i> with position vector d . (iii) It is given that area of triangle <i>OAB</i> is 6 units ² , $ \mathbf{b} = 10$ and that <i>AOD</i> is 90°.			It is important to note that Ratio Theorem is not
	By finding the value of $\mathbf{a} \cdot \mathbf{b}$, find \mathbf{d} in terms of \mathbf{a} and \mathbf{b} .	[4]		a method to prove that 3 points are collinear. It is a result that works on the basis that the 3 points must be on a line before having the position vector of the 3 rd point to be expressed in the form taught in the lecture notes.
				Commented [LT7]: Question Reading Some used the angle OAB or ABO when it should be AOB. Note that the requirement for dot product is to have the vectors to be converging or diverging.
			1	$\begin{array}{l} \hline Commented \ [LT8]: \ \underline{Misconception} \\ Many students \ did \ not \ realize \ the \ implication \ of \\ having the \ angle \ to \ be \ obtuse \ means \ that \\ a \cdot b < 0 \end{array}$
				Commented [LT9]: Question Reading Some drew the wrong diagram where it was interpreted as .4DO is 90°

Solution			
(1)		i	
$\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$	1	í.	
$ \overrightarrow{AC} = \mathbf{c} \cdot \mathbf{a} $ = $\lambda \mathbf{a} + \mu \mathbf{b} - \mathbf{a} $			
$=(\lambda-1)\mathbf{a}+\mu\mathbf{b}$		1	
$= -\mu \mathbf{a} + \mu \mathbf{b}$	'	1	
$= \mu(\mathbf{b} - \mathbf{a})$		$\frac{1}{r}$	Commented [LT10]: Presentation of Answ
Since $\overrightarrow{AC} = \mu \overrightarrow{AB}$ for some $\mu \in \mathbb{R}$, and \overrightarrow{A} is a common point, therefore A, B, C are collinear.			Commented [L110]: <u>Presentation of Arisw</u> Many did not make mention of the commo point between the two vectors used.
(ii) $k = \frac{1}{2} \mathbf{a} \times \mathbf{b} $		1	Commented [LT11]: Misconception Incorrect to write it as $k = \frac{1}{2}(a \times b)$ or
$k = \frac{1}{2} \mathbf{a} \mathbf{b} \sin \theta $, where θ is the obtuse angle between \mathbf{a} and \mathbf{b}			$k = \frac{1}{2} \mathbf{a} \mathbf{b}$ as both a and b are vectors.
$k^2 = \left \mathbf{b}\right ^2 \sin^2 \theta$		′	2
$k^{2} = \left \mathbf{b}\right ^{2} \left(1 - \cos^{2} \theta\right)$			
$k^{2} = \mathbf{b} ^{2} \left[1 - \left(\frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} } \right)^{2} \right]$			
$k^2 = \mathbf{b} ^2 - \frac{(\mathbf{a} \cdot \mathbf{b})^2}{4}$			Contraction and the second second second second
$(\mathbf{a} \cdot \mathbf{b})^2 \equiv 4(\mathbf{b} ^2 - k^2)$			Commented [LT12]: <u>Misconception</u> Wrote $(\mathbf{a}, \mathbf{b})^2 = \mathbf{a} ^2 - 2 \mathbf{a} \mathbf{b} + \mathbf{b} ^2$ when
(iii) Since D lies on line AB ,			should be $(\mathbf{a} \cdot \mathbf{b})^2 = \mathbf{a} ^2 \mathbf{b} ^2 \cos^2(\angle AO)$
$\mathbf{d} = \mathbf{a} + \lambda (\mathbf{b} - \mathbf{a})$ for some $\lambda \in \mathbb{R}$			
OD is perpendicular to OA			Commented [LT13]: Question Reading Many did not use the fact that point D
$\Rightarrow \left[\mathbf{a} + \lambda \left(\mathbf{b} - \mathbf{a} \right) \right] \cdot \mathbf{a} = 0 \text{ for some } \lambda \in \mathbb{R}$			Many did not use the fact that point D the line AB.
$\Rightarrow (1-\lambda) \mathbf{a} ^2 + \lambda(\mathbf{b} \cdot \mathbf{a}) = 0$			
$4(1-\lambda)+\lambda(\mathbf{b}\cdot\mathbf{a})=0$			
As $(\mathbf{a} \cdot \mathbf{b})^2 = 4(\mathbf{b} ^2 - k^2)$			Commented [LT14]: <u>Misconception</u> Some thought that dot product must
$(\mathbf{a} \cdot \mathbf{b})^2 = 4(10^2 - 6^2)$			rise to a positive value which is incorr correct definition should be
$\mathbf{a} \cdot \mathbf{b} = -16(\because \theta \text{ is obtuse})$		1	$\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos \theta \Leftrightarrow \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$
$\Rightarrow 4(1-\lambda)-16\lambda=0$			1.00
$\lambda = \frac{1}{5}$		1	And not $\cos \theta = \left \frac{\mathbf{a} \cdot \mathbf{b}}{\ \mathbf{a}\ \ \mathbf{b}\ } \right $. We only us
$\mathbf{d} = \frac{4}{5}\mathbf{a} + \frac{1}{5}\mathbf{b}$			$\cos \theta = \left \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} } \right $ if we are told that the

Commented [TCK16]: Concept Area of region is bounded by upper curve C_2 and lower curve C_1 from x = 0 to x = 1. Hence the method

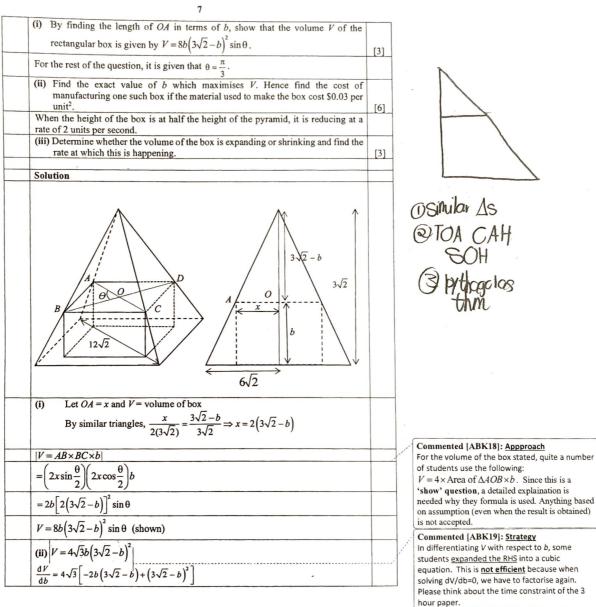
$$\int_0^1 (C_2 - C_1) \, \mathrm{d}x = \int_0^1 C_2 \, \mathrm{d}x - \int_0^1 C_1 \, \mathrm{d}x$$

Many are not familiar with the technique to integrate $xe^{x^2-2/2}$

Many took $\frac{1}{2e^2}$ as $\frac{1}{2e}$

Commented [TCK17]: Misconception Volume is not $2\pi \int_0^1 x^2 dy$ or $\pi \int_0^1 x dy$ or

 $\int_0^1 x^2 \, \mathrm{d}y \, (\text{many left out } \pi).$


Careless mistakes

Many did not reduce $\frac{2y^3 - y + 1}{2y^2 + 1}$ to partial

fractions correctly.

Many applied the technique in MF26 wrongly as seen below: $\int_{-\infty}^{+\infty} \frac{1}{dy} dy$

$$\int \frac{1}{(\sqrt{2}y)^2 + 1} dy$$

= $\int \frac{1}{(\sqrt{2}y)^2 + 1} dy$
= $\frac{1}{1} \tan^{-1} \left(\frac{\sqrt{2}y}{1}\right) (\text{wrong})$
The correct way is
 $\int \frac{1}{2y^2 + 1} dy = \frac{1}{2} \int \frac{1}{y^2 + \frac{1}{2}} dy$
= $\frac{1}{2} \left(\frac{1}{\sqrt{2}} \tan^{-1} \frac{y}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}} \tan^{-1} \sqrt{2}y$

	$\frac{dV}{db} = 4\sqrt{3} \left(3\sqrt{2} - b\right) \left(3\sqrt{2} - 3b\right)$ For stationary point,			C			
	$4\sqrt{3}(3\sqrt{2}-b)(3\sqrt{2}-3b)=0$			Commented [ABK20]: Misconception When solving dV/db=0, there should be 2 value			
1	$\Rightarrow b = \sqrt{2} \text{ or } b = 3\sqrt{2} \text{ (rejected since } b < h)$			for b and one of it will be rejected due to the condition given in the question. Some studen			
	$\frac{d^2 V}{db^2} = 4\sqrt{3} \left[-2b(-1) + \left(3\sqrt{2} - b \right)(-2) + 2\left(3\sqrt{2} - b \right)(-1) \right]$			in the process of solving and factorizing will cancel the factor $(3\sqrt{2}-b)$. This should not			
	$=4\sqrt{3}\left[6b-12\sqrt{2}\right]$ $=24\sqrt{3}\left(b-2\sqrt{2}\right)$			done. It should still be considered for part o the solutions obtained. When needed, it will then be required to be rejected properly.			
	$\frac{\mathrm{d}^2 \mathcal{V}}{\mathrm{d} b^2} \bigg _{b \to \sqrt{2}} = -24\sqrt{6} < 0$			Commented [ABK21]: <u>Inadequate steps</u> When proving whether $b = \sqrt{2}$ gives the max/min volume, we can use (1) 2 nd derivativ			
-	Thus V is maximised when $b = \sqrt{2}$.			test (2) 1 st derivative test (sign test). Notice the value of the 2 nd derivative test need to be quoted as part of the answer.			
	$BC = 4(3\sqrt{2} - \sqrt{2})\cos\frac{\pi}{6} = 4\sqrt{6}$						
	$AB = 4(3\sqrt{2} - \sqrt{2})\sin\frac{\pi}{6} = 4\sqrt{2}$			Students who did using the 1 st derivative test (sign test), a number failed to quote the value			
	$Cost = 0.03 \times 2 \left[4\sqrt{6} \left(4\sqrt{2} \right) + \sqrt{2} \left(4\sqrt{6} \right) + \sqrt{2} \left(4\sqrt{2} \right) \right]$			Values must be quoted to indicate that the slo is either +ve or -ve. Commented [ABK22]: <u>Question Reading/</u> <u>Interpretation</u> The question asks for the cost of material used			
	= \$4.64	_					
	(iii) $\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}b} \times \frac{\mathrm{d}b}{\mathrm{d}t}$						
	When $b = \frac{3}{2}\sqrt{2}$,			maximise the volume. Material used is dependent on the SURFACE AREA of materia			
	$\frac{\mathrm{d}V}{\mathrm{d}t}\Big _{b=\frac{3}{2}\sqrt{2}} = 4\sqrt{3}\left(3\sqrt{2}-\frac{3}{2}\sqrt{2}\right)\left(3\sqrt{2}-\frac{9}{2}\sqrt{2}\right)\times\left(-2 \text{ units/s}\right)$			and NOT the volume. A number of students found the volume and use this to calculate the			
	$= 36\sqrt{3}$ units ³ /s			cost.			
	Since $\frac{dV}{dt}\Big _{b=\frac{3}{2}\sqrt{2}} > 0$, the volume of the box is expanding.						
_	Section B: Probability and Statistics [60 marks]						
5	Two families, each consisting of an adult couple and three children visited a carnival together.						
	The 10 people went to queue for a ride randomly in one straight line.						
	(i) Find the probability that members of the 2 families stand in alternate positions in that queue.	[2]	1				
	If the ride is made up of two identical circular carriages of five identical seats each.						
	(ii) Find the number of ways the 10 people can be seated if not all the family members are seated together in the same carriage.	[3]					

A STATE OF

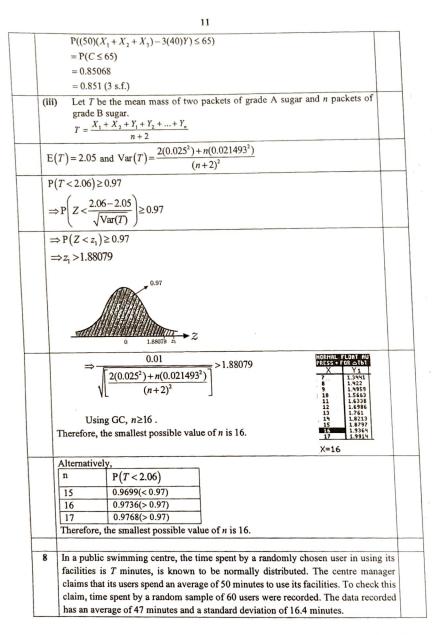
June 1

No. of Concession

	(i) Required probability = $\frac{2 \times 51 \times 51}{2 \times 51 \times 51}$ or $\frac{2 \times 5^2 \times 4^2 \times 3^2 \times 2^2 \times 1^2}{2 \times 51 \times 51}$		Commented [KSM23]: Strategy
-	10!		Many resort to slotting - Notice here if slotting is
	= 1		used, you can only slot in consecutive positions
	126		ABABABABAB, or BABABABABAA. If randomly choose, may end up in situations like _AA_A_A
-	(ii) Number of ways = Total number of ways without restrictions – number of ways		(Sites of the set of the sites of the sites of the sites of the set of the sites of
	where each family sit together		
	2. 新闻: 1. 新闻: 大学家 (1) 新闻: "我们的问题都是不可以说的。" 化二乙基 化二乙基 化二乙基 化二乙基 化二乙基 化二乙基 化二乙基 化二乙基		Commented [KSM24]: When randomly
	$= \left[\frac{\frac{1}{2} \left(\frac{C_{5} \times 5}{2} \frac{C_{5}}{2} \times (5-1) \right) \left[\times (5-1) \right] \right] = (5-1) \left[\times (5-1) \right]$		choosing members for groups of same size n, you
+	= 72000		need to divide by n! to to remove multiple-
-	Method 2:		counting, as there are n! ways of arranging the n groups of the same compositions
	Case 1: 4 from one family, 1 from other family		
	${}^{5}C_{4} \times {}^{5}C_{1} \times (5-1)! \times {}^{1}C_{1} \times {}^{4}C_{4} \times (5-1)! = 14400$		
	Case 2: 3 from one family, 2 from other family		
			. · · ·
	${}^{5}C_{3} \times {}^{5}C_{2} \times (5-1)! \times {}^{2}C_{2} \times {}^{3}C_{3} \times (5-1)! = 57600$		
_	Total = 14400 + 57600 = 72000		
	In a soccer practice, the coach instructs the players to practise their penalty kicks. A		
	player scores if he successfully kicks a ball into the net of a goal post. The probability		
	that a player scores on the first kick is $\frac{2}{5}$. For all the subsequent kicks, the		
	probability of scoring on that kick will be $\frac{4}{5}$ if the player scores in the preceding		
	kick, and probability of scoring on that kick will be $\frac{1}{6}$ if the player did not score in		
	the preceding kick.		
	(i) Owen kicked the ball three times consecutively for his practice. Find the		
	probability that he scored on the third kick, given that he scored only twice out		Commented [KSM25]: Question Reading
	of the three kicks.	-[3]-	This means that conditional probability should
	(ii) Three players each kicked the ball four times consecutively for their practices.		considered. Plenty ignored that.
	Find the probability that one of the players scored on all four kicks, another		
	player scored on the first kick only, while the remaining player only scored on		
_	the second and third kicks.	[3]	
_	0.1.4		_
-	Solution		_
	(i) P(scored on third kick scored on only two of the kicks)		
	P(scored on third kick and scored on only two of the kicks)		-
	P(scored on only two of the kicks)		
1	P(SS'S) + P(S'SS)	1	
- 1			

	$=\frac{\left(\frac{2}{5}\times\frac{1}{5}\times\frac{1}{6}\right)+\left(\frac{3}{5}\times\frac{1}{6}\times\frac{4}{5}\right)}{\left(\frac{2}{5}\times\frac{1}{5}\times\frac{1}{6}\right)+\left(\frac{3}{5}\times\frac{1}{6}\times\frac{4}{5}\right)+\left(\frac{2}{5}\times\frac{4}{5}\times\frac{1}{5}\right)}$			
	≈ 0.593 (3 s.f.)			
	(ii) Required probability = $P(SSS) \times P(SS'S'S') \times P(S'SSS') \times 3!$			Commented [KSM2
	$= \left(\frac{2}{5} \times \left(\frac{4}{5}\right)^{3}\right) \left(\frac{2}{5} \times \frac{1}{5} \times \left(\frac{5}{6}\right)^{2}\right) \left(\frac{3}{5} \times \frac{1}{6} \times \frac{4}{5} \times \frac{1}{5}\right) \times 3!$			The 4 kicks are execu players, with 3 differ the individual probat
	= 0.00109 (3 s.f.)			instead of multiplyin the random matchin
				players.
7	Grade A and grade B sugar produced by a company are packed and sold in packets. The mass of both grade A and grade B sugar sold follows independent normal distributions with mean 2.05 kg. The standard deviation for the mass of a randomly			
	chosen packet of grade A and grade B sugar are 0.025 kg and σ kg respectively. If the probability that the mass of a randomly chosen packet of grade B sugar being			
	less than 2 kg is 0.01 ,	(0)	-	
	(i) show that the value of σ is 0.021493 correct to 5 significant figures.	[2]	1	
	It is given that the profit per kilogram of grade A and B sugar sold is 50 cents and 40 cents respectively.			
	(ii) Find the probability that the total profit of three randomly chosen packets of		1	
	grade A sugar is higher than three times the profit of a randomly chosen packet			
	of grade B sugar by not more than 65 cents.	[3]		
	(iii) Two packets of grade A sugar and n packets of grade B sugar are selected at		1	
	random. Find the smallest value of n such that the probability that the mean			
	mass of these packets being less than 2.06 kg is at least 0.97.	[3]		
	Solution:			
	(i) Let X and Y be the random variable denoting the mass of a packet of grade A and a packet of grade B sugar respectively			Commented [ABK]
	$Y \sim N(2.05, \sigma^2)$			The problem of NOT
	P(Y < 2) = 0.01			clearly still persists. that defining variab
	$\Rightarrow P(Z < \frac{2 - 2.05}{\sigma}) = 0.01$			requirement but als
	$\Rightarrow \frac{2 - 2.05}{\sigma} = -2.32635$			Ű.
	$\Rightarrow \sigma = 0.021493$			
	(ii) Let $C = (50)(X_1 + X_2 + X_3) - 3(40)Y$		7	
	E(C) = 3(50)(2.05) - 3(40)(2.05) = 61.5			
	$Var(C) = 3(50)^{2}(0.025^{2}) + (3 \times 40)^{2}(0.021493^{2}) = 11.33957$			
	Thus $C \sim N(61.5, 11.33957)$			

- -----

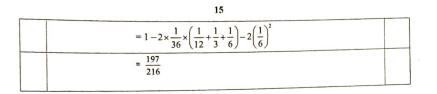

ommented [KSM26]: Misconception he 4 kicks are executed consecutively by the 3 layers, with 3 different outcomes. Many add up he individual probabilities for each player instead of multiplying, and without considering he random matching of 3 outcomes to the 3 players.

State of the state of

Notice in

CHANNE?

Commented [ABK27]: <u>Inadequate working</u> he problem of NOT DEFINING VARIABLES learly still persists. Students are to take note hat defining variables clearly is **not only a equirement** but also serves to provide clarity or themselves in solving such a question.

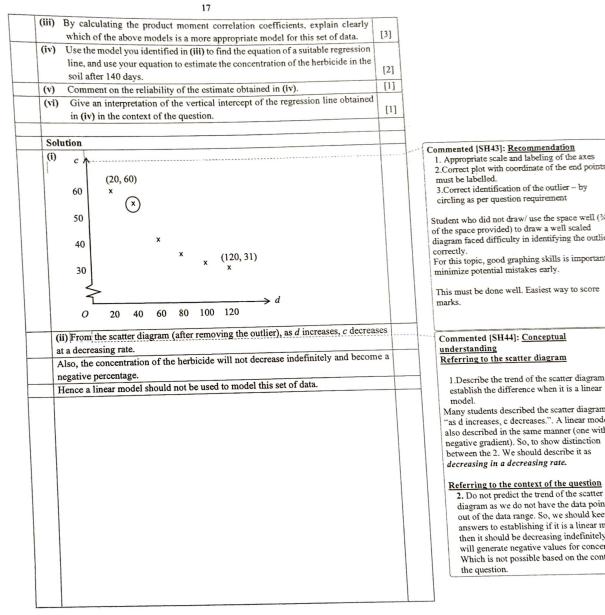

	12			
	 (i) Find an unbiased estimate of the population variance, giving your answer correct to 2 decimal places. 	[1]		ommented [CKJ28]: Question Reading
	 (ii) Test, at the 5% significance level, whether the centre manager overstated the average time spent. 	[4]	M	any students did not leave their final answer in decimal places as required in the question.
	(iii) Another sample of size n ($n > 30$) that was collected independently is now used to test, at the 5% significance level, whether the centre manager's claim is valid. For this sample, the mean time taken is 46 minutes. If the result of the test using this information and the unbiased estimate of the population variance in part (i) is that the null hypothesis is rejected, find the least possible value that n can take.	[4]	-	
	Solution	1.1	-	
			-	
	countate of the population variance		-	
-	$s^2 = \frac{60}{59} (16.4^2) = 273.5186441 \approx 273.52 (2 \text{ decimal places})$			
	(ii) Let the random variable T denote the time spent in minutes using the pool facilities and μ denote the population mean time spent in minutes using the pool facilities.			
	To test H_0 : $\mu = 50.0$		C	ommented [CKJ29]: Presentation of Working
	Against H ₁ : $\mu < 50.0$ (Centre manager i	-	- 1	any students did not define the symbols used
	Conduct a one-tail test at 5% level of significance, i.e., $\alpha = 0.05$		i ir	the question.
	Under H ₀ , $\overline{T} = N\left(\frac{50.0}{2735186441}\right)$		-	ommented [CKJ30]: Common Mistakes
	1 = 47		1. 1.1	any students quoted Central Limit The
-	Using GC, p-value = $0.0799976609 \approx 0.0800$ (3 sf) Since p-value = $0.0800 \approx 0.05$		Т	is normally distribution, this will also include
	Since p-value = $0.0800 > 0.05$, we do not reject H ₀ . There is insufficient evidence at 5% level of significance to conclude that that the centre manager is overstating the displayment.			ollow.normal distribution:
	(iii) Using two-tailed test at 5% significance level, to reject null hypothesis, z _{cale} must lie inside the critical region.	-	_	
	To test H_0 : $\mu = 50.0$			
	against H_i : $\mu \neq 50.0$ (Centre manager's claim is valid) Critical Region: $z \le -1.959963986$ or $z \ge 1.959963986$		7	
	$r_{2} = 1.939903980 \text{ or } z \ge 1.959963986$	+		Commented [CKJ31]: Presentation of Workin
	Test Statistics, $Z = \frac{\overline{T} - 50.0}{\sqrt{\frac{273.5186441}{2}}} \sim N(0, 1)$			students should define H_0 and H_1 clearly at the start of their working.
	<u>V n</u>			
	$\therefore z_{\text{calc}} = \frac{46.0 - 50.0}{\sqrt{\frac{273.5186441}{n}}} \le -1.959963986 \text{or} \frac{46.0 - 50.0}{\sqrt{\frac{273.5186441}{n}}} \ge 1.959963986$		_	
	N n			

$4\sqrt{n} \ge 32.41466658$ or $4\sqrt{n} \le -32.41466658$ (rejected) $\sqrt{n} \ge 8.103666645$ $n \ge 65.669$ Since <i>n</i> is an integer, the least possible value of <i>n</i> it can take is 66.(a) A random variable X has a binomial distribution with $n = 10$ and probability of success <i>p</i> , where $p < 0.5$.(i)(i) Given that $P(X \ge 0.74) \ge 0.2$, write down an equation for the value of <i>p</i> , and find this value numerically.[2]It is given that $p = \frac{1}{5}$.[3](ii) The mean and standard deviation of X are denoted by μ and σ respectively. Find $P(\mu - \sigma < X < \mu + \sigma)$, correct to 2 decimal places.[3](b) Mr Chua attempts an online sudoku puzzle each day. The probability that he manages to solve a puzzle on any given day is 0.75, independently of any other day.[2](ii) Find the probability that, over a period of 8 weeks, Mr Chua manages to solve at least 4 puzzles each week.[2]Solution[2] $P(X = 3 \text{ or } 4) = 0.2$ $P(X = 3) + P(X = 4) = 0.2$ $P(X = 3) + P(X = 4) = 0.2$ $P(x = 1) + 210 p^4(1 - p)^6 = 0.2$ $Using GC, p = 0.570$ (rejected $\because p < 0.5$) or $p = 0.163$ [a) (ii) $X \sim B(10, \frac{1}{5})$	Commented [CKJ32]: interpretation of Question Many students wrongly interpreted that P(X=3) 0.2 and P(X=4) = 0.2. The lack of practice on binomial distribution questions in TYS was evident from the students' working: Commented [CKJ33]: This question was well attempted. Students were familiar in solving thi type of question.
$n \ge 65.669$ Since <i>n</i> is an integer, the least possible value of <i>n</i> it can take is 66.(a) A random variable X has a binomial distribution with $n = 10$ and probability of success <i>p</i> , where $p < 0.5$.(i) Given that $P(X = 3 \text{ or } 4) = 0.2$ write down an equation for the value of <i>p</i> , and find this value numerically.[2] It is given that $p = \frac{1}{5}$.(ii) The mean and standard deviation of X are denoted by μ and σ respectively. Find $P(\mu - \sigma < X < \mu + \sigma)$, correct to 2 decimal places.(3](b) Mr Chua attempts an online sudoku puzzle each day. The probability that he manages to solve a puzzle on any given day is 0.75, independently of any other day.(i) Find the probability that he solves his third puzzle on the eighth day of his attempt.(ii) Find the probability that, over a period of 8 weeks, Mr Chua manages to solve at least 4 puzzles each week.(2) $P(X = 3 \text{ or } 4) = 0.2$ $P(X = 3 \text{ or } 4) = 0.2$ $P(X = 3 \text{ or } 4) = 0.2$ $P(X = 3) + P(X = 4) = 0.2$ $P(X = 3) + P(X = 4) = 0.2$ $P(X = 3) + P(X = 4) = 0.2$ $P(X = 3) + P(X = 4) = 0.2$ $P(X = 3) + P(X = 4) = 0.2$ $P(X = 3) + P(X = 4) = 0.2$ $P(X = 3) + P(X = 4) = 0.2$ $P(X = 3) + P(X = 4) = 0.2$ $P(X = 3) + P(X = 4) = 0.2$ $P(X = 3) = 0.570$ (rejected $\because p < 0.5$) or $p = 0.163$ (a) (ii) $X \sim B(10, \frac{1}{5})$	Question Mañy students wrongly interpreted that P(X=3) = 0.2 and P(X=4) = 0.2. The lack of practice on binomial distribution questions in TYS was evident from the students' working Commented [CKJ33]: This question was well attempted. Students were familiar in solving thi
Since <i>n</i> is an integer, the least possible value of <i>n</i> it can take is 66. (a) A random variable <i>X</i> has a binomial distribution with $n = 10$ and probability of success <i>p</i> , where $p < 0.5$. (i) Given that $p(X = 3 \text{ or } 4) = 0.2$, write down an equation for the value of <i>p</i> , and find this value numerically. [2] It is given that $p = \frac{1}{5}$. (ii) The mean and standard deviation of <i>X</i> are denoted by μ and σ respectively. Find P($\mu - \sigma < X < \mu + \sigma$), correct to 2 decimal places. [3] (b) Mr Chua attempts an online sudoku puzzle each day. The probability that he manages to solve a puzzle on any given day is 0.75, independently of any other day. (i) Find the probability that he solves his third puzzle on the eighth day of his attempt. (ii) Find the probability that, over a period of 8 weeks, Mr Chua manages to solve at least 4 puzzles each week. (2] Solution (a)(i) $X \sim B(10, p)$ P($X = 3$ or 4) = 0.2 P($X = 3$) + P($X = 4$) = 0.2 P(X = 3) + P(X = 4) = 0.2 P(X = 3	Question Mañy students wrongly interpreted that P(X=3) = 0.2 and P(X=4) = 0.2. The lack of practice on binomial distribution questions in TYS was evident from the students' working Commented [CKJ33]: This question was well attempted. Students were familiar in solving thi
(a) A random variable X has a binomial distribution with $n = 10$ and probability of success p, where $p < 0.5$. (i) Given that $P(X = 3 \text{ or } 4) = 0.2$, write down an equation for the value of p, and find this value numerically. [2] It is given that $p = \frac{1}{5}$. (ii) The mean and standard deviation of X are denoted by μ and σ respectively. Find $P(\mu - \sigma < X < \mu + \sigma)$, correct to 2 decimal places. [3] (b) Mr Chua attempts an online sudoku puzzle each day. The probability that he manages to solve a puzzle on any given day is 0.75, independently of any other day. (i) Find the probability that he solves his third puzzle on the eighth day of his attempti (ii) Find the probability that, over a period of 8 weeks, Mr Chua manages to solve at least 4 puzzles each week. [2] Solution (a)(i) $X \sim B(10, p)$ P(X = 3 or 4) = 0.2 P(X = 3) + P(X = 4) = 0.2	Question Mañy students wrongly interpreted that P(X=3) = 0.2 and P(X=4) = 0.2. The lack of practice on binomial distribution questions in TYS was evident from the students' working Commented [CKJ33]: This question was well attempted. Students were familiar in solving thi
of success p, where $p < 0.5$. (i) Given that $P(X = 3 \text{ or } 4) = 0.2$, write down an equation for the value of p, and find this value numerically. [2] It is given that $p = \frac{1}{5}$. (ii) The mean and standard deviation of X are denoted by μ and σ respectively. Find $P(\mu - \sigma < X < \mu + \sigma)$, correct to 2 decimal places. [3] (b) Mr Chua attempts an online sudoku puzzle each day. The probability that he manages to solve a puzzle on any given day is 0.75, independently of any other day. (i) Find the probability that he solves his third puzzle on the eighth day of his attempt. (ii) Find the probability that, over a period of 8 weeks, Mr Chua manages to solve at least 4 puzzles each week. [2] Solution [2] P(X = 3 or 4) = 0.2 P(X = 3 or 4) = 0.2 P(X = 3) + P(X = 4	Question Mañy students wrongly interpreted that P(X=3) 0.2 and P(X=4) = 0.2. The lack of practice on binomial distribution questions in TYS was evident from the students' working. Commented [CKJ33]: This question was well attempted. Students were familiar in solving thi
It is given that $p = \frac{1}{5}$. (ii) The mean and standard deviation of X are denoted by μ and σ respectively. Find P($\mu - \sigma < X < \mu + \sigma$), correct to 2 decimal places. [3] (b) Mr Chua attempts an online sudoku puzzle each day. The probability that he manages to solve a puzzle on any given day is 0.75, independently of any other day. (i) Find the probability that he solves his third puzzle on the eighth day of his attempt. (ii) Find the probability that ne solves his third puzzle on the eighth day of his attempt. (iii) Find the probability that, over a period of 8 weeks, Mr Chua manages to solve at least 4 puzzles each week. [2] Solution (a)(i) $X \sim B(10, p)$ P(X = 3 or 4) = 0.2 P(X = 3) + P(X = 4) = 0.2 10C ₃ p ³ (1-p) ⁷ + 10C ₄ p ⁴ (1-p) ⁶ = 0.2 120 p ³ (1-p) ⁷ + 210 p ⁴ (1-p) ⁶ = 0.2 Using GC ₅ p = 0.570 (rejected $\because p < 0.5$) or $p = 0.163$ (a) (ii) $X \sim B(10, \frac{1}{5})$	Many students wrongly interpreted that P(X=3) 0.2 and P(X=4) = 0.2. The lack of practice on binomial distribution questions in TYS was evident from the students' working. Commented [CKJ33]: This question was well attempted. Students were familiar in solving thi
respectively. Find P(μ-σ < X < μ+σ), correct to 2 decimal places.	binomial distribution questions in TYS was evident from the students' working: Commented [CKJ33]: This question was well attempted. Students were familiar in solving th
respectively. Find P(μ-σ < X < μ+σ), correct to 2 decimal places.	evident from the students' working: Commented [CKJ33]: This question was well attempted. Students were familiar in solving th
 (b) Mr Chua attempts an online sudoku puzzle each day. The probability that he manages to solve a puzzle on any given day is 0.75, independently of any other day. (i) Find the probability that he solves his third puzzle on the eighth day of his attempt. (ii) Find the probability that he solves his third puzzle on the eighth day of his attempt. (ii) Find the probability that, over a period of 8 weeks, Mr Chua manages to solve at least 4 puzzles each week. (2) Solution (a)(i) X ~ B(10, p) P(X = 3 or 4) = 0.2 P(X = 3) + P(X = 4) = 0.2 1¹⁰C₃p³(1-p)⁷ + ¹⁰C₄p⁴(1-p)⁶ = 0.2 120 p³(1-p)⁷ + 210 p⁴(1-p)⁶ = 0.2 Using GC₂ p = 0.570 (rejected ∵ p < 0.5) or p = 0.163 (a) (ii) X ~ B(10, 1/5) 	attempted. Students were familiar in solving th
(i) Find the probability that he solves his third puzzle on the eighth day of his [2] (ii) Find the probability that, over a period of 8 weeks, Mr Chua manages to solve at least 4 puzzles each week. [2] Solution (a)(i) $X \sim B(10, p)$ P(X = 3 or 4) = 0.2 P(X = 3) + P(X = 4) = 0.2 $1^{10}C_3p^3(1-p)^7 + {}^{10}C_4p^4(1-p)^6 = 0.2$ $120p^3(1-p)^7 + 210p^4(1-p)^6 = 0.2$ Using GC, $p = 0.570$ (rejected $\because p < 0.5$) or $p = 0.163$ (a) (ii) $X \sim B(10, \frac{1}{5})$	attempted. Students were familiar in solving th
(ii) Find the probability that, over a period of 8 weeks, Mr Chua manages to solve at least 4 puzzles each week. [2] Solution (a)(i) $X \sim B(10, p)$ P(X = 3 or 4) = 0.2 P(X = 3) + P(X = 4) = 0.2 $1^{10}C_3p^3(1-p)^7 + {}^{10}C_4p^4(1-p)^6 = 0.2$ $120 p^3(1-p)^7 + 210 p^4(1-p)^6 = 0.2$ Using GC ₂ $p = 0.570$ (rejected $\because p < 0.5$) or $p = 0.163$ (a) (ii) $X \sim B(10, \frac{1}{5})$	attempted. Students were familiar in solving th
Solution (a)(i) $X \sim B(10, p)$ P(X = 3 or 4) = 0.2 P(X = 3) + P(X = 4) = 0.2 $1^{10}C_3p^3(1-p)^7 + {}^{10}C_4p^4(1-p)^6 = 0.2$ $1^{20}p^3(1-p)^7 + 210p^4(1-p)^6 = 0.2$ Using GC ₂ $p = 0.570$ (rejected $\because p < 0.5$) or $p = 0.163$ (a) (ii) $X \sim B(10, \frac{1}{5})$	
(a)(i) $X \sim B(10, p)$ P(X=3 or 4) = 0.2 P(X=3) + P(X=4) = 0.2 $1^{10}C_3p^3(1-p)^7 + {}^{10}C_4p^4(1-p)^6 = 0.2$ $120 p^3(1-p)^7 + 210 p^4(1-p)^6 = 0.2$ Using $GC_9^2 p = 0.570$ (rejected $\because p < 0.5$) or $p = 0.163$ (a) (ii) $X \sim B(10, \frac{1}{5})$	
(a)(i) $X \sim B(10, p)$ P(X=3 or 4) = 0.2 P(X=3) + P(X=4) = 0.2 $1^{10}C_3p^3(1-p)^7 + {}^{10}C_4p^4(1-p)^6 = 0.2$ $120 p^3(1-p)^7 + 210 p^4(1-p)^6 = 0.2$ Using $GC_9^2 p = 0.570$ (rejected $\because p < 0.5$) or $p = 0.163$ (a) (ii) $X \sim B(10, \frac{1}{5})$	
$\begin{array}{c} P(X=3 \text{ or } 4) = 0.2 \\ P(X=3) + P(X=4) = 0.2 \\ \hline \\ 1^{10}C_3 p^3 (1-p)^7 + {}^{10}C_4 p^4 (1-p)^6 = 0.2 \\ \hline \\ 120 p^3 (1-p)^7 + 210 p^4 (1-p)^6 = 0.2 \\ \hline \\ $	
$P(X=3) + P(X=4) = 0.2$ ${}^{10}C_3p^3(1-p)^7 + {}^{10}C_4p^4(1-p)^6 = 0.2$ $120p^3(1-p)^7 + 210p^4(1-p)^6 = 0.2$ $Using GC_9 p = 0.570 \text{ (rejected } \because p < 0.5 \text{) or } p = 0.163$ (a) (ii) $X \sim B(10, \frac{1}{5})$	
$\frac{{}^{10}C_3 p^3 (1-p)^7 + {}^{10}C_4 p^4 (1-p)^6 = 0.2}{120 p^3 (1-p)^7 + 210 p^4 (1-p)^6 = 0.2}$ Using GC ₅ p = 0.570 (rejected :: p < 0.5) or p = 0.163 (a) (ii) X ~ B(10, $\frac{1}{5}$)	
$120 p^{3} (1-p)^{7} + 210 p^{4} (1-p)^{6} = 0.2$ Using GC _p p = 0.570 (rejected :: p < 0.5) or p = 0.163 (a) (ii) X ~ B(10, $\frac{1}{5}$)	
Using GC, $p = 0.570$ (rejected :: $p < 0.5$) or $p = 0.163$ (a) (ii) $X \sim B(10, \frac{1}{5})$	
(a) (ii) $X \sim B(10, \frac{1}{5})$	
(a) (ii) $X \sim B(10, \frac{1}{5})$	Commented [CKJ34]: Common Mistake Some students attempted to solve the equation
	algebraically. They failed to realise that they were supposed to GC to solve the equation
$\mu = E(X) = 10\left(\frac{1}{5}\right) = 2, \ \sigma^2 = 10\left(\frac{1}{5}\right)\left(\frac{4}{5}\right) = \frac{8}{5}$	graphically,
$\mathbb{P}(\mu - \sigma < X < \mu + \sigma)$	
$\mu = E(X) = 10 \left(\frac{1}{5}\right) = 2, \ \sigma^2 = 10 \left(\frac{1}{5}\right) \left(\frac{4}{5}\right) = \frac{8}{5}$ $P(\mu - \sigma < X < \mu + \sigma)$ $= P(2 - \sqrt{\frac{8}{5}} < X < 2 + \sqrt{\frac{8}{5}})$	
$= \mathbb{P}(0.73509 < X < 312649)$	Commented [CKJ35]: Common Mistake
$= P(1 \le X \le 3)$	Many students attempted to standardize to fin
$= P(X \le 3) - P(X = 0)$	the probability. They failed to realise this is
= 0.77175	question on Binomial Distribution, not Normal
= 0.77	Distribution
(b)(i) Let X be the random variable denoting "the number of days in which Mr Chua solves the puzzle out of 7 days" $X \sim B(7, 0.75)$	Distribution.

A STATE OF THE STATE OF

	14			
	Required probability = $P(X = 2) \times 0.75$			
	= 0.00865			
	(ii) Let Y be the random variable denoting "the number of weeks in which Mr Chua solves the puzzle at least 4 times out of 8 weeks"		C	ommented [CKJ36]: Presentation of Working
	$Y \sim B(8, P(X \ge 4))$			any students did not know how to define the
	$Y \sim B(8, 0.92944)$			ndom variable for binomial distribution. appropriate letters such as Z, N were used in
	P(Y=8) = 0.55690 = 0.557			efinition of random variables.
	Or $(0.92944)^8 = 0.55690 = 0.557$		6	
10	A bag contains nine numbered discs. Three discs are numbered 3, four discs are numbered 4 and two discs are numbered -1. Two discs are drawn simultaneously.		C	Commented [KSX37]: Question Reading
	The sum of numbers on them, denoted by X , is recorded.			
	(i) Find the probability distribution for X.	[3]		his means there is no replacement of disc.
-	(ii) Find $E(X)$ and $Var(X)$.	(2)	L L	lence total number of outcomes is NOT 81.
	(iii) Two independent observations of X are taken Find the probability that the	[2]		
	difference between these two values is at most 5	[3]		
	(iv) Fifty independent observations of X are taken. Find the approximate probability that the sum of these fifty observations is between 250 and 260.	[3]		
			1	
_			1	
	(i) Probability Distribution of X:		1	
	x -2 2 3 6 7 8			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Commented [KSX38]: Many students failed to consider two cases (-1,3) and (3,-1). <u>Strategy</u> Total probability should add up to 1.
	(ii) $E(X) = \left(-2 \times \frac{1}{36}\right) + \left(2 \times \frac{1}{6}\right) + \left(3 \times \frac{2}{9}\right) + \left(6 \times \frac{1}{12}\right) + \left(7 \times \frac{1}{3}\right) + \left(8 \times \frac{1}{6}\right)$			
	$=\frac{46}{9} \text{ or } 5.1111 \approx 5.11(3s.f.)$			
	$E(X^{2}) = \left((-2)^{2} \times \frac{1}{36}\right) + \left(2^{2} \times \frac{1}{6}\right) + \left(3^{2} \times \frac{2}{9}\right) + \left(6^{2} \times \frac{1}{12}\right) + \left(7^{2} \times \frac{1}{3}\right) + \left(8^{2} \times \frac{1}{6}\right)$			
	$=\frac{295}{9}$		1	Commented [KSX39]: Careless Mistakes
	9		_ /	Some students knew the formula but did not fi
	$Var(X) = E(X^2) - (E(X))^2$		1/	this value correctly.
	$=\frac{295}{9}-\left \left(\frac{46}{9}\right)^2\right $		1	Commented [KSX40]: <u>Strategy</u>
	9 9		11	Listing down all the 28 possible cases is not
	$=\frac{539}{81}$		1	recommended. For those who use this method
		_	_/	few obtain the correct answer.
	(iii) $P(X_1 - X_2 \le 5) = 1 - P(X_1 - X_2 \ge 6)$		/	Using the complementary cases to find the
	= 1 - (2P(-2, 6) + 2P(-2, 7) + 2P(-2, 8) + 2P(2, 8))			answer is a better strategy.

1.14



1.0

	(iv) Since $n = 50$ is large, by Central Limit Theorem,			
	Let $T = X_1 + X_2 + + X_{50} - N(50 \times \frac{46}{9}, 50 \times \frac{539}{81})$ approximately			Commented [KSX41]: Misconception
	$T \sim N\left(\frac{2300}{9}, \frac{26950}{81}\right)$ approximately			Students assume X follow normal distribution.
	$\mathbb{P}(250 < T < 260) \approx 0.216 \ (3 \text{ s.f.})$		1	
				Students know that \overline{X} can be approximated to normal distribution but do not know how to
11	Research is being carried out to study the degradation of a herbicide in soil. The concentration (in percentage) of the herbicide in the soil measured over a period of 120 days is recorded. The observations are listed in the table below. It is given that one of the observations has been recorded wrongly.			proceed. Students could have considered findin $P(5 < \overline{X} < 5.2)$. By central limit theorem, if n is large, when X
	Number of days (d) 20 40 60 80 100 120 Concentration (c) 60 57 41 36 33 31			follows non-normal distribution, $X_1 + X_2 + + X_{50}$ can be approximated to
	(i) Draw a scatter diagram to illustrate the data and circle the incorrect observation.	[3]		normal distribution as well.
	For the rest of the question, you should exclude the incorrect observation	1-1		
	(ii) Comment on whether a linear model would be appropriate, referring both to the scatter diagram and the context of the question.	[2]		Commented [KSX42]: Conceptual Understanding
	It is thought that this set of data can be modelled by one of the following formulae	[]		
	after removing the incorrect observation.			There is not need to do this:
	Model A: $c^2 = a + bd$			$P(T < 260) - P(T \le 250)$ because on the GC,
	Model B: $c = ae^{bd}$			the function allows you to key in lower limit and
			J	upper limit, since <i>T</i> is a continuous random variable.

)

tf

(iii) Using GC, $r_{\rm A} = -0.92958$ while $r_{\rm B} = -0.97521$. Since the r value for model B is closer to -1 than model A, model B is more	;
Since the r value for model B is closer to -1 that means -1	
appropriate for modelling this set of data.	
(iv) $c = ae^{bd}$	-
$\ln c = \ln a + bd$	
From GC, $\ln c = 4.1696 - 0.0066478d$	
$\ln c = 4.16 - 0.00665d$	
When $d = 140$, $\ln c = 4.1696 - 0.0066478(140)$	
c = 25.5059 ≈ 25.5	
(v) The estimate is unreliable because the data substituted is outside the data range	:
[20,120] and so the linear relationship between d and ln c may not hold.	

Commented [SH45]: <u>Question reading</u> For calculation of (iii)

 Outlier/ incorrect observation must be removed before calculating the r value for each of the model.

Windle Man

Many students did not omit this (40,57) from their calculation thus providing incorrect *r*-values for their models. Show your GC answers up to 5sf then give final answer to 3sf.

Majority of the students did well in choosing the correct model with |r| is closet to 1. Well done!

Commented [SH46]: <u>Things to note</u> Many students did not know how to linearise ($c = ae^{bd}$) to $\ln c = \ln a + bd$. And calculating the value of c posed a problem for many.

Commented [SH47]: Things to note

1.State the date range clearly for the examiner and add on to say that the trend may not hold and thus the estimate is not reliable. 2.Extrapolation is a process – of using a data point(out of the data range) to calculate an estimate. It doesn't warrant as an answer for marks to be awarded.

Commented [SH48]: <u>Things to note</u> 1.Initial concentration of the herbicide in percentage

percentage 2. Finding the y- intercept when d=0.

 Give your interpretation is required to show understanding. Giving answer alone is not sufficient.

ANDERSON SERANGOON JUNIOR COLLEGE

MATHEMATICS

H2 Math Prelim Paper 1 (100 marks)

9758 12 Sept 2022 3 hours

Additional Material(s): List of Formulae (MF26)

CANDIDATE NAME

CLASS

READ THESE INSTRUCTIONS FIRST

Write your name and class in the boxes above.

Please write clearly and use capital letters.

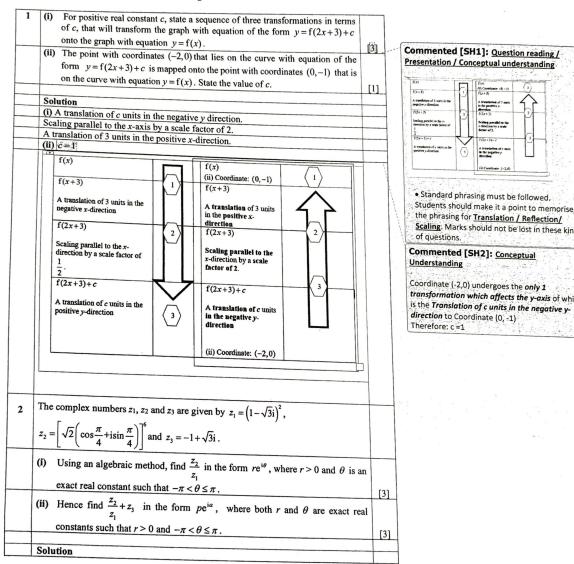
Write in dark blue or black pen. HB pencil may be used for graphs and diagrams only.

Do not use staples, paper clips, glue or correction fluid.

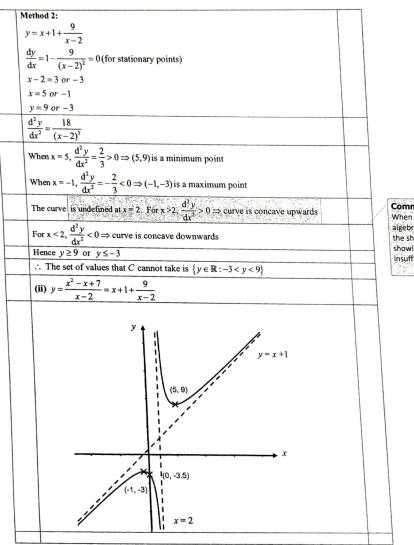
Answer **all** the questions and write your answers in this booklet. Do not tear out any part of this booklet.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use an approved graphing calculator.

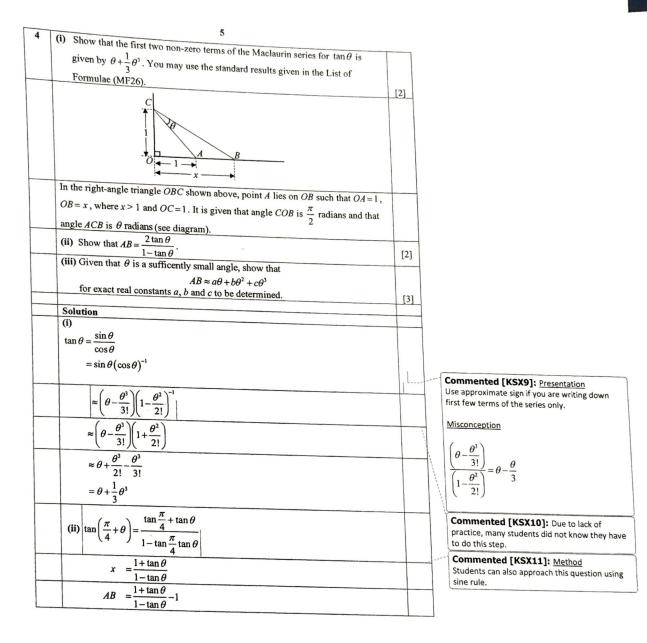

Where unsupported answers from a graphing calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

All work must be handed in at the end of the examination. If you have used any additional paper, please insert them inside this booklet.

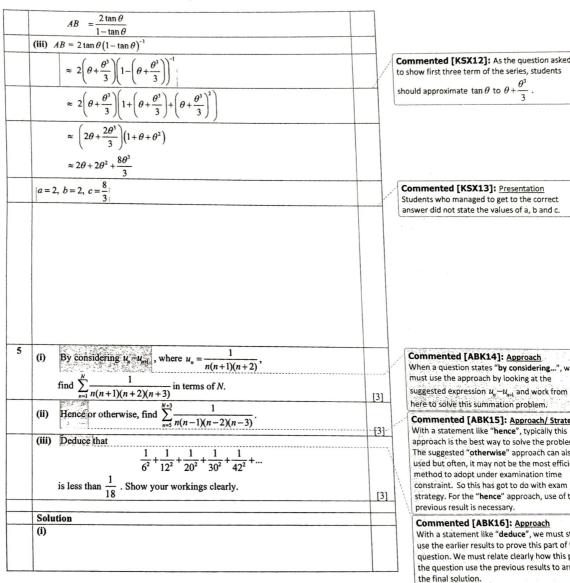

The number of marks is given in brackets [] at the end of each question or part question.

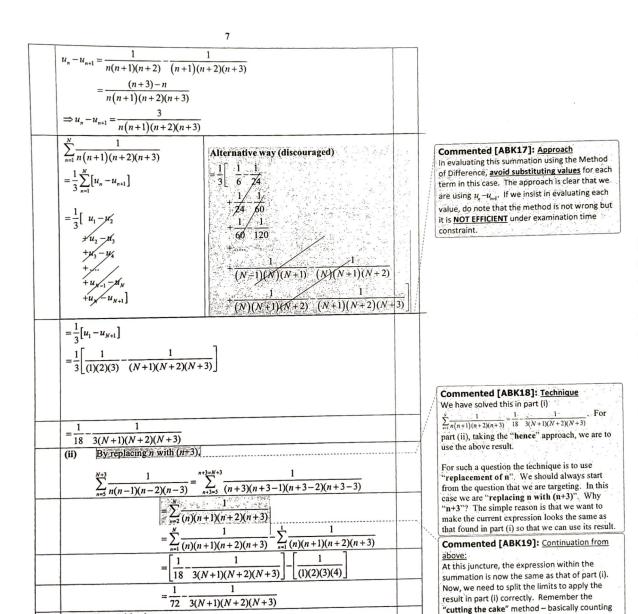
Question number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
. 9	
10	
11	
Total	

This document consists of 22 printed pages and 2 blank pages.



	3			
	(i) $\frac{z_2}{z_1} = \frac{\left[\sqrt{2}e^{\left(\frac{\pi}{4}\right)}\right]^6}{\left[2e^{\left(\frac{\pi}{3}\right)}\right]^2}$ $\frac{z_2}{z_1} = 2e^{\left(\frac{13\pi}{6}\right)}$ $\left \therefore \frac{z_2}{z_1} = 2e^{\left(\frac{\pi}{6}\right)}$			Commented [LT3]: <u>Misconception</u> Did not obtain the correct exponential form for the complex numbers given. <u>Recommendation</u> 1. Locate the point in the Argand Diagram before evaluating its argument. 2. Whenever possible, use exponential form to perform any simplifications. Using polar form for any simplification is strongly discourage.
	(ii) $\frac{z_1}{z_1} + z_3 = 2e^{\left(\frac{x}{5}\right)} + 2e^{\left(\frac{2x}{3}\right)}$			Commented [LT4]: <u>Question Reading</u> It is important to have the habit of leaving the final argument value of the complex number to be within the principal range.
	$= 2e^{\left(\frac{\frac{\pi}{6}+\frac{2\pi}{3}}{2}\right)i}\left[e^{\left(\frac{\pi}{6}-\frac{2\pi}{3}\right)i}+e^{\left(\frac{\pi}{6}-\frac{2\pi}{3}\right)i}\right]$			Commented [LT5]: <u>Misconception</u> Did not obtain the correct exponential form for z ₃ .
	$= 2e^{\left(\frac{5\pi}{12}\right)} \left[2\cos\left(-\frac{\pi}{4}\right) \right]$ $= 2\sqrt{2}e^{\left(\frac{5\pi}{12}\right)}$		4	Commented [LT6]: <u>Recommendation</u> Majority could not remember the properties learnt in the lecture. It is important to remember them.
3	It is given that the curve C has equation $y = \frac{x^2 - x + 7}{x - 2}$, $x \in \mathbb{R}$, $x \neq 2$.			Commented [LT7]: <u>Presentation of Answer</u> Final answer has to be in the simplest form whenever possible.
	 (i) Without using a calculator, find the set of values that y cannot take. (ii) Sketch C, stating clearly the equations of any asymptotes, the coordinates of the stationary points and the point(s) where the curve crosses the axes. 	[3]		
	Solution (i) $y = \frac{x^2 - x + 7}{x - 2}$	-	_	
	Method 1: $x^2 - x + 7 = y(x-2)$ $x^2 - (1+y)x + 7 + 2y = 0$			
	For the equation to not have real solutions, discriminant < 0 $\left[-(1+y)\right]^2 - 4(7+2y) < 0$		_	
	$y^2 - 6y - 27 < 0$ (y-9)(y+3)<0			
-	-3 < y < 9 $\therefore \text{ The set of values that } C \text{ cannot take is } \{y \in \mathbb{R} : -3 < y < 9\}.$			

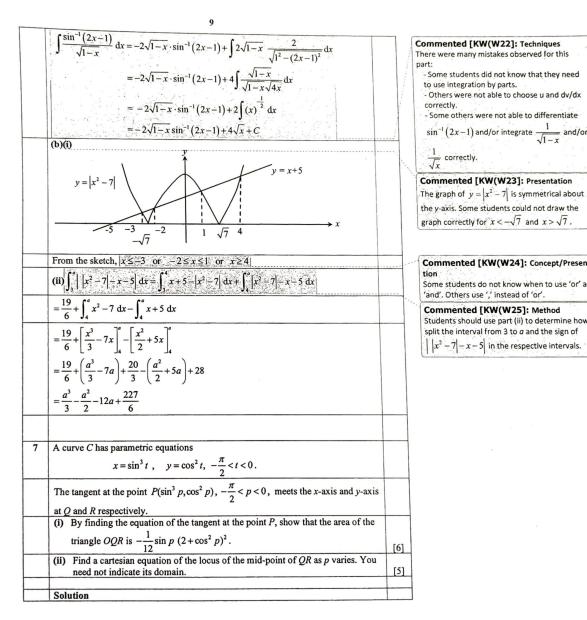


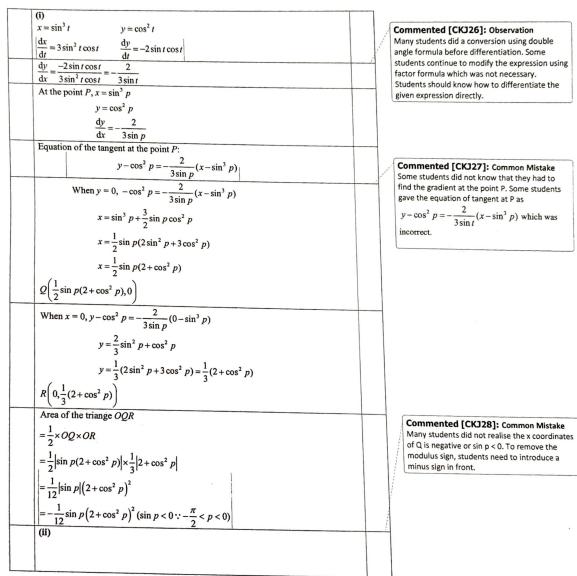

Commented [KSM8]: Strategy

When the differentiation method is used and a algebraic method is required, you must explain the shape of the curve in all regions of x. Just showing the existence of stationary points is insufficient.

₽

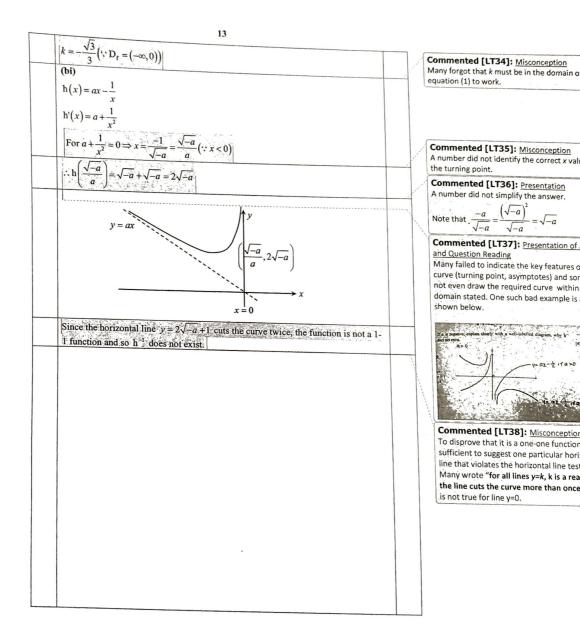
(iii)


For positive integers n


[Turn Over

the terms.

	$n^2 + 3n < n^2 + 3n + 2$		
	n(n+3) < (n+1)(n+2)		
	$n(n+1)(n+2)(n+3) < (n+1)^{2}(n+2)^{2}$		
	$\frac{1}{n(n+1)(n+2)(n+3)} \ge \frac{1}{(n+1)^2(n+2)^2} \forall n \ge 0.$	This inequality must be e	Commented [ABK20]: <u>Method</u> This inequality must be established before we can proceed with the next step. To even think
	So $\sum_{n=1}^{N} \frac{1}{(n+1)^2 (n+2)^2} < \sum_{n=1}^{N} \frac{1}{n(n+1)(n+2)(n+3)}$ As $\frac{1}{6^2} + \frac{1}{12^2} + \frac{1}{20^2} + \dots = \lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{(n+1)^2 (n+2)^2}$		about this inequality we must first identify the expression for this sum to infinity:
			$\frac{1}{6^2} + \frac{1}{12^2} + \frac{1}{20^2} + \dots = \sum_{n=1}^{\infty} \frac{1}{(n+1)^2 (n+2)^2}$
	$< \lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{n(n+1)(n+2)(n+3)}$		Looking at the RHS, that means we need to establish a link between $(n+1)^2(n+2)^2$ and n(n+1)(n+2)(n+3) which is found in our original
	$= \lim_{N \to \infty} \left[\frac{1}{18} - \frac{1}{3(N+1)(N+2)(N+3)} \right]$		expression. This is the start of our thinking process.
	$=\frac{1}{18}$		Also, we know that we need to show
	10		$\frac{\frac{1}{6^2} + \frac{1}{12^2} + \frac{1}{20^2} + \dots}{\frac{1}{20^2} + \dots} = \sum_{n=1}^{\infty} \frac{1}{(n+1)^2 (n+2)^2} < \frac{1}{18}$
	Thus $\frac{1}{6^2} + \frac{1}{12^2} + \frac{1}{20^2} + \dots < \frac{1}{18}$ (deduced)		The only $\frac{1}{10}$ that we can find is from part (i).
			This would give us more clue to establish a link
			(inequality) between $(n+1)^2(n+2)^2$ and
			n(n+1)(n+2)(n+3).
6	(a) End $\int \sin^{-1}(2x-1)$		Commented [KW(W21]: Question Readin
	(a) Find $\int \frac{\sin^{-1}(2x-1)}{\sqrt{1-x}} dx$ for $0 < x < 1$.	[3]	$\int \sin^{-1}(2x-1)$
	(b) (i) Sketch the graphs of $y = x^2 - 7 $ and $y = x + 5$ on the same diagram.		$\int \frac{\sin^{-1}(2x-1)}{\sqrt{1-x}} dx \text{ (indefinite integral) for}$
	Indicate clearly the x-intercepts and the values of x where the two curves		0 < x < 1 is not equivalent to
	intersect. Hence solve the inequality $ x^2 - 7 \ge x + 5$.	[4]	$\int_{0}^{1} \frac{\sin^{-1}(2x-1)}{\sqrt{1-x}} dx$ (definite integral).
	(ii) Hence, for $a > 5$, find $\int_{3}^{a} x^{2} - 7 - x - 5 dx$ in terms of a . Leave your answer		$\int_0 \sqrt{1-x}$ definite integral).
	in exact form.	[3]	
	Solution		
	(a)		

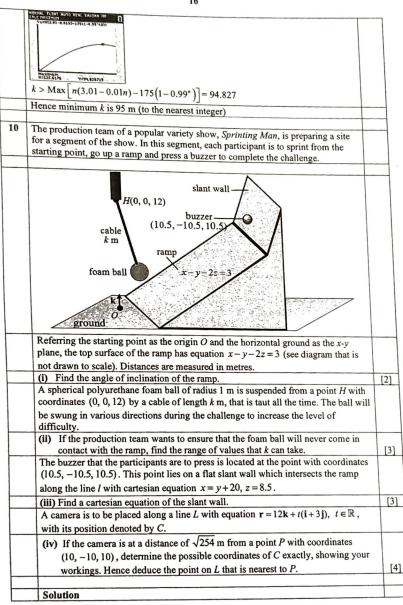

R.K.

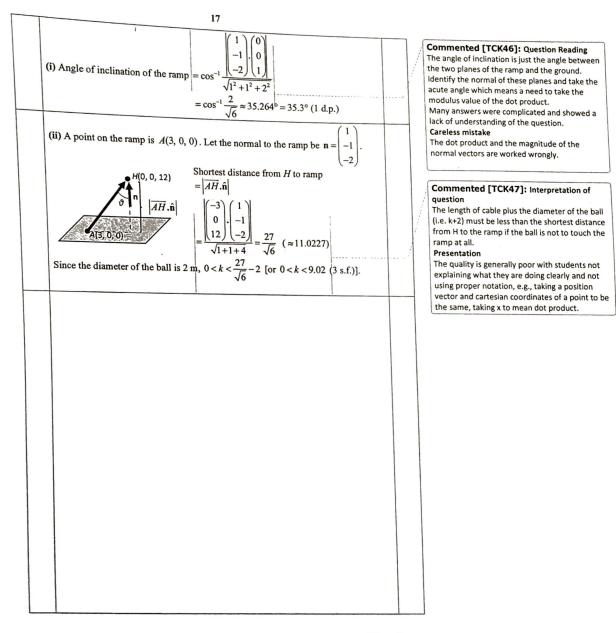
11	
Mid point of $QR = \left(\frac{\frac{1}{2}\sin p(2+\cos^2 p)+0}{2}, \frac{0+\frac{1}{3}(2+\cos^2 p)}{2}\right)$ = $\left(\frac{1}{4}\sin p(2+\cos^2 p), \frac{1}{6}(2+\cos^2 p)\right)$	Commented [CKJ29]: Observation This question was poorly attempted. Many students did not attempt the question. Approach The idea is to find the mid point of QR. Exp and y in terms of p. Then think of a way to of the parameter p.
$x = \frac{1}{4} \sin p(2 + \cos^2 p) - \dots - \dots - \dots - (1)$	
$y = \frac{1}{6}(2 + \cos^2 p)$ (2)	
$\frac{(1)}{(2)}$ gives	
$\frac{x}{y} = \frac{\frac{1}{4} \sin p(2 + \cos^2 p)}{\frac{1}{6}(2 + \cos^2 p)}$	
$\frac{x}{y} = \frac{3}{2} \sin p$	
$\sin p = \frac{2x}{3y}$	
$y = \frac{1}{6}(2 + \cos^2 p)$	
$y = \frac{1}{6} (2 + (1 - \sin^2 p))$	
$y = \frac{1}{6} \left(3 - \frac{4x^2}{9y^2} \right)$	
$y = \frac{1}{54y^2} \left(27y^2 - 4x^2 \right)$	
$54y^3 = 27y^2 - 4x^2$ Cartesian equation of the locus of the mid-point of QR is $54y^3 = 27y^2 - 4x^2$	

8 (a) Functions f and g are defined by f: $x \mapsto x^{2}$, $x < 0$, g: $x \mapsto \frac{1}{x^{2}}$, $x > 0$. (i) Explain why the composite function g f exists. (ii) (ii) Find the exact value of f ⁺ g ⁻¹ (3). Show your workings clearly. (i) For real values a, the function h is defined by h: $x \mapsto \alpha - \frac{1}{x^{2}}$, $x < 0$. (ii) If a 1 is negative, explain clearly with a well-labeled diagram, why h ⁺¹ (iii) If a 1 is negative, explain clearly with a well-labeled diagram. Why h ⁺¹ (iii) If a 1 is negative, explain clearly with a well-labeled diagram. Why h ⁺¹ (iii) If a 1 is negative, explain clearly with a well-labeled diagram. Why h ⁺¹ (iii) If a 1 is negative, explain clearly with a well-labeled diagram. Why h ⁺¹ (iii) If a 1 is negative, explain clearly with a well-labeled diagram. Some bat examples are frow head to comprehed what It means to be a well-labeled diagram. Some bat examples are frow needs to indicate the key features of the courbes in the term of maxing (iii) Let f ⁺¹ (a) = k (iii) If a 1 · f (a) = k (iii) If a 2 · f (a) = k (iii) If a 2 · f (a) = k (iii) If a 2 · f (a) = k (iii) If a 1 · f (a) = k^{-1} (a) = k^{-1} So one need not find the composite function to do Nisometry (iii) = k (iii) If a 1 · f (a) = k^{-1} (a) = k^{-1} (iii) If a 1 · f (a) = k^{-1} (a) = k^{-1} So one need not find the composite function to do Nisometry (iii) = k (iii) If a 1 · f (a) = k^{-1} (a) = k^{-1} So one need not find the composite function to do Nisometry (a) = k^{-1} (a) = k^{	8	(a) Emotion () 1 (a) (a)		
$g: x \mapsto \frac{1}{x}, x > 0.$ (i) Explain why the composite function gf exists.(1)(ii) Find the exact value of $f^{-1}g^{-1}(3)$. Show your workings clearly.(3)(b) For real values a , the function h is defined by $h: x \mapsto ax - \frac{1}{x}, x < 0.$ (a)(i) If $a = 1$, find h ⁻¹ in similar form.(3)(iii) If $a = 1$, find h ⁻¹ in similar form.(3)(iii) If $a = 1$, find h ⁻¹ in similar form.(3)(a) $[R_1^{\pm}(3, \infty)]$ and $D_2^{\pm}(0, \infty)$ (3)(iii) If $a = 1$, find h ⁻¹ in similar form.(3)(a) $[R_1^{\pm}(3, \infty)]$ and $D_2^{\pm}(0, \infty)$ (3)(iii) Let $f^{-1}g^{-1}(3) = k$ (4)(a) $[R_1^{\pm}(3, \infty)]$ and $D_2^{\pm}(0, \infty)$ (3)(iii) Let $f^{-1}g^{-1}(3) = k$ (4)(iii) Let $f^{-1}g^{-1}(3) = k$ (iii) Let $f^{-1}g^{-1}(3) = k^{-1}$ (iiii) Let $f^{-1}g^{-1}(3) = k^{-1}$ <	0	(a) Functions f and g are defined by		
0) Explain why the composite function gf exists.11(ii) Find the exact value of $f^{-1}g^{-1}(3)$. Show your workings clearly.(3)(b) For real values a, the function h is defined by h: $x \mapsto \alpha x - \frac{1}{x}$, $x < 0$.(3)(i) If a is negative, explain clearly with a well-labelied diagram, why h ⁻¹ does not exist.(4)(ii) If $a = 1$, find h ⁻¹ in similar form.(3)(iii) Reading(3)(iii) Reading(3)(iii) Reading(3)(iiii) Reading(3)(iii) Reading(3)(iii) Reading(3)(iii) Reading(3)(iiii) Reading(3)(iiii) Reading(3)(iii) Reading(3)(iiii) Reading(3) <tr< td=""><td></td><td></td><td></td><td></td></tr<>				
(ii) Find the exact value of $f^{-1}g^{-1}(3)$. Show your workings clearly. (b) For real values <i>a</i> , the function h is defined by $h: x \mapsto \alpha x - \frac{1}{x}, x < 0.$ (i) If <i>a</i> is negative, explain clearly with a well-labelled diagram, why h ⁻¹ does not exist. (ii) If <i>a</i> = 1, find h ⁻¹ in similar form. (iii) If <i>a</i> = 1, find h ⁻¹ in similar form. (iii) $ f a = 1, find h^{-1}$ in similar form. (iii) $ f a = 1, find h^{-1}$ in similar form. (iii) $ f a = 1, find h^{-1}$ in similar form. (iii) $ f a = 0, \infty$) and $D_{k} = 0, \infty$) Solution (iii) $ f a = 0, \infty$) and $D_{k} = 0, \infty$) Since $ f _{k} = 0, \infty$ and $D_{k} = 0, \infty$) (iv) Let $f^{-1}g^{-1}(3) = k$ $ g ^{-1}(3) = k$ Commented [LT33]: Presentation of Answer H is important to the marker what the Individual range and domain were before making the conclusion. Commented [LT33]: Presentation of Answer H is important to ether marker what the Individual range and domain were before making the conclusion. Commented [LT33]: Recommendation $f^{-1}g^{-1}(3) = k$ $\Rightarrow ff^{-1}g^{-1}(3) = (k) \Rightarrow g^{-1}(3) = k^{2}$ So concertaint $f^{-1}g^{-1}(x) = (k^{2}) = k^{2}$. So concertaint $f^{-1}g^{-1}(x) = (k^{2}) = k^{2}$. So concertaint $f^{-1}g^{-1}(x) = k^{2}$		$g: x \mapsto \frac{1}{x}, x > 0.$		
(ii) Find the exact value of $f^{-1}g^{-1}(3)$. Show your workings clearly. (b) For real values <i>a</i> , the function h is defined by $h: x \mapsto \alpha x - \frac{1}{x}, x < 0.$ (i) If <i>a</i> is negative, explain clearly with a well-labelled diagram, why h ⁻¹ does not exist. (ii) If <i>a</i> = 1, find h ⁻¹ in similar form. (iii) If <i>a</i> = 1, find h ⁻¹ in similar form. (iii) $ f a = 1, find h^{-1}$ in similar form. (iii) $ f a = 1, find h^{-1}$ in similar form. (iii) $ f a = 1, find h^{-1}$ in similar form. (iii) $ f a = 0, \infty$) and $D_{k} = 0, \infty$) Solution (iii) $ f a = 0, \infty$) and $D_{k} = 0, \infty$) Since $ f _{k} = 0, \infty$ and $D_{k} = 0, \infty$) (iv) Let $f^{-1}g^{-1}(3) = k$ $ g ^{-1}(3) = k$ Commented [LT33]: Presentation of Answer H is important to the marker what the Individual range and domain were before making the conclusion. Commented [LT33]: Presentation of Answer H is important to ether marker what the Individual range and domain were before making the conclusion. Commented [LT33]: Recommendation $f^{-1}g^{-1}(3) = k$ $\Rightarrow ff^{-1}g^{-1}(3) = (k) \Rightarrow g^{-1}(3) = k^{2}$ So concertaint $f^{-1}g^{-1}(x) = (k^{2}) = k^{2}$. So concertaint $f^{-1}g^{-1}(x) = (k^{2}) = k^{2}$. So concertaint $f^{-1}g^{-1}(x) = k^{2}$		(i) Explain why the composite function gf exists.	[1]	
(b) For real values <i>a</i> , the function h is defined by h: $x \mapsto ax - \frac{1}{x}$, $x < 0$. (i) If <i>a</i> is negative, explain clearly with a well-labelled diagram, why h ⁻¹ des not exist. (ii) If <i>a</i> = 1, find h ⁻¹ in similar form. (iii) If <i>a</i> = 1, find h ⁻¹ in similar form. (iii) If $a = 1$, find h ⁻¹ in similar form. (iii) If $a = 1$, find h ⁻¹ in similar form. (iii) R ₁ =(0, ∞) and D ₂ =(0, ∞) Since $R_1 \in D_2^{-1}$, the composite function of exists. (iii) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iii) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3) = <i>k</i> $\frac{1}{k^2} = 3$ (iv) Let f ⁻¹ g ⁻¹ (3)		(ii) Find the exact value of $f^{-1}g^{-1}(3)$. Show your workings clearly.		
Image: constraint of the interval of the composite function of Answer t is important to tell the marker what the making in this statement made.Image: constraint of the composite function of Answer t is important to tell the marker what the making in this statement made.Commented [L133]: Presentation of Answer t is important to tell the marker what the making in this statement made.Commented [L133]: Presentation of Answer t is important to tell the marker what the making in this statement made.Commented [L133]: Presentation of Answer t is important to tell the marker what the individual range and domain were before making the composite function to do this statement made.Commented [L133]: Presentation of Answer t is important to tell the marker what the individual range and domain were before making the conclusion.Commented [L133]: Presentation of Answer t is important to tell the marker what the individual range and domain were before making the conclusion.Commented [L133]: Presentation of Answer t is important to tell the marker what the individual range and domain were before making the conclusion.Commented [L133]: Presentation of Answer t is important to tell the omarker what the individual range and domain were before making the conclusion.Commented [L133]: Presentation of Answer t is important to tell the omarker what the individual range and domain were before making the conclusion.Commented [L133]: Presentation of Answer t is important to tell the omarker what the individual range and domain were before making the conclusion.Commented [L133]: Presentation of Answer t is important to tell the omarker what the individual range and domain were before makin		(b) For real values a, the function h is defined by	[3]	
Outs not exist.(4)(ii) If $a = 1$, find h^{-1} in similar form.(3)(iii) Carl and $D_a = (0, \infty)$ (3)Solution(4)(a) $R_1 = (0, \infty)$ and $D_a = (0, \infty)$ (4)Since $R_2 \subseteq D_a^*$, the composite function of exists.(6)(1i) Let $f^+g^{-1}(3) = k$ (1) $g(k^2) = 3$ (1) $\frac{1}{k^2} = 3$ (1) $\frac{1}{k^2} = 3$ (1)Commented [L131]: Presentation of Answer11: simportant to tell the marker what theIndividual range and domain were before making the conclusion.Commented [L132]: Misconcention.Some difficult the equal sign in this statement made.Commented [L133]: Becommendation fr ⁻¹ g^{-1}(3) = kSo one need not find the composite function to do this question.Some end ont find the composite function to do this question.Some end ont find the composite function to do this question.Some end ont find the composite function to do this question.Some method the composite function to do this question.Some end ont find the composite function to do this question.Some method the composite function to do this question.Some method the composite function to do this question.Some method the composite function to do this question.		$h: x \mapsto ax - \frac{1}{x}, x < 0.$		
Image: constraint of the symplex set of the composite function of exists.Image: constraint of the constraint of		does not exist.	[4]	 Commented [LT30]: Question Reading
Solution(a) $R_i = (0, \infty)$ and $D_g = (0, \infty)$ Since $R_i \in D_g$, the composite function of exists.(ii) Let $f^*(g^*(3) = k$ $g^{(k)^2} = 3$ $\frac{1}{k^2} = 3$ $\frac{1}{k^2} = 3$ Commented [LT31]: Presentation of Answer It is important to tell the marker what the individual range and domain were before making the collusion.Commented [LT32]: Misconception Some did not indicate the equal sign in this statement made.Commented [LT33]: Recommendation $f^*(g^{-1}(3) = k)$ Commented [LT33]: Recommendation $f^*(g^{-1}(3) = k)$ So on need not find the composite function to do this question. Misconception $f^*(g^{-1}(3) = k)$ So on need not find the composite function to do this question. Misconception $f^*(g^{-1}(3) = f(k) \to g^{-1}(3) = k^2$ So one need not find the composite function to do this question. Misconception		(ii) If $a = 1$, find h^{-1} in similar form.		well-labelled diagram. Some bad examples are
(a) $R_1 = (0, \infty)$ and $D_2 = (0, \infty)$ Since $R_1 \in D_2$, the composite function gf exists.(ii) Let $f^+g^-(3) = k$ $g^{-1}(3) = f(k) = k^2$ $\frac{1}{k^2} = 3$ $\frac{1}{k^2} = 3$ Commented [LT31]: Presentation of Answer It is important to tell the marker what the individual range and domain were before making the collusion. Commented [LT32]: Misconception $f^-(g^-(3) = f(k)) = g^{-1}(3) = f(k) \rightarrow g^{-1}(3) = k^2$ So one need not find the composite function to do this statement made. Commented [LT33]: Recommendation $f^-(g^{-1}(3) = f(k)) \rightarrow g^{-1}(3) = k^2$ So one need not find the composite function to do this squestion. Misconception $f^-(g^{-1}(x) \neq (fg)^{-1}(x))$	-	Solution		shown below. One needs to indicate the key
Since $\mathbb{R}_t \in \mathbb{D}_{k^2}$ the composite function of exists.(ii) Let $f^{-1}g^{-1}(3) = k$ $g^{-1}(3) = f(k) = k^3$ $\frac{1}{k^2} = 3$ $\frac{1}{k^2} = 3$ Commented [LT31]: Presentation of Answer It is important to tell the marker what the individual range and domain were before making the conclusion.Commented [LT32]: Misconception Some did not indicate the equal sign in this statement made.Commented [LT33]: Recommendation $f^{-1}g^{-1}(3) = k$ $\Rightarrow ff^{-1}g^{-1}(3) = f(k) \Rightarrow g^{-1}(3) = k^2$ So one need not find the composite function to do this question.Misconception $f^{-1}g^{-1}(3) = f(k) \Rightarrow g^{-1}(3) = k^2$ So one need not find the composite function to do this question.Misconception $f^{-1}g^{-1}(3) = f(k) \Rightarrow g^{-1}(3) = k^2$ So one need not find the composite function to do this question.Misconception $f^{-1}g^{-1}(x) \neq (fg)^{-1}(x)$				features of the curve like turning point(s),
(ii) Let $f^{-1}g^{-1}(3) = k$ $g^{-1}(3) = f(k) = k^{2}$ (1) $g(k^{2}) = 3$ $\frac{1}{k^{2}} = 3$ Commented [LT31]: Presentation of Answer It is important to tell the marker what the individual range and domain were before making the conclusion. Commented [LT32]: Misconception Some did not indicate the equal sign in this statement made. Commented [LT32]: Misconception Some of indicate the equal sign in this statement made. Commented [LT32]: Misconception Some of indicate the equal sign in this statement made. Commented [LT32]: Misconception Some of indicate the equal sign in this statement made. Commented [LT32]: Misconception Some of indicate the equal sign in this statement made. Commented [LT32]: Misconception Some of indicate the equal sign in this statement made. Commented [LT32]: Misconception Some of indicate the equal sign in this statement made. Commented [LT32]: Misconception Some of indicate the equal sign in this statement made. Commented [LT32]: Misconception Some of indicate the equal sign in this statement made. Commented [LT32]: Misconception Some of indicate the equal sign in this statement made. Commented [LT32]: Misconception Some of indicate the equal sign in this statement made. Commented [LT32]: Misconception Some of indicate the equal sign in this statement made. Commented [LT32]: Misconception Some of indicate the equal sign in this statement made. Commented [LT32]: Misconception Some of indicate the equal sign in this statement made. Commented [LT32]: Misconception Some of indicate the equal sign in this statement made. Commented [LT33]: Misconception Some of indicate the equal sign in this statement made. Commented [LT33]: Misconception Some of indicate the equal sign in this statement made. Commented [LT33]: Misconception Some of indicate the equal sign in this statement made. Commented [LT33]: Misconception Some of indicate the equal sign in this Some of indicate the equal sign in this statement made. Commented [LT3	-	(a) $\mathbf{X}_{\mathbf{z}} = (0, \mathbf{\omega})$ and $\mathbf{D}_{\mathbf{g}} = (0, \mathbf{\omega})$		asymptote(s), intercept(s), if any.
$\frac{\left[g^{-1}(3)=f(k)=k^{2}\right]-\dots-(1)}{g(k^{2})=3}$ $\frac{1}{k^{2}}=3$ $\frac{1}{k^{2}}=$	-			1
$\frac{g(k^2)=3}{\frac{1}{k^2}=3}$ Commented [LT31]: Presentation of Answer It is important to tell the marker what the individual range and domain were before making the conclusion. Commented [LT32]: Misconception Some did not indicate the equal sign in this statement made. Commented [LT33]: Recommendation $f^{-1}g^{-1}(3)=k$ $\Rightarrow ff^{-1}g^{-1}(3)=k() \Rightarrow g^{-1}(3)=k^{2}$ So one need not find the composite function to do this question. Misconception $f^{-1}g^{-1}(x) \neq (fg)^{-1}(x)$				$ \ge $
$\frac{1}{k^2} = 3$ Commented [LT31]: Presentation of Answer It is important to tell the marker what the individual range and domain were before making the conclusion. Commented [LT32]: Misconception Some did not indicate the equal sign in this statement made. Commented [LT33]: Recommendation $f^{-1}g^{-1}(3) = k$ $\Rightarrow ff^{-1}g^{-1}(3) = f(k) \Rightarrow g^{-1}(3) = k^{2}$ So one need not find the composite function to do this question. Misconception $f^{-1}g^{-1}(x) \neq (fg)^{-1}(x)$			1	
$\frac{\text{Commented [LT33]: Presentation of Answer}}{\text{It is important to tell the marker what the individual range and domain were before making the conclusion.}$ $\frac{\text{Commented [LT32]: Misconception}}{\text{Some did not indicate the equal sign in this statement made.}}$ $\frac{\text{Commented [LT33]: Recommendation}}{\text{f}^{-1}g^{-1}(3) = k}$ $\Rightarrow \text{ff}^{-1}g^{-1}(3) = f(k) \Rightarrow g^{-1}(3) = k^{2}$ So one need not find the composite function to do this question.} $\frac{\text{Misconception}}{\text{f}^{-1}g^{-1}(x) \neq (\text{fg})^{-1}(x)}$		$g(k^2) = 3$		
$\frac{\text{Commented [LT33]: Presentation of Answer}}{\text{It is important to tell the marker what the individual range and domain were before making the conclusion.}$ $\frac{\text{Commented [LT32]: Misconception}}{\text{Some did not indicate the equal sign in this statement made.}}$ $\frac{\text{Commented [LT33]: Recommendation}}{\text{f}^{-1}g^{-1}(3) = k}$ $\Rightarrow \text{ff}^{-1}g^{-1}(3) = f(k) \Rightarrow g^{-1}(3) = k^{2}$ So one need not find the composite function to do this question.} $\frac{\text{Misconception}}{\text{f}^{-1}g^{-1}(x) \neq (\text{fg})^{-1}(x)}$		1 -3		
It is important to tell the marker what the individual range and domain were before making the conclusion. Commented [LT32]: Misconception Some did not indicate the equal sign in this statement made. Commented [LT33]: Recommendation $f^{-1}g^{-1}(3) = k$ $\Rightarrow ff^{-1}g^{-1}(3) = f(k) \Rightarrow g^{-1}(3) = k^2$ So one need not find the composite function to do this question. Misconception $f^{-1}g^{-1}(x) \neq (fg)^{-1}(x)$		$\frac{1}{k^2}$		
It is important to tell the marker what the individual range and domain were before making the conclusion. Commented [LT32]: Misconception Some did not indicate the equal sign in this statement made. Commented [LT33]: Recommendation $f^{-1}g^{-1}(3) = k$ $\Rightarrow ff^{-1}g^{-1}(3) = f(k) \Rightarrow g^{-1}(3) = k^2$ So one need not find the composite function to do this question. Misconception $f^{-1}g^{-1}(x) \neq (fg)^{-1}(x)$			-	
It is important to tell the marker what the individual range and domain were before making the conclusion. Commented [LT32]: Misconception Some did not indicate the equal sign in this statement made. Commented [LT33]: Recommendation $f^{-1}g^{-1}(3) = k$ $\Rightarrow ff^{-1}g^{-1}(3) = f(k) \Rightarrow g^{-1}(3) = k^2$ So one need not find the composite function to do this question. Misconception $f^{-1}g^{-1}(x) \neq (fg)^{-1}(x)$				
It is important to tell the marker what the individual range and domain were before making the conclusion. Commented [LT32]: Misconception Some did not indicate the equal sign in this statement made. Commented [LT33]: Recommendation $f^{-1}g^{-1}(3) = k$ $\Rightarrow ff^{-1}g^{-1}(3) = f(k) \Rightarrow g^{-1}(3) = k^2$ So one need not find the composite function to do this question. Misconception $f^{-1}g^{-1}(x) \neq (fg)^{-1}(x)$				
Commented [LT32]: Misconception Some did not indicate the equal sign in this statement made. Commented [LT33]: Recommendation $f^{-1}g^{-1}(3) = k$ $\Rightarrow ff^{-1}g^{-1}(3) = f(k) \Rightarrow g^{-1}(3) = k^2$ So one need not find the composite function to do this question. Misconception $f^{-1}g^{-1}(x) \neq (fg)^{-1}(x)$				It is important to tell the marker what the individual range and domain were before making
$\begin{aligned} f^{-1}g^{-1}(3) &= k \\ \Rightarrow ff^{-1}g^{-1}(3) &= f(k) \Rightarrow g^{-1}(3) = k^2 \\ \text{So one need not find the composite function to do this question.} \\ \frac{\text{Misconception}}{f^{-1}g^{-1}(x) \neq (fg)^{-1}(x)} \end{aligned}$				 Some did not indicate the equal sign in this
$\Rightarrow ff^{-1}g^{-1}(3) = f(k) \Rightarrow g^{-1}(3) = k^{2}$ So one need not find the composite function to do this question. <u>Misconception</u> $f^{-1}g^{-1}(x) \neq (fg)^{-1}(x)$				Commented [LT33]: Recommendation $f^{-1}g^{-1}(3) = k$
So one need not find the composite function to do this question. <u>Misconception</u> $f^{-1}g^{-1}(x) \neq (fg)^{-1}(x)$				
$f^{-1}g^{-1}(x) \neq (fg)^{-1}(x)$				So one need not find the composite function to do this question.
$\ln fact f^{-1}g^{-1}(x) = (gf)^{-1}(x)$				
				In fact $f^{-1}g^{-1}(x) = (gf)^{-1}(x)$

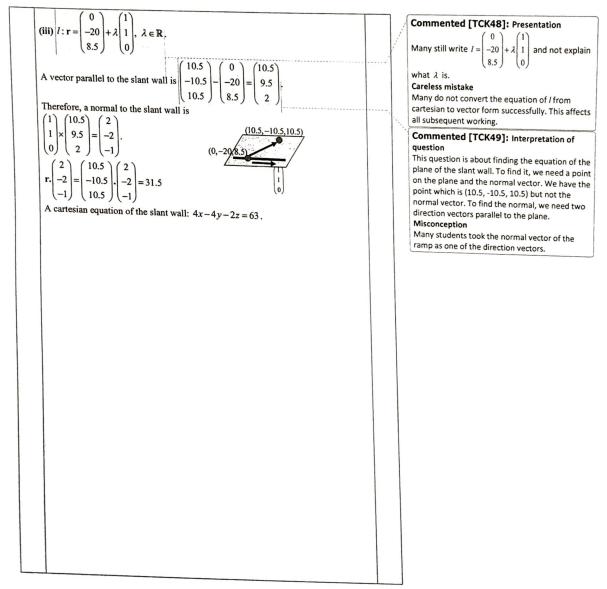
and the second se

_	(ii) Let $y = h(x) = x - \frac{1}{x}$		
	$y = x - \frac{1}{2}$		
	x		
	$yx = x^2 - 1$		
	$x^2 - xy - 1 = 0$		
	$x = \frac{y \pm \sqrt{y^2 + 4}}{2}$		
	$x = \frac{y - \sqrt{y^2 + 4}}{2} (: x < 0)$		
	$ \mathbf{h}^{-1}: x \mapsto \frac{x - \sqrt{x^2 + 4}}{2}, x \in \mathbb{R}$		
			1
9	(a) An arithmetic progression has first term a and common difference d , where		
	$a > 0$ and $d \neq 0$. The eighth, third and second term of the progression are the		
	first three terms of an i. C. is		
_	first three terms of an infinite geometric progression.		
	(i) Find the common ratio of the geometric progression.	[3]	
	 (ii) Find the exact sum of the odd-numbered terms of the geometric progression in terms of a. 	1-1-1	1
	(b) A programmer coded a program involving a rabbit-fox chase along a straight path to model the actual bust for an all in the straight of the	[3]	
	path to model the actual hunt for a rabbit by a fox.		
	The rabbit first hop is 1.75 m. In each subsequent hop the distance		-
	170 loss than its previous non. The fox first leave 3 m. In each automatic		
	the distance covered is 0.02 m less than its previous loop. Initially the set 1 is		
	of in anead of the lox and assume that the rabbit and the fox stort and and and		
-	nop and leap at the same time.		
			1
	leaps and hops respectively, find the minimum number of hops and leaps for the fox to catch up with the rabbit.		
1	(ii) Find the number of leaps the fox takes before it comes to a stop. Hence,	[4]	-
	find the minimum starting distance, in metre, between the fox and the		
	rabbit such that the fox will never catch up with the rabbit Leave your		
\downarrow	answer to the nearest integer.	[2]	
-		1	-
	Solution		
+	(a) Let b and r be the first term and common ratio of the G.P.		
	b = a + 7d(1) br = a + 2d(2)		1
	br = a + 2a(2) $br^2 = a + d$ (3)		
ť	From (1) and (2) gives (3)		
	b-br = 5d(4)		
	From (2) and (3) gives (4)		
	$br - br^2 = d$ (5)		
	(4) divides (5) gives		

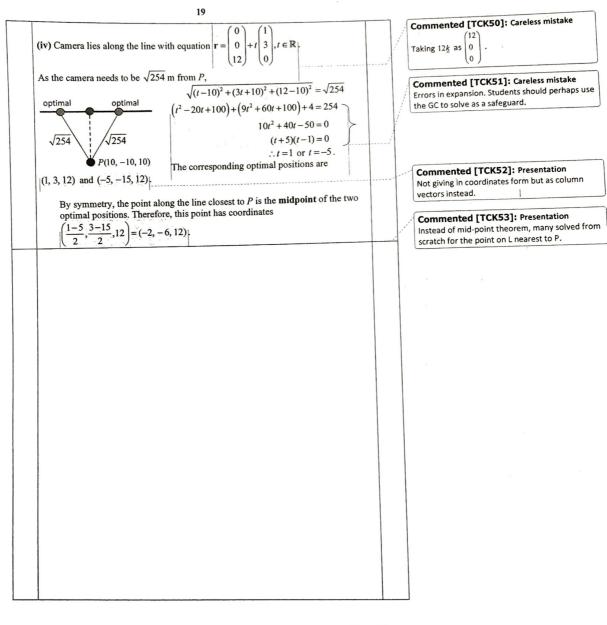

Commented [LT39]: <u>Misconception</u> A number did not select the correct equation that is based on the domain of h(x).


N. N.

Commented [LT40]: Question Reading A number did not express the answer in the similar form. It must be written in the form as how the question has presented.


15		
$\frac{1-r}{r-r^2} = 5$		
$\frac{r - r^2}{5r^2 - 6r + 1 = 0}$		
$\frac{57 - 67 + 1 = 0}{(57 - 1)(7 - 1) = 0}$		
$r = \frac{1}{5}$ or $r = 1$ (rejected since $d \neq 0$)		
(ii) From (5), $\frac{4}{25}b = d$.		
And from (3), $b = -\frac{25}{3}a$		
$\left \left(S_{\infty} \right)_{\text{odd}} = \frac{b}{1 - r^2} \right $		Commented [KSM41]: <u>Question Reading</u> Question specified that the G.P. is infinite. Many did not read this and proceed to find Sn.
$\begin{bmatrix} (S_{\infty})_{odd} = \frac{b}{1 - r^2} \\ = \frac{-\frac{25}{3}a}{1 - \frac{1}{25}} \end{bmatrix}$		Interpretation Majority who got this wrong mistook the first
$1 - \frac{1}{25}$	$\left \right $	term of G.P. to be that of the A.P.
$=-\frac{625a}{72}$		
$(bi) \left[\left(S_n \right)_{\text{fox}} = \frac{n}{2} \left[2(3) + (n-1)(-0.02) \right] = n(3.01 - 0.01n) \right]$		Commented [KSM42]: <u>Strategy</u> There is no need to deduce the general term
$\left(S_n\right)_{\text{rabbit}} = \frac{1.75\left[1 - 0.99^n\right]}{1 - 0.99} = 175\left(1 - 0.99^n\right)$		from scratch here, and many wasted time to do so.
For the fox to catch the rabbit, $n(3.01-0.01n) - 175(1-0.99^n) \ge 60$		Commented [KSM43]: Presentation Students should express this in inequality form to
Let $Y = n(3.01 - 0.01n) - 175(1 - 0.99^n)$	TI	explain why the n obtained is the least.
From GC,	1 1	Constitution for the state of t
	1 2	
53 59.171 < 60		
54 60.084 > 60 55 60.987 > 60		
Least $n = 54$		Commented [KSM44]: Presentation
(ii) Let k be the starting distance between fox and rabbit.		Those who fail to show either the graph or table
For the fox to never catch up with the rabbit, $h \ge M \exp \left[r(2, 01 - 0.01x) + 175(1 - 0.007) \right]$		will not be awarded full credit.
$k > Max \left[n(3.01 - 0.01n) - 175 (1 - 0.99^{n}) \right]$		Commented [KSM45]: Interpretation and
To find <i>n</i> for which the fox stop moving, $T_n = 0$		Here, at the 151th leap, the fox would have
3 + (n-1)(-0.02) = 0		stopped its movement. So it's at the 150 th leap
n = 151	_	before it stopped. Hence, we should analyse the
The fox takes 150 leaps before it stops moving. From GC, for $0 \le n \le 150$,	,	graph of the difference in the distance travelle within the animals' first 150 leaps. Almost all who did this part assumed that the minimum between the two animals occurred at the 151 or 150 th leap. Do take note the Maximum or
		minimum point of a graph may not occur at it end points.

15



ALE STALL

No.

11	The cylindrical tank in a research laboratory has a cross-sectional area of 4 m ² . To	1	
	cool the tank, water is pumped in and out of the tank simultaneously. The volume		
	and height of the water in the tank at any time t minutes is given by V (litres) and h	1	
	(metres) respectively. Clean water is pumped into the tank at a rate that is		
	proportional to h^2 and the water is pumped out from the tank at a rate that is		
	proportional to h.		
	(i) Assume that the water does not overflow and that there is no change to the height	1	
	of the uniter when $h = 10$, show that $dh = kh(h-10)$, where h is a real constant		
	of the water when h is 10, show that $\frac{dh}{dt} = \frac{kh(h-10)}{4}$ where k is a real constant.	[4]	
	The tank was initially filled with clean water to a height of 2 metres. When the height		
	of the water is 5 metres, the volume of water is increasing at a rate of 5.5 litres per		
	minute.		1
	(ii) Find the exact value of k. Hence find h in terms of t.	[5]	1
	(iii) Sketch a graph of h against t . Hence write down the minimum height of the		1
_	cylindrical tank that will not result in the overflow of the water.	[3]	1
_			1
_	Solution		1
			1
	$\underline{dV} \underline{dV_m} \underline{dV_m} \underline{dV_{out}}$		1
	$dt dt_{in} dt_{out}$		
	$d\mathcal{V}$		
	$\frac{dV}{dt} = \frac{dV_{in}}{dt_{in}} \frac{dV_{out}}{dt_{out}}$ $\frac{dV}{dt} = Ah^2 - Bh, A, B \in \mathbb{R}$		
-	When $h = 10$, $\frac{dV}{dt} = 0$.	· · ·	
	When $h = 10, \frac{d}{dt} = 0.$		
	B=10A		1
-	Since $V = \pi r^2 h$ (and given that base area is 4 m ²)	1	1
	$\therefore V = 4 h$		
	$\frac{\mathrm{d}V}{\mathrm{d}t} = 4\frac{\mathrm{d}h}{\mathrm{d}t}$		
_			4
	$\Rightarrow 4\frac{dh}{dt} = Ah^2 - 10Ah$		
	$\Rightarrow \frac{dh}{dt} = \frac{kh(h-10)}{4}, \text{ where } A \equiv k$		
	$\Rightarrow \frac{1}{dt} = \frac{1}{4}, \text{ where } A = k$		1 2
-	(ii)	-	
			1
	$\frac{dV}{dt} = 5.5$		1
	$5.5 = \frac{5k(5-10)}{4} \times 4$		N.
	k = 11		
	$k = -\frac{1}{50}$		
	$k = -\frac{11}{50}$ $\frac{dh}{dt} = -\frac{11h(h-10)}{200}$	-	
	$\frac{dn}{dt} = -\frac{1}{2} \frac{n(n-1)}{2}$		
	$\int \frac{1}{h^2 - 10h} dh = -\int \frac{11}{200} dt$		
	$\int h^2 - 10h$ 200		

Commented [SH54]: 1.Question reading "Clean water is pumped into the tank at a rate that is proportional to h^2 and the water is pumped out from the tank at a rate that is proportional to h."

A STREET

The above para - refers to Vol of water per unit

ine. Thus, the derivative $\frac{dV}{dt}$ should be used.

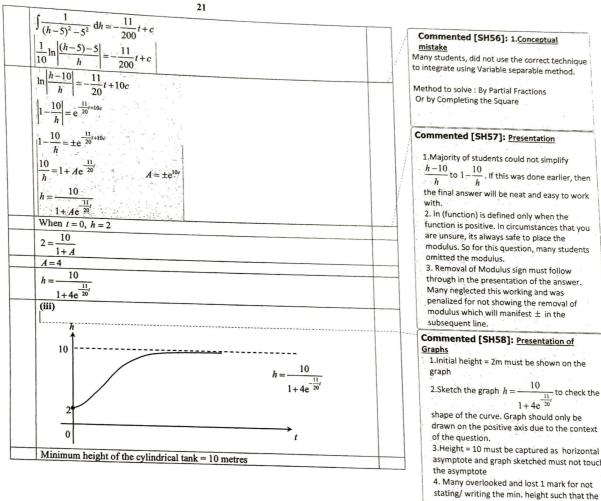
The proportionality of constant must be different or the rate of Clean water pumped in and for the ate of water pumped out. Majority of students used the same constant.

2. Presentation / Conceptual understanding

$$\frac{h}{dt} = Ah^2 - Bh$$
 (Incorrect).

 $\frac{dh}{dt} = 0, h = 10, h(Ah - B) = 0.$ Students used

this derivative to calculate the value of B which is incorrect.


If Students are using the below expression to solve for *B*, then it is correct.

$$\frac{dh}{dt} = \frac{dV}{\frac{dt}{dh}} = \frac{Ah^2 - Bh}{4}$$
3.it should be $\frac{dV}{dt}\Big|_{h=10} = Ah^2 - Bh = 0$

$$\frac{dh}{dt}\Big|_{h=10} = \frac{Ah^2 - Bh}{4} = 0$$

Commented [SH55]: Presentation

Final answer must be shown as given in the question.

water will not overflow.