## PRELIMINARY EXAMINATION 2023 SECONDARY 4

## ADDITIONAL MATHEMATICS

Paper 1
Thursday 24 August 2023
2 hours 15 minutes
Candidates answer on the Question Paper．

## READ THESE INSTRUCTIONS FIRST

Write your name，class and index number in the spaces at the top of this page．
Write in dark blue or black pen．
You may use an HB pencil for any diagrams or graphs．
Do not use paper clips，glue or correction fluid．
Answer all the questions．
Give non－exact numerical answers correct to 3 significant figures，or 1 decimal place in the case of angles in degrees，unless a different level of accuracy is specified in the question．
The use of an approved scientific calculator is expected， where appropriate．
You are reminded of the need for clear presentation in your answers．

At the end of the examination，fasten all your work securely together．
The number of marks is given in brackets［ ］at the end of each question or part question．

The total number of marks for this paper is 90 ．

| For Examiner＇s |  |
| :---: | :---: |
| Use |  |$|$| Question <br> Number | Marks <br> Obtained |
| :---: | :---: |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |
| 9 |  |
| 10 |  |
| 11 |  |
| 12 |  |
| Total Marks |  |

This document consists of 19 printed pages and 1 blank page．

## Mathematical Formulae

## 1. ALGEBRA

## Quadratic Equation

For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial expansion

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n},
$$

where $n$ is a positive integer and $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$.

## 2. TRIGONOMETRY

## Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} a b \sin C
\end{gathered}
$$

1 The points $R$ and $S$ have coordinates $(\sqrt{3}, 2 \sqrt{3})$ and $(\sqrt{5}, 4 \sqrt{5})$ respectively. Show that the gradient of $R S$ can be expressed in the form $a+b \sqrt{15}$, where $a$ and $b$ are integers to be found.

2 Given that $\cos \theta=p$ and that $\theta$ is acute, express in terms of $p$,
(a) $\sin \theta$,
(b) $\tan \left(90^{\circ}-\theta\right)$,
(c) $\cos 2 \theta$.

3 Express $\frac{12 x^{2}+32 x+31}{(2 x-1)(x+2)^{2}}$ in partial fractions. [5]

4 The expression $a x^{3}+b x^{2}+b$ leaves a remainder of $R$ when divided by $(x+1)$ and a remainder of $5 R-2$ when divided by $(x+2)$.
(a) Show that $b=\frac{2-3 a}{5}$.
(b) Given further that $a b=-8$ and $a>b$, find the value of $a$ and of $b$.
(c) Using the values of $a$ and $b$ found in part (b), explain why the equation $a x^{3}+b x^{2}+b=0$ has only one real root and state its value.

5 Find the coordinates of the stationary points of the curve $y=\frac{(x-3)^{2}}{x}$ and determine the nature of each stationary point.

6 The height of a ball above ground, $h$ metres, released by a machine can be modelled by the equation $h=-0.2 x^{2}+6 x+3$ where $x$ is the horizontal distance travelled by the ball in metres.
(a) State the height above ground at which the ball is being released.
(b) Express $h=-0.2 x^{2}+6 x+3$ in the form $a(x-b)^{2}+c$, where $a, b$ and $c$ are constants to be found.
(c) Using your result from part (b), explain why the height of the ball can never be more than 48 metres.
(d) Hence, explain if this machine is safe for use in an indoor stadium with a ceiling height of 45 metres.

7 (a) Solve the equation $3^{x}\left(18+3^{x}\right)=40$.
(b) Solve the equation $\log _{\sqrt{2}} y=3+\log _{2}(y+6)$.

Continuation of working space for question 7(b)
(c) In order to obtain a graphical solution of the equation $x=2 \ln \left(4-\frac{3 x}{2}\right)$, a suitable straight line can be drawn on the same set of axes as the graph of $y=4-\mathrm{e}^{\frac{x}{2}}$. Make $\mathrm{e}^{\frac{x}{2}}$ the subject of $x=2 \ln \left(4-\frac{3 x}{2}\right)$ and hence find the equation of this line.

8 A curve has the equation $y=\frac{x^{2}-x+1}{5 x-5}, x \neq 1$.
(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}-2 x}{5(x-1)^{2}}$.
(b) Explain why the curve is increasing for $x>2$.

9 (a) Given that $\frac{\cos (\alpha+\beta)}{\cos (\alpha-\beta)}=\frac{3}{4}$, prove that $\cos \alpha \cos \beta=7 \sin \alpha \sin \beta$.
(b) Hence, deduce the relationship between $\tan \alpha$ and $\tan \beta$.
(c) Given further that $\alpha+\beta=45^{\circ}$, calculate the value of $\tan \alpha+\tan \beta$.

10 A circle, whose equation is $x^{2}+y^{2}-10 x-8 y+16=0$, has centre $C$ and radius $r$.
(a) Find the coordinates of $C$ and the value of $r$.
(b) Explain whether the point $(9,2)$ lies inside or outside the circle.

The line $4 y=3 x+1$ meets the circle at the points $P$ and $T$, and the $x$-axis at $S$.
$T$ lies between $P$ and $S$.
(c) Without finding the coordinates of $P$ and of $T$, find the length $T S$.

11 The table shows, to 1 decimal place, the mass, $m$, of a radioactive substance, in grams, after $t$ days.

| $t$ | 5 | 10 | 15 | 20 | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | 57.7 | 37.0 | 23.7 | 15.2 | 9.7 |

(a) On the grid opposite, plot $\ln m$ against $t$ and draw a straight line graph.
(b) Find the gradient of your straight line and hence express $m$ in the form $m_{0} \mathrm{e}^{k t}$, where $m_{0}$ and $k$ are constants.

The half-life of a radioactive substance is the length of time it takes for half of the substance to decay.
(c) In order to determine the half-life of the radioactive substance, a suitable straight line can be drawn on the same set of axes as your graph. Find the equation of this line and hence determine the half-life of the radioactive substance.


12 A particle travels in a straight line so that its velocity, $v \mathrm{~cm} / \mathrm{s}, t$ seconds after passing through a fixed point $O$, is given by $v=t^{2}-k t+5$, where $k$ is a constant. The particle first comes to an instantaneous rest at the point $P$ and then at the point $Q$.
(a) Given that the particle reaches a minimum velocity at $t=3$, show that $k=6$.
(b) Find the distance $P Q$.
(c) With working clearly shown, explain whether the particle will pass by $O$ again, after the first 7 seconds.

## Answer Key



| Name: | Class: | Class Register Number: |
| :--- | :--- | :--- |



CHUNG CHENG HIGH SCHOOL (MAIN)
Chung Cheng High School ChungChengHigh School Chung Cheng High School ChungChengHigh School Chung Cheng High School

## MARKS SCHEME

This document consists of 19 printed pages and $\mathbf{1}$ blank page.
[Turn over

## Mathematical Formulae

## 1. ALGEBRA

## Quadratic Equation

For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial expansion

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n},
$$

where $n$ is a positive integer and $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$.

## 2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan ^{2}}{1-\tan ^{2} A}
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} a b \sin C
\end{gathered}
$$

1 The points $R$ and $S$ have coordinates $(\sqrt{3}, 2 \sqrt{3})$ and $(\sqrt{5}, 4 \sqrt{5})$ respectively. Show that the gradient of $R S$ can be expressed in the form $a+b \sqrt{15}$, where $a$ and $b$ are integers to be found.

$$
\text { Gradient of } \begin{aligned}
R S & =\frac{4 \sqrt{5}-2 \sqrt{3}}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}} \\
& =\frac{(4 \sqrt{5}-2 \sqrt{3})(\sqrt{5}+\sqrt{3})}{(\sqrt{5})^{2}-(\sqrt{3})^{2}} \\
& =\frac{20-4 \sqrt{15}-2 \sqrt{15}-6}{2} \\
& =\frac{14-6 \sqrt{15}}{2} \\
& =\frac{2(7-3 \sqrt{15})}{2} \\
& =7-3 \sqrt{15}
\end{aligned}
$$

B1 $-\frac{4 \sqrt{5}-2 \sqrt{3}}{\sqrt{5}-\sqrt{3}}$
M1 $-\sqrt{ } \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}$
M1 - either numerator or denominator expanded correctly

$$
a=7, b=-3
$$

A1

2 Given that $\cos \theta=p$ and that $\theta$ is acute, express in terms of $p$,
(a) $\sin \theta$,

$$
\sqrt{1-p^{2}}
$$

## B1

M1 $-\frac{1}{\text { their } \tan \theta}$

A1

$$
\begin{aligned}
\cos 2 \theta & =1-2 \sin ^{2} \theta \\
& =1-2\left(\sqrt{1-p^{2}}\right)^{2} \\
& =1-2\left(1-p^{2}\right) \\
& =1-2+2 p^{2} \\
& =2 p^{2}-1
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\tan \theta} \\
& =\frac{1}{\sqrt{1-p^{2}}} \\
& =\frac{p}{\sqrt{1-p^{2}}}
\end{aligned}
$$

(c) $\cos 2 \theta$.

M1 - uses any $\cos 2 \theta$ formula correctly

3 Express $\frac{12 x^{2}+32 x+31}{(2 x-1)(x+2)^{2}}$ in partial fractions.
$\frac{12 x^{2}+32 x+31}{(2 x-1)(x+2)^{2}}=\frac{A}{2 x-1}+\frac{B}{x+2}+\frac{C}{(x+2)^{2}}$
$12 x^{2}+32 x+31=A(x+2)^{2}+B(2 x-1)(x+2)+C(2 x-1)$
let $x=\frac{1}{2}$,
$50=\frac{25}{4} A$
$A=8$
let $x=-2$,
$15=-5 C$
$C=-3$
let $x=0$,
$31=4 A-2 B-C$
$31=32-2 B+3$
$2 B=4$
$B=2$
$A=8, B=2, C=-3$
$\frac{12 x^{2}+32 x+31}{(2 x-1)(x+2)^{2}}=\frac{8}{2 x-1}+\frac{2}{x+2}-\frac{3}{(x+2)^{2}}$

M1 - realising the form of partial fractions
M1 - realising the need to eliminate the denominator

A1, A1, A1 - do not award last A1 if not expressed in partial fractions

4 The expression $a x^{3}+b x^{2}+b$ leaves a remainder of $R$ when divided by $(x+1)$ and a remainder of $5 R-2$ when divided by $(x+2)$.
(a) Show that $b=\frac{2-3 a}{5}$.
when $x=-1$,
$a(-1)^{3}+b(-1)^{2}+b=R$
$-a+2 b=R--(1)$
when $x=-2$,
$a(-2)^{3}+b(-2)^{2}+b=5 R-2$
$-8 a+5 b=5 R-2 \quad---(2)$
sub (1) into (2),
$-8 a+5 b=5(-a+2 b)-2$
$-8 a+5 b=-5 a+10 b-2$
$10 b-5 b=-8 a+5 a+2$
$5 b=-3 a+2$
$b=\frac{2-3 a}{5}$ (shown)
M1 - realises $\mathrm{f}(-1)=R$

M1 - realises $\mathrm{f}(-2)=5 R-2$

DM1 - award only if both M1 above is achieved

A1
AG
(b) Given further that $a b=-8$ and $a>b$, find the value of $a$ and of $b$.

$$
\begin{aligned}
& a b=-8 \\
& b=\frac{-8}{a} \\
& \frac{-8}{a}=\frac{-3 a+2}{5} \\
& -40=-3 a^{2}+2 a \\
& 3 a^{2}-2 a-40=0 \\
& (3 a+10)(a-4)=0 \\
& a=-\frac{10}{3} \quad \text { or } \quad a=4 \\
& b=2.4 \\
& (\text { reject ) } \\
& \therefore a=4, b=-2
\end{aligned}
$$

M1 - allow slips only for LHS
$\sqrt{ } \mathrm{M} 1$ - finding ' $b$ '

A1
(c) Using the values of $a$ and $b$ found in part (b), explain why the equation $a x^{3}+b x^{2}+b=0$ has only one real root and state its value.
$4 x^{3}-2 x^{2}-2=0$
$2 x^{3}-x^{2}-1=0$
when $x=1$,
$2(1)^{3}-1^{2}-1=0$
$\therefore$ By factor theorem, $(x-1)$ is a factor.
$(x-1)\left(2 x^{2}+c x+1\right)=0$
by comparing $x^{2}$ terms,
$-2+c=-1$
$c=1$
$(x-1)\left(2 x^{2}+x+1\right)=0$
For $2 x^{2}+x+1=0$,
discriminant $=1^{2}-4(2)(1)=-7<0$
$\therefore 2 x^{2}+x+1=0$ has no real roots.
$4 x^{3}-2 x^{2}-2=0$ has only 1 real root of $x=1$.

B1 - factor

M1 - correct method to find quadratic (division or inspection)

M1 - realising the need to find discriminant / solve quadratic equation A1 - no real roots $+x=1$

5 Find the coordinates of the stationary points of the curve $y=\frac{(x-3)^{2}}{x}$ and determine the nature of each stationary point.

$$
\begin{aligned}
y & =\frac{(x-3)^{2}}{x} \\
& =\frac{x^{2}-6 x+9}{x} \\
& =x-6+\frac{9}{x} \\
& =x-6+9 x^{-1} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =1-9 x^{-2} \\
& =1-\frac{9}{x^{2}}
\end{aligned}
$$

For stationary points, $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$

$$
1-\frac{9}{x^{2}}=0
$$

$$
\begin{aligned}
\frac{9}{x^{2}} & =1 \\
x^{2} & =9
\end{aligned}
$$

$$
x=3 \text { or }-3
$$

$$
y=0 \text { or }-12
$$

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=18 x^{-3}
$$

$$
=\frac{18}{x^{3}}
$$

At $(3,0)$,
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{18}{3^{3}}=\frac{2}{3}>0$
$\therefore(3,0)$ is a minimum point
At $(-3,-12)$,
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{18}{(-3)^{3}}=-\frac{2}{3}<0$
$\therefore(-3,-12)$ is a maximum point

M1 - sets $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to 0

A1 - for $(3,0)$
A1 - for $(-3,-12)$

M1 - their $2^{\text {nd }}$ derivative or use of $1^{\text {st }}$ derivative test

6 The height above ground, $h$ metres, of a ball, released by a machine can be modelled by the equation $h=-0.2 x^{2}+6 x+3$ where $x$ is the horizontal distance travelled by the ball in metres.
(a) State the height above ground at which the ball is released.
(b) Express $h=-0.2 x^{2}+6 x+3$ in the form $a(x-b)^{2}+c$, where $a, b$ and $c$ are constants to be found.

$$
\begin{align*}
& h=-0.2\left(x^{2}-30 x\right)+3  \tag{2}\\
& =-0.2\left(x^{2}-30 x+15^{2}-15^{2}\right)+3 \\
& =-0.2\left[(x-15)^{2}-225\right]+3 \\
& =-0.2(x-15)^{2}+48
\end{align*}
$$

B2, 1:-1 for each error
(c) Using your result from (b), explain why the height of the ball can never be more than 48 metres.

For $-0.2(x-15)^{2}+48$,
$(x-15)^{2} \geq 0$,
$-0.2(x-15)^{2} \leq 0$
$-0.2(x-15)^{2}+48 \leq 48$
Since the ball reaches a maximum height of 48 m , it will never reach a height of more than 48 m .
$\sqrt{ }$ M1 - their square term

A1
(d) Hence, explain if this machine is safe for use in an indoor stadium with a ceiling height of 45 metres.

Since the ball can reach a maximum height of 48 m which exceeds the ceiling height of 45 m , this machine is not safe for use in the indoor stadium.

B1 - to have comparison of maximum height with ceiling height.

7 (a) Solve the equation $3^{x}\left(18+3^{x}\right)=40$.

$$
\begin{aligned}
3^{x}\left(18+3^{x}\right) & =40 \\
\left(3^{x}\right)^{2}+18\left(3^{x}\right)-40 & =0
\end{aligned}
$$

Let $y=3^{x}$.

$$
\begin{aligned}
y^{2}+18 y-40 & =0 \\
(y+20)(y-2) & =0 \\
y & =-20 \quad \text { or } \quad y=2
\end{aligned}
$$

M1 - solving of quadratic equation

$$
3^{x}=2
$$

M1 - taking $\ln$

$$
\ln 3^{x}=\ln 2
$$

$$
3^{x}=-20 \quad\left(\text { rej. } \because 3^{x}>0\right) \quad \text { or } \quad x \ln 3=\ln 2
$$

$$
\begin{aligned}
x & =\frac{\ln 2}{\ln 3} \\
& =0.631 \quad(3 \text { sig. fig. })
\end{aligned}
$$

A1
(b) Solve the equation $\log _{\sqrt{2}} y=3+\log _{2}(y+6)$.

$$
\begin{aligned}
\log _{\sqrt{2}} y & =3+\log _{2}(y+6) \\
\log _{\sqrt{2}} y-\log _{2}(y+6) & =3 \\
\frac{\log _{2} y}{\log _{2} \sqrt{2}}-\log _{2}(y+6) & =3 \\
\frac{\log _{2} y}{\frac{1}{2}}-\log _{2}(y+6) & =3 \\
2 \log _{2} y-\log _{2}(y+6) & =3 \\
\log _{2}\left(\frac{y^{2}}{y+6}\right) & =3
\end{aligned}
$$

Comparing,

$$
\begin{aligned}
\frac{y^{2}}{y+6} & =3 \\
y^{2} & =3 y+18 \\
y^{2}-3 y-18 & =0 \\
(y-6)(y+3) & =0 \\
y & =6 \text { or }-3(\text { rej } . \therefore y>0)
\end{aligned}
$$

B1 - change of base law

M1 - power law

M1 - quotient law

Continuation of working space for question 7(b)
(c) In order to obtain a graphical solution of the equation $x=2 \ln \left(4-\frac{3 x}{2}\right)$, a suitable straight line can be drawn on the same set of axes as the graph of $y=4-\mathrm{e}^{\frac{x}{2}}$. Make $\mathrm{e}^{\frac{x}{2}}$ the subject of $x=2 \ln \left(4-\frac{3 x}{2}\right)$ and hence find the equation of this line.

$$
\begin{aligned}
x & =2 \ln \left(4-\frac{3 x}{2}\right) \\
\frac{x}{2} & =\ln \left(4-\frac{3 x}{2}\right) \\
\mathrm{e}^{\frac{x}{2}} & =4-\frac{3 x}{2} \\
\frac{3 x}{2} & =4-\mathrm{e}^{\frac{x}{2}}
\end{aligned}
$$

Equation of line: $y=\frac{3 x}{2}$

M1 - attempt to make $\ln \left(4-\frac{3 x}{2}\right)$ the subject
A1

B1

8 A curve has the equation $y=\frac{x^{2}-x+1}{5 x-5}, x \neq 1$.
(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}-2 x}{5(x-1)^{2}}$.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{(5 x-5)(2 x-1)-\left(x^{2}-x+1\right)(5)}{(5 x-5)^{2}} \\
& =\frac{10 x^{2}-5 x-10 x+5-5 x^{2}+5 x-5}{[5(x-1)]^{2}} \\
& =\frac{5 x^{2}-10 x}{5^{2}(x-1)^{2}} \\
& =\frac{5\left(x^{2}-2 x\right)}{25(x-1)^{2}} \\
& =\frac{x^{2}-2 x}{5(x-1)^{2}} \text { (shown) }
\end{aligned}
$$

M1 - quotient rule performed correctly, allow for numerical slips

B1 - for $5^{2}(x-1)^{2} / 25(x-1)^{2}$

A1 - factorisation must be seen

## AG

(b) Explain why the curve is increasing for $x>2$.

## Alternative solution

Where the curve is increasing,
$\frac{\mathrm{d} y}{\mathrm{~d} x}>0$,
$\frac{x^{2}-2 x}{5(x-1)^{2}}>0$
Since $5(x-1)^{2}>0$, for all real values of $x$,
$x^{2}-2 x>0$
$x(x-2)>0$
$x<0$ or $x>2$
$\therefore$ for $x>2$, the curve is always increasing.

$$
x^{2}-2 x=x(x-2)
$$

$$
x>2, x-2>0
$$

$$
x(x-2)>0
$$

$$
\text { since }(x-1)^{2}>0
$$

$$
\frac{x^{2}-2 x}{5(x-1)^{2}}>0
$$

Since $\frac{\mathrm{d} y}{\mathrm{~d} x}>0$, the curve is always increasing.

B1 $-x>2, x-2>0, x(x-2)>0$

B1 $-(x-1)^{2}>0$

B1 $-\frac{x^{2}-2 x}{5(x-1)^{2}}>0+$ conclusion of curve is always increasing. Award only if B1,B1 has been achieved.

9 (a) Given that $\frac{\cos (\alpha+\beta)}{\cos (\alpha-\beta)}=\frac{3}{4}$, prove that $\cos \alpha \cos \beta=7 \sin \alpha \sin \beta$.
$4[\cos \alpha \cos \beta-\sin \alpha \sin \beta]=3[\cos \alpha \cos \beta+\sin \alpha \sin \beta]$
$4 \cos \alpha \cos \beta-4 \sin \alpha \sin \beta=3 \cos \alpha \cos \beta+3 \sin \alpha \sin \beta$ $4 \cos \alpha \cos \beta-3 \cos \alpha \cos \beta=4 \sin \alpha \sin \beta+3 \sin \alpha \sin \beta$ $\cos \alpha \cos \beta=7 \sin \alpha \sin \beta$ (shown)

M1 - attempt at addition formula

A1
AG
(b) Hence, deduce the relationship between $\tan \alpha$ and $\tan \beta$.

$$
\begin{aligned}
& \cos \alpha \cos \beta=7 \sin \alpha \sin \beta \\
& \frac{1}{7}=\frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta} \\
& \tan \alpha \tan \beta=\frac{1}{7} \quad \text { or } \quad \frac{1}{\tan \beta}=7 \tan \alpha
\end{aligned}
$$

M1 - realises the need to divide
(c) Given further that $\alpha+\beta=45^{\circ}$, calculate the value of $\tan \alpha+\tan \beta$.

$$
\begin{aligned}
& \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\
& \tan 45^{\circ}=\frac{\tan \alpha+\tan \beta}{1-\frac{1}{7}} \\
& 1=\frac{\tan \alpha+\tan \beta}{\frac{6}{7}} \\
& \tan \alpha+\tan \beta=\frac{6}{7}
\end{aligned}
$$

$\mathrm{M} 1-\tan 45^{\circ}$ or realises the need for $\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$

M1- their $\tan \alpha \tan \beta$

A1

10 A circle, whose equation is $x^{2}+y^{2}-10 x-8 y+16=0$, has centre $C$ and radius $r$.
(a) Find the coordinates of $C$ and the value of $r$.
$-2 a=-10$
$a=5$
$-2 b=-8$
$b=4$
$a^{2}+b^{2}-r^{2}=16$
$r^{2}=5^{2}+4^{2}-16$
$r=5$
$\therefore C(5,4)$ and $r$ is 5 units.

## Alternative Solution

$$
\begin{aligned}
& x^{2}+y^{2}-10 x-8 y+16=0 \\
& x^{2}-10 x+5^{2}-5^{2}+y^{2}-8 y+4^{2}-4^{2}+16=0 \\
& (x-5)^{2}+(y-4)^{2}=25+16-16 \\
& (x-5)^{2}+(y-4)^{2}=5^{2} \\
& C(5,4) \text { and } r=5 \text { units. }
\end{aligned}
$$

M1 - their $a$ and $b$

B1-(5,4), A1-5 units

M1 - attempt to complete square

B1-(5,4), A1-5 units
(b) Explain whether the point $(9,2)$ lies inside or outside the circle.

Distance from $(9,2)$ to $C$
$=\sqrt{(9-5)^{2}+(4-2)^{2}}$
$=\sqrt{20}<5$ (radius)
$\therefore(9,2)$ lies inside the circle.

M1 - realises the need to find distance from $(9,2)$ to $C$

A1 - need to indicate $<5$ (radius) and therefore inside the circle

The line $4 y=3 x+1$ meets the circle at the points $P$ and $T$, and the $x$-axis at $S$.
$T$ lies between $P$ and $S$.
(c) Without finding the coordinates of $P$ and of $T$, find the length $T S$.

At $S, y=0$
$3 x+1=0$
$x=-\frac{1}{3}$
$S\left(-\frac{1}{3}, 0\right)$
Subst $x=5$ into $4 y=3 x+1$,
$4 y=3(5)+1$
$y=\frac{16}{4}=4$
$\therefore(5,4)$ lies on the line $4 y=3 x+1$
Distance from $C$ to $S$
$=\sqrt{\left(5-\left(-\frac{1}{3}\right)\right)^{2}+4^{2}}$
$=6 \frac{2}{3}$ units
$\therefore T S=6 \frac{2}{3}-5$
$=1 \frac{2}{3}$ units

M1 - realises that $y=0$ for $S$

B1 - shows centre lies on line

M1 - distance from their $C$ to $S$

A1

11 The table shows, to 1 decimal place, the mass, $m$ of a radioactive substance, in grams, after $t$ days.

| $t$ | 5 | 10 | 15 | 20 | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $m$ | 57.7 | 37.0 | 23.7 | 15.2 | 9.7 |

(a) On the grid opposite, plot $\ln m$ against $t$ and draw a straight line graph.
(b) Find the gradient of your straight line and hence express $m$ in the form $m_{0} \mathrm{e}^{k t}$, where $m_{0}$ and $k$ are constants.

$$
\begin{aligned}
& \text { gradient }=-\frac{2.25}{25}=-0.09 \\
& \ln m=-0.09 t+4.5 \\
& m=e^{-0.09 t+4.5} \\
& m=e^{-0.09 t} \cdot e^{4.5} \\
& m=90.0 e^{-0.09 t}
\end{aligned}
$$

B1 - finds gradient correctly
M1 - finds $\ln m=' m^{\prime} t+c$ with their gradient + $y$-intercept

## A1,A1

The half-life of a radioactive substance is the length of time it takes for half of the substance to decay.
(c) In order to determine the half-life of the radioactive substance, a suitable straight line can be drawn on the same set of axes as your graph. Find the equation of this line and hence determine the half-life of the radioactive substance.
$m=90.0 e^{-0.09 t}$
when $t=0$,
$m=90.0$ (inital mass)
half of original mass $=45$
$\ln 45=3.80$.
line to be drawn :
$y=3.8$
Half-life $=7.75$ days

M1 - attempt to find original mass

A1
A1


12 A particle travels in a straight line so that its velocity, $v \mathrm{~cm} / \mathrm{s}, t$ seconds after passing through a fixed point $O$, is given by $v=t^{2}-k t+5$, where $k$ is a constant. The particle first comes to an instantaneous rest at the point $P$ and then at the point $Q$.
(a) Given that the particle reaches a minimum velocity at $t=3$, show that $k=6$.

$$
\begin{aligned}
v & =t^{2}-k t+6 & & v=t^{2}-k t+6 \\
& =\left(t-\frac{k}{2}\right)^{2}+5-\frac{k^{2}}{4} & \boxed{\text { B } 1} & \frac{\mathrm{~d} v}{\mathrm{~d} t}=2 t-k
\end{aligned}
$$

$$
\text { when } t=3, \frac{\mathrm{~d} v}{\mathrm{~d} t}=0
$$

$$
2(3)-k=0
$$

$$
6-k=0
$$

$$
k=6(\text { shown })
$$

B1
$\sqrt{ } \mathrm{M} 1-$ recognises $\frac{\mathrm{d} v}{\mathrm{~d} t}=0$ when $t=3$

AG
(b) Find the distance $P Q$.

At $P$ and $Q, v=0$

$$
\begin{aligned}
& t^{2}-6 t+5=0 \\
& (t-1)(t-5)=0 \\
& t=1 \text { or } t=5 \\
& s=\frac{1}{3} t^{3}-3 t^{2}+5 t+c
\end{aligned}
$$

when $t=0, s=0, \quad \therefore c=0$

$$
s=\frac{1}{3} t^{3}-3 t^{2}+5 t
$$

when $t=1, s=2 \frac{1}{3}$
when $t=5, s=-8 \frac{1}{3}$
Distance $P Q=2 \frac{1}{3}+8 \frac{1}{3}$

$$
=10 \frac{2}{3} \mathrm{~m}
$$

## A1

M1 - realises the need to integrate

A1

M1 $-s$ at their $t=1$ or $t=5$

A1
(c) With working clearly shown, explain whether the particle will pass by $O$ again, after the first 7 seconds.

At $t=7, s=2 \frac{1}{3}, v=12$
Since $s>0, v>0$ and there are no more turning points after $t=5$, the particle will not return to $O$ after 7 seconds.

## Alternative solution

$$
\begin{aligned}
& \frac{1}{3} t^{3}-3 t^{2}+5 t=0 \\
& t^{3}-9 t^{2}+15 t=0 \\
& t\left(t^{2}-9 t+15\right)=0 \\
& t=0 \text { or } t=\frac{9 \pm \sqrt{(-9)^{2}-4(1)(15)}}{2} \\
& \quad=6.79 \quad \text { or } 2.21
\end{aligned}
$$

Since the last time that the particle is at $O$ is 6.79 s , which is before 7 seconds, the particle will not pass by $O$ again after 7 seconds.

M1 - finds $s$ or $v$ at $t=7$
A1 - explains no turning points particle will not return to $O$

M1 - Attempt at solution for $s=0$

A1 - explains that last time that the particle is at $O$ is 6.79 s , which is before 7 s and hence does not return to $O$

## PRELIMINARY EXAMINATION 2023

## SECONDARY 4

## ADDITIONAL MATHEMATICS

4049／02

## Paper 2

Candidates answer on the Question Paper．

Tuesday 29 August 2023
2 hours 15 minutes

## READ THESE INSTRUCTIONS FIRST

Write your name，class and index number in the spaces at the top of this page．
Write in dark blue or black pen．
You may use an HB pencil for any diagrams or graphs．
Do not use paper clips，glue or correction fluid．
Answer all the questions．
Give non－exact numerical answers correct to 3 significant figures，or 1 decimal place in the case of angles in degrees，unless a different level of accuracy is specified in the question．
The use of an approved scientific calculator is expected， where appropriate．
You are reminded of the need for clear presentation in your answers．

At the end of the examination，fasten all your work securely together．
The number of marks is given in brackets［ ］at the end of each question or part question．

The total number of marks for this paper is 90 ．

| For Examiner＇s <br> Use |  |
| :---: | :---: |
| Question <br> Number | Marks <br> Obtained |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |
| 9 |  |
| 10 |  |
| Total Marks |  |

This document consists of $\mathbf{2 0}$ printed pages and $\mathbf{2}$ blank pages．

## Mathematical Formulae

## 1. ALGEBRA

## Quadratic Equation

For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial expansion

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

where $n$ is a positive integer and $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$.

## 2. TRIGONOMETRY

## Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan A}{1-\tan A}
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} a b \sin C
\end{gathered}
$$

1 (a) The line $4 x=3 y+2$ intersects the curve $x^{2}-x y+5=0$ at the points $A$ and $B$. Find the midpoint of $A B$.
(b) Find the least value of the integer $h$ for which $h x^{2}+5 x+h$ is positive for all real values of $x$.
(c) Given that the line $y=3 x+p$ is tangent to the curve $y=x^{2}+5 x+q$, where $p$ and $q$ are integers, prove that $p$ and $q$ are consecutive numbers.

2 (a) By considering the general term in the binomial expansion of $\left(x^{3}-\frac{2}{x}\right)^{7}$, explain why there are only odd powers of $x$ in this expansion.
(b) Find the term independent of $x$ in the expansion of $\left(x^{3}-\frac{2}{x}\right)^{7}\left(\frac{5}{x}-2 x^{2}\right)$.

3 The expression $7 \sin \theta+3 \cos \theta$ is defined for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(a) Using $R \sin (\theta+\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$, solve the equation $7 \sin \theta=5-3 \cos \theta$.
(b) State the largest and smallest values of $(7 \sin \theta+3 \cos \theta)^{2}-12$ and find the corresponding values of $\theta$.

4


The diagram shows a circle passing through the points $A, B, C, D$ and $E$. The straight line $F D G$ is tangent to the circle at $D$ while $F A B$ and $F E C$ are secant lines.
Given that angle $F D A=$ angle $A D B$,
(a) show that triangle $A B D$ is an isosceles triangle,
(b) prove that $A F \times B F=E F \times C F$.

5 An object is heated in an oven until it reaches a temperature of $X^{\circ} \mathrm{C}$. It is then allowed to cool under room temperature. Its temperature, $T^{\circ} \mathrm{C}$, can be modelled by $T=18+62 \mathrm{e}^{-k t}$, where $t$ is the time in minutes since the object starts cooling.
(a) Find the value of $X$.

When $t=10$, the temperature of the object is $65^{\circ} \mathrm{C}$.
(b) Find the temperature of the object an hour later, giving your answer to one decimal place.
(c) What does the model suggest about the room temperature? Explain your answer.

6 The equation of a curve is $y=\ln \left(\frac{2 x-1}{3 x-1}\right)$, where $x>\frac{1}{2}$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, expressing it as a single fraction.
(b) Explain why the curve will be almost parallel to the $x$-axis as $x$ becomes very large.
(c) Find the value of $x$ at the instant when the rate of change of $x$ is twice the rate of change of $y$.

7 (a) Show that $\tan A+\cot A=2 \operatorname{cosec} 2 A$.
(b) Hence, solve the equation $\frac{1}{\tan A+\cot A}=\frac{1}{4}$ for $0 \leq A \leq 2 \pi$.
(c) The diagram shows, for $0 \leq x \leq \pi$, the curve $y=\sin 2 x$ and the line $y=\frac{1}{2}$.

Showing all your working, find the area of the shaded region.



The diagram shows a parallelogram with vertices $A, B(6,21), C$ and $D(3,0)$. The point $E(8,17)$ lies on $B C$. The line $C D$ makes an angle $\theta$ with the positive $x$-axis such that $\tan \theta=1$. A line is drawn, parallel to the $y$-axis, from $A$ to meet the $x$-axis at $N$.
(a) Show that the coordinates of $A$ are $(-3,12)$.
(b) Hence, find the area of parallelogram $A B C D$.
(c) A point $F$ with $y$-coordinate of 5 lies on the line $C D$. Explain why $A E F N$ is a parallelogram.

## 9 (a) Differentiate $x \ln x$ with respect to $x$.

(b) A curve $y=\mathrm{f}(x)$ is such that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=24 x^{2}+\frac{16}{x}$, where $x>0$. The line $y=24 x-40$ is parallel to the tangent of the curve at $P(1,-16)$.

By using the result found in part (a), find the equation of the curve.

Continuation of working space for question $\mathbf{9}(\mathbf{b})$.
(c) Explain why the condition $x>0$ is necessary.

10


The diagram shows a solid prism with right-angled triangular ends that are perpendicular to the parallel sides $A D, B E$ and $C F$, which are each $y \mathrm{~cm}$ in length. The right-angled triangular ends have sides $A C$ and $D F$, which are $3 x \mathrm{~cm}$, and sides $B C$ and $E F$, which are $4 x \mathrm{~cm}$.

Given that the volume of the prism is $1200 \mathrm{~cm}^{3}$,
(a) find an expression for $y$ in terms of $x$,
(b) show that the total surface area of the prism, $S \mathrm{~cm}^{2}$, is given by $S=12 x^{2}+\frac{2400}{x}$.
(c) Given that $x$ can vary, find the value of $x$ for which the total surface area of the prism is a stationary value.
(d) Explain why this value of $x$ gives the smallest surface area possible.

## Answer Key

| Qns | Ans | Qns | Ans |
| :---: | :---: | :---: | :---: |
| 1(a) | $\left(1, \frac{2}{3}\right)$ | 8(a) | Show qns |
| 1(b) | $h=3$ | 8(b) | 162 units $^{2}$ |
| 1(c) | $q=1+p$, therefore consecutive numbers | 8(c) | Since gradients of lines $A E$ and $F N$ are the same, the lines $A E$ and $F N$ are parallel. Since $F$ lies directly below $E$, the line $E F$ is a vertical line. <br> Thus, the lines $E F$ and $A N$ are parallel. Since there are 2 pairs of parallel lines (or equivalent), $A E F N$ is a parallelogram. |
| 2(a) | Power of $x=21-4 r$. <br> Since $4 r$ is an even number for all non-negative integer values of $r$ and 21 is an odd number, then $21-4 r$ is always an odd number. | 9(a) | $1+\ln x$ |
| 2(b) | $-3360$ | 9(b) | $y=2 x^{4}+16 x \ln x-18$ |
| 3(a) | $\theta=17.8^{\circ}$ or $115.8^{\circ}(1 \mathrm{~d} . \mathrm{p}$. | 9(c) | $\ln x$ is defined for $x>0$ or $\ln x$ is undefined for $x<0$. |
| 3(b) | $\begin{aligned} & \text { Largest value }=46 \text { when } \\ & \theta=66.8^{\circ} \text { or } 246.8^{\circ}(1 \text { d.p. }) \\ & \text { Smallest value }=-12 \text { when } \\ & \theta=156.8^{\circ} \text { or } 336.8^{\circ}(1 \mathrm{~d} . \mathrm{p} .) \end{aligned}$ | 10(a) | $y=\frac{200}{x^{2}}$ |
| 4(a) | Show qns | 10(b) |  |
| 4(b) | Show qns | 10(c) | $x=4.64$ |
| 5(a) | 80 | 10(d) | $\frac{\mathrm{d}^{2} S}{\mathrm{~d} x^{2}}=72>0$ $\because \text { minimum }$ |
| 5(b) | For $t=60, T=29.8^{\circ} \mathrm{C}$ <br> For $t=70, T=26.9^{\circ} \mathrm{C}$ |  |  |
| 5(c) | Room temp. $=18^{\circ}$, $62 \mathrm{e}^{-k t}$ approaches zero as t becomes larger. |  |  |
| 6(a) | $\frac{1}{(2 x-1)(3 x+1)}$ |  |  |
| 6(b) | Since $(2 x-1)(3 x+1)$ becomes a very large number as $x$ becomes very large, $\frac{\mathrm{d} y}{\mathrm{~d} x}$ approaches 0 , the curve will almost horizontal, thus it will be almost parallel to the $x$-axis. |  |  |
| 6(c) | $x=1$ |  |  |
| 7(a) | Show qns |  |  |
| 7(b) | $A=\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{13 \pi}{12} \text { or } \frac{17 \pi}{12}$ |  |  |
| 7(c) | 0.725 units $^{2}$ |  |  |


| Name: | Class: | Class Register Number: |
| :--- | :--- | :--- |



CHUNG CHENG HIGH SCHOOL (MAIN)
Chung Cheng High School Chung ChengHigh School Chung Cheng High School Chung Cheng High School Chung Cheng High School Chung Cheng High School Chung ChengHigh School Chung Cheng High School ChungChengHigh School Chung Cheng High School Chung Cheng High School Chung Cheng High School Chung Cheng High School Chung ChengHigh School Chung Cheng High School Chung Cheng High School Chung Cheng High School

## PRELIMINARY EXAMINATION 2023

SECONDARY 4

## ADDITIONAL MATHEMATICS

4049/02

## Paper 2

Candidates answer on the Question Paper.

Tuesday 29 August 2023
2 hours 15 minutes

## MARKS SCHEME

## Mathematical Formulae

## 1. ALGEBRA

## Quadratic Equation

For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial expansion

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n},
$$

where $n$ is a positive integer and $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$.

## 2. TRIGONOMETRY

## Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} a b \sin C
\end{gathered}
$$

1 (a) The line $4 x=3 y+2$ intersects the curve $x^{2}-x y+5=0$ at the points $A$ and $B$. Find the midpoint of $A B$.

$$
\begin{align*}
4 x & =3 y+2  \tag{1}\\
x^{2}-x y+5 & =0 \tag{2}
\end{align*}
$$

From (1):

$$
\begin{align*}
3 y & =4 x-2 \\
y & =\frac{4 x-2}{3}
\end{align*}
$$

Sub. (3) into (2):

$$
\begin{aligned}
& x^{2}-x\left(\frac{4 x-2}{3}\right)+5=0 \\
& 3 x^{2}-4 x^{2}+2 x+15=0 \\
& -x^{2}+2 x+15=0 \\
& x^{2}-2 x-15=0 \\
& (x-5)(x+3)=0 \\
& x=5 \text { or }-3 \text { sub. into (3): } \\
& y=6 \text { or }-\frac{14}{3} \\
& \therefore A\left(-3,-\frac{14}{3}\right) \text { and } B(5,6) \\
& \text { Midpoint of } A B=\left(\frac{-3+5}{2}, \frac{-\frac{14}{3}+6}{2}\right) \\
& =\left(1, \frac{2}{3}\right)
\end{aligned}
$$

M1 f.t. - substitution

M1 f.t. - solving quadratic

M1 - either correct $x$ or $y$ values

M1 f.t. - midpoint formula

A1
(b) Find the least value of the integer $h$ for which $h x^{2}+5 x+h$ is positive for all real values of $x$.

$$
\begin{aligned}
\text { For } h x^{2}+5 x+h & >0, \\
\text { discriminant } & <0 \\
25-4(h) h & <0 \\
25-4 h^{2} & <0 \\
(5-2 h)(5+2 h) & <0 \\
h & <-\frac{5}{2} \quad \text { or } h>\frac{5}{2}
\end{aligned}
$$

Since $h>0, h>\frac{5}{2}$.
$\therefore$ Least integer value of $h=3$.

B1 - discriminant
M1 f.t. - factorising quadratic
(c) Given that the line $y=3 x+p$ is tangent to the curve $y=x^{2}+5 x+q$, where $p$ and $q$ are integers, prove that $p$ and $q$ are consecutive numbers.

$$
\begin{align*}
& y=3 x+p  \tag{1}\\
& y=x^{2}+5 x+q \tag{2}
\end{align*}
$$

Sub. (1) into (2):

$$
\begin{aligned}
& 3 x+p=x^{2}+5 x+q \\
& x^{2}+5 x+q-3 x-p=0 \\
& x^{2}+2 x+q-p=0 \\
& a=1, b=2, c=k-c
\end{aligned}
$$

Line is tangent to curve $\rightarrow b^{2}-4 a c=0$

$$
\begin{aligned}
2^{2}-4(1)(q-p) & =0 \\
4-4 q+4 p & =0 \\
4 q & =4+4 p \\
q & =1+p
\end{aligned}
$$

Since $q=1+p, q$ will always be the next number after $p$. Hence, $p$ and $q$ are consecutive numbers (proved).

## Alternative:

$$
\begin{aligned}
y & =x^{2}+5 x+q \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =2 x+5
\end{aligned}
$$

Since line is tangent to curve and gradient of line $=3$,

$$
\begin{aligned}
2 x+5 & =3 \\
2 x & =-2 \\
x & =-1
\end{aligned}
$$

$$
\begin{align*}
& y=3 x+p  \tag{1}\\
& y=x^{2}+5 x+q \tag{2}
\end{align*}
$$

Sub. (1) into (2) and $x=-1$ :

$$
\begin{aligned}
3 x+p & =x^{2}+5 x+q \\
3(-1)+p & =(-1)^{2}+5(-1)+q \\
-3+p & =-4+q \\
q-p & =1
\end{aligned}
$$

Since the difference between $q$ and $p$ is $1, q$ will always be the next number after $p$.
Hence, $p$ and $q$ are consecutive numbers (proved).

M1 - equate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to 3
M1 f.t. - finding $x$

M1 - substitution

A1 - with explanation

2 (a) By considering the general term in the binomial expansion of $\left(x^{3}-\frac{2}{x}\right)^{7}$, explain why there are only odd powers of $x$ in this expansion.

$$
\begin{align*}
T_{r+1} & =\binom{7}{r}\left(x^{3}\right)^{7-r}\left(-\frac{2}{x}\right)^{r}  \tag{3}\\
& =\binom{7}{r}\left(x^{21-3 r}\right)(-2)^{r}(x)^{-r} \\
& =\binom{7}{r}(-2)^{r} x^{21-4 r}
\end{align*}
$$

Power of $x=21-4 r$

Since $4 r$ is an even number for all non-negative integer values of $r$ and 21 is an odd number, then $21-4 r$ is always an odd number.

Therefore, there are only odd powers of $x$ in this expansion.

B1 - general formula

M1 f.t. - finding powers of $x$

A1 - conclusion
(b) Find the term independent of $x$ in the expansion of $\left(x^{3}-\frac{2}{x}\right)^{7}\left(\frac{5}{x}-2 x^{2}\right)$.

Consider $21-4 r=1$,

$$
4 r=20
$$

$$
r=5
$$

$$
\left(x^{3}-\frac{2}{x}\right)^{7}\left(\frac{5}{x}-2 x^{2}\right)=\left[\ldots+\binom{7}{5}(-2)^{5} x^{21-4(5)}+\ldots\right]\left(\frac{5}{x}-2 x^{2}\right)
$$

$$
=(\ldots-672 x+\ldots)\left(\frac{5}{x}-2 x^{2}\right)
$$

Term independent of $x=-672 \times 5$

$$
=-3360
$$

M1 f.t. - expansion
M1 f.t. - identifying $x$ term

A1

3 The expression $7 \sin \theta+3 \cos \theta$ is defined for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(a) Using $R \sin (\theta+\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$, solve the equation $7 \sin \theta=5-3 \cos \theta$.

$$
\begin{aligned}
7 \sin \theta+3 \cos \theta & =R \sin (\theta+\alpha) \\
& =R \sin \theta \cos \alpha+R \cos \theta \sin \alpha
\end{aligned}
$$

## Comparing,

 $7=R \cos \alpha$ and $3=R \sin \alpha$$$
\begin{aligned}
R & =\sqrt{7^{2}+3^{2}} \\
& =\sqrt{58} \\
\tan \alpha & =\frac{3}{7} \\
\alpha & =\tan ^{-1}\left(\frac{3}{7}\right) \\
& =23.1985 \ldots{ }^{\circ}
\end{aligned}
$$

$\therefore 7 \sin \theta+3 \cos \theta=\sqrt{58} \sin \left(\theta+23.1985 \ldots .^{\circ}\right)$

$$
\begin{aligned}
& 7 \sin \theta=5-3 \cos \theta \\
& 7 \sin \theta+3 \cos \theta=5 \\
& \sqrt{58} \sin \left(\theta+23.1985 \ldots{ }^{\circ}\right)=5 \\
& \sin \left(\theta+23.1985 \ldots{ }^{\circ}\right)=\frac{5}{\sqrt{58}} \\
& \text { basic angle }=\sin ^{-1}\left(\frac{5}{\sqrt{58}}\right) \\
& =41.0359 \ldots{ }^{\circ} \\
& \theta+23.1985 \ldots{ }^{\circ}=41.0359 \ldots{ }^{\circ} \text { or } 180^{\circ}-41.0359 \ldots{ }^{\circ} \\
& \theta=17.8^{\circ} \quad \text { or } 115.8^{\circ} \text { ( } 1 \text { dec. pl.) }
\end{aligned}
$$

M1 - attempt to find $R$

M1 - attempt to find $\alpha$
[only accept $\tan ^{-1}\left(\frac{3}{7}\right)$ or $\tan ^{-1}\left(\frac{7}{3}\right)$ ]

M1 f.t. - substitute $R$-form

M1 f.t. - basic angle

A1
(b) State the largest and smallest values of $(7 \sin \theta+3 \cos \theta)^{2}-12$ and find the corresponding values of $\theta$.
largest value of $(7 \sin \theta+3 \cos \theta)^{2}-12=(\sqrt{58})^{2}-12 \quad$ or $\quad(-\sqrt{58})^{2}-12$ $=46$

B1
occurs when $\theta+23.1985 \ldots{ }^{\circ}=90^{\circ}$ or $270^{\circ}$

$$
\theta=66.8^{\circ} \text { or } 246.8^{\circ}(1 \text { dec. pl. })
$$

smallest value of $(7 \sin \theta+3 \cos \theta)^{2}-12=(0)^{2}-12$

$$
=-12
$$

occurs when $\theta+23.1985 \ldots{ }^{\circ}=180^{\circ}$ or $360^{\circ}$

$$
\theta=156.8^{\circ} \text { or } 336.8^{\circ}(1 \mathrm{dec} . \mathrm{pl} .)
$$



The diagram shows a circle passing through the points $A, B, C, D$ and $E$. The straight line $F D G$ is tangent to the circle at $D$ while $F A B$ and $F E C$ are secant lines.
Given that angle $F D A=$ angle $A D B$,
(a) show that triangle $A B D$ is an isosceles triangle,

$$
\begin{aligned}
\angle A B D & =\angle F D A \quad \text { (alternate segment theorem) } \\
& =\angle A D B
\end{aligned}
$$

Since $\angle A B D=\angle A D B$, they form base angles of isosceles triangle.
Thus, triangle $A B D$ is an isosceles triangle. (shown)
(b) prove that $A F \times B F=E F \times C F$.

$$
\begin{array}{ll}
\angle F A E=\angle F C B & (\text { exterior } \angle \text { of cyclic quadrilateral }) \\
\angle A F E=\angle C F B & (\text { common } \angle)
\end{array}
$$

Thus, triangle $A F E$ is similar to triangle $C F B$.

$$
\begin{aligned}
\frac{A F}{C F} & =\frac{E F}{B F}(\text { ratio of corresponding sides are equal }) \\
A F \times B F & =E F \times C F(\text { proved })
\end{aligned}
$$



## Alternative:

$\angle F B E=\angle F C A \quad(\angle \mathrm{~s}$ in same segment)
$\angle E F B=\angle A F C \quad($ common $\angle)$
Thus, triangle $E F B$ is similar to triangle $A F C$.

$$
\frac{A F}{E F}=\frac{C F}{B F} \text { (ratio of corresponding sides are equal) }
$$ $A F \times B F=E F \times C F$ (proved)

5 An object is heated in an oven until it reaches a temperature of $X^{\circ} \mathrm{C}$. It is then allowed to cool under room temperature. Its temperature, $T^{\circ} \mathrm{C}$, can be modelled by $T=18+62 \mathrm{e}^{-k t}$, where $t$ is the time in minutes since the object starts cooling.
(a) Find the value of $X$.

$$
\text { When } t=0, \quad \begin{aligned}
T & =X . \\
X & =18+62 e^{-k(0)} \\
& =18+62 \\
& =80
\end{aligned}
$$

When $t=10$, the temperature of the object is $65^{\circ} \mathrm{C}$.
(b) Find the temperature of the object an hour later, giving your answer to one decimal place.

$$
\text { When } t=10, \quad \begin{aligned}
T & =65 . \\
65 & =18+62 e^{-k(10)} \\
\frac{47}{62} & =e^{-10 k} \\
\ln \frac{47}{62} & =\ln e^{-10 k} \\
\ln \frac{47}{62} & =-10 k \\
k & =-\frac{1}{10} \ln \frac{47}{62} \\
& =0.0276986 \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { When } t=60, \\
& \begin{array}{rlrl}
T & =18+62 \mathrm{e}^{-\left(-\frac{1}{10} \ln \frac{77}{62}\right)(60)} & & \text { When } t=70, \\
& =29.765 \ldots & & =18+62 \mathrm{e}^{-\left(-\frac{1}{10} \ln \frac{47}{62}\right)(70)} \\
& =29.8^{\circ} \mathrm{C}(1 \mathrm{dec} . \mathrm{pl} .) & & =26.9193 \ldots \\
& =26.9^{\circ} \mathrm{C}(1 \mathrm{dec} . \mathrm{pl} .)
\end{array}
\end{aligned}
$$

B1 - sub. 10 and 65 correctly

M1 - Take $\ln$ on both sides

M1 - finding $k$

M1 f.t. - sub. $t=60$ or 70

A1
(c) What does the model suggest about the room temperature? Explain your answer.

Since $\mathrm{e}^{-k t}>0$, then $62 \mathrm{e}^{-k t}>0$.
Thus, as $\boldsymbol{t}$ becomes larger, $62 \mathrm{e}^{-k t}$ approaches zero.
Therefore, $T$ will approach $18{ }^{\circ} \mathrm{C}$ as $t$ becomes larger.
Hence, the room temperature is $18^{\circ} \mathrm{C}$.

B1 - explanation

B1 - temperature

6 The equation of a curve is $y=\ln \left(\frac{2 x-1}{3 x-1}\right)$, where $x>\frac{1}{2}$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, expressing it as a single fraction.

$$
\begin{aligned}
y & =\ln \left(\frac{2 x-1}{3 x-1}\right) \\
& =\ln (2 x-1)-\ln (3 x-1) \\
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{2}{2 x-1}-\frac{3}{3 x+1} \\
& =\frac{2(3 x-1)-3(2 x-1)}{(2 x-1)(3 x-1)} \\
& =\frac{1}{(2 x-1)(3 x+1)}
\end{aligned}
$$

## Alternative:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\frac{2(3 x-1)-3(2 x-1)}{(3 x-1)^{2}}}{\frac{2 x-1}{3 x-1}} \\
& =\frac{\frac{1}{(3 x-1)^{2}}}{\frac{2 x-1}{3 x-1}} \\
& =\frac{1}{(2 x-1)(3 x+1)}
\end{aligned}
$$

B1 - quotient law of logarithms

M1 f.t. - differentiate either term

A1 - single fraction

B1 - differentiate $\ln$ in the form $\frac{\mathrm{f}^{\prime}(x)}{\mathrm{f}(x)}$
M1 - apply quotient rule to numerator.

A1 - single fraction
(b) Explain why the curve will be almost parallel to the $x$-axis as $x$ becomes very large.

Since $(2 x-1)(3 x+1)$ becomes a very large number as $x$ becomes very large, $\frac{\mathrm{d} y}{\mathrm{~d} x}$ approaches $\underline{\mathbf{0}}$, the curve will almost horizontal, thus it will be almost parallel to the $x$-axis.
(c) Find the value of $x$ at the instant when the rate of change of $x$ is twice the rate of change of $y$.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} t} & =\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t} \\
\frac{\mathrm{~d} y}{\mathrm{~d} t} & =\frac{1}{(2 x-1)(3 x-1)} \times 2\left(\frac{\mathrm{~d} y}{\mathrm{~d} t}\right) \\
1 & =\frac{2}{(2 x-1)(3 x-1)} \\
(2 x-1)(3 x-1) & =2 \\
6 x^{2}-5 x+1-2 & =0 \\
6 x^{2}-5 x-1 & =0 \\
(x-1)(6 x+1) & =0 \\
x & =1 \text { or }-\frac{1}{6}\left(\text { rej } \because x>\frac{1}{2}\right)
\end{aligned}
$$

M1 f.t. - substitution
B1 - substitute $\frac{\mathrm{d} x}{\mathrm{~d} t}=2 \frac{\mathrm{~d} y}{\mathrm{~d} t}$

A1

7 (a) Show that $\tan A+\cot A=2 \operatorname{cosec} 2 A$.

## Alternative:

LHS $=\tan A+\cot A$
$=\tan A+\frac{1}{\tan A}$
$=\frac{\tan ^{2} A+1}{\tan A}$
$=\frac{\sec ^{2} A}{\tan A}$
$=\frac{\frac{1}{\cos ^{2} A}}{\frac{\sin A}{\cos A}}$
$=\frac{1}{\sin A \cos A}$
$=\frac{2}{2 \sin A \cos A}$
$=2 \operatorname{cosec} 2 A$ (shown)

$$
\begin{array}{rl|l}
\text { LHS } & =\tan A+\cot A & \\
& =\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A} & \mathrm{M} 1-\frac{\sin A}{\cos A} \text { or } \frac{1}{\tan A} \\
& =\frac{\sin ^{2} A+\cos ^{2} A}{\sin A \cos A} & \mathrm{M} 1-\text { for } \sin ^{2} A+\cos ^{2} A=1 \\
& =\frac{1}{\sin A \cos A} & \text { or for } \tan ^{2} A+1=\sec ^{2} A
\end{array}
$$

$$
=\frac{2}{2 \sin A \cos A}
$$

$$
=\frac{2}{\sin 2 A}
$$

$$
=2 \operatorname{cosec} 2 A(\text { shown })
$$

A1 - award only if last 3 steps are shown
(b) Hence, solve the equation $\frac{1}{\tan A+\cot A}=\frac{1}{4}$ for $0 \leq A \leq 2 \pi$.

$$
\begin{aligned}
\frac{1}{\tan A+\cot A} & =\frac{1}{4} \\
\tan A+\cot A & =4 \\
2 \operatorname{cosec} 2 A & =4 \\
\operatorname{cosec} 2 A & =2 \\
\sin 2 A & =\frac{1}{2} \\
\operatorname{basic} \angle & =\sin ^{-1}\left(\frac{1}{2}\right) \\
& =\frac{\pi}{6} \\
2 A & =\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6}, \frac{17 \pi}{6} \\
A & =\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{13 \pi}{12}, \frac{17 \pi}{12}
\end{aligned}
$$

B1 - substitution of (a)

M1 - for finding $\frac{\pi}{6}$ and $\frac{5 \pi}{6}$
A1
(c) The diagram shows, for $0 \leq x \leq \pi$, the curve $y=\sin 2 x$ and the line $y=\frac{1}{2}$.

Showing all your working, find the area of the shaded region.


Area bounded by curve, $x$-axis and lines $x=0$ and $x=\frac{\pi}{12}$

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{12}} \sin 2 x \mathrm{~d} x \\
& =\left[\frac{-\cos 2 x}{2}\right]_{0}^{\frac{\pi}{12}} \\
& =\left[-\frac{\cos \frac{\pi}{6}}{2}\right]-\left[-\frac{\cos 0}{2}\right] \\
& =\left(-\frac{\sqrt{3}}{4}+\frac{1}{2}\right) \text { units }^{2} \text { or } 0.066987 \ldots \text { units }^{2}
\end{aligned}
$$

$$
\text { Area of rectangle }=\left(\frac{5 \pi}{12}-\frac{\pi}{12}\right) \times \frac{1}{2}
$$

$$
=\frac{\pi}{6} \text { units }^{2}
$$

Area of shaded region $=3 \times\left(-\frac{\sqrt{3}}{4}+\frac{1}{2}\right)+\frac{\pi}{6}$

$$
=0.725 \text { units }^{2} \text { (3 sig.fig) }
$$

M1 - integrate $\sin 2 x$

DM1 - evaluate with either limits 0 to $\frac{\pi}{12}$ or $\frac{5 \pi}{12}$ to $\frac{\pi}{2}$ or $\frac{\pi}{2}$ to $\frac{7 \pi}{12}$

M1 - area of rectangle

M1 f.t. - area under curve $\times 3$

A1


The diagram shows a parallelogram with vertices $A, B(6,21), C$ and $D(3,0)$. The point $E(8,17)$ lies on $B C$. The line $C D$ makes an angle $\theta$ with the positive $x$-axis such that $\tan \theta=1$. A line is drawn, parallel to the $y$-axis, from $A$ to meet the $x$-axis at $N$.
(a) Show that the coordinates of $A$ are $(-3,12)$.

$$
\begin{aligned}
m_{A B} & =m_{C D} \\
& =1
\end{aligned}
$$

Eq. of $A B: \quad y-21=(1)(x-6)$

$$
\begin{equation*}
y=x+15 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
m_{A D} & =m_{B E} \\
& =\frac{17-21}{8-6} \\
& =-2
\end{aligned}
$$

Eq. of $A D$ :

$$
\begin{align*}
y-0 & =-2(x-3) \\
y & =-2 x+6 \tag{2}
\end{align*}
$$

Sub. (1) into (2):

$$
\begin{aligned}
x+15 & =-2 x+6 \\
3 x & =-9 \\
x & =-3 \text { sub. into }(1): \\
y & =12
\end{aligned}
$$

$$
\therefore A(-3,12) \text { (shown) }
$$

B1 - gradient formula

M1 f.t. - finding equation of $A D$ or $A B$

M1 f.t. - substitution

A1 (A.G.)

## Alternative:

Eq. of $C D: \quad y-0=(1)(x-3)$

$$
\begin{equation*}
y=x-3 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
m_{B C} & =m_{B E} \\
& =\frac{17-21}{8-6} \\
& =-2
\end{aligned}
$$

Eq. of $B C: \quad y-21=-2(x-6)$

$$
\begin{equation*}
y=-2 x+33 \tag{2}
\end{equation*}
$$

Sub. (1) into (2):

$$
\begin{aligned}
& x-3=-2 x+33 \\
& 3 x=36 \\
& x=12 \text { sub. into }(1): \\
& y=9 \\
& \therefore \boldsymbol{C}(\mathbf{1 2}, \mathbf{9})
\end{aligned}
$$

Midpoint of $A C=$ Midpoint of $B D$
$\left(\frac{x+12}{2}, \frac{y+9}{2}\right)=\left(\frac{3+6}{2}, \frac{0+21}{2}\right)$
$\left(\frac{x+12}{2}, \frac{y+9}{2}\right)=\left(\frac{9}{2}, \frac{21}{2}\right)$

Comparing,

$$
\begin{aligned}
\frac{x+12}{2} & =\frac{9}{2} & & \frac{y+9}{2} & =\frac{21}{2} \\
x+12 & =9 & \text { and } & y+9 & =21 \\
x & =-3 & & y & =12
\end{aligned}
$$

$\therefore A(-3,12)$ (shown)

B1 - gradient formula

M1 f.t. - finding equation of $B C$

M1 f.t. - substitution

M1 f.t. - equating midpoints

A1 (A.G.)
(b) Hence, find the area of parallelogram $A B C D$.
area of parallelogram $A B C D=2 \times$ area of triangle $A B D$

$$
\begin{aligned}
& =2 \times \frac{1}{2}\left|\begin{array}{cccc}
-3 & 3 & 6 & -3 \\
12 & 0 & 21 & 12
\end{array}\right| \\
& =2 \times \frac{1}{2}[(63+72)-(-63+36)] \\
& =135+27 \\
& =162 \text { units }^{2}
\end{aligned}
$$

## Alternative:

If students have found the coordinates of $C$ in part (a),

$$
\text { area of parallelogram } \begin{aligned}
A B C D & =\frac{1}{2}\left|\begin{array}{ccccc}
3 & 12 & 6 & -3 & 3 \\
0 & 9 & 21 & 12 & 0
\end{array}\right| \\
& =\frac{1}{2}[(27+252+72)-(36-63+54)] \\
& =\frac{1}{2}(351-27) \\
& =162 \text { units }^{2}
\end{aligned}
$$

M1 - allow clockwise direction

A1

M1 f.t. - allow clockwise direction

A1
(c) A point $F$ with $y$-coordinate of 5 lies on the line $C D$. Explain why $A E F N$ is a parallelogram.

Eq. of $C D$ :

$$
\begin{align*}
y-0 & =(1)(x-3) \\
y & =x-3 \quad \ldots \tag{3}
\end{align*}
$$

Let coordinates of $F$ be $(x, 5)$.

Sub. (8, y) into (3):

$$
\begin{aligned}
y & =8-3 \\
& =5
\end{aligned}
$$

$$
\therefore F(\mathbf{8}, \mathbf{5})
$$

Coordinates of $N=(-3,0)$

$$
\begin{aligned}
\text { length of } A N & =\sqrt{(-3+3)^{2}+(12-0)^{2}} \\
& =12 \text { units } \\
\text { length of } E F & =\sqrt{(8-8)^{2}+(17-5)^{2}} \\
& =12 \text { units }
\end{aligned}
$$

Since $F$ lies directly below $E$, the line $E F$ is a vertical line. Thus, the lines $E F$ and $A N$ are parallel.
And that the lengths of $A N$ and $E F$ are equal (i.e., 12 units),
they form a pair of parallel and equal opposite sides. Thus, $A E F N$ is a parallelogram.

## Alternative 1:

$\begin{aligned} \text { gradient of } A E & =\frac{17-12}{8-(-3)} & \text { gradient of } F N & =\frac{5-0}{8-(-3)} \\ & =\frac{5}{11} & & =\frac{5}{11}\end{aligned}$

## Since gradients of lines $A E$ and $F N$ are the same, the lines $A E$ and $F N$ are parallel.

Since $F$ lies directly below $E$, the line $E F$ is a vertical line. Thus, the lines $E F$ and $A N$ are parallel.

Since there are 2 pairs of parallel lines, $A E F N$ is a parallelogram.

A1 - vertical lines are parallel

A1 - conclusion

M1 f.t. - finding either gradients

A1 - vertical lines are parallel

A1 - conclusion

## Alternative 2:

$$
\text { Midpoint of } \begin{aligned}
A F & =\left(\frac{-3+8}{2}, \frac{12+5}{2}\right) \\
& =\left(\frac{5}{2}, \frac{17}{2}\right)
\end{aligned}
$$

Midpoint of $N E=\left(\frac{-3+8}{2}, \frac{0+17}{2}\right)$

$$
=\left(\frac{5}{2}, \frac{17}{2}\right)
$$

Since the diagonals intersect at the same point, $A E F N$ is a parallelogram.

M1 f.t. - midpoint of $A F$

M1 f.t. - midpoint of $A E$

A1 - conclusion

9 (a) Differentiate $x \ln x$ with respect to $x$.

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(x \ln x) & =x\left(\frac{1}{x}\right)+(1) \ln x \\
& =1+\ln x
\end{aligned}
$$

B1, B1 - for each term
(b) A curve $y=\mathrm{f}(x)$ is such that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=24 x^{2}+\frac{16}{x}$, where $x>0$. The line $y=24 x-40$ is parallel to the tangent of the curve at $P(1,-16)$.

By using the result found in part (a), find the equation of the curve.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\int 24 x^{2}+\frac{16}{x} \mathrm{~d} x \\
& =\frac{24 x^{3}}{3}+16 \ln x+c \\
& =8 x^{3}+16 \ln x+c, \text { where } c \text { is a constant. }
\end{aligned}
$$

When $x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=24$.

$$
\begin{aligned}
24 & =8(1)^{3}+16 \ln (1)+c \\
c & =16
\end{aligned}
$$

$$
\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=8 x^{3}+16 \ln x+16
$$

$$
y=\int 8 x^{3}+16 \ln x+16 \mathrm{~d} x \text { or } y=\int 8 x^{3}+16(1+\ln x) \mathrm{d} x
$$

$$
=\frac{8 x^{4}}{4}+16\left(x \ln x-\int 1 \mathrm{~d} x\right)+16 x+c_{1}
$$

$$
=\frac{8 x^{4}}{4}+16\left(x \ln x-x+c_{2}\right)+16 x+c_{1}
$$

$$
=2 x^{4}+16 x \ln x-16 x+16 x+c_{3}
$$

$$
2 x^{4}+16 x \ln x+c_{3}, \text { where } c_{1}, c_{2} \text { and } c_{3} \text { are constants. }
$$

When $x=1, y=-16$.

$$
\begin{aligned}
-16 & =2(1)^{4}+16(1) \ln (1)+c_{3} \\
-16 & =2+c_{3} \\
c_{3} & =-18
\end{aligned}
$$

$\therefore y=2 x^{4}+16 x \ln x-18$

B1, B1 - for each integral

M1 f.t. - finding $c$

M1 f.t. - reverse

M1 f.t. - finding $c_{3}$

A1

Continuation of working space for question $\mathbf{9}(\mathbf{b})$.
(c) Explain why the condition $x>0$ is necessary.
$\underline{\ln x}$ is defined for $x>0$.
or
$\underline{\ln x}$ is undefined for $x<0$.

10


The diagram shows a solid prism with right-angled triangular ends that are perpendicular to the parallel sides $A D, B E$ and $C F$, which are each $y \mathrm{~cm}$ in length. The right-angled triangular ends have sides $A C$ and $D F$, which are $3 x \mathrm{~cm}$, and sides $B C$ and $E F$, which are $4 x \mathrm{~cm}$.

Given that the volume of the prism is $1200 \mathrm{~cm}^{3}$,
(a) find an expression for $y$ in terms of $x$,

$$
\begin{aligned}
\text { Vol. of prism } & =\frac{1}{2}(3 x)(4 x) y \\
1200 & =6 x^{2} y \\
y & =\frac{200}{x^{2}}
\end{aligned}
$$

B1 - volume formula

B1
(b) show that the total surface area of the prism, $S \mathrm{~cm}^{2}$, is given by $S=12 x^{2}+\frac{2400}{x}$.

$$
\begin{aligned}
A B & =\sqrt{(3 x)^{2}+(4 x)^{2}} \\
& =\sqrt{25 x^{2}} \\
& =5 x \mathrm{~cm}
\end{aligned}
$$

Total surface area $=2 \times \frac{1}{2}(3 x)(4 x)+3 x y+4 x y+5 x y$

$$
\begin{aligned}
& =12 x^{2}+12 x y \\
& =12 x^{2}+12 x\left(\frac{200}{x^{2}}\right) \\
& =12 x^{2}+\frac{2400}{x} \text { (shown) }
\end{aligned}
$$

B1 - finding length of $A B$

M1 - at least 3 correct surfaces

A1 (A.G.)
(c) Given that $x$ can vary, find the value of $x$ for which the total surface area of the prism is a stationary value.

$$
\begin{aligned}
& \frac{\mathrm{d} S}{\mathrm{~d} x}=24 x-\frac{2400}{x^{2}} \\
& \text { For } S \text { to be stationary, } \frac{\mathrm{d} S}{\mathrm{~d} x}=0 \\
& \begin{aligned}
24 x-\frac{2400}{x^{2}} & =0 \\
24 x & =\frac{2400}{x^{2}} \\
x^{3} & =100 \\
x & =\sqrt[3]{100} \\
& =4.64 \quad(3 \text { sig. fig. })
\end{aligned}
\end{aligned}
$$

B1 - differentiation

M1 f.t.

A1
(d) Explain why this value of $x$ gives the smallest surface area possible.
$\frac{\mathrm{d}^{2} S}{\mathrm{~d} x^{2}}=24+\frac{4800}{x^{3}}$
When $x=\sqrt[3]{100}$,
$\frac{\mathrm{d}^{2} S}{\mathrm{~d} x^{2}}=24+\frac{4800}{(\sqrt[3]{100})^{3}}$

$$
=72>0 \quad \because \text { minimum }
$$

Since $\frac{\mathrm{d}^{2} S}{\mathrm{~d} x^{2}}>0$, the surface area is the smallest when $x=4.64$.

M1 f.t. - differentiation or $1^{\text {st }}$ derivative test

A1 - conclude ' $>0$ ' (must show '72')

