
Answer all	questions
------------	-----------

1 Given that
$$2^{-w} + 2^{-w} + 2^{-w} + 2^{-w} = 8^w$$
, find w.

Answer
$$w = \dots$$
 [2]

2 A range of values for x is represented on the number line below.

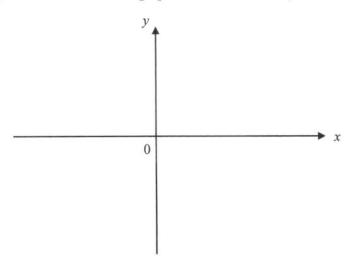
Write down inequalities that represent this range of values of x.

Answer	 [1]

3 A survey was done to find the number of hours each student spent on social media per day.

The results are shown in the table below.

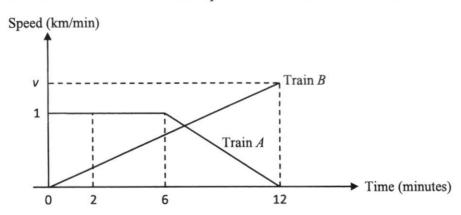
Number of hours (hrs)	5	6	7	8	9
Number of students	2	8	6	x	5


(a) Find the range.

(b) Calculate the smallest possible value of x when the median is 8.

Answer [1]

Sketch the graph of y = (3-x)(x+10) on the axes below.

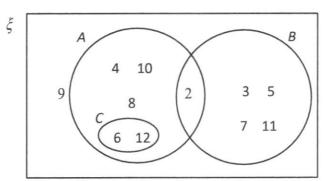

Indicate clearly the values where the graph crosses the x- and y- axes.

[2]

The diagram shows the speed-time graphs of both trains during a period of 12 minutes.

Train A and B started from the same point at the same time and travel in the same direction.

(a) Calculate the retardation of Train A at 11 minutes.


Answerkm/min² [1]

(b) Calculate the value of v, the speed of Train B at the end of 12 minutes, given that the two trains travelled the same distance during the period of 12 minutes.

Answer km/min [1]

6 $\xi = \{\text{integers } x : 2 \le x \le 12\}$

The Venn diagram shows the elements of ξ and three sets A, B and C.

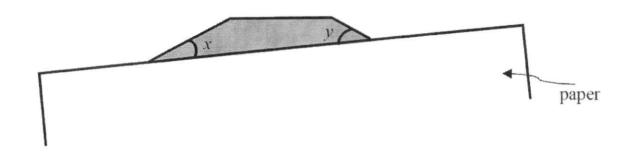
Use one of the notations below to complete each statement.

$$\subset \subset \in \phi \notin$$

(a) 9
$$(A \cup B)'$$

(c)
$$B \cap C = \dots$$
 [1]

7 A swimming pool is 60% full.

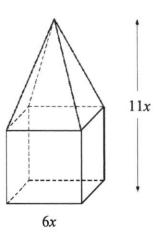

16% of the water in the swimming pool is removed.

There are 1260 litres of water in the pool.

Calculate the capacity of the swimming pool when full.

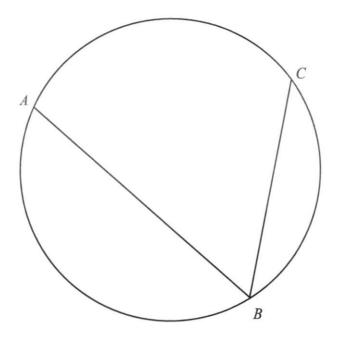
Answerlitres [2]

In the figure below, a regular shaded polygon is partially covered with a sheet of blank paper. Given that $x + y = 80^{\circ}$, calculate the number of sides this polygon has.



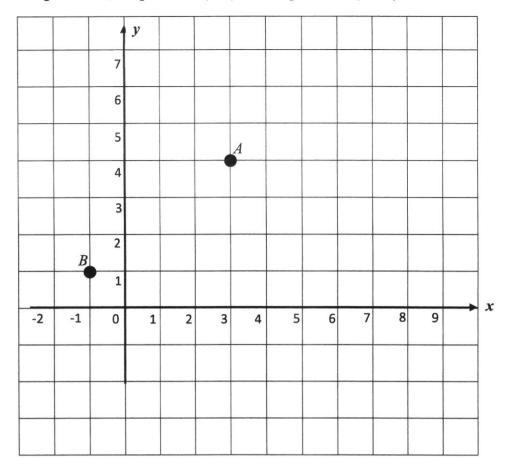
Answer	sides	[3]
111101101		

A solid shape consists of a cube with a pyramid on top has a total height of 11x cm. The pyramid sits perfectly on one surface of the cube.


Each side of the cube is 6x cm.

Find an expression, in terms of x, for the surface area of the solid.

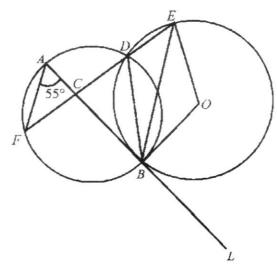
10 The diagram shows a circle with two chords AB and BC.


Answer

- (a) Construct the perpendicular bisector of AB. [1]
- (b) Construct the bisector of angle ABC. [1]
- (c) Shade the region inside the circle that is closer to AB than to BC and closer to B than to A.
- 11 Solve $\frac{x-3}{4} \frac{x+2}{3} = \frac{1}{2}$.

Answer $x = \dots [3]$

On the grid below, the point A is (3, 4) and the point B is (-1, 1).


- (a) Mark out and label point C such that $\overrightarrow{BC} = \begin{pmatrix} 7 \\ -2 \end{pmatrix}$. [1]
- **(b)** Find \overrightarrow{BC} .

Answer $|BC| = \dots$

[1]

13		deposits a sum of money in a bank that pays a c rs, the money is expected to earn a total interest		
	Calcu	late the sum of money John deposits.		
	Give	your answer correct to the nearest dollar.		
			Answer	\$[2]
		D 4 2 2 7 15		
14	(a)	Factorise $2x^2 - 7x - 15$.		
			Answer	[2]
	(b)	Hence, factorise $2(3y-1)^2 - 7(3y-1) - 15$.		
		Write your answer as simply as possible.		
			Answer	[2]

In the diagram, ACBL is a tangent to the circle DEB with centre O, at B. $\angle CAF = 55^{\circ}$ and FCDE is a straight line.

Find, stating the reasons clearly,

(a) $\angle BDE$,

(b) $\angle ABE$,

Ethan observed that the queue at Stall A in his school's canteen on a particular day. He decided to do a survey to improve the current situation. 16

Queueing Time (t seconds)	$0 \le t < 40$	40 ≤ <i>t</i> < 80	80 ≤ <i>t</i> <120	120 ≤ <i>t</i> < 160	160 ≤ <i>t</i> < 200	$200 \le t < 240$
Number of students	6	20	24	30	32	8

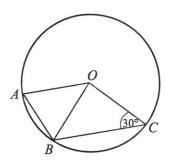
econds)						
nber of idents	6	20	24	30	32	8
(a)	Calculate an	estimate of the	mean queuing	time.		
(b)	Calculate an	estimate of the	standard devia	Answer	nes.	seconds [1]
	Eddie claims Is Eddie's cla Explain your Answer	aim true?		Answer		
						[2]

17	The fir	rst four terms of a sequence are
		278, 269, 260, 251,
	(a)	Write down the 8th term of the sequence.
		Answer[1]
	(b)	Write down an expression, in terms of n , for the n th term of the sequence.
	(c)	Answer
		Answer[2]
18		a of 5 cm ² on a map represents an actual area of 32 000 m ² . e linear scale of the map, giving your answer in the form $1:n$.
		Answer 1:[2]

19	John b He pai \$120.	ash price of a laptop is $\$x$. bought the laptop on hire purchase. id a deposit of one-third of the cash price followed by 18 monthly instalments of that the total amount he paid for the laptop is \$3300, find the value of x .
		$Answer x = \dots [2]$
		Answer x [2]
20	At a sa The pr	ale, all prices are reduced by 30%. rice of a watch during the sale is \$693.
	(a)	Find its original price.
		Answer \$ [2]
	(b)	The sale price of the watch is exclusive of 8% Goods and Services Tax (GST). Find the amount of GST payable.
		Answer \$[1]

19

$$21 \qquad a = \frac{b^2 + 44}{b^2 - c}$$

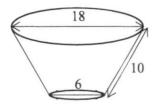

(a) Find a when b = -8 and c = -11.

Answer a = [1]

(b) Rearrange the formula to make b the subject.

Answer
$$b =$$
 [3]

22



In the diagram, A, B and C are points on a circle, centre O. Angle $OCB = 30^{\circ}$ and angle OAB is 2.5 times of angle OCB.

(a) Find reflex angle of AOC.

Answer																	ng:				-		-					0	ſ	3	1
TAILDITE	•	•	•	•	•	•	•	•	•	•	۰	•	•	•	۰	•	۰	•	•	•	۰	۰	•	•	۰	•	•		- 1	-	

	(b)	Explain why AO is parallel to BC .
		[2]
		[2]
23	(a)	Express 6300 as a product of its prime factors.
		Answer $6300 =$
	(L)	
	(b)	Given that $6300 \times 15 p = q^3$, where p and q are integers. Find the smallest values of p and q.
		Answer $p = \dots$
		$q = \dots \qquad [2]$
	(c)	The lowest common multiple of the two numbers is 6300.
	()	The highest common factor of the two numbers is 6. Both numbers are greater than 100.
		Find the two numbers.
		<i>Answer</i> and

The figure shows a solid in the form of a frustum. Its circular top and base have diameters 18 cm and 6 cm respectively. The slant height is 10 cm long.

(a)	Find	the	height	of	the	frustum
-----	------	-----	--------	----	-----	---------

Answer				cm	[2]
--------	--	--	--	----	-----

(b) Find, in its simplest form, the ratio of the volume of the original cone to that of the frustum.

(c) Calculate the total surface area of the frustum, leaving your answer in terms of π .

[1]

25	(a)	p is directly proportional to cube root of q . Given that $q = 125$ and $p = 3$,						
		(i)	find an expression for p in terms	s of q				
		(ii)	find the value of q when $p = 0.2$	Answer p =[2]				
				Answer q =[1]				
	(b)	y is inversely proportional to x .						
		(i)	When x has a certain value, $y = a$ Find an expression of y, in terms					
				Answer y = [2]				
		(ii)	Sketch the graph of y against x .					
			y •					

Tickets to a carnival cost \$10 for adults (A), \$8 for senior citizens (S) and \$5 for children (C). This information can be represented by the matrix **Q** below.

$$\mathbf{Q} = \begin{pmatrix} 10 \\ 8 \\ 5 \end{pmatrix}$$

(a) 68 adults, 15 senior citizens and 70 children bought tickets through ticket counter.
 x adults and 88 children bought tickets through online.
 Represent this information in a 2×3 matrix P.

$$Answer \mathbf{P} = \begin{pmatrix} & & \mathsf{S} & \mathsf{C} \\ & & & \\ & & & \end{pmatrix} \begin{array}{c} \mathsf{counter} \\ \mathsf{online} \end{array} \quad [1]$$

(b) Find the matrix \mathbf{R} , in terms of x such that $\mathbf{R} = \mathbf{PQ}$.

Answer
$$\mathbf{R} = \begin{pmatrix} & & \\ & & \end{pmatrix}$$
 [2]

(c) Explain what each elements in matrix **R** represents.

Answer

(d) The total amount of money collected from ticket counter is less than online sales. Work out the least value of x.

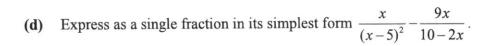
(e) During a promotion, there is a 15% discount for adults, 25% discount for senior citizens and 20% discount for children.

Write down matrix **D** such that the elements in matrix multiplication of **PDQ** gives the amount of money collected from the sales of tickets through ticket counter and online respectively after discount.

Answer
$$\mathbf{D} = \begin{bmatrix} \\ \\ \end{bmatrix}$$
 [1]

Answer all the question	15.
-------------------------	-----

1 (a) Simplify $\left(\frac{27x^6}{125y^{-3}}\right)^{-\frac{1}{3}}$.


Answer[2

(b) Simplify $\frac{8p^5q^0}{r} \div \frac{32r^4q^3}{p^2}.$

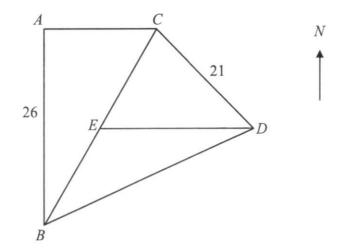
Answer[2]

(c) Solve the inequality $\frac{6-x}{3} - \frac{1-x}{4} \ge \frac{5}{6}$.

Answer[2]

Answer[2]

(e) Solve the equation
$$\frac{8}{x+1} + \frac{2}{x-3} = 3$$
.


Answer
$$x = \dots$$
 or $[3]$

(a)	A is	the point $(3,-7)$ and B is the point $(5,-7)$	3).	
	(i)	Find the length of AB.		
			Answer	units [2]
	(ii)	Find the equation of line AB.		
			Answer	[2]
	(iii)	Find the equation of the line l which	passes thro	bugh B and is parallel to the x -axis.
			Answer	[1]

2

(b)	The area bounded by a line and the axes has an area of 10 square units. The line passes through the point $P(0, 4)$. Max claims that there are 2 possible equations of the lines, and their gradients are the negative of each other.
	Do you agree with Max's claim? Justify your answer showing your calculations.
	Answer
	[4]

3

In the diagram, A, B, C and D are four points on level ground and B, C and D are three corners of a playground.

Two trees are planted at E and D.

E is due west of D, A is due north of B and C is due east of A.

AB = 26 m, BC = 30 m, CD = 21 m and the bearing of D from C is 128° .

Calculate

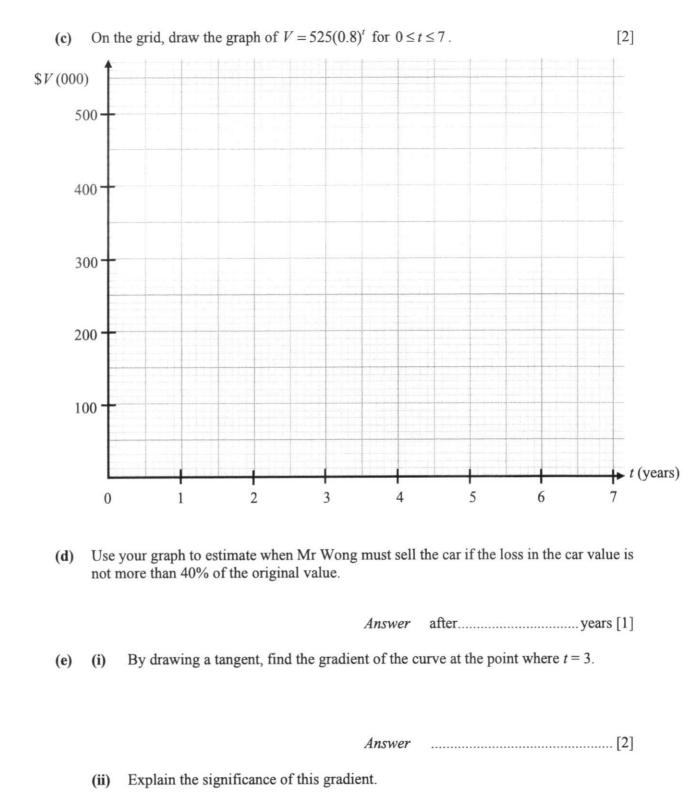
(a) the bearing of C from B,

Answer	 0	[2]

(b) the angle BCD,

Answer° [1]

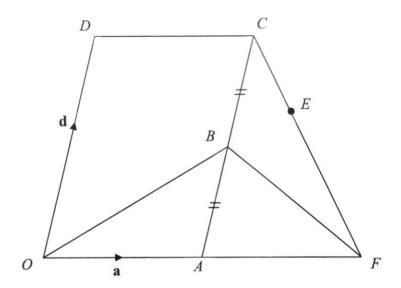
m [3]
2 503
m ² [2]
m [2]


the t	ree at D.
(f)	Calculate the height of the tree at D if the angle of elevation of the bird as seen by the boy was 16° .
	Answer m [2]

A boy whose eye level above the ground is 130 cm, stopped at B and saw a bird at the top of

The value of N year.	The value of Mr Wong's luxurious car, currently estimated at \$525 000, depreciates 20% each year.								
	why the n $V = 525($		of the luxi	irious car,	\$V thous	ands after	t years fro	om now is	
Answer									
								[1]	
The table sho thousands are					$1 ext{d} V$ thou	sands who	ere the va	alues of V	
t years	0	1	2	3	4	5	6	7	
\$V (thousands)	525	420	336	269	а	172	138	110	

(b) Calculate the value of a.


Answer a = [1]

In the diagram below, *OACD* is a parallelogram and *B* is the midpoint of *AC*. *CE* and *OA* produced intersect at the point *F*.

CE : CF = 1 : 3 and OA : OF = 1 : 2.

Given that $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OD} = \mathbf{d}$.

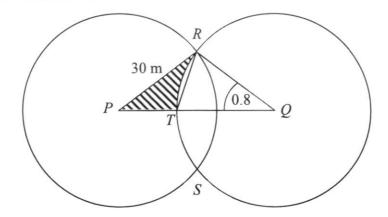
(a) Express and simplify the following vectors in te	erms of a and d
--	-----------------

(i) \overrightarrow{OB} ,

Answer	 [1]
TTIPD II C.	 L - 1

(ii) \overrightarrow{CF} ,

(iii) \overrightarrow{OE} .


Answer[2]

(b)	Show that points O , B and E lie on a straight line.	[2]
	Answer	
(c)	P is a point on \overrightarrow{OA} and T is a point on \overrightarrow{AC} such that $\overrightarrow{OB} = 2\overrightarrow{PT}$.	
	Show that triangles APT and AOB are similar. Give a reason for each statement you make.	[3]
	Answer	
(d)	Find the ratio of area triangle <i>OAB</i> : area parallelogram <i>OACD</i> .	
	Answer:	. [1]

A landscaping company was tasked to decorate a garden. The diagram shows the top view of the actual garden. There are two circles, centres P and Q, with equal radii of 30 m. The circles meet at R and S.

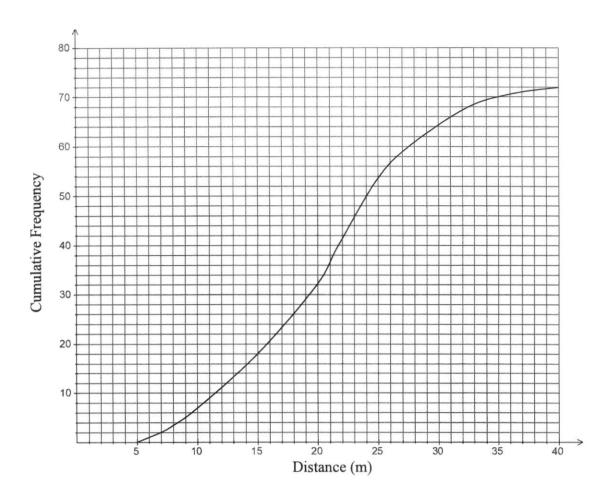
PQ meets the circle with centre Q at T.

Angle TQR = 0.8 radians.

(a) (i) Calculate the length of PT.

Answer	m	[3
--------	---	----

(ii) Find the perimeter of the shaded region.


Answer m [2]

	(iii)	Find the area of the	shaded region.			
				Answer		m ² [3]
(b)	The	shaded region is the b	oase of a pillar of	height 210	cm for a sculpture.	
	Calc	ulate the volume of the	ne cement, in m ³ ,	used to ma	ake the pillar.	
				Answer		m ³ [2]

7	Pump	A car	ng pool is connected to two pumps, A and B . In fill up the swimming pool in $2x$ hours. In fill up the same swimming pool in $(3x-4)$ hours.	
	(a)	Write by	e an expression, in terms of x , for the fraction of the swimming pool that is filled y	ıp
		(i)	pump A only in 1 hour,	
		(ii)	Answer	1]
			Answer[1]
	(b)	Whe	on both taps are used together, the same swimming pool can be filled up in 5 hours.	
		Writ	e an equation in x to represent this information and show that it reduces to	
			$6x^2 - 33x + 20 = 0.$	3]

(c)	Solve the equation $6x^2 - 33x + 20 = 0$.
	(Leave your answer correct to 3 decimal places.)
	Answer $x = \dots$ or \dots [3]
(d)	If only pump B is used, calculate how much more time it will take to fill up the swimming
(u)	pool compared to when 2 pumps are used together.
	Leave your answer in hours and minutes (correct to the nearest minute).
	Answerhoursmins [2]
(e)	List an assumption that has been made while forming the equation in (b).
	Answer
	[1]

8 (a) A group of 72 children took a swimming test to find the distance they could swim. The results of the test are shown in the cumulative frequency curve below.

- (i) Use the curve to estimate
 - (a) the median distance,

(b) the interquartile range of the distances.

(ii) The qualifying distance for Intermediate Class is 31 metres.

Estimate the percentage of the children that can qualify for the Intermediate Class.

Answer% [1]

	(iii)			-	er group of 72 childen	dren had the same in	nterquartile
				e cumulative frurve of the firs		he second group of ch	nildren may
		Answer					
							[1]
(b)	The	table sho	ws the ag	ges of the 144 c	hildren who took t	he swimming test.	
	A -	. (- \	26-7	7 < ~ < 10	10 < 7 < 12	
	Ag	e (a years	Girls	$2 \le a < 7$ 23	7 ≤ <i>a</i> < 10	$10 \le a < 12$ 14	
	Fre	quency		12	31	7	
			Boys	12	31	1	
		(b) ag	ged 10 or	more.	Answer		[1]
					Answer		[1]
	(ii)	Two of	the child	ren are selected	d at random.		
					f them are girls age in its simplest form		
					4		
					Answer		[2]

9 Mrs Lee wants to take a cab to Gardens by the Sea.

The distance from her house to Gardens by the Sea is 16.1 km.

She plans to go on a weekday.

Sa isi banka ngribasi Ps	Cab Company Transport Rate				
Company	Description	Unit cost			
	Base fare	\$9.00			
G Cab	Per kilometre	\$0.48			
	Per minute	\$0.22			
V C-l-	Base fare	\$9.00			
K Cab	Per kilometre	\$0.90			
	First km or less	\$4.10			
	Every 400 m thereafter or less up to 10 km	\$0.24			
	Every 350 m thereafter or less after 10 km	\$0.24			
T Cab	Peak Period Surcharge Monday to Friday (Except Public Holidays): 6.00 am – 9.39 am Monday to Sunday & Public Holidays: 6.00 pm – 11.59 pm	25% of metered fare			
	Midnight – before 5.59 am	50% of metered fare			
	Location Charges (pickups from the area) City Area (within CBD ERP cordon): 5 pm – 11.59 pm Chalet World Centosa: whole day Gardens by the Sea: whole day Tanah Sandra Ferry Terminal: whole day	\$3.00			

	Cab Company Promotion				
Company	Promotion Details				
G Cab	 10% off your ride from 4 pm to 7.59 pm \$5 off cab fare from 8 pm onwards 				
K Cab	 \$3 off cab fare from 6 am to 7.59 am \$4 off cab fare from 8 pm to 11 pm 				
T Cab	 \$3 off cab fare from 10 am to 12 pm \$3.50 off cab fare from 8 pm onwards 				

Mrs	Lee intends to leave her house at 3 pm and w	vants to arr	rive at 3.19 pm.
Calc	ulate her cab fare if she takes the cab from		
(a)	K cab,		
(b)	T cab.	Answer	\$[1]
		Answer \$	S[2]

Mrs Lee estimates that she will be spending at least 1 hour in the Flora Dome, 1 hour in the Sky Dome and another 1 hour for dinner at the M Restaurant.

She plans to use the cab promotions offered by the various companies to return home by midnight.

Her return journey is estimated to take 30 minutes.

(c) Suggest a suitable **time** for Mrs Lee to leave the garden and the **cab company** that she should take for her return journey.

Justify the decision you make and show your calculations clearly.

[7]

Answer

Answer Key

1	w = 0.5
2	$-9.5 \le x < 2$
3a	4
3b	12
4	20 20 5 6
5a	1/6
5b	v = 1.5
6a	€
6b	⊄
6c	Ø
7	2500 litres
8	9 sides
9	$250x^2$ or $(180+12\sqrt{34})x^2$
10	Thurstypur caveria cross with two clarific AB Sad MC. Later Lat
11 12a	x = -23
12b	7.28
13	\$7900
14a	(2x+3)(x-5)
l4b	2(y-2)(6y+1)
15a	125
15b	55
16a	129
16b	53.2
16c	No, the calculation is based on an estimation of even distribution in the grouped data

17a	215
17b	287 -9n
17c	-1
18	8000
19	3420
20a	990
20b	55.44
21a	<u>36</u> <u>25</u>
21b	$\pm\sqrt{\frac{ac+44}{a-1}}$
22a	210
22Ь	$\angle AOB = 180^{\circ} - 75^{\circ} \times 2 = 30 = \angle OBC$ By converse of alternate angles, AO is parallel to BC .
23a	by converse of alternate angles, AO is parametro BC . $2^2 \times 3^2 \times 5^2 \times 7$
	p = 98 $q = 210$
23b	p = 98
23c	Accept 150 and 252
24a	8
24b	27: 26
24c	210π
25a(i)	$\frac{3}{5}\sqrt[3]{q}$
25a(ii)	$\frac{1}{27}$
25b(i)	2a
25b(ii)	
26a	68 15 70 x 0 88)
26b	$\begin{pmatrix} 1150 \\ 10x + 440 \end{pmatrix}$
26c	The amount of money collected from sales of tickets through ticket counter and online respectively.
26d	72
26e	(0.85 0 0 0.75 0 0 0.8)

2023 4E5N Prelim Paper 2 Answer Key

Answer	Key
1a	5
	$3x^2y$
b	$\frac{p^7}{4.5.3}$
	$\frac{r}{4r^5q^3}$
С	$x \le 11$
d	$9x^2 - 43x$
	$\overline{2(x-5)^2}$
е	$x = 1 \text{ or } 4\frac{1}{3}$
2ai	10.2
aii	y = 5x - 22
aiii	y=3
b	Agree with Max's claim
3a	029.9
b	81.9
С	34.1
d	312
e	24.0
f	11.1
4a	After 1 year, value of car = $$525 \times 0.8$
	After 2 years, value = $$525 \times 0.8 \times 0.8$
	After t years, value, $v = 525(0.8)^t$
b	a = 215
d	After 2.3 years
ei	-60 (accept -54 to -66)
eii	The rate at which the value of the car drops in the third year is \$58
	300 per year.
5ai	$\overrightarrow{OB} = \overrightarrow{a} + \frac{1}{2}\overrightarrow{d}$
aii	$\overrightarrow{CF} = a - d$
aiii	$\overline{CF} = \underline{a} - \underline{d}$ $\overline{OE} = \frac{4}{3}\underline{a} + \frac{2}{3}\underline{d}$ $\overline{OE} = \frac{4}{3}\overline{OB}$
b	<u>□ 4 □ </u>
	$OE = \frac{-OB}{3}$
	O is a common point
5c	AA similarity test
d	1:4
6ai	11.8
aii	65.8
aiii	89.8
b	189
7ai	1
	$\overline{2x}$

100	
aii	1
	3x 4
С	x = 4.806 or 0.694
d	5 h 26 mins
е	No external environmental sources of water is involved, e.g. raining
8aia	21
aib	
aii	8.33
aiii	The graph is steeper/ shift to the left
bia	1
	12
bib	7
	$\overline{48}$
bii	395
	1287
9a	\$24.30
Ъ	13.70
С	Mrs Lee should leave at 8 pm as the cab fare with T cab would be the
	cheapest, \$17.38