Name	Index Number	Class

WOODGROVE SECONDARY SCHOOL

O LEVEL PRELIMINARY EXAMINATION 2023

LEVEL \& STREAM
: SECONDARY 4 EXPRESS/ 5 NORMAL ACADEMIC
SUBJECT (CODE)
: ADDITIONAL MATHEMATICS (4049)
PAPER NO
: 01
DATE (DAY)
: 11 SEPTEMBER 2023 (MONDAY)
DURATION
: 2 HOURS 15 MINUTES

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all the questions.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of an approved scientific calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks in this paper is 90 .
DO NOT TURN OVER THE QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO.

Student's Signature		Parent's Signature	
Date		Date	

[^0]
Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $a x^{2}+b x+c=0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial Expansion

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

where n is a positive integer and $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} b c \sin A
\end{gathered}
$$

1 Triangle $A B C$ is such that the length of side $A B$ is $(1+3 \sqrt{2}) \mathrm{cm}$, angle $A B C$ is 45° and its area is $(7+4 \sqrt{2}) \mathrm{cm}^{2}$. Find, without using a calculator, the exact length of $B C$, in cm .

Leave your answer in the form of $(a+b \sqrt{2})$, where a and b are integers.

2 Given that $4^{x} \times 6^{2 x+3}=24^{2+x}$, find the value of 6^{x} without using a calculator.

3 When a polynomial $\mathrm{f}(x)$ is divided by $(x+1)$ and $(x+2)$, the remainders are 3 and 5 respectively. Find the remainder when $\mathrm{f}(x)$ is divided by $(x+1)(x+2)$.

4 Given that $\int_{-1}^{2} \mathrm{f}(x) \mathrm{d} x=\int_{2}^{4} \mathrm{f}(x) \mathrm{d} x=6$, find
(a) $\int_{-1}^{4} 2 \mathrm{f}(x) \mathrm{d} x+\int_{4}^{2} \mathrm{f}(x) \mathrm{d} x$,
(b) the value of k for which $\int_{-1}^{2}[\mathrm{f}(x)+k x] \mathrm{d} x=9$.

5 (a) Find the $\frac{1}{x}$ term in the expansion of $\left(x^{2}+\frac{2}{x}\right)^{10}$.
(b) Hence, find the constant term in the expansion of $(1+3 x)\left(x^{2}+\frac{2}{x}\right)^{10}$.

6 A spherical balloon expands at a constant rate of $8 \mathrm{~cm}^{3} / \mathrm{s}$. The balloon is initially empty.
(a) Find the rate of increase of its radius when the radius is 2.5 cm , leaving your answer in terms of π.
[The volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$.]
(b) When the radius is beyond 5 cm , besides the expansion, air begins to leak out from the balloon at a rate of $2 \mathrm{~cm}^{3} / \mathrm{s}$. Find the rate of change of the radius when it is 8 cm .

7 Given that $\sin x=\frac{5}{13}$ and x is obtuse, find the exact value of the following.
(a) $\sec (-x)$
(b) $\cos \frac{x}{2}$

8 The number of ants, N, in a colony after t days can be modelled by $N=1200 e^{a t}$, where a is a constant. There are 10000 ants after 6 days.
(a) Find the initial number of ants in the colony.
(b) How many ants are there after 15 days? Give your answer correct to 2 significant figures.
(c) Sketch the graph of $N=1200 e^{a t}$ for the first 15 days.

9 (a) Find the range of values of m for which the function $y=x^{2}-4 m x+3-m$ is always positive for all real values of x.
(b) Show that the line $y=4 x+p$ intersects the curve $y=p x^{2}-2 p-6$ for all real values of x, where p is positive.

10 (a) State the principal value of $\tan ^{-1}(-\sqrt{3})$ in degrees.
(b) The diagram shows a sketch of the graph $y=a \cos \frac{x}{b}+c$, where a, b and c are integers. Find the values of a, b and c.

(c) Given that $y=8 \cos ^{2} x-2 \sin ^{2} x$, express y in the form of $p \cos 2 x+q$, stating the value of each of the integers p and q. Explain why y will never reach 10 .

11 The diagram below shows a circle with points A, B, C and D at its circumference where $X Y$ is a tangent to the circle at point $A . P$ and Q are the midpoints of $B C$ and $A C$ respectively. $B Q D$ is a straight line and $\angle Q C D=\angle Q C P$.

(a) Prove that $\angle B A Y=\angle Q C D$.
(b) (i) Show that $\triangle Q C P$ is similar to $\triangle D C Q$.
(b) (ii) Show that $2 Q C \times D Q=A B \times D C$.

12 It is given that $y=\frac{2 x^{2}+3}{x}, x \neq 0$.
(a) Prove that $x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}=y$.
(b) Find, in exact values, the x-coordinates of the turning points of y.
(c) Determine the nature of each of the turning points.

13 Solutions to this question by accurate drawing will not be accepted.
The parallelogram $A B C D$ is such that the points A and C are $(3,-2)$ and $(1,8)$ respectively. The line $B D$ is parallel to the line $2 x+3 y=4$ and is perpendicular to $A B$.

(a) Show that the equation of $B D$ is $2 x+3 y=13$.
(b) Calculate the coordinates of B.
(c) Calculate the coordinates of D.

14 A particle starts from rest at a fixed point O and moves in a straight line such that its velocity $v \mathrm{~ms}^{-1}$ is given by $v=4 t-\frac{3}{2} t^{2}$, where t is the time in seconds after leaving O. Calculate
(a) the velocity of the particle when its acceleration is zero,
(b) the time when the particle is instantaneously at rest again,
(c) the total distance travelled by the particle when it returns to O.

Nam		Index Number	Class
	WOODGROVE SECONDARY SCHOOL		
	O LEVEL PRELIMINARY EXAMINATION 2023		
	LEVEL \& STREAM	: SECONDAR	NORMAL
	SUBJECT (CODE)	: ADDITIONAL	(4049)
	PAPER NO	: 01	
	DATE (DAY)	: 11 SEPTEMB	AY)
	DURATION	: 2 HOURS 15	

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all the questions.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of an approved scientific calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks in this paper is 90 .
DO NOT TURN OVER THE QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO.

Student's Signature		Parent's Signature	
Date		Date	

[^1]
Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $a x^{2}+b x+c=0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial Expansion

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

where n is a positive integer and $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} b c \sin A
\end{gathered}
$$

1 Triangle $A B C$ is such that the length of side $A B$ is $(1+3 \sqrt{2}) \mathrm{cm}$, angle $A B C$ is 45° and its area is $(7+4 \sqrt{2}) \mathrm{cm}^{2}$. Find, without using a calculator, the exact length of $B C$, in cm .

Leave your answer in the form of $(a+b \sqrt{2})$, where a and b are integers.

$$
\begin{aligned}
7+ & 4 \sqrt{2}=\frac{1}{2}(1+3 \sqrt{2})(B C) \sin 45^{\circ} \quad M 1 \\
7+ & 4 \sqrt{2}=\frac{1}{2}(1+3 \sqrt{2})(B C)\left(\frac{1}{\sqrt{2}}\right) \quad M 1\left(\text { for } \sin 45^{\circ}\right) \\
B C & =\frac{2 \sqrt{2}(7+4 \sqrt{2})}{1+3 \sqrt{2}} \times \frac{1-3 \sqrt{2}}{1-3 \sqrt{2}} \quad M 1 \\
& =\frac{(14 \sqrt{2}+16) \times(1-3 \sqrt{2})}{-17} \\
& =\frac{14 \sqrt{2}-84+16-48 \sqrt{2}}{-17} \\
& =\frac{-34 \sqrt{2}-68}{-17} \\
& =(4+2 \sqrt{2}) \mathrm{cm}
\end{aligned}
$$

2 Given that $4^{x} \times 6^{2 x+3}=24^{2+x}$, find the value of 6^{x} without using a calculator.

$$
\begin{array}{ll}
4^{x} \times 6^{2 x+3}=24^{2+x} \\
2^{2 x} \times 2^{2 x+3} \times 3^{2 x+3}=8^{2+x} \times 3^{2+x} & \\
2^{4 x+3} \times 3^{2 x+3}=2^{6+3 x} \times 3^{2+x} & M 1 \\
\frac{3^{2 x+3}}{3^{2+x}}=\frac{2^{6+3 x}}{2^{4 x+3}} & \\
3^{x+1}=2^{-x+3} & M 1 \\
3^{x} \times 3^{1}=2^{-x} \times 2^{3} & M 1 \\
\frac{3^{x}}{2^{-x}}=\frac{2^{3}}{3} & A 1 \\
6^{x}=\frac{8}{3} &
\end{array}
$$

3 When a polynomial $\mathrm{f}(x)$ is divided by $(x+1)$ and $(x+2)$, the remainders are 3 and 5 respectively. Find the remainder when $\mathrm{f}(x)$ is divided by $(x+1)(x+2)$.

$\mathrm{f}(x)=(x+1)(x+2) \mathrm{Q}(x)+a x+b$	
$\mathrm{f}(-1)=3$	
$3=-a+b$.....................(1)	M1
$\mathrm{f}(-2)=5$	
$5=-2 a+b$....................(2)	M1
(1) $-(2)$:	M1
$-2=a$	
$b=1$	
\therefore remainder $=-2 x+1$.	A1

4 Given that $\int_{-1}^{2} \mathrm{f}(x) \mathrm{d} x=\int_{2}^{4} \mathrm{f}(x) \mathrm{d} x=6$, find
(a) $\int_{-1}^{4} 2 \mathrm{f}(x) \mathrm{d} x+\int_{4}^{2} \mathrm{f}(x) \mathrm{d} x$,
$\int_{-1}^{4} 2 \mathrm{f}(x) \mathrm{d} x+\int_{4}^{2} \mathrm{f}(x) \mathrm{d} x$
$=2\left[\int_{-1}^{2} \mathrm{f}(x) \mathrm{d} x+\int_{2}^{4} \mathrm{f}(x) \mathrm{d} x\right]-\int_{2}^{4} \mathrm{f}(x) \mathrm{d} x \quad M 1$
$=2(6+6)-6$
$=18 \quad A 1$
(b) the value of k for which $\int_{-1}^{2}[\mathrm{f}(x)+k x] \mathrm{d} x=9$.
$\int_{-1}^{2}[\mathrm{f}(x)+k x] \mathrm{d} x=9$
$\int_{-1}^{2} \mathrm{f}(x) \mathrm{d} x+\int_{-1}^{2} k x \mathrm{~d} x=9$
$6+\left[\frac{k x^{2}}{2}\right]_{-1}^{2}=9$
$\left[\frac{k x^{2}}{2}\right]_{-1}^{2}=3$
$\left[\frac{k(2)^{2}}{2}\right]-\left[\frac{k(-1)^{2}}{2}\right]=3 \quad M 1$
$2 k-\frac{k}{2}=3$
$k=2$
A1

5 (a) Find the $\frac{1}{x}$ term in the expansion of $\left(x^{2}+\frac{2}{x}\right)^{10}$.

$$
\begin{array}{ll}
T_{r+1}=\binom{10}{r}\left(x^{2}\right)^{10-r}\left(2 x^{-1}\right)^{r} & M 1 \\
\quad=\binom{10}{r} 2^{r} x^{20-3 r} & M 1 \\
20-3 r=-1 & \\
r=7 \\
T_{8}=\binom{10}{7} 2^{7} x^{-1}=\frac{15360}{x} & A 1
\end{array}
$$

(b) Hence, find the constant term in the expansion of $(1+3 x)\left(x^{2}+\frac{2}{x}\right)^{10}$.

$$
\begin{array}{rlr}
(1+3 x)\left(x^{2}+\frac{2}{x}\right)^{10} & =(1)(0)+(3 x)\left(\frac{15360}{x}\right) \quad M 1 \\
& =46080
\end{array}
$$

6 A spherical balloon expands at a constant rate of $8 \mathrm{~cm}^{3} / \mathrm{s}$. The balloon is initially empty.
(a) Find the rate of increase of its radius when the radius is 2.5 cm , leaving your answer in terms of π.
[The volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$.]

$$
\begin{array}{rlrl}
\frac{\mathrm{d} V}{\mathrm{dr}} & =4 \pi r^{2} & M 1 & \\
\begin{array}{rlr}
\frac{\mathrm{dr}}{\mathrm{~d} t} & =\frac{\mathrm{dr}}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t} & \\
& =\frac{1}{4 \pi(2.5)^{2}} \times 8 & M 1
\end{array} \\
=\frac{8}{25 \pi} \mathrm{~cm} / \mathrm{s} & A 1 & 8=4 \pi(2.5)^{2} \times \\
\mathrm{dr} t & \frac{\mathrm{dV}}{\mathrm{~d} t}
\end{array}
$$

(b) When the radius is beyond 5 cm , besides the expansion, air begins to leak out from the balloon at a rate of $2 \mathrm{~cm}^{3} / \mathrm{s}$. Find the rate of change of the radius when it is 8 cm .

$$
\begin{array}{rlrl}
\frac{\mathrm{dr}}{\mathrm{~d} t} & =\frac{\mathrm{dr}}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t} & O R & \frac{\mathrm{dV}}{\mathrm{~d} t}=\frac{\mathrm{dV}}{\mathrm{dr}} \times \frac{\mathrm{dr}}{\mathrm{~d} t} \\
& =\frac{1}{4 \pi(8)^{2}} \times 6 & M 1\left(\text { for } \frac{\mathrm{d} V}{\mathrm{~d} t}=6\right) & 6=4 \pi(8)^{2} \times \frac{\mathrm{dr}}{\mathrm{~d} t} \\
& =\frac{3}{128 \pi} \mathrm{~cm} / \mathrm{s} & A 1 &
\end{array}
$$

$$
\text { Accept } 0.00746 \text { m (3 s.f) }
$$

7 Given that $\sin x=\frac{5}{13}$ and x is obtuse, find the exact value of the following.
(a) $\sec (-x)$

$$
\begin{array}{rlr}
\sec (-x) & =\frac{1}{\cos (-x)} & M 1 \\
& =\frac{1}{\cos x} & M 1 \\
& =-\frac{13}{12} & A 1
\end{array}
$$

(b) $\cos \frac{x}{2}$
$\cos x=-\frac{12}{13}$
$-\frac{12}{13}=2 \cos ^{2} \frac{x}{2}-1$ M1
$\cos ^{2} \frac{x}{2}=\frac{1}{26} \quad M 1$
$\cos \frac{x}{2}=\frac{\sqrt{26}}{26}\left(\operatorname{accept} \frac{1}{\sqrt{26}}\right)$ or $-\frac{\sqrt{26}}{26}(r e j) \quad A 1$

8 The number of ants, N, in a colony after t days can be modelled by $N=1200 e^{a t}$, where a is a constant. There are 10000 ants after 6 days.
(a) Find the initial number of ants in the colony.
$N=1200 e^{a(0)}=1200 \quad B 1$
(b) How many ants are there after 15 days? Give your answer correct to 2 significant figures.

$$
\begin{aligned}
& 10000=1200 e^{6 a} \quad M 1 \\
& e^{6 a}=\frac{10000}{1200} \\
& 6 a=\ln \frac{10000}{1200} \quad M 1 \\
& a=0.353377 \\
& N=1200 e^{(0.353377)(15)} \\
& =240000 \quad A 1
\end{aligned}
$$

(c) Sketch the graph of $N=1200 e^{a t}$ for the first 15 days.

B1 - for the shape of the graph
B1 - for the y-intercept at 1200 and the point at $t=15$ days.

9 (a) Find the range of values of m for which the function $y=x^{2}-4 m x+3-m$ is always positive for all real values of x.

$$
\begin{aligned}
& b^{2}-4 a c=(-4 m)^{2}-4(1)(3-m) \quad M 1 \\
& =16 m^{2}+4 m-12 \\
& 16 m^{2}+4 m-12<0 \quad M 1 \\
& 4 m^{2}+m-3<0 \\
& (4 m-3)(m+1)<0 \\
& -1<m<\frac{3}{4}
\end{aligned}
$$

(b) Show that the line $y=4 x+p$ intersects the curve $y=p x^{2}-2 p-6$ for all real values of x, where p is positive.

$$
\begin{array}{ll}
p x^{2}-2 p-6=4 x+p & M 1 \\
p x^{2}-4 x-3 p-6=0 & \\
b^{2}-4 a c=(-4)^{2}-4(p)(-3 p-6) & M 1 \\
\quad= & 12 p^{2}+24 p+16
\end{array}
$$

Method 1

For $12 p^{2}+24 p+16$,
$b^{2}-4 a c=(24)^{2}-4(12)(16)$
$=-192<0 \quad M 1$
$\therefore 12 p^{2}+24 p+16>0$
\therefore will intersect.

Method 2

$$
\begin{align*}
b^{2}-4 a c & =12\left(p^{2}+2 p\right)+16 \\
& =12(p+1)^{2}-12(1)^{2}+16 \\
& =12(p+1)^{2}+4
\end{align*}
$$

min value $=4>0, \therefore b^{2}-4 a c>0$
\therefore will intersect.

10 (a) State the principal value of $\tan ^{-1}(-\sqrt{3})$ in degrees.
-60° B1
(b) The diagram shows a sketch of the graph $y=a \cos \frac{x}{b}+c$, where a, b and c are integers. Find the values of a, b and c.

$$
a=4, b=2, c=1
$$

B3
(c) Given that $y=8 \cos ^{2} x-2 \sin ^{2} x$, express y in the form of $p \cos 2 x+q$, stating the value of each of the integers p and q. Explain why y will never reach 10 .

$$
\begin{aligned}
& y=8 \cos ^{2} x-2 \sin ^{2} x \\
& =8 \cos ^{2} x-2\left(1-\cos ^{2} x\right) \\
& =10 \cos ^{2} x-2 \\
& =5\left(2 \cos ^{2} x-1+1\right)-2 \\
& =5(\cos 2 x+1)-2 \\
& =5 \cos 2 x+3 \\
& p=5, q=3
\end{aligned}
$$

Max value of $y=5+3=8<10 \quad B 1$

11 The diagram below shows a circle with points A, B, C and D at its circumference where $X Y$ is a tangent to the circle at point $A . P$ and Q are the midpoints of $B C$ and $A C$ respectively. $B Q D$ is a straight line and $\angle Q C D=\angle Q C P$.

(a) Prove that $\angle B A Y=\angle Q C D$.
$\angle B A Y=\angle Q C P$ (angles in alternate segments or tangent chord thm) $\quad M 1$
$\angle Q C P=\angle Q C D$ (given)
$\therefore \angle B A Y=\angle Q C D$ (shown)
(b) (i) Show that $\triangle Q C P$ is similar to $\triangle D C Q$.

In $\triangle Q C P$ and $\triangle D C Q$,
$\angle Q C P=\angle D C Q$ (given)
$Q P / / A B$ (Midpoint Thm) M1
$\angle C Q P=\angle C A B$ (corresponding angles) $\quad M 1$
$\angle C A B=\angle C D Q$ (angles in same segment) $M 1$
$\therefore \angle C Q P=\angle C D Q$
$\therefore \triangle Q C P$ and $\triangle D C Q$ and similar.($A A$ test) $A 1$
(b) (ii) Show that $2 Q C \times D Q=A B \times D C$.

From (bi),
$\frac{Q C}{D C}=\frac{Q P}{D Q}$
M1
$Q C \times D Q=Q P \times D C$
$Q C \times D Q=\frac{1}{2} A B \times D C($ Midpt Thm $)$
$\therefore 2 Q C \times D Q=A B \times D C \quad A 1$

12 It is given that $y=\frac{2 x^{2}+3}{x}, x \neq 0$.
(a) Prove that $x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}=y$.

$$
\begin{equation*}
y=\frac{2 x^{2}+3}{x}=2 x+3 x^{-1} \tag{4}
\end{equation*}
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=2-3 x^{-2} \quad \quad M 1
$$

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 x^{-3} \quad M 1
$$

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}=x^{2}\left(\frac{6}{x^{3}}\right)+x\left(2-\frac{3}{x^{2}}\right) \quad M 1 \quad \text { Accept e.c.f }
$$

$$
\begin{aligned}
& =\frac{6}{x}+2 x-\frac{3}{x} \\
& =\frac{3}{x}+2 x \\
& =\frac{2 x^{2}+3}{x}=y
\end{aligned}
$$

(b) Find, in exact values, the x-coordinates of the turning points of y.
$\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
$2-\frac{3}{x^{2}}=0$ M1
$x^{2}=\frac{3}{2}$
$x= \pm \sqrt{\frac{3}{2}}$ OR $\pm \frac{\sqrt{6}}{2} \quad A 1$
(c) Determine the nature of each of the turning points.

For $x=\frac{\sqrt{6}}{2}, \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}>0, \therefore$ min. $\quad B 1$
Accept e.c.f (full marks awarded if x values were wrong in previous parts.
For $x=-\frac{\sqrt{6}}{2}, \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}<0, \therefore \max . \quad B 1$

13 Solutions to this question by accurate drawing will not be accepted.
The parallelogram $A B C D$ is such that the points A and C are $(3,-2)$ and $(1,8)$ respectively. The line $B D$ is parallel to the line $2 x+3 y=4$ and is perpendicular to $A B$.

(a) Show that the equation of $B D$ is $2 x+3 y=13$.
$m_{B D}=-\frac{2}{3}$
B1
Midpoint of $B D=(2,3) \quad M 1$
$y=-\frac{2}{3} x+c$
$M 1$ or $\frac{y-3}{x-2}=-\frac{2}{3}$
$3=-\frac{2}{3}(2)+c$
$c=\frac{13}{3}$
$y=-\frac{2}{3} x+\frac{13}{3}$
$2 x+3 y=13$ (shown) A1
(b) Calculate the coordinates of B.

Find the equation of $A B$,
$m_{A B}=\frac{3}{2}$ B1
$y=\frac{3}{2} x+c$
$O R \quad \frac{y+2}{x-3}=\frac{3}{2}$
$-2=\frac{3}{2}(3)+c$
$c=-\frac{13}{2}$
$y=\frac{3}{2} x-\frac{13}{2}$
$A 1 \quad O R \quad 2 y=3 x-13$
$y=-\frac{2}{3} x+\frac{13}{3}$
$y=\frac{3}{2} x-\frac{13}{2}$
$-\frac{2}{3} x+\frac{13}{3}=\frac{3}{2} x-\frac{13}{2}$
$-4 x+26=9 x-39$
$13 x=65$
$x=5$
$B(5,1)$
A1
(c) Calculate the coordinates of D.

Let D be (x, y).
$(2,3)=\left(\frac{x+5}{2}, \frac{y+1}{2}\right) \quad M 1$
$\therefore D(-1,5) . \quad A 1$

14 A particle starts from rest at a fixed point O and moves in a straight line such that its velocity $v \mathrm{~ms}^{-1}$ is given by $v=4 t-\frac{3}{2} t^{2}$, where t is the time in seconds after leaving O. Calculate
(a) the velocity of the particle when its acceleration is zero,

$$
\begin{aligned}
& a=\frac{\mathrm{d} v}{\mathrm{~d} t}=4-3 t \\
& 4-3 t=0 \\
& t=\frac{4}{3} s \\
& v=4\left(\frac{4}{3}\right)-\frac{3}{2}\left(\frac{4}{3}\right)^{2}=\frac{8}{3} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) the time when the particle is instantaneously at rest again,

$$
\begin{array}{cc}
4 t-\frac{3}{2} t^{2}=0 & \\
t=0 s(\mathrm{rej}) \quad \text { or } \quad & 4-\frac{3}{2} t=0 \\
& t=\frac{8}{3} s \quad A 1
\end{array}
$$

Must rej t = 0 or show evidence like \# symbol to show this is the final answer.
(c) the total distance travelled by the particle when it returns to O.

$$
\begin{aligned}
& s=\int v \mathrm{~d} t \\
& =\int 4 t-\frac{3}{2} t^{2} \mathrm{~d} t \quad M 1 \quad s=2 \int_{0}^{\frac{8}{3}} 4 t-\frac{3}{2} t^{2} \mathrm{~d} t \quad M 1 \text { (for 2) } \\
& =2 t^{2}-\frac{1}{2} t^{3}+c \quad M 1 \quad M 1 \text { (for integrating) } \\
& t=0, s=0, c=0 \\
& s=2 t^{2}-\frac{1}{2} t^{3} \quad A 1 \\
& =2\left[2 t^{2}-\frac{1}{2} t^{3}\right]_{0}^{\frac{8}{3}} \quad M 1 \\
& \text { OR } \\
& t=\frac{8}{3} \text {, } \\
& s=2\left(\frac{8}{3}\right)^{2}-\frac{1}{2}\left(\frac{8}{3}\right)^{3}=\frac{128}{27} \\
& \begin{array}{|c|}
\hline \text { Accept e.c.f } \\
\hline M 1
\end{array} \\
& =2 t-\frac{1}{2} t+c \quad M 1 \\
& =2\left(\frac{128}{27}-0\right) \quad M 1 \\
& =\frac{256}{27} \\
& \text { Total distance }=\frac{128}{27} \times 2=\frac{256}{27} \mathrm{~m} \text { OR } 9 \frac{13}{27} \mathrm{~m} \text { A1 } \\
& \text { Total distance }=\frac{256}{27} \mathrm{~m} \quad A 1 \\
& \text { Accept } 9.48 \mathrm{~m} \text { (3 s.f) }
\end{aligned}
$$

Name	Index Number	Class

WOODGROVE SECONDARY SCHOOL

A COMMUNITY OF FUTURE-READY LEARNERS AND THOUGHTFUL LEADERS

O-LEVEL PRELIMINARY EXAMINATIONS 2023

LEVEL \& STREAM : SECONDARY 4 EXPRESS/ 5 NORMAL ACADEMIC
SUBJECT (CODE) : ADDITIONAL MATHEMATICS (4049)
PAPER NO : 02
DATE (DAY) : 12 SEPTEMBER 2023 (TUESDAY)
DURATION : 2 HOURS 15 MINUTES

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of an approved scientific calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks in this paper is 90 .
DO NOT TURN OVER THE QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO.

Student's Signature		Parent's Signature	
Date		Date	

[^2]
Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial expansion

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n},
$$

where n is a positive integer and $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} b c \sin A
\end{gathered}
$$

1 It is given that $\mathrm{f}(x)=2 e^{x}(\sin x-\cos x)$.
(a) Show that $\mathrm{f}^{\prime}(x)=4 e^{x} \sin x$.
(b) Hence evaluate $\int_{0}^{\pi} e^{x} \sin x \mathrm{~d} x$.

2 (a) Prove that $\sin 3 x=3 \sin x-4 \sin ^{3} x$.
(b) Hence solve the equation $6 \sin x-8 \sin ^{3} x=1$ for $0^{\circ}<x<120^{\circ}$.

3 (a) Show that $x^{4}+3 x^{2}-4=(x+1)(x-1)\left(x^{2}+4\right)$.
(b) Hence express $\frac{3 x^{2}+7}{x^{4}+3 x^{2}-4}$ in partial fractions.

4 A curve y, is such that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 x$ and the point $P(0,-3)$ lies on the curve. The gradient of the curve at P is 5 .
(a) Determine if the curve passes through point $Q(3,21)$.
(b) Explain why the curve has no turning point.
(c) Determine whether the curve is an increasing or decreasing function.

5 The points $A(-2,1), B(3,-4)$ and $C(3,1)$ lies on a circle.
(a) Show that the centre of the circle is $\left(\frac{1}{2},-\frac{3}{2}\right)$.
(b) Explain why $A B$ is the diameter of the circle.
(c) Find the equation of the circle.
(d) Show that point $D(2,2)$ lies outside the circle.

6 Solve the following equations.
(a) $3+\log _{2}(x+4)=2 \log _{2}(3 x-4)$.
(b) $2 \log _{3} y-\log _{y} 3=1$.

7 (a) Factorise $(x-1)^{3}-8$ completely.
(b) Hence show that $(x-1)^{3}-8=0$ has only 1 solution.

8

The diagram shows part of the curve $y=10-\frac{32}{x^{2}}$ and two parallel lines $O R$ and $P Q$. The equation of $O R$ is $y=x$ and the line intersects the curve at point $R(2,2) \cdot P Q$ is the tangent to the curve at point Q.
(a) Find the coordinates of Q and of P.
(b) Find the area of the shaded region $O P Q R$.

In the diagram $W X Y Z$ is a quadrilateral with $X Y=12 \mathrm{~m}, Y Z=5 \mathrm{~m}$ and $\angle W X Y=\theta$.
(a) Show that the perimeter, $P \mathrm{~cm}$, of $W X Y Z$ is $17 \sin \theta+7 \cos \theta+17$.
(b) Express P in the form $R \sin (\theta+\alpha)+k$, where $R>0, k>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(c) Find the maximum value of P and the corresponding value of θ.

10 A cylindrical pipe of surface area $S \mathrm{~m}^{2}$ has a circumference of $\left(a+\frac{b}{x^{2}}\right) \mathrm{m}$ and length of $x \mathrm{~m}$. Corresponding values of x and S are shown in the table below.

x	0.5	1.0	1.5	2.0
S	23	19	21	24.5

(a) Draw a straight line graph of $S x$ against x^{2}.

(
(b) Use the graph to estimate
(i) the value of each of the constants a and b,
(ii) the surface area of the pipe with a length of 0.8 m .
(c) By drawing a suitable straight line, find the length of the pipe when its surface area is $5\left(x+\frac{3}{x}\right) \mathrm{cm}^{2}$.

Name	Index Number	Class

This document consists of $\mathbf{1 8}$ printed pages including this cover page Setter : Mr Eric Bay

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial expansion

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n},
$$

where n is a positive integer and $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} b c \sin A
\end{gathered}
$$

1 It is given that $\mathrm{f}(x)=2 e^{x}(\sin x-\cos x)$.
(a) Show that $\mathrm{f}^{\prime}(x)=4 e^{x} \sin x$.

$$
\begin{aligned}
& \mathrm{f}(x)=2 e^{x}(\sin x-\cos x) \\
& \mathrm{f}^{\prime}(x)=2 e^{x}(\sin x-\cos x)+2 e^{x}(\cos x+\sin x) \\
& \text {--------------------- M1 } \\
& =2 e^{x}[(\sin x-\cos x)+(\cos x+\sin x)] \\
& =2 e^{x}(2 \sin x) \\
& =4 e^{x} \sin x \text { (shown)------------------ A1 }
\end{aligned}
$$

(b) Hence evaluate $\int_{0}^{\pi} e^{x} \sin x \mathrm{~d} x$.

$$
\begin{aligned}
& \int 4 e^{x} \sin x \mathrm{~d} x=2 e^{x}(\sin x-\cos x)+c----------------\quad \text { M1 } \\
& 4 \int e^{x} \sin x \mathrm{~d} x=2 e^{x}(\sin x-\cos x)+c \\
& \int e^{x} \sin x \mathrm{~d} x=\frac{1}{2} e^{x}(\sin x-\cos x)+c \\
& \int_{0}^{\pi} e^{x} \sin x \mathrm{~d} x=\left[\frac{1}{2} e^{x}(\sin x-\cos x)\right]_{0}^{\pi}---------------- \text { M1 } \\
& =\left[\frac{1}{2} e^{\pi}(\sin \pi-\cos \pi)-\frac{1}{2} e^{0}(\sin 0-\cos 0)\right] \\
& =\frac{1}{2} e^{\pi}+\frac{1}{2}------------------\mathrm{A} 1
\end{aligned}
$$

2 (a) Prove that $\sin 3 x=3 \sin x-4 \sin ^{3} x$.
LHS $=\sin 3 x$

$$
\begin{aligned}
& =\sin (2 x+x) \\
& =\sin 2 x \cos x+\cos 2 x \sin x \\
& =2 \sin x \cos x \cos x+\left(1-2 \sin ^{2} x\right) \sin \mathrm{x} \\
& =2 \sin x \cos ^{2} x+\sin x-2 \sin ^{3} x \\
& =2 \sin x\left(1-\sin ^{2} x\right)+\sin x-2 \sin ^{3} x \\
& =2 \sin x-2 \sin ^{3} x+\sin x-2 \sin ^{3} x \\
& =3 \sin x-4 \sin ^{3} x \\
& =\text { RHS } \\
& \text { A1 }
\end{aligned}
$$

(b) Hence solve the equation $6 \sin x-8 \sin ^{3} x=1$ for $0^{\circ}<x<120^{\circ}$.

$$
\begin{aligned}
& 6 \sin x-8 \sin ^{3} x=1 \\
& 2\left(3 \sin x-4 \sin ^{3} x\right)=1 \\
& 2 \sin 3 x=1 \\
& \text { M1 } \\
& \sin 3 x=\frac{1}{2} \\
& \alpha=30^{\circ} \\
& \text { M1 } \\
& 3 x=30,180-30 \\
& 3 x=30,150 \text {-------------------- M1 } \\
& x=10^{\circ}, 50^{\circ}----------------- \text { A1 }
\end{aligned}
$$

3 (a) Show that $x^{4}+3 x^{2}-4=(x+1)(x-1)\left(x^{2}+4\right)$.

$$
\begin{aligned}
\text { LHS } & =x^{4}+3 x^{2}-4 \\
& =\left(x^{2}-1\right)\left(x^{2}+4\right) \text {--1 } \\
& =(x+1)(x-1)\left(x^{2}+4\right) \text {------- }
\end{aligned}
$$

(b) Hence express $\frac{3 x^{2}+7}{x^{4}+3 x^{2}-4}$ in partial fractions.

$$
\text { compare coeff of } x^{3}, \quad \text { or when } x=2
$$

$$
\begin{array}{lc}
0=A+B+C & 19--8+24+6 c+3 \\
0=-1+1+C & c-0
\end{array}
$$

$$
C=0-
$$

M1

$$
\frac{3 x^{2}+7}{(x+1)(x-1)\left(x^{2}+4\right)}=\frac{-1}{(x+1)}+\frac{1}{(x-1)}+\frac{1}{\left(x^{2}+4\right)}
$$

$$
=\frac{1}{(x-1)}-\frac{1}{(x+1)}+\frac{1}{\left(x^{2}+4\right)}-----------------\quad \text { A1 }
$$

$$
\begin{aligned}
& \frac{3 x^{2}+7}{(x+1)(x-1)\left(x^{2}+4\right)}=\frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{C x+D}{\left(x^{2}+4\right)} \\
& \text {----------------------- M1 } \\
& 3 x^{2}+7=A(x-1)\left(x^{2}+4\right)+B(x+1)\left(x^{2}+4\right)+(C x+D)(x+1)(x-1) \\
& \text { sub } x=1 \\
& 10=B(10) \\
& B=1 \\
& \text { M1 } \\
& \operatorname{sub} x=-1 \\
& 10=-10 A \\
& A=-1 \\
& \text { M1 } \\
& \text { sub } x=0 \\
& 7=-4 A+4 B-D \\
& 7=4+4-D \\
& D=1 \\
& \text { M1 }
\end{aligned}
$$

4 A curve y, is such that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 x$ and the point $P(0,-3)$ lies on the curve. The gradient of the curve at P is 5 .
(a) Determine if the curve passes through point $Q(3,21)$.

$$
\begin{aligned}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} & =2 x \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =x^{2}+C \text {------------------ M1 } \\
x & =0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=5 \text {------------------ M1 } \\
C & =5 \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =x^{2}+5 \\
y & =\frac{1}{3} x^{3}+5 x+D---------------\mathrm{M} 1 \\
x & =0, y=-3 \\
D & =-3 \\
y & =\frac{1}{3} x^{3}+5 x-3 \\
\text { when } x & =3---------------\mathrm{M} 1 \\
y & =9+15-3 \\
y & =21
\end{aligned}
$$

the curve passes through the point $(3,21)$
(b) Explain why the curve has no turning point.

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+5 \\
& \text { for turning point, } \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \text {, } \\
& \text { or as } x^{2} \geq 0, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x} \geq 5-------------- \text { M1 } \\
& x^{2}+5=0 \quad \text { since } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { can never be zero, } \\
& x^{2}=-5 \quad \therefore \text { the curve has no turning point. } \\
& \text { A1 } \\
& x=\sqrt{-5} \\
& \text { no Solution, therefore no turning point } \\
& \text { A1 }
\end{aligned}
$$

(c) Determine whether the curve is an increasing or decreasing function.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =x^{2}+5 \\
x^{2} & \geq 0 \\
x^{2}+5 & >0 \text {--------------- A1 }
\end{aligned}
$$

Therefore the curve is an increasing function for all value of x

5 The points $A(-2,1), B(3,-4)$ and $C(3,1)$ lies on a circle.
(a) Show that the centre of the circle is $\left(\frac{1}{2},-\frac{3}{2}\right)$.

$$
y=x-2
$$

$$
y=-\frac{3}{2}
$$

$$
x=\frac{1}{2}
$$

Therefore centre of circle is $\left(\frac{1}{2},-\frac{3}{2}\right)$--------------------- A1

$$
\begin{aligned}
& A(-2,1), B(3,-4) \\
& m_{A B}=\frac{-4-1}{3-(-2)} \\
& \text { =-1-------------------- M1 } \\
& m_{\perp A B}=1 \\
& \text { midpoint }=\left(\frac{-2+3}{2}, \frac{1+(-4)}{2}\right) \\
& =\left(\frac{1}{2},-\frac{3}{2}\right)------------------\quad \text { M1 } \\
& y=m x+c \\
& -\frac{3}{2}=\frac{1}{2}+c \\
& c=-2 \\
& y=x-2------------------ \text { M1 } \\
& B(3,-4), C(3,1) \\
& m_{B C}=\frac{-4-1}{3-3} \\
& \text { = undefine-------------------- M1 } \\
& m_{\perp B C}=0 \\
& \text { midpoint }=\left(3,-\frac{3}{2}\right) \\
& y=m x+c \\
& -\frac{3}{2}=0+c \\
& c=-\frac{3}{2} \\
& y=-\frac{3}{2}------------------ \text { M1 }
\end{aligned}
$$

(b) Explain why $A B$ is the diameter of the circle.

Midpoint of $A B$ is the center of the circle.
Or student show that

$$
m_{B C} \times m_{A C}=-1----------\mathrm{B} 1
$$

(c) Find the equation of the circle.

$$
\begin{aligned}
& =\frac{25}{4}+\frac{25}{4} \\
& =\frac{25}{2}------------------ \text { M1 } \\
& \left(x-\frac{1}{2}\right)^{2}+\left(y+\frac{3}{2}\right)^{2}=\frac{25}{2}--\cdots-\cdots-\cdots-\cdots-\cdots \text { A1 }
\end{aligned}
$$

(d) Show that point $D(2,2)$ lies outside the circle.

$$
\begin{aligned}
\text { Distance of } D \text { from centre } & =\sqrt{\left(2-\frac{1}{2}\right)^{2}+\left(2+\frac{3}{2}\right)^{2}}----------------- \text { M1 } \\
& =\sqrt{\frac{9}{4}+\frac{49}{4}} \\
& =\sqrt{\frac{29}{2}}>\sqrt{\frac{25}{2}} \text {-therefore point } D \text { lies out side the circle------------------ A1 }
\end{aligned}
$$

6 Solve the following equations.
(a) $3+\log _{2}(x+4)=2 \log _{2}(3 x-4)$.

$$
\begin{aligned}
3+\log _{2}(x+4) & =2 \log _{2}(3 x-4) \\
\log _{2}(3 x-4)^{2}-\log _{2}(x+4) & =3 \\
\log _{2} \frac{(3 x-4)^{2}}{(x+4)} & =3 \text {------------------- M1 } \\
\frac{(3 x-4)^{2}}{(x+4)} & =2^{3} \text {-------------------- M1 } \\
(3 x-4)^{2} & =8(x+4) \\
9 x^{2}-24 x+16 & =8 x+32 \\
9 x^{2}-32 x-16 & =0---------------- \text { M1 } \\
(x-4)(9 x+4) & =0 \\
x & =4 \quad \text { or } x=-\frac{4}{9} \text { (Rej) }------------------- \text { A1 }
\end{aligned}
$$

(b) $2 \log _{3} y-\log _{y} 3=1$.
$2 \log _{3} y-\log _{y} 3=1$
$2 \log _{3} y-\frac{\log _{3} 3}{\log _{3} y}=1$

$$
\text { let } x=\log _{3} y
$$

$$
2 x-\frac{1}{x}=1 \text {---------------------- M1 }
$$

$$
2 x^{2}-1=x
$$

$$
\begin{equation*}
2 x^{2}-x-1=0 \tag{M1}
\end{equation*}
$$

$$
(2 x+1)(x-1)=0
$$

$$
x=-\frac{1}{2} \quad \text { or } \quad x=1
$$

$$
\log _{3} y=-\frac{1}{2} \quad \text { or } \quad \log _{3} y=1
$$

$$
y=\frac{1}{\sqrt{3}} \quad \text { or } \quad y=3
$$

7 (a) Factorise $(x-1)^{3}-8$ completely.

$$
\begin{aligned}
& (x-1)^{3}-8=[(x-1)-2]\left[(x-1)^{2}+2(x-1)+4\right]-------------------{ }^{\text {M1 }} \\
& =(x-1-2)\left(x^{2}-2 x+1+2 x-2+4\right)----------------- \text { M1 } \\
& =(x-3)\left(x^{2}+3\right)-----------------A_{1}
\end{aligned}
$$

(b) Hence show that $(x-1)^{3}-8=0$ has only 1 solution.

$$
\begin{aligned}
& (x-1)^{3}-8=0 \\
& (x-3)\left(x^{2}+3\right)=0 \\
& x^{2}+3=0 \\
& \text { or } \quad x-3=0 \\
& b^{2}-4 a c=0^{2}-4(1)(3) \quad \text { or } \quad x=3 \\
& =-12<0 \text { (no solution) --------------------M1 } \\
& \therefore(x-1)^{3}-8=0 \text { has only } 1 \text { solution } x=3----------------------A 1
\end{aligned}
$$

8

The diagram shows part of the curve $y=10-\frac{32}{x^{2}}$ and two parallel lines $O R$ and $P Q$. The equation of $O R$ is $y=x$ and the line intersects the curve at point $R(2,2) \cdot P Q$ is the tangent to the curve at point Q.
(a) Find the coordinates of Q and of P.

$$
\begin{aligned}
& y=10-\frac{32}{x^{2}} \\
& y=10-32 x^{-2} \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=64 x^{-3} \\
& 64 x^{-3}=1 \\
& x=4 \\
& y=8 \\
& Q(4,8) \text {---------------------- A1 } \\
& y=m x+c \\
& 8=4+c \\
& c=4 \\
& P(0,4) \text {---------------------- A1 }
\end{aligned}
$$

(b) Find the area of the shaded region $O P Q R$.

$$
\begin{aligned}
& \text { Area of trapezium }=\frac{1}{2}(4+8) \times 4 \\
& \text { = } 24 \text {--------------------------------------M1 } \\
& \text { Area of triangle }=\frac{1}{2} \times 2 \times 2 \\
& \text { = } 2 \text {--------------------------------------M1 }
\end{aligned}
$$

Area under the curve $=\int_{2}^{4} 10-32 x^{-2} \mathrm{~d} x$

$$
\begin{aligned}
& =\left[10 x+32 x^{-1}\right]_{2}^{4}----------------------------------M 1 \\
& =\left[10(4)+\frac{32}{4}\right]-\left[10(2)+\frac{32}{2}\right] \\
& =48-36 \\
& =12 \text {-------------------------------------M1 }
\end{aligned}
$$

Area of shaded region $O P Q R=24-2-12$

$$
=10 \text { units² --11 }
$$

In the diagram $W X Y Z$ is a quadrilateral with $X Y=12 \mathrm{~m}, Y Z=5 \mathrm{~m}$ and $\angle W X Y=\theta$.
(a) Show that the perimeter, $P \mathrm{~cm}$, of $W X Y Z$ is $17 \sin \theta+7 \cos \theta+17$.

$$
\begin{aligned}
\sin \theta & =\frac{A Y}{12} \quad \cos \theta=\frac{A X}{12} \quad \sin \theta=\frac{B Z}{5} \quad \cos \theta=\frac{B Y}{5} \\
A Y & =12 \sin \theta \quad A X=12 \cos \theta \quad B Z=5 \sin \theta \quad B Y=5 \cos \theta \text {-------------------M2 } 2 \text { M1 for any pair }
\end{aligned}
$$

$$
\begin{aligned}
P & =12 \cos \theta+5 \sin \theta+12 \sin \theta-5 \cos \theta+12+5--11
\end{aligned}
$$

(b) Express P in the form $R \sin (\theta+\alpha)+k$, where $R>0, k>0$ and $0^{\circ}<\alpha<90^{\circ}$.

$$
\begin{aligned}
17 \sin \theta+7 \cos \theta & =R \sin (\theta+\alpha) \\
R & =\sqrt{17^{2}+7^{2}} \\
& =\sqrt{338} \text {------------------------------M1 } \\
\alpha & =\tan ^{-1} \frac{7}{17} \\
\alpha & =22.3801^{\circ}-----------------------M 1 \\
P & =17 \sin \theta+7 \cos \theta+17 \\
& =13 \sqrt{2} \sin \left(\theta+22.4^{\circ}\right)+17
\end{aligned}
$$

OR

$$
=18.4 \sin \left(\theta+22.4^{\circ}\right)+17
$$

(c) Find the maximum value of P and the corresponding value of θ.

$$
\begin{aligned}
\max P & =\sqrt{338}+17 \\
& =35.38477 \\
& =35.4------------\mathrm{B} 1 \\
\sin \left(\theta+22.3801^{\circ}\right) & =1 \\
\theta & =90-22.3801 \\
& =67.6199 \\
& =67.6^{\circ}(1 \mathrm{dp})------------\mathrm{B} 1
\end{aligned}
$$

10 A cylindrical pipe of surface area $S \mathrm{~m}^{2}$ has a circumference of $\left(a+\frac{b}{x^{2}}\right) \mathrm{m}$ and length of $x \mathrm{~m}$. Corresponding values of x and S are shown in the table below.

x	0.5	1.0	1.5	2.0
S	23	19	21	24.5

(a) Draw a straight line graph of $S x$ against x^{2}.

x^{2}	0.25	1.0	2.25	4.0
$S x$	11.5	19.0	31.5	49.0

(
(b) Use the graph to estimate
(i) the value of each of the constants a and b,

$$
\begin{aligned}
c & =9----------------------------\mathrm{M} 1 \\
m & =\frac{39-9}{3-0} \\
& =10--------------------------\mathrm{M} 1 \\
S & =\left(a+\frac{b}{x^{2}}\right) x \\
S & =a x+\frac{b}{x} \\
S x & =a x^{2}+b---------------------------\mathrm{M} 1 \\
\mathrm{a} & =10 \\
\mathrm{~b} & =9----------------------\mathrm{A} 1
\end{aligned}
$$

(ii) the surface area of the pipe with a length of 0.8 m .

$$
\begin{aligned}
& x^{2}=0.64--------------------------\mathrm{M} 1 \\
& \quad \text { from the graph, }
\end{aligned}
$$

$$
\begin{aligned}
S x & =15.5----------------------------\mathrm{M} 1 \\
S & =\frac{15.5}{0.8} \\
& =19.375 \\
& =19.4 \mathrm{~m}^{2} \quad(3 \mathrm{sf})-----------------\mathrm{A} 1
\end{aligned}
$$

(c) By drawing a suitable straight line, find the length of the pipe when its surface area is $5\left(x+\frac{3}{x}\right) \mathrm{cm}^{2}$.

$$
\begin{aligned}
S & =5\left(x+\frac{3}{x}\right) \\
S x & =5 x^{2}+15--------------------------M 1
\end{aligned}
$$

From the graph,

$$
\begin{aligned}
x^{2} & =1.2---------------------------\mathrm{M} 1 \\
x & =\sqrt{1.2} \\
& =1.095 \\
& =1.10
\end{aligned}
$$

the length is $1.10 \mathrm{~cm}-$ --A1

[^0]: This document consists of $\underline{\mathbf{0}}$ printed pages including this cover page.
 Setter : Ms Nicole Ng

[^1]: This document consists of $\underline{\mathbf{0}}$ printed pages including this cover page.
 Setter : Ms Nicole Ng

[^2]: This document consists of
 19 printed pages including this cover page Setter : Mr Eric Bay

