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Mathematical Formulae 

 
 
 

1. ALGEBRA 
 
Quadratic Equation 
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2. TRIGONOMETRY 
 
Identities 
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Formulae for ABC  
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1
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1 Triangle ABC is such that the length of side AB is ( )1 3 2 cm,+ angle ABC is 45° and its 

area is ( ) 27 4 2 cm+ . Find, without using a calculator, the exact length of BC, in cm. 

Leave your answer in the form of ( )2 ,a b+ where a and b are integers. 

 

 

 

 

 

 

 

 

 

 

 

[4] 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B C 

45° 

( )1 3 2 cm+  
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2 Given that 2 3 24 6 24x x x+ + = , find the value of 6x without using a calculator. [4] 
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3 When a polynomial f ( )x  is divided by ( )1x +  and ( )2x + , the remainders are 3 and 5 

respectively. Find the remainder when f ( )x  is divided by ( )( )1 2x x+ + . 

 

[4] 
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4 Given that 
2 4

1 2
f ( ) d f ( ) d 6x x x x

−
= =  , find 

 

 
(a)  

4 2

1 4
2f ( ) d f ( ) dx x x x

−
+  , [2] 

  

 

 

 

 

 

 

 

 

 

 

 
(b)  the value of k for which   

2

1
f ( ) d 9x kx x

−
+ = . [3] 
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5 (a)  Find the 
1

x
term in the expansion of 

10

2 2
x

x

 
+ 

 
. [3] 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b)  Hence, find the constant term in the expansion of ( )
10

2 2
1 3x x

x

 
+ + 

 
. [2] 
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6 A spherical balloon expands at a constant rate of 8 cm3/s. The balloon is initially empty. 
 

 
(a) Find the rate of increase of its radius when the radius is 2.5 cm, leaving your answer 

in terms of  . 

[The volume of a sphere of radius r is 34

3
r .] 

 

 

[3] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(b) When the radius is beyond 5 cm, besides the expansion, air begins to leak out from  

the balloon at a rate of 2 cm3/s. Find the rate of change of the radius when it is 8 cm. 

 

[2] 
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7 Given that 
5

sin
13

x =  and x is obtuse, find the exact value of the following. 
 

 (a)  ( )sec x−  [3] 

  

 

 

 

 

 

 

 

 

 
(b)  cos

2

x
 [3] 
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8 The number of ants, N, in a colony after t days can be modelled by 1200 atN e= , where a 

is a constant. There are 10 000 ants after 6 days.  

 

 (a)  Find the initial number of ants in the colony. [1] 

  

 

 

 

 

 

 (b)  How many ants are there after 15 days? Give your answer correct to 2 significant 

figures. 

 

[3] 

  

 

 

 

 

 

 

 

 

 

 

 (c)  Sketch the graph of 1200 atN e= for the first 15 days.   [2] 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
N 

O t 
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9 (a) Find the range of values of m for which the function 2 4 3y x mx m= − + −  is always   

positive for all real values of x. 

 

[3] 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Show that the line 4y x p= + intersects the curve 
2 2 6y px p= − − for all real values 

of x, where p is positive. 

 

[4] 
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10 (a) State the principal value of ( )1tan 3− −  in degrees. [1] 

                

 

 

 

 

 

 
(b) The diagram shows a sketch of the graph  cos ,

x
y a c

b
= + where a, b and c are 

integers. Find the values of a, b and c. 

 

 

 
[3] 

  

 

 

 

 

 

 

 

 

 

 

 

 

5 
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-3 
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y a c
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 (c)  Given that 2 28cos 2siny x x= − , express y in the form of cos 2 ,p x q+ stating the 

value of each of the integers p and q. Explain why y will never reach 10. 

 

[4] 
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11 The diagram below shows a circle with points A, B, C and D at its circumference where 

XY is a tangent to the circle at point A. P and Q are the midpoints of BC and AC 

respectively. BQD is a straight line and .QCD QCP =  

 

 

  

 

 

 

 

 

 

 

 

 

 (a)  Prove that .BAY QCD =  [2] 

  

 

 

 

 

 

 

 

 (b)  (i) Show that QCP  is similar to .DCQ  [4] 

  

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

   C 

  D 

P 

Q 

X Y 
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 (b)  (ii) Show that 2 .QC DQ AB DC =   [2] 

  

 

 

 

 

 

 

 

 

 

 

12 It is given that 
22 3x

y
x

+
= , 0.x   

(a) Prove that 
2

2

2

d d
.

d d

y y
x x y

x x
+ =  

 

 

 
[4] 
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 (b)  Find, in exact values, the x-coordinates of the turning points of y. [2] 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 (c)  Determine the nature of each of the turning points. [2] 
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13 Solutions to this question by accurate drawing will not be accepted.  

The parallelogram ABCD is such that the points A and C are ( )3, 2− and ( )1, 8

respectively. The line BD is parallel to the line 2 3 4x y+ = and is perpendicular to AB.  

 

 

 

                                           

 

 (a)  Show that the equation of BD is 2 3 13x y+ = . [4] 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O 

B 

( )3, 2A −  

D 

( )1, 8C  

x 

y 
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 (b)  Calculate the coordinates of B. [4] 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(c)   Calculate the coordinates of D.  [2] 
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14 A particle starts from rest at a fixed point O and moves in a straight line such that its 

velocity 1msv −  is given by 23
4

2
v t t= − , where t is the time in seconds after leaving O. 

Calculate  

 

 (a)  the velocity of the particle when its acceleration is zero, [3] 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b)  the time when the particle is instantaneously at rest again, [2] 
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 (c)  the total distance travelled by the particle when it returns to O. [5] 
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Mathematical Formulae 

 
 
 

1. ALGEBRA 
 
Quadratic Equation 
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1 Triangle ABC is such that the length of side AB is ( )1 3 2 cm,+ angle ABC is 45° and its 

area is ( ) 27 4 2 cm+ . Find, without using a calculator, the exact length of BC, in cm. 

Leave your answer in the form of ( )2 ,a b+ where a and b are integers. 

 

 

 

 

 

 

 

 

 

 

 

[4] 
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1
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2 Given that 2 3 24 6 24x x x+ + = , find the value of 6x without using a calculator. [4] 

  

2 3 2

2 2 3 2 3 2 2

4 3 2 3 6 3 2
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2 4 3

1 3
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+ + + +

+ +

+ +

+ − +

−

−

 =

  = 

 = 

=

=

 = 

=

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   



5 
 

3 When a polynomial f ( )x  is divided by ( )1x +  and ( )2x + , the remainders are 3 and 5 

respectively. Find the remainder when f ( )x  is divided by ( )( )1 2x x+ + . 

 

[4] 

  

( )( )f ( ) 1 2 Q( )

f ( 1) 3

3 ........................(1) 1

f ( 2) 5

5 2 .......................(2) 1

(1) (2) : 1

2

1

remainder = 2 1. 1

x x x x ax b

a b M

a b M

M

a

b

x A

= + + + +
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= − +

− =

= − +

−

− =

=

 − +
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4 Given that 
2 4

1 2
f ( ) d f ( ) d 6x x x x

−
= =  , find 

 

 
(a)  

4 2

1 4
2f ( ) d f ( ) dx x x x

−
+  , [2] 

 
4 2

1 4

2 4 4

1 2 2

2f ( ) d f ( ) d

2 f ( ) d f ( ) d f ( ) d 1

2(6 6) 6

18 1

x x x x
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A

−

−

+
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  
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=

 

    

 

 

 

 

 

 

 

 
(b)  the value of k for which   

2

1
f ( ) d 9x kx x

−
+ = . [3] 

  

( ) ( )

2

1

2 2

1 1

22

1
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1

2 2
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2

3
2
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2
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M
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M

k
k
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5 (a)  Find the 
1

x
term in the expansion of 

10

2 2
x

x

 
+ 

 
. [3] 

  

( ) ( )
10

2 1

1

20 3

7 1

8

10
2 1

10
2

20 3 1 1

7

10 15360
2 1

7

r r

r

r r

T x x M
r

x
r

r M

r

T x A
x

−
−

+

−

−

 
=  
 

 
=  
 

− = −

=

 
= = 
 

 

 

 

 

 

 

 

 (b)  Hence, find the constant term in the expansion of ( )
10

2 2
1 3x x

x

 
+ + 

 
. [2] 

  

( ) ( )( ) ( )
10

2 2 15360
1 3 1 0 3 1

46080 1

x x x M
x x

A

   
+ + = +   

   

=
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6 A spherical balloon expands at a constant rate of 8 cm3/s. The balloon is initially empty. 
 

 
(a) Find the rate of increase of its radius when the radius is 2.5 cm, leaving your answer in 

terms of  . 

[The volume of a sphere of radius r is 34

3
r .] 

 

 

[3] 

 
 

( )

2

2

2

d
4 1

dr

dr dr d dV dV dr

d d d d dr d

1 dr
8 1 8 4 (2.5) 1

d4 2.5

8
cm/s 1

25

V
r M

V
OR

t V t t t

M M
t

A

= 

=  = 

=  =  


=


 

 

 

 

 

 

 

 

 

 
(b) When the radius is beyond 5 cm, besides the expansion, air begins to leak out from  the 

balloon at a rate of 2 cm3/s. Find the rate of change of the radius when it is 8 cm. 

 

[2] 

  

( )
( )

2

2

dr dr d dV dV dr

d d d d dr d

1 d dr
6 1(for 6) 6 4 8

d d4 8

3
cm/s 1

128

V
OR

t V t t t

V
M

t t

A

=  = 

=  = =  


=

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7 Given that 
5

sin
13

x =  and x is obtuse, find the exact value of the following. 
 

 (a)  ( )sec x−  [3] 

 ( )
( )
1

sec 1
cos

1
1

cos

13
1

12

x M
x

M
x

A

− =
−

=

= −

 

 

 

 

 

 

 
(b)  cos

2

x
 [3] 

  

2

2

12
cos

13

12
2cos 1 1

13 2

1
cos 1

2 26

26 1 26
cos accept ( ) 1

2 26 2626

x

x
M

x
M

x
or rej A

= −

− = −

=

 
= − 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 

x 

13 

-12 
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8 The number of ants, N, in a colony after t days can be modelled by 1200 atN e= , where a 

is a constant. There are 10 000 ants after 6 days.  

 

 (a)  Find the initial number of ants in the colony. [1] 

  

(0)1200 1200 1aN e B= =  

 

 

 

 (b)  How many ants are there after 15 days? Give your answer correct to 2 significant 

figures. 

 

[3] 

 

( )( )

6

6

0.353377 15

10000 1200 1

10000

1200

10000
6 ln 1

1200

0.353377

1200

240000 1

a

a

e M

e

a M

a

N e

A

=

=

=

=

=

=

 

 

 

 

 

 (c)  Sketch the graph of 1200 atN e= for the first 15 days.   [2] 

  

 

B1 – for the shape of the graph 

B1 – for the y-intercept at 1200 and the point at t = 15 days. 

 

(15, 240000) 

1200 
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9 (a) Find the range of values of m for which the function 2 4 3y x mx m= − + −  is always   

positive for all real values of x. 

 

[3] 

 ( ) ( )( )

( )( )

22

2

2

2

4 4 4 1 3 1

16 4 12

16 4 12 0 1

4 3 0

4 3 1 0

3
1 1

4

b ac m m M

m m

m m M

m m

m m

m A

− = − − −

= + −

+ − 

+ − 

− + 

−  

 

 

 

 

 

 

 

 

 (b) Show that the line 4y x p= + intersects the curve 2 2 6y px p= − − for all real values of 

x, where p is positive. 

 

[4] 

 

( ) ( )( )

2

2

22

2

2 6 4 1

4 3 6 0

4 4 4 3 6 1

12 24 16

px p x p M

px x p

b ac p p M

p p

− − = +

− − − =

− = − − − −

= + +

 

Method 1    

For 212 24 16p p+ + ,                                                          Method 2 

( ) ( )( )
22

2

4 24 4 12 16

192 0 1

12 24 16 0

will intersect.                          1

b ac

M

p p

A

− = −

= − 

 + + 



                 

( )

( ) ( )

( )

2 2

2 2

2

2

4 12 2 16

12 1 12 1 16

12 1 4 1

min value = 4>0, 4 0

will intersect. 1

b ac p p

p

p M

b ac

A

− = + +

= + − +

= + +

 − 


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10 (a) State the principal value of ( )1tan 3− −  in degrees. [1] 

                

60 1B−   

 

 

 

 
(b) The diagram shows a sketch of the graph  cos ,

x
y a c

b
= + where a, b and c are 

integers. Find the values of a, b and c. 

 

 

 
[3] 

  

 

4, 2, 1 3a b c B= = =  

 

 

 

 

 

 

 

 

 

 

5 

y 

2  1   2−   1 O  −  

2

  
2


−  3

2


−  3

2

  

-3 

x 

cos
x

y a c
b

= +  
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 (c)  Given that 2 28cos 2siny x x= − , express y in the form of cos 2 ,p x q+ stating the 

value of each of the integers p and q. Explain why y will never reach 10. 

 

[4] 

 

( )

( )
( )

2 2

2 2

2

2

8cos 2sin

8cos 2 1 cos 1

10cos 2

5 2cos 1 1 2

5 cos 2 1 2 1

5cos 2 3

5, 3 1

y x x

x x M

x

x

x M

x

p q A

= −

= − −

= −

= − + −

= + −

= +

= =

 

 

Max value of y = 5 + 3 = 8<10   B1 
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11 The diagram below shows a circle with points A, B, C and D at its circumference where XY 

is a tangent to the circle at point A. P and Q are the midpoints of BC and AC respectively. 

BQD is a straight line and .QCD QCP =  

 

 

  

 

 

 

 

 

 

 

 

 

 (a)  Prove that .BAY QCD =  [2] 

  

 (angles in alternate segments or tangent chord thm)       1

 (given)

 (shown) 1

BAY QCP M

QCP QCD

BAY QCD A

 =

 =

 =

 

 

 

 

 (b)  (i) Show that QCP  is similar to .DCQ  [4] 

  

In  and ,

=  (given)                              

/ /  (Midpoint Thm)                          1

 (corresponding angles)     1

 (angles in same segment)  1

=

QCP DCQ

QCP DCQ

QP AB M

CQP CAB M

CAB CDQ M

CQP CDQ

 

 

 = 

 = 

 

  and  and similar.(  test) 1QCP DCQ AA A  

 

 

 

 

 

 

 

A 

B 

   C 

  D 

P 

Q 

X Y 
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 (b)  (ii) Show that 2 .QC DQ AB DC =   [2] 

 From (bi), 

1

1
 (Midpt Thm)

2

2 1

QC QP
M

DC DQ

QC DQ QP DC

QC DQ AB DC

QC DQ AB DC A

=

 = 

 = 

  = 

 

 

 

 

 

 

12 It is given that 
22 3x

y
x

+
= , 0.x   

(a) Prove that 
2

2

2

d d
.

d d

y y
x x y

x x
+ =  

 

 

 
[4] 

 2
1

2

2
3

2

2 3
2 3

d
2 3 1

d

d
6 1

d

x
y x x

x

y
x M

x

y
x M

x

−

−

−

+
= = +

= −

=

 

2
2 2

2 3 2

2

d d 6 3
2 1

d d

6 3
2

3
2

2 3
1

y y
x x x x M

x x x x

x
x x

x
x

x
y A

x

   
+ = + −   

   

= + −

= +

+
= =

 

 

 

 

 

 

 

 

 

Accept e.c.f 
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 (b)  Find, in exact values, the x-coordinates of the turning points of y. [2] 

  

2

2

d
0

d

3
2 0 1

3

2

3 6
  OR  1

2 2

y

x

M
x

x

x A

=

− =

=

=  

 

 

 

 

 

 

 

 (c)  Determine the nature of each of the turning points. [2] 

  

2

2

2

2

6 d
For , 0, min . 1

2 d

6 d
For , 0, max. 1

2 d

y
x B

x

y
x B

x

=  

= −  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Accept e.c.f (full marks awarded if x 

values were wrong in previous parts. 
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13 Solutions to this question by accurate drawing will not be accepted.  

The parallelogram ABCD is such that the points A and C are ( )3, 2− and ( )1, 8

respectively. The line BD is parallel to the line 2 3 4x y+ = and is perpendicular to AB.  

 

 

 

                                           

 

 (a)  Show that the equation of BD is 2 3 13x y+ = . [4] 

  

( )

( )

2
1

3

Midpoint of 2, 3 1

2 3 2
1

3 2 3

2
3 2

3

13

3

2 13

3 3

2 3 13 (shown) 1

BDm B

BD M

y
y x c M or

x

c

c

y x

x y A

= −

=

−
= − + = −

−

= − +

=

= − +

+ =

 

 

 

 

 

O 

B 

( )3, 2A −  

D 

( )1, 8C  

x 

y 
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 (b)  Calculate the coordinates of B. [4] 

 

( )

Find the equation of ,

3
1

2

3 2 3

2 3 2

3
2 3

2

13

2

3 13
1 2 3 13

2 2

AB

AB

m B

y
y x c OR

x

c

c

y x A OR y x

=

+
= + =

−

− = +

= −

= − = −

 

 

2 13
.........(1)

3 3

3 13
.........(2)

2 2

2 13 3 13
1

3 3 2 2

4 26 9 39

13 65

5

(5,1) 1

y x

y x

x x M

x x

x

x

B A

= − +

= −

− + = −

− + = −

=

=

 

 

 

 

 

 

 

 
(c)   Calculate the coordinates of D.  [2] 

  

( )

( )

( )

Let  be , .

5 1
2,3 , 1

2 2

1, 5 . 1

D x y

x y
M

D A

+ + 
=  
 

 −

 

 

 

 

 

Accept e.c.f (if previous eqn of AB is wrong.  
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14 A particle starts from rest at a fixed point O and moves in a straight line such that its 

velocity 1msv −  is given by 23
4

2
v t t= − , where t is the time in seconds after leaving O. 

Calculate  

 

 (a)  the velocity of the particle when its acceleration is zero, [3] 

  

 

2

d
4 3 1

d

4 3 0

4
1

3

4 3 4 8
4 m/s 1

3 2 3 3

v
a t M

t

t

t s M

v A

= = −

− =

=

   
= − =   

   

 

 

 

 

 

 

 

 

 (b)  the time when the particle is instantaneously at rest again, [2] 

  

23
4 0 1

2

3
0 (rej) 4 0

2

8
1

3

t t M

t s or t

t s A

− =

= − =

=

 

 

 

 

 

 

 

 

 

 

Must rej t = 0 or show evidence like # 

symbol to show this is the final answer. 
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Accept e.c.f 

 (c)  the total distance travelled by the particle when it returns to O. [5] 

  

2

2 3

2 3

2 3

d

3
4 d 1

2

1
2 1

2

0, 0, 0

1
2 1

2

8
,

3

8 1 8 128
2 1

3 2 3 27

128 256 13
Total distance = 2 m   OR    9 m   1

27 27 27

s v t

t t t M

t t c M

t s c

s t t A

t

s M

A

=

= −

= − +

= = =

= −

=

   
= − =   

   

 =





OR   

8

3

0

8

23

0

2 3

3
2 4 d 1(for 2)

2

1(for integrating)

1
2 2 1

2

128
2 0 1

27

256

27

256
Total distance = m 1

27

s t t t M

M

t t M

M

A

= −

 
= − 

 

 
= − 

 

=



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 END OF PAPER  
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Mathematical Formulae 

 

1. ALGEBRA 

Quadratic Equation 
 

 For the equation ,02 =++ cbxax   

     x =   
2 4

2

b b ac

a

−  −
 

 
 

Binomial expansion 

       ,......
21

)( 221 nrrnnnnn bba
r

n
ba

n
ba

n
aba ++








++








+








+=+ −−−

 

 

where n is a positive integer and  
! ( 1)...( 1)

!( )! !

n n n n n r

r r n r r

  − − +
= = 

− 
 

 
 

     2. TRIGONOMETRY 

Identities 

1cossin 22 =+ AA  

AA 22 tan1sec +=  

cosec 2 A = 1 + cot 2 A 

BABABA sincoscossin)sin( =  

BABABA sinsincoscos)cos( =  

BA

BA
BA

tantan1

tantan
)tan(




=  

AAA cossin22sin =  

AAAAA 2222 sin211cos2sincos2cos −=−=−=  

A

A
A

2tan1

tan2
2tan

−
=  

 
 

Formulae for ABC   

C

c

B

b

A

a

sinsinsin
==  

Abccba cos2222 −+=  

1
sin

2
bc A =  
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1 It is given that ( )f ( ) 2 sin cosxx e x x= − .  

 
 

(a) Show that f '( ) 4 sinxx e x= . [3] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

(b) Hence evaluate 
π

0
sin  dxe x x . 

[4] 

   

 

 

  



4 
 

 

2 
 

(a) Prove that 3sin3 3sin 4sinx x x= − . [4] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 (b) Hence solve the equation 36sin 8sin 1x x− =  for 0 120x    . [4] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



5 
 

 

3 
 

(a) Show that 4 2 23 4 ( 1)( 1)( 4)x x x x x+ − = + − + . [2] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

(b) Hence express 
2

4 2

3 7

3 4

x

x x

+

+ −
in partial fractions. 

 

[6] 
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4 

 

A curve y, is such that 
2

2

d
2

d

y
x

x
=  and the point ( )0, 3P − lies on the curve. The gradient 

of the curve at P is 5.  

 

 

 

(a) Determine if the curve passes through point ( )3,21Q . [5] 
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 (b) Explain why the curve has no turning point. [2] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (c) Determine whether the curve is an increasing or decreasing function. [2] 
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5 

 

The points ( )2,1A − , ( )3, 4B − and ( )3,1C lies on a circle.   
  

 

(a) Show that the centre of the circle is 
1 3

, .
2 2

 
− 

 
 

 

[6] 
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 (b) Explain why AB is the diameter of the circle. [1] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 (c) Find the equation of the circle. [3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (d) Show that point ( )2,2D  lies outside the circle. [2] 
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56 Solve the following equations.  
  

(a) 

2 23 log ( 4) 2log (3 4).x x+ + = −  [4] 
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 (b) 
32log log 3 1.yy − =  [5] 
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7 
 

 

(a) Factorise 3( 1) 8x − −  completely. [3] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(b) Hence show that 3( 1) 8 0x − − =  has only 1 solution. [3] 
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58 

 

 

The diagram shows part of the curve y
x

= −10
32

2
 and two parallel lines OR and PQ. The 

equation of OR is xy = and the line intersects the curve at point (2,2)R . PQ is the 

tangent to the curve at point Q. 

 

 

  

(a) 

Find the coordinates of Q and of P. [5] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

P 

O 

Q 

y 

x 

 

 

R (2,2) 



14 
 

  

(b) 

Find the area of the shaded region OPQR. [5] 
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59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the diagram WXYZ is a quadrilateral with 12 mXY = , 5 mYZ =  and WXY  = .  

 

  

 
 

(a) Show that the perimeter, P cm, of WXYZ is 17sin 7cos 17 + + . [4] 

 
 

  

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

(b) Express P in the form sin( ) ,R k + +  where 0R  , 0k   and 0 90    . [3] 

   

 

 

 

 

 

 

 

  

  

12 m  
Z 

W 

5 m  

Y 

X 
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(c) Find the maximum value of P and the corresponding value of  . [2] 
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10 A cylindrical pipe of surface area S m2 has a circumference of 
2

b
a

x

 
+ 

 
 m and length  

of x  m. Corresponding values of x and S are shown in the table below. 

 

x 0.5 1.0 1.5 2.0 

S 23 19 21 24.5 
 

 

 

  
 

(a) Draw a straight line graph of Sx against 2x . [2] 
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19 
 

 

(b) Use the graph to estimate   
 

 (i) the value of each of the constants a and b, [4] 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(ii) the surface area of the pipe with a length of 0.8 m. [3] 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) By drawing a suitable straight line, find the length of the pipe when its surface 

area is 
3

5 x
x

 
+ 

 
 cm2. [3] 
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Mathematical Formulae 

 

1. ALGEBRA 

Quadratic Equation 
 

 For the equation ,02 =++ cbxax   

     x =   
2 4

2

b b ac

a

−  −
 

 
 

Binomial expansion 

       ,......
21

)( 221 nrrnnnnn bba
r

n
ba

n
ba

n
aba ++








++








+








+=+ −−−

 

 

where n is a positive integer and  
! ( 1)...( 1)

!( )! !

n n n n n r

r r n r r

  − − +
= = 

− 
 

 
 

     2. TRIGONOMETRY 

Identities 

1cossin 22 =+ AA  

AA 22 tan1sec +=  

cosec 2 A = 1 + cot 2 A 

BABABA sincoscossin)sin( =  

BABABA sinsincoscos)cos( =  

BA

BA
BA

tantan1

tantan
)tan(




=  

AAA cossin22sin =  

AAAAA 2222 sin211cos2sincos2cos −=−=−=  

A

A
A

2tan1

tan2
2tan

−
=  

 
 

Formulae for ABC   

C

c

B

b

A

a

sinsinsin
==  

Abccba cos2222 −+=  

1
sin

2
bc A =  
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1 It is given that ( )f ( ) 2 sin cosxx e x x= − .  

 
 

(a) Show that f '( ) 4 sinxx e x= . [4] 

 
 

( )

( ) ( )

( ) ( )

( )

f ( ) 2 sin cos

f'( ) 2 sin cos 2 cos sin  -------------------- M1

2 sin cos cos sin  -------------------- M1

=2 2sin

=4 sin  (shown)------------------- A1

x

x x

x

x

x

x e x x

x e x x e x x

e x x x x

e x

e x

= −

= − + +

= − + +    

 

 

 

 

 

 

 

  

 

 
 

(b) Hence evaluate 
π

0
sin  dxe x x . 

[4] 

  ( )

( )

( )

4 sin  d =2 sin cos -------------------- M1

4 sin  d =2 sin cos

1
sin  d = sin cos ------------------- M1

2

x x

x x

x x

e x x e x x c

e x x e x x c

e x x e x x c

− +

− +

− +







 

( )

( ) ( )

0
0

0

1
sin  d sin cos  ------------------- M1

2

1 1
= sin cos sin 0 cos 0

2 2

1 1
 ------------------- A1

2 2

x xe x x e x x

e e

e








 

 
= − 
 

 
− − − 

 

= +


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2 
 

(a) Prove that 3sin3 3sin 4sinx x x= − . [3] 

 
 

( )

( )

( )

2

2 3

2 3

3

LHS sin 3

=sin 2  ------------------- M1

sin 2 cos cos 2 sin  

2sin cos cos 1 2sin sinx ------------------- M1

=2sin cos sin 2sin

2sin 1 sin sin 2sin ------------------- M1

2sin 2sin sin

x

x x

x x x x

x x x x

x x x x

x x x x

x x x

=

+

= +

= + −

+ −

= − + −

= − + − 3

3

2sin

3sin 4sin

RHS ------------------- A1

x

x x= −

=

 

 

 

 

 

 

 

  

 

 (b) Hence solve the equation 36sin 8sin 1x x− =  for 0 120x    . [4] 

 
 

 

( )

3

3

6sin 8sin 1

2 3sin 4sin 1

2sin 3 1 ------------------- M1

1
sin 3 =

2

30  ------------------- M1

3 30,180 30

3 30,150 ------------------- M1

10 ,50  ------------------- A1

x x

x x

x

x

x

x

x



− =

− =

=

= 

= −

=

=  
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(a) Show that 4 2 23 4 ( 1)( 1)( 4)x x x x x+ − = + − + . [2] 

 
 

 

 

( )( )

( )( )( )

4 2

2 2

2

LHS = 3 4

1 4  -------------------- M1

1 1 4   -------------------- A1

x x

x x

x x x

+ −

= − +

= + − +

 

 

 

 

 

 

 

  

 

  

(b) Hence express 
2

4 2

3 7

3 4

x

x x

+

+ −
in partial fractions. 

 

[6] 

 
 

 

( )( )( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( )( )

2

2 2

2 2 2

3 7
 -------------------- M1

1 11 1 4  4

3 7 1 4 1 4 1 1

sub 1

10 (10)

1-------------------- M1

sub 1

10 10

1-------------------- M1

sub 0

7 4 4

7 4 4

x A B Cx D

x xx x x x

x A x x B x x Cx D x x

x

B

B

x

A

A

x

A B D

D

+ +
= + +

+ −+ − + +

+ = − + + + + + + + −

=

=

=

= −

= −

= −

=

= − + −

= + −

( )( )( ) ( ) ( ) ( )

( ) ( ) ( )

3

2

2 2

2

1-------------------- M1

compare coeff of ,    

0

0 1 1

0-------------------- M1

3 7 1 1 1

1 11 1 4  4

1 1 1
-------------------- A1

1 1 4

D

x

A B C

C

C

x

x xx x x x

x x x

=

= + +

= − + +

=

+ −
= + +

+ −+ − + +

= − +
− + +

 

 

 

 

  

https://freetestpaper.com/
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4 

 

A curve y, is such that 
2

2

d
2

d

y
x

x
=  and the point ( )0, 3P − lies on the curve. The gradient 

of the curve at P is 5.  

 

 

 

(a) Determine if the curve passes through point ( )3,21Q . [5] 

 
 

 

 
2

2

2

2

3

3

d
2

d

d
=  ------------------ M1

d

d
0, =5 ------------------ M1

d

5 

d
= 5

d

1
5 ------------------ M1

3

0, 3

3 

1
5 3

3

when 3 ------------------ M1

9 15 3

21 

the curve passes

y
x

x

y
x C

x

y
x

x

C

y
x

x

y x x D

x y

D

y x x

x

y

y

=

+

=

=

+

= + +

= = −

= −

= + −

=

= + −

=

 through the point (3,21) ------------------ A1
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 (b) Explain why the curve has no turning point. [2] 

 
 

 

2

2

2

d
= 5

d

d
for turning point, 0,

d

5 0

5

5---------------- M1

no Solution, therefore no turning point ---------------- A1

y
x

x

y

x

x

x

x

+

=

+ =

= −

= −

 

 

 

 

 

 

 (c) Determine whether the curve is an increasing or decreasing function. [2] 

 
 

 

2

2

2

d
= 5

d

0

5 0--------------- A1

Therefore the curve is an increasing function for all value of --------------- A1

y
x

x

x

x

x

+



+ 

 

 

 

 

 

  

2 d
or as 0,     5---------------- M1

d

d
since  can never be zero,

d

the curve has no turning point. ---------------- A1

y
x

x

y

x

 


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5 

 

The points ( )2,1A − , ( )3, 4B − and ( )3,1C lies on a circle.   
  

 

(a) Show that the centre of the circle is 
1 3

, .
2 2

 
− 

 
 

 

[6] 

 
 

 

( ) ( )2,1 , 3, 4

4 1

3 ( 2)

1-------------------- M1

1

2 3 1 ( 4)
int ,

2 2

1 3
, -------------------- M1

2 2

3 1

2 2

2

2-------------------- M1

AB

AB

A B

m

m

midpo

y mx c

c

c

y x

⊥

− −

− −
=

− −

= −

=

− + + − 
=  
 

 
= − 
 

= +

− = +

= −

= −

 

 

( ) ( )3, 4 , 3,1

4 1

3 3

undefine-------------------- M1

0

3
midpoint 3,

2

3
0

2

3

2

3
-------------------- M1

2

BC

BC

B C

m

m

y mx c

c

c

y

⊥

−

− −
=

−

=

=

 
= − 
 

= +

− = +

= −

= −
 

 

2

3

2

1

2

1 3
Therefore centre of circle is , -------------------- A1

2 2

y x

y

x

= −

= −

=

 
− 

 
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 (b) Explain why AB is the diameter of the circle. [1] 

 
 

 

Midpoint of AB is the center of the circle.  

Or student show that  

 

1BC ACm m = − -----------B1 

 

 

 

 

 

 

 (c) Find the equation of the circle. [3] 

  2 2

2

2 2

1 3
3 4 -------------------- M1

2 2

25 25

4 4

25
-------------------- M1

2

1 3 25
-------------------- A1

2 2 2

r

x y

   
= − + − +   
   

= +

=

   
− + + =   

   

 

 

 

 

 

 

 

 (d) Show that point ( )2,2D  lies outside the circle. [2] 

  2 2
1 3

Distance of  from centre 2 2 -------------------- M1
2 2

9 49

4 4

29 25
-therefore point  lies out side the circle------------------- A1

2 2

D

D

   
= − + +   

   

= +

= 
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56 Solve the following equations.  
  

(a) 2 23 log ( 4) 2log (3 4).x x+ + = −  [4] 

 
 

 

 

( )( )

2 2

2

2 2

2

2

2
3

2

2

2

3 log ( 4) 2log (3 4)

log (3 4) log ( 4) 3

(3 4)
log 3 -------------------- M1

( 4)

(3 4)
2 -------------------- M1

( 4)

(3 4) 8( 4)

9 24 16 8 32

9 32 16 0-------------------- M1

4 9 4 0

x x

x x

x

x

x

x

x x

x x x

x x

x x

+ + = −

− − + =

−
=

+

−
=

+

− = +

− + = +

− − =

− + =

4
4    or  (Rej)  ------------------ A1

9
x x= = −

 

 

 

 

 

 

 

 (b) 
32log log 3 1.yy − =  [5] 

 
 

 

( )( )

3

3
3

3

3

2

2

3 3

2log log 3 1

log 3
2log 1 -------------------- M1

log

let log

1
2 1 -------------------- M1

2 1

2 1 0 -------------------- M1

2 1 1 0

1
      or      1

2

1
log      or      log 1 

2

yy

y
y

x y

x
x

x x

x x

x x

x x

y y

− =

− =

=

− =

− =

− − =

+ − =

= − =

= − = -------------------- M1

1
     or      3 -------------------- A1

3
y y= =
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(a) Factorise 3( 1) 8x − −  completely. [3] 

 
 

 

 

( ) ( ) ( ) ( )

( )( )

( )( )

3 2

2

2

1 8 1 2 1 2 1 4 -------------------- M1

1 2 2 1 2 2 4 -------------------- M1

3 3   -------------------- A1

x x x x

x x x x

x x

 − − = − − − + − +    

= − − − + + − +

= − +

 

 

 

 

 

 

 

  

(b) Hence show that 3( 1) 8 0x − − =  has only 1 solution. 
 

[3] 

 
 

 

 

( )

( )( )

( )( )

( )

3

2

2

2 2

3

1 8 0

3 3 =0  ------------------ M1

3 0                            or    3 0

4 0 4 1 3           or          3              

12 0  (no solution)        ------------------- M1

 1 8 0 h

x

x x

x x

b ac x

x

− − =

− +

+ = − =

− = − =

= − 

 − − = as only 1 solution 3------------------------A1x =
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58 

 

 

The diagram shows part of the curve y
x

= −10
32

2
 and two parallel lines OR and PQ. The 

equation of OR is xy = and the line intersects the curve at point (2,2)R . PQ is the 

tangent to the curve at point Q. 

 

 

  

(a) 
Find the coordinates of Q and of P. [5] 

 
 

 

 

2

2

3

3

32
10

10 32

d
64  -------------------- M1

d

64 1 -------------------- M1

4

8

(4,8) -------------------- A1

8 4  -------------------- M1

4

(0,4) -------------------- A1

y
x

y x

y
x

x

x

x

y

Q

y mx c

c

c

P

−

−

−

= −

= −

=

=

=

=

= +

= +

=

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

P 

O 

Q 

y 

x 

 

 

R (2,2) 
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(b) 

Find the area of the shaded region OPQR. [5] 

  

4
2

2

4
1

2

1
Area of trapezium = (4 8) 4

2

24 -------------------------------------M1

1
Area of triangle= 2 2

2

2 -------------------------------------M1

Area under the curve= 10 32  d

10 32  ------------

x x

x x

−

−

+ 

=

 

=

−

 = + 



( ) ( )

2

-------------------------M1

32 32
10 4 10 2

4 2

48 36

12 -------------------------------------M1

Area of shaded region  =24 2 12

10 units  -------------------------------------A1

OPQR

   
= + − +   
   

= −

=

− −

=
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59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the diagram WXYZ is a quadrilateral with 12 mXY = , 5 mYZ =  and WXY  = .  

 

  

 
 

(a) Show that the perimeter, P cm, of WXYZ is 17sin 7cos 17 + + . [4] 

 
 

sin
12

12sin

AY

AY





=

=

cos
12

12cos

AX

AX





=

=

sin
5

5sin

BZ

BZ





=

=

cos
5

5cos  -----------------------M2

          M1 for any pair

BY

BY





=

=   

  
12cos 5sin 12sin 5cos 12 5-----------------------------------M1

17sin 7cos 17 (Shown) ------------------------------A1

P    

 

= + + − + +

= + +
 

  

 

 

 

 

 

 

(b) Express P in the form sin( ) ,R k + +  where 0R  , 0k   and 0 90    . [3] 

   

2 2

1

17sin 7cos sin( )

17 7

338 -----------------------------M1

7
tan

17

22.3801  -----------------------------M1

17sin 7cos 17

13 2 sin( 22.4 ) 17 

OR

=18.4sin( 22.4 ) 17-----------------------

R

R

P

   





 





−

+ = +

= +

=

=

= 

= + +

= +  +

+  + --A1

 

 

 

 

 

 

 

  

  

12 m  
Z 

W 

5 m  

Y 

X 
A 

B 
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(c) Find the maximum value of P and the corresponding value of  . [2] 

  max 338 17

35.38477

35.4--------------B1

sin( 22.3801 ) 1

90 22.3801

67.6199

67.6 (1dp)-------------B1

P





= +

=

=

+  =

= −

=

= 

 

 

 

 

 

 

 

 

  



16 
 

 

10 A cylindrical pipe of surface area S m2 has a circumference of 
2

b
a

x

 
+ 

 
 m and length  

of x  m. Corresponding values of x and S are shown in the table below. 

 

x 0.5 1.0 1.5 2.0 

S 23 19 21 24.5 
 

 

 

  
 

(a) Draw a straight line graph of Sx against 2x . [2] 

 
 

  

 

x2 0.25 1.0 2.25 4.0 

Sx 11.5 19.0 31.5 49.0 

 

 
 

 

 

1                   2                 3                 4                 5                  

70 

 

 
 

60 

 

 
 

50 

 

 

 

40 

 

 
 

30 

 

 

 
20 

 

 

 

10 

 

 

 

 

 

 

 

Point - B1 

Line – B1 
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(b) Use the graph to estimate   
 

 (i) the value of each of the constants a and b, [4] 
 

  

9-----------------------------M1

39 9

3 0

10-----------------------------M1

c

m

=

−
=

−

=

 

2

2 -----------------------------M1

a=10

b=9-----------------------A1

b
S a x

x

b
S ax

x

Sx ax b

 
= + 
 

= +

= +  

 

 

 

 

  

(ii) the surface area of the pipe with a length of 0.8 m. [3] 
  

 
2

2

0.64-----------------------------M1

from the graph, 

15.5-----------------------------M1

15.5

0.8

19.375

19.4 m  (3sf)------------------A1

x

Sx

S

=

=

=

=

=

 

 

 

 

 

(c) By drawing a suitable straight line, find the length of the pipe when its surface 

area is 
3

5 x
x

 
+ 

 
 cm2. [3] 

 
 

  

2

2

3
5

5 15-----------------------------M1

From the graph,

1.2-----------------------------M1

1.2

1.095

1.10

the length is 1.10 cm------------------A1

S x
x

Sx x

x

x

 
= + 

 

= +

=

=

=

=

 

 

 

END OF PAPER 

 


