

SERANGOON SECONDARY SCHOOL PRELIMINARY EXAMINATION SECONDARY 4 EXPRESS

CHEMISTR Paper 1 Multiple Additional Mate					6092/01 24 Aug 2022 1 hour
CENTRE NUMBER	S			INDEX NUMBER	
CANDIDATE NAME		()	CLASS	

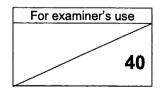
READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

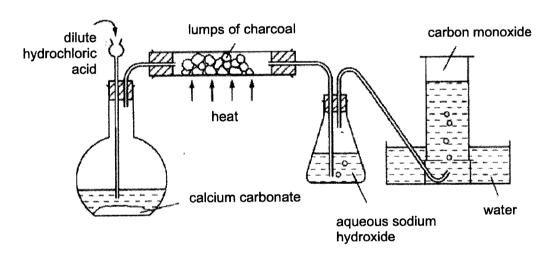
Write your name, class and index number on the Answer Sheet in the spaces provided unless this has been done for you.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.


Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.


A copy of the Periodic Table is printed on the last page.

The use of an approved scientific calculator is expected, where appropriate.

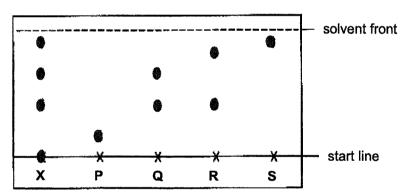
This question paper consists of 19 printed pages, including this cover page.

- 1 25 cm³ of aqueous sodium hydroxide is pipetted into a conical flask and titrated with dilute hydrochloric acid from a burette. How can the accuracy of the titration be improved?
 - I. Rinse the interior of the pipette with aqueous sodium hydroxide.
 - II. Rinse the interior of the pipette with aqueous hydrochloric acid.
 - III. Rinse the interior of the conical flask with aqueous sodium hydroxide.
 - IV. Rinse the interior of the burette with dilute hydrochloric acid.
- A I and III only
- B I and IV only
- C II and III only
- D I, III and IV
- 2 The diagram below is a set-up used to obtain carbon monoxide.

What is the main purpose of the aqueous sodium hydroxide?

- Dry the carbon monoxide.
- B Remove the carbon dioxide.
- C Remove the excess acid.
- D Remove the oxygen present.

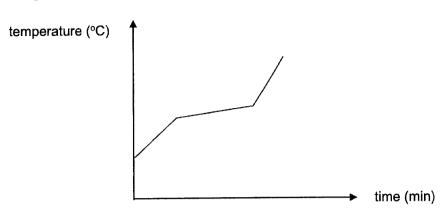
3 Esters can be prepared by reactions of alcohols and carboxylic acids. The yield of these reactions is often low. One way of improving the yield is to remove the ester formed as the reaction proceeds and this can be done by carrying out fractional distillation.


Which of the following mixtures will yield an ester as the distillate using this method?

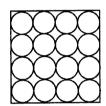
Α	ethanol	ethanoic acid	ethyl ethanoate
	(B.P: 78°C)	(B.P: 118°C)	(B.P: 77°C)
В	butanol	ethanoic acid	butyl ethanoate
	(B.P: 117°C)	(B.P: 118°C)	(B.P: 128°C)
C	ethanol	butanoic acid	ethyl butanoate
	(B.P: 78°C)	(B.P: 164°C)	(B.P: 121°C)
D	methanol	butanoic acid	methyl butanoate
	(B.P: 65°C)	(B.P: 164°C)	(B.P: 102°C)

B.P.: Boiling Point

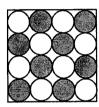
4 Vitamins are essential nutrients needed in small amounts for various roles in the human body. They are either water-soluble or fat-soluble.


A sample of herbal tea, **X**, was analysed using chromatography with four water-soluble vitamins, P, Q, R and S, using water as the solvent. When the solvent front reached the position indicated, the chromatogram was placed under ultra-violet light. The following diagram shows the chromatogram obtained.

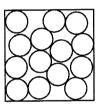
What can be deduced from the results?

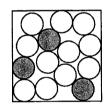

- A All vitamins in X are soluble in water.
- B One of the vitamins in X is not soluble in water.
- C Vitamin X consists of vitamin Q, R and S.
- D Vitamin X contains three different components.

5 The diagram below shows the heating curve of substance X.



Which of the following represents the arrangement of the particles in substance X?


Α


В

C

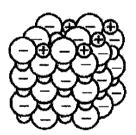
D

6 The chemical symbol of an element is shown below.

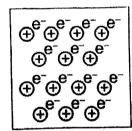
Which of the following describes how this element achieves a stable electronic configuration?

- A gain electrons to form positive ion
- B lose electrons to form negative ions
- c lose electrons to form positive ions
- D share electrons to form diatomic molecules

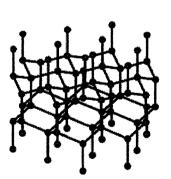
7 The proton number and electron number of some particles are shown below. The symbols used here do not represent the actual chemical symbol of the elements.

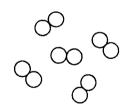

particle	Р	Q	R	S
proton number	4	15	19	30
electron number	4	18	19	28

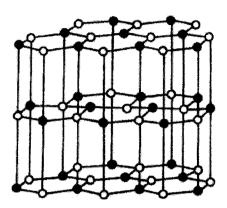
Which two particles are found in an ionic compound?


- A Pand R
- B P and Q
- C Q and S
- D R and S
- 8 The properties of an unknown substance are given below.
 - low melting and boiling point
 - low density
 - good conductor of electricity in solid state

Which of the following is the substance?


A


В


C

D

9 Which of the following best explains the reason why the substance with the structure shown below would be a good lubricant?

- A strong covalent bonds between the layers of atoms
- B weak forces of attraction between the layers of atoms
- C weak covalent bonds between the layers of atoms
- D weak electrostatic forces of attraction between the layers of atoms
- 10 Which statement about groups in the Periodic Table is correct?
- A All groups contain both metals and non-metals.
- **B** Atoms of the elements in the same group have the same number of total electrons.
- C Atomic radius decreases down the group.
- D Ionisation energy decreases down the group.

11
$$X_2 + 2KY \rightarrow 2KX + Y_2$$

Based on the equation shown above,

- A the reaction is a redox reaction
- B the reaction is a metal displacement reaction
- C X is less reactive than Y
- D X₂ is the reducing agent

12 The setup below was used to collect the gas produced when an excess magnesium was added to 50 cm³ of 1 mol/dm³ of hydrochloric acid.

The time taken for the reaction to be completed was also recorded.

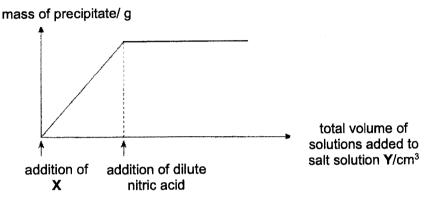
The table below shows the results obtained.

volume of gas (cm ³)	600
time taken for reaction to complete (s)	60

Which of the following would likely be the results obtained when same concentration of propanoic acid is used instead?

	volume of gas (cm3)	time taken for reaction to complete (s)
Α	300	30
В	300	60
С	600	60
D	600	180

13 In an experiment, 5 cm³ of 1.0 mol/dm³ of sodium hydroxide is gradually added to 10 cm³ of 1.0 mol/dm³ of hydrochloric acid, containing methyl orange indicator.


Which change occurs in the mixture?

- A A white precipitate is formed.
- B Methyl orange changes in colour.
- **C** The concentration of OH⁻ increases.
- D The concentration of H⁺ decreases by half.
- 14 X, Y and Z elements are found in Period 3 of the Periodic Table.
 - X forms an acidic oxide when burnt in oxygen.
 - Y forms a basic oxide when burnt in oxygen.
 - Z forms an amphoteric oxide when burnt in oxygen.

What is the order of the three elements across the Periodic Table?

- **A** X, Y, Z
- **B** X, Z, Y
- C Y, X, Z
- **D** Y. Z. X

- 15 Which of the following reactions is unlikely to take place?
- A Pb²⁺ (aq) + 2Cl (aq) \rightarrow PbC l_2 (s)
- **B** Fe^{2+} (aq) + Mg (s) \rightarrow Mg²⁺ (aq) + Fe (s)
- **C** $2H^+$ (aq) + Cu (s) $\rightarrow H_2$ (g) + Cu²⁺ (aq)
- **D** $2H^+$ (aq) + CO_3 ²⁻(aq) $\rightarrow CO_2$ (g) + H_2O (l)
- 16 In a chemistry experiment, solution **X** is gradually added to a salt solution **Y**, followed by the addition of a dilute nitric acid solution. The graph shows how the mass of precipitate formed changes with the addition of the different solutions.

Which of the following would produce the graph as shown above?

solution X

A aqueous silver nitrate

B aqueous silver nitrate

C aqueous barium nitrate

D aqueous barium nitrate

ions present in salt solution **Y** chloride ion and carbonate ion

nitrate ion and sulfate ion

sulfate ion and carbonate ion

sulfate ion and nitrate ion

17 The table shows the observations made when an aqueous solution X was tested.

reagent added	observation
acidified silver nitrate	solution remained colourless.
aqueous sodium hydroxide	pungent gas turns moist red litmus paper blue.

Which of the following could X possibly be?

4	ammonium nitrate	В	ammonium chloride

- 18 A gas was produced during a reaction. The descriptions below show some of the properties of the gas produced.
 - · turns moist blue litmus paper red
 - pungent smell
 - no visible change with limewater

What is the identity of the gas produced?

- A ammonia B carbon dioxide
- C nitrogen monoxide D sulfur dioxide
- 19 Which element contains the greatest number of atoms in 1 g?
- A aluminium B carbon
 - iodine **D** nitrogen
- 20 An impure sample of 1 g of silver oxide reacts with excess of nitric acid to form silver nitrate and water. The reaction produces, 0.86 g of silver nitrate.

What is the percentage purity of the sample?

- **A** 31.3 % **B** 58.7 %
- C 85.5 % D 86.0 %

21 Hydrogen and iodine react according to the equation shown below.

$$H_2 + I_2 \rightleftharpoons 2HI \quad \Delta H = +52.96 \text{ kJ}$$

В

D

Which of the following energy profile diagrams shows the backward reaction?

energy

H₂+I₂

2HI

progress of reaction

energy

2HI

H₂+I₂

progress of reaction

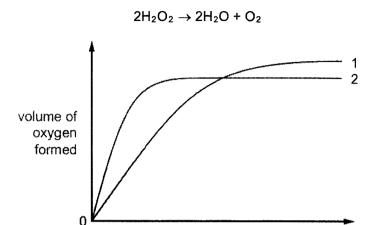
C

energy 2HI progress of reaction

energy

H₂+I₂

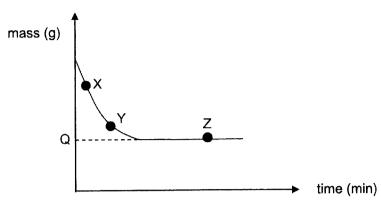
progress of reaction


22 The scheme shows four stages I to IV in the conversion of solid candlewax, C₃₀H₆₂, into carbon dioxide and water.

$$C_{30}H_{62}(s) \xrightarrow{\underline{I}} C_{30}H_{62}(l) \xrightarrow{\underline{II}} C_{30}H_{62}(g) \xrightarrow{\underline{III}} \begin{array}{c} 30CO_2(g) \\ + \\ 31H_2O(g) \end{array} \xrightarrow{\underline{IV}} \begin{array}{c} 30CO_2(g) \\ + \\ 31H_2O(l) \end{array}$$

Which stage(s) is/are exothermic?

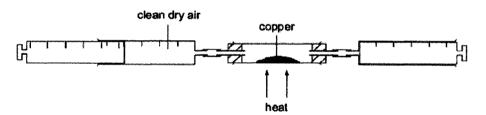
- A III only
- B III and IV only
- C I, II and III only
- D I, II and IV only


23 In the graph, curve 1 was obtained by observing the decomposition of 100 cm³ of 1.0 mol/dm³ hydrogen peroxide solution, catalysed by manganese(IV) oxide.

time

- Which alteration to the original experimental conditions would produce curve 2?
- A increase the pressure
- B lower the temperature
- C using 100 cm³ of 1.2 mol/dm³ hydrogen peroxide solution
- **D** using 50 cm³ of 1.2 mol/dm³ hydrogen peroxide solution

24 The graph shows the mass of hydrogen gas evolved, plotted against time, when excess hydrochloric acid reacts with 2 g of magnesium ribbon.

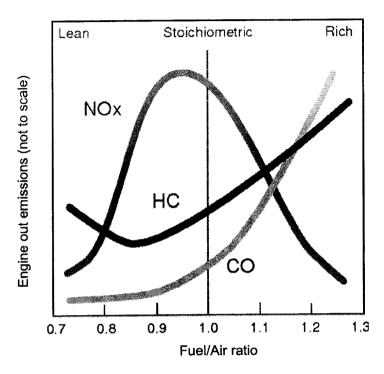

Which statement is correct?

- A The reaction is faster at point X than at point Y.
- B The reaction first reaches completion at point Z.
- C The mass of hydrogen gas evolved will be higher if magnesium powder is used instead.
- D Mass of hydrogen gas evolved is Q g.
- 25 The statements below describe the reactions of metals P, Q and R.
 - Metal P does not react with cold water but reacts quickly with an acid.
 - Metal Q reacts slowly with an acid but has no reaction with steam.
 - Metal R reacts fast with cold water.

Which of the following statements is correct?

- A Metal P can only be extracted by electrolysis from its ore.
- B Metal Q exists naturally uncombined.
- C Metal R cannot be reduced by coke.
- D Metals P and Q are positioned below hydrogen in the metal reactivity series.

- 26 Which of the following equations show the protection of iron from rusting?
- **A** $3Ca^{2+} + 2Fe \rightarrow 2Fe^{3+} + 3Ca$
- **B** $Zn^{2+} + Fe \rightarrow Fe^{2+} + Zn$
- C Mg + Fe²⁺ \rightarrow Fe + Mg²⁺
- D Sn + Fe²⁺ \rightarrow Fe + Sn²⁺
- 27 Which of the following is true about steel?
- A It is resistant to corrosion.
- B It is softer than pure metal.
- C It is a poor conductor of electricity.
- **D** It reacts with acid to form hydrogen gas.
- 28 A 150 cm³ sample of clean, dry air is passed over hot excess copper at room temperature and pressure until there is no further change in volume. The pink copper metal turns black at the end of the reaction.


- What is the minimum mass of copper metal that is needed for this reaction?
- **A** 0.084 g

B 0.168 g

C 0.316 g

D 0.632 g

29 The diagram below shows the changes to the emission of different gases from a car engine at different fuel/air ratio.

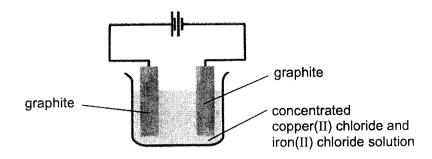
Why is there an increase in the emission of CO when the fuel/air ratio increases from 0.8 to 1.0?

- A There is a decrease in the volume of air in the engine, leading to internal combustion.
- B There is an increase in the volume of air in the engine, leading to internal combustion.
- C There is a decrease in the volume of air in the engine, leading to incomplete combustion.
- **D** There is an increase in the volume of air in the engine, leading to incomplete combustion.
- 30 Which two processes in the carbon cycle help to regulate the carbon level in the atmosphere?
- A combustion and respiration
- B decomposition and respiration
- C deforestation and photosynthesis
- D photosynthesis and combustion

- 31 Why is iron metal added to Haber Process?
- A To lower the pressure needed for the reaction.
- B To lower the temperature needed for the reaction.
- C To lower the activation energy level of the process.
- **D** To react with hydrogen and nitrogen to form ammonia.
- 32 Given the following reaction

$$2MnO_4^- + 5SO_3^{2-} + 6H^+ \rightarrow 2Mn^{2+} + 5SO_4^{2-} + 3H_2O$$

Which statement about the reaction above is true?


- A MnO₄ is acting as the reducing agent.
- \mathbf{B} SO_3^{2-} is oxidised to form SO_4^{2-} .
- C H⁺ is oxidised.
- $D SO_3^{2-}$ is neither oxidised nor reduced.
- 33 During electroplating process, an object is coated with silver metal. The mass of the was measured before and after the process.

mass of object before process (g)	4.78
mass of object after process (g)	6.15

The difference in the mass recorded is due to _____

- A a gas being produced at the object
- B a salt being produced on the object
- C oxidation of silver metal
- D reduction of silver ions

34

Which of the following statements correctly describes the observations made in the setup a few hours later?

- A Green fumes observed at the cathode.
- B The electrolyte would be blue in colour.
- C The electrolyte would be green in colour.
- D The anode will increase in size.
- 35 In the electrolysis of an aqueous solution of cerium nitrate, 70 g of cerium, Ce, $(A_r = 140)$ is deposited at the cathode by 2 moles of electrons. What is the charge on the cerium ion?

36 The table below shows the uses of two fractions obtained from fractional distillation of crude oil.

fraction	uses
X	fuel for lorries and trucks
Υ	feedstock for petrol chemical industry

What is fraction X and Y based on the uses given?

	fraction X	fraction Y
A	diesel	lubricating oil
В	diesel	naphtha
С	petrol	lubricating oil
D	petrol	naphtha
	•	

37 One of the compounds found in bitumen has a molecular formula of $C_{20}H_{42}$. It undergoes cracking to form smaller molecules as shown in the equation below.

 $C_{20}H_{42} \rightarrow C_{12}H_{26} + 2$

What is the chemical formula of the other compound formed?

- A C₄H₈
- B C₄H₁₀
- C C₈H₁₆
- D C₈H₁₈
- **38** 400 cm³ of 5 mol/dm³ of aqueous bromine was found to react with 1 mole of an unsaturated hydrocarbon.

What is the number of bromine atoms that would be found in the product formed?

A 2

B 3

C

- **D** 6
- 39 Below shows a list of reactions.
 - I combustion of ethanol
 - II fermentation of glucose
 - III oxidation of ethanol by air in the presence of bacteria
 - IV reaction of sodium carbonate with ethanoic acid

In which reaction is carbon dioxide a product?

- A I and II only
- B I and IV only
- C I, II and III only
- D I, II and IV only

40 Which of the following reactions will not take place with the molecule shown below?

- A bromination
- B condensation polymerisation
- **C** oxidation
- D reaction with magnesium

END-OF-PAPER

The Periodic Table of Elements

	0	2	2	helium	4	0	Š	neon	22	138	₹	argon .	34	36	호	krypton	\$	Z,	×e	хөлсп	131	8 8	æ	rædon	ı				PAYATTA MENDERCENOMEN CHARGE CO.
	Ş		***************************************	•		တ	u.	fluorine	19	17	ರ	chlorine	0.00	33	ă	bromine	80	53	·	odine	127	92	₹	astatine	ı				A CONTRACTOR CONTRACTO
	5					ထ	0	nagyxo	16	16	တ	in S	32	34	S	selenium	79	25	<u>و</u>	telfurium	128	20	දි	pokonium	ı	116	2	wermorium	
	>				A CONTRACTOR OF THE PARTY OF TH	*	z	nitrogen	14	ಬ್	۵.	phosphores	5	33	As	arsenic	75	એ	S	antimony	122	83	æ	bismuth	209			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	destruction of the constitution
***************************************	≥					ထ	ပ	carbon	12	##	ফ	Silienn	28	32	ී	germanium	73	90	S	ŧ	119	82	යි	pead	207	114	ũ	Berovium	-
	=					ş	മ	boron	1	13	Ą	afuminium AT	77	31	ගී	gallium	70	49	_	mdium	115	83	F	thallium	25 42				A. C.
														30	5	zinc	65	48	ਲ	cadmium	12	80	뫋	mercury	201	112	გ	copernicium	
														58	ರ	ьеддоэ	64	47	Ag	säver	\$	6/	Αu	pjoß	197	111	8	roentpenium	***************************************
Group														88	Z	nickel	59	46	2	palladium	9	78	矼	phatimum	195	110	ది	darmstadhum	
Ö														21	රි	copail	59	45	듄	thodium	\$	11	_	indium	192	109	ž	metherium	-
		***	I	hydrogen	ęw									82	æ	RON	56	44	₹	nuthenium	5	9/	ő	osmium	96	108	£	hassium	
														22	Ę	manganese	55	43	ည	technetium	1	75	2	menium	186	107	8	pohrium	1
						umber	20		mass					24	៦	chromium	52	42	Š	molybdenum	88	74	≥	tungsten	184	901	Sg	seaborgium	-
				3	rey	(atomic) n	atomic symbo	name	ve atomic					ន	>	vanadium	51	#	£	niobium	8	73	ta.	tantatum	181	105	රි	dubnium	1
***************************************						proton	ж		relati					8	=	Manium	48	\$	77	minochiz	55	7.5	Ξ	fusfrium	178	104	ă	nutherfordium	
					•									7	လွ	Scandium	45	38	>	ythium	80	57-71	lanthanoids			89 103	actinoids		TTT POTENTIAL TO SECURITION OF THE PERSON OF
ووردون المراجعة والمراجعة والمراجع والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة و	=					*	æ	beryllium	G	12	Mg	magnesium	24	8	පී	calcium	40	88	ঠ	strontium	88	28	æ	barium	137	88	S.	radium	-
		-	***************************************									angio C																	

	3	intetium	175	103	ت	lawrencium	ŀ
2	χp	ytterbium	173	102	2	nobelium	ŧ
69	ᄪ	thulium	169	10	B	mendelevium	ŀ
සි	й	erbium	167	189	Ē	fermium	i.
29	£	nommen	165	66	ņ	emstemmen	
99	රි	dysprosium	163	88	ರ	californium	I
65	2	terbirm	159	97	ă	berkelium	ŧ
2	8	cadolinium	157	96	క్	cunium	ŧ
63	B	europium	152	98	Am	americium	ı
62	æ	samarium	150	2	2	plutonium	ŧ
61	Æ	promethium		8	£	neptumum	ı
8	Ž	neodymium	144	35	>	uranium	238
26	à	mandoment	141	9	g	protectinium	23.
82	ථ	Cerium	140	8	£	thorium	232
25	Ę	lanthanum	139	68	Ac	actimium	ı
lanthanoids				actinoids			

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.)

SERANGOON SECONDARY SCHOOL PRELIMINARY EXAMINATION SECONDARY 4 EXPRESS

CANDIDATE NAME		,		()	CLASS		
CENTER NUMBER	S					INDEX NUMBER		

CHEMISTRY

Paper 2

6092/02 26 Aug 2022 1 hour 45 minutes

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, index number and name on all the work you hand in. Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staplers, paper clips, glue or correction fluid.

Section A

Answer all questions in the spaces provided.

Section B

Answer all three questions, the last question is in the form either/or. Answer all questions in the spaces provided.

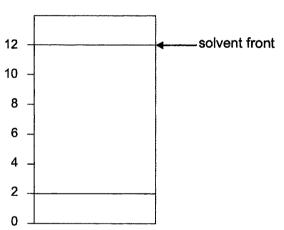
The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on the last page.

The use of an approved scientific calculator is expected, where appropriate.

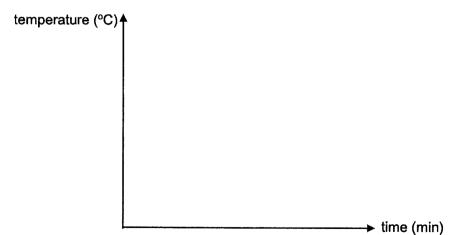
For exam	iner's use
Section A	50
Section B	30
9	
10	
11	
Total	80

This question paper consists of 21 printed pages, including this cover page.

[2]


[1]

Section A [50 marks] Answer all questions.


A1 The table below gives some information of an unknown substance Y.

property of substance Y			
colour	black		
melting point	1326 °C		
boiling point	2000 °C		
solubility in water	insoluble		
chromatogram	$R_{\rm f} = 0.7$		

- (a) Based on the information given above,
- (i) Draw in the chromatogram the spot for **Y** that would be obtained below. Show your workings clearly on how the answer is derived.

(ii) Sketch in the axes below, the freezing curve of substance Y.

)	Describe and expl an element or a co			
	an element of a co		etermine whether substance Y is	
				• • •
			••••••	
		•••••	***************************************	•••
	two atomic or me	ntion energy is the energy plecular fragments, each	required to break a bond and for with one electron of the origin	m al
	two atomic or me shared pair.	olecular fragments, each	required to break a bond and for with one electron of the origing y and bond dissociation energy bond dissociation energy kJ/mol	nal
	two atomic or me shared pair. The table below shalogens.	olecular fragments, each	with one electron of the origing y and bond dissociation energy bond dissociation energy	nal
	two atomic or me shared pair. The table below shalogens. halogen	olecular fragments, each shows the electronegativit electronegativity	with one electron of the origing y and bond dissociation energy bond dissociation energy kJ/mol	nal
	two atomic or meshared pair. The table below shalogens. halogen fluorine	olecular fragments, each shows the electronegativit electronegativity	with one electron of the origing y and bond dissociation energy bond dissociation energy kJ/mol 156	nal

(ii)	Suggest a plausible reason for the relationship observed in (a)(i).	[3]
(b)	Suggest a plausible reason for fluorine for not following the relationship describe in (a)(i) .	[1]
	describe in (a)(i).	
А3	Dumas method is a quantitative method used to determine nitrogen content in a given organic compound. The diagram below shows the setup used to determine nitrogen content in the Dumas method.	
	CuO gauze CuO + organic compound coarse CuO copper gauze seb uebouniu	
	CuO gauze CuO + organic compour coarse CuO copper gauze	
	CuO gauze compc co	
	dry KOH	
	dry KOH	
	furnace goodnor	
	mercury	
	In the Dumas method, the organic compound containing nitrogen would be heated with excess copper(II) oxide in an atmosphere of carbon dioxide.	
	During the reaction, nitrogen gas, carbon dioxide gas and water would be	
	obtained.	

(a)(i)	Write the chemical equation between nitrogen dioxide and copper gauze.	[1]

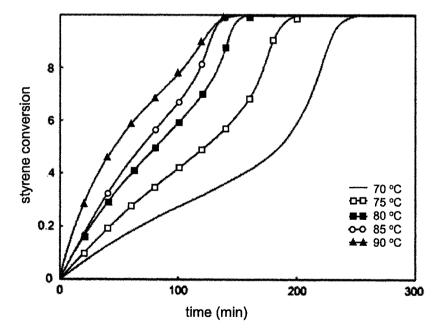
(ii)	State and explain, in terms of oxidation state, whether nitrogen dioxide is oxidised or reduced by the copper gauze.	[2]
(b)	Suggest a possible reason for the potassium hydroxide in the setup.	[1]
(c)	From the analysis of an unknown organic compound, it was found that the	

percentage of nitrogen is 37.8%.

The table below shows a list of possible organic compound and their structural formula.

name of organic compound	structural formula
acetonitrile	NEC-CH ₃
N, N-dimethylnitrous amide	O ^{FN} N CH ₃ CH ₃
ethylenediamine	H ₂ C—CH ₂ N N H H H H H

Determine the identity of the unknown organic compound. Explain how you [2] derive your answer. You may show your workings to aid in your explanation.


.....

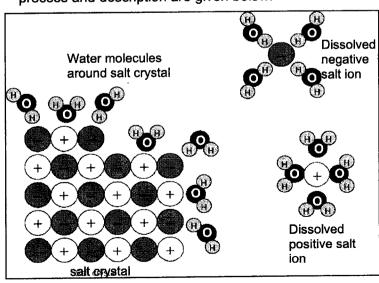
A4 The diagram below shows the structural formula of styrene. It can undergo polymerisations in the presence of a catalyst.

(a) Draw the structural formula of the polymer formed by styrene and give the [2] name of the polymer formed.

name of polymer:

(b) Experiments were carried out to determine the optimum temperature to carry out the polymerisation of styrene. The diagram below shows the results obtained.

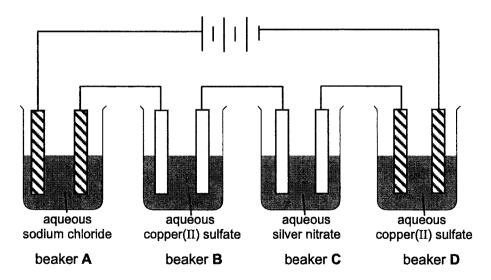
	Based on the results obtained, at which temperature should the polymerisation of styrene be carried out? Explain your answer in terms of collision theory.	[3]
(c)	What would happen to the rate of polymerisation of styrene if the catalyst is not used? Explain.	[1]
A 5	A student measured the temperature change when 5.0 g of potassium chloride	


was dissolved in excess water. The table below shows the results obtained.

temperature / °C	24.5
highest /lowest recorded temperature / °C	22.0
calculated energy change / J	1160

https://socratic.org/questions/5709d5887c014947fcb6e231

[1] State and explain if the change is exothermic or endothermic. (a)


The process of dissolving involves both bond-forming and bond-breaking. The (b) process and description are given below.

When water dissolves a water substance, the molecules attract and "bond" to the particles (molecules or ions) of the substance causing the particles to separate from each other. The "bond" that a water molecule makes is not a covalent or ionic bond. It is a strong force of attraction.

	Using information given and your knowledge of bond-breaking and bond-forming, explain why the calculated energy change for dissolving potassium chloride is positive.	[2]
(c)	Use the student's results to calculate the enthalpy change when one mole of potassium chloride dissolves in excess water. Give your answer in k-l/mol, to three significant figures.	[3]

A6 The diagram below shows an electrolysis setup.

: copper metal electrode

: carbon electrode

(a) In the table below, fill in the missing observations of the anode, cathode and [3] electrolyte.

beaker	anode	cathode	electrolyte
A			no visible change
В	decrease in size	increase in size	no visible change
С	decrease in size		
D		increase in size	

(b)	After the setup has been running for some time, explain for the observation made on the electrolyte found in	
(i)	beaker A,	[1]
(ii)	beaker B and	[1]
(iii)	beaker C?	[2]
(c)	Write the half equations, for the reactions at the anode and cathode in beaker D .	[2]

[2]

A7 The diagram below shows three different organic compounds, P, Q and R.

compound	
P	H H H H H-C-C-C-C-H H OHH H
Q	C ₂ H ₅ -C-O H H H C -C-H H H
R	(H H Q) (-O-C-C-C-C) CH3H n

(a)(i) State whether each statement below is true or false.

statement	True / False
Compound P can be made by fermentation.	
Compound Q can be made by reacting compound P with an organic acid.	
Water is also produced during the formation of compound Q and R .	

(ii)	State and explain one condition used when carrying out fermentation.	[1]
	•••••••••••••••••••••••••••••••••••••••	
(b)(i)	What is the name of compound Q ?	[1]
(ii)	State a possible use for compound Q .	[1]
(")	Clare a possible use for compound w.	נין

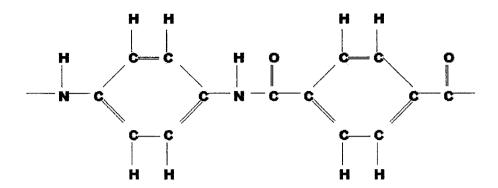
[1]

(c)	Draw the reactant(s) that is/are used to form compound R .	
14/	D, 411 110 104014111/0	, tribut 10, on 0 2000 to 101111	

As A composite material is a mixture of two different substances. Reinforcing fibres are often used in a plastic to give the plastic extra strength. The table below gives some information about four different fibres that are used to make composite plastics.

fibre	density (kg/m³)	force needed to break the fibre (N/m²)
carbon	174	3.1
glass	257	3.7
kevlar	145	3.6
polyester	138	1

(a) Kevlar and carbon fibre composites are used in the building of spacecraft. Suggest reasons why,


(i) polyester fibre composites and

[1]

glass fibre composites, are not suitable for this purpose.

[1]

(b) Kevlar has a structure shown below.

Describe two differences between kevlar and polyester.	[2]

(c) Glass is mainly made up of silicon dioxide. Describe another property of glass [2 and explain in terms of bonding and structure for the property described.

Section B [30 marks]

Answer all three questions from this section.

The last question is in the form of an either/or and only one of the alternatives should be attempted.

B9 Hard water is water that has high mineral content. These minerals may enter the water sources when rain, containing dissolved carbon dioxide, reacts with calcium carbonate and carry calcium ions away with it. Hardness refers to the total concentration of alkaline earth (Group II) ions in water. Due to the much higher concentrations of Ca²⁺ and Mg²⁺ than other alkaline earth ions, hardness can be equated to the concentration of Ca²⁺ and Mg²⁺. Hardness is commonly expressed as the equivalent number of miligrams of calcium carbonate per dm³. Thus, if concentration of Ca²⁺ and Mg²⁺ = 1 mmol/dm³, we would say that hardness is 100 mg calcium carbonate per dm³ of water as 100 mg of calcium carbonate is equivalent to 1 mmol of calcium carbonate. Water whose hardness is less than 60 mg calcium per dm³ of water is considered to be "soft". If the hardness is above 270 mg/dm³, the water is considered to be "hard".

To measure the total hardness, a sample of water is treated with ascorbic acid to reduce Fe³⁺ to Fe²⁺. Titration with EDTA, a chemical substance, at pH 10 in ammonia solution, would then give the total concentration of Ca²⁺ and Mg²⁺. The concentration of Ca²⁺ can be determined separately if the titration is carried out at pH 13 without ammonia.

Insoluble carbonates are converted to soluble bicarbonates by excess carbon dioxide:

Heating converts bicarbonate to carbonate by driving off carbon dioxide and causes calcium carbonate to precipitate.

Hard water reacts with soap ($C_{17}H_{35}CO_2Na$) to form insoluble curds:

$$Ca^{2+} + 2C_{17}H_{35}CO_{2}^{-} \rightarrow Ca(C_{17}H_{35}CO_{2})_{2}$$

Enough soap is needed before the soap will lather and be useful for cleaning.

Hard water may be treated by using washing soda (Na₂CO₃) method where sodium carbonate is added into the hard water that contains chlorides and sulfates of calcium and magnesium.

a)	Explain why rain containing dissolved carbon dioxide can react with calcium carbonate.	[2]
(b)	Suggest a chemical that can be added to carry out the titration at pH 13.	[1]
	,	

(c)(I)	and be useful for cleaning". Explain why this is so	[1]
(ii)	A 500 cm ³ sample of water has a hardness reading of 275 mg/dm ³ . Determine the minimum mass of soap that must be added into the sample of water before the soap will lather and be useful for cleaning.	[3]
(d)	Explain, with appropriate equation, how the addition of sodium carbonate will help to reduce the hardness of water. Describe how the treated water can be obtained after the treatment.	[3]
	······	

B10 In the table below shows a list of members found in the ketones homologous series.

name	molecular formula	structural formula	boiling point (°C)
propanone	C₃H₅O	H O H H-C-C-C-H H H	56.2
butanone	C₄H₃O	H H O H H-C-C-C-C-H H H H	79.6
pentanone	C₅H ₁₀ O	H H H O H H-C-C-C-C-C-H H H H H	102
hexanone	C ₆ H ₁₂ O	H H H H O H H-C-C-C-C-C-H H H H H	

(a) Draw the structural formula and write the name of the next member after [2] hexanone.

Name:

(b) What is the general formula of the ketones homologous series? [1]

(c) Draw an isomer of butanone.

_		_
£	4	1
1		1
1	·	

[3]

(d) Suggest the boiling point of hexanone.

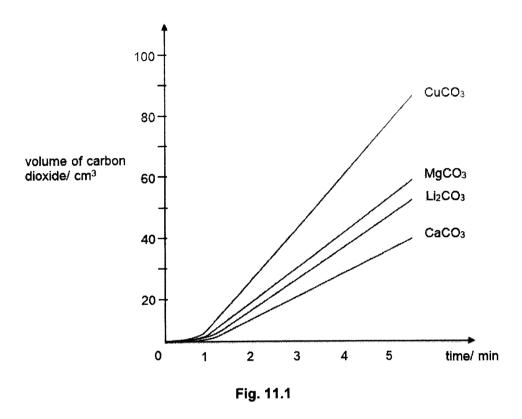
Explain your answer in terms of bonding and structure.

(e) Ketones and alkenes both undergo addition reactions as shown by the structural equations shown below.

Alkene: Propene reaction with water

Ketone: Propanone reaction with water

(i) Describe **two** differences between the two addition reactions shown above. [2]


(ii) State and explain what would be observed when a few drops of Universal [1] indicator are added into propanone.

.....

Either

B11 Some metal carbonates, when heated, decompose to produce carbon dioxide.

Fig. 11.1 shows the results from an investigation on the rate of decomposition of four metal carbonates.

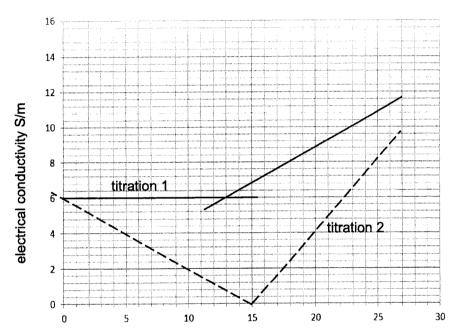
In each experiment, 1.00 g of metal carbonate was heated to the same temperature using flame of the same intensity. The volume of carbon dioxide produced was measured at every minute interval.

(a)	Suggest why very little carbon dioxide was collected at the start of each experiment.	[1]
(b)	Using the information in Fig. 11.1 , explain why the decomposition of metal carbonates were not completed at the end of the investigation.	[1]
(b)	Using the information in Fig. 11.1, explain why the decomposition of metal carbonates were not completed at the end of the investigation.	[1]
(b)	Using the information in Fig. 11.1 , explain why the decomposition of metal carbonates were not completed at the end of the investigation.	[1]

(c)(i)	Ignoring the volume of carbon dioxide recorded at time one minute, determine the speed of the decomposition lithium carbonate.	[1]
(ii)	Hence, determine the time it would take for 1 g of lithium carbonate to be completely decomposed.	[3]
(d)(i)	Using only the information in Fig. 11.1 , state and explain which metal carbonate decomposed at the fastest rate.	[2]
(d)(i)		[2]
(d)(i)	carbonate decomposed at the fastest rate.	[2]
(d)(i)	carbonate decomposed at the fastest rate.	[2]
(d)(i)	carbonate decomposed at the fastest rate.	[2]
(d)(i) (ii)	carbonate decomposed at the fastest rate.	
	Describe and explain how the volume of carbon dioxide will change with time if	
	Describe and explain how the volume of carbon dioxide will change with time if	
	Describe and explain how the volume of carbon dioxide will change with time if	
	Describe and explain how the volume of carbon dioxide will change with time if	

Or

B11 Two titrations were carried with two different sets of solutions.


Titration 1 involved 20.0 cm³ of sodium hydroxide and iron(II) nitrate solution.

$$2NaOH + Fe(NO_3)_2 \rightarrow Fe(OH)_2 + 2NaNO_3$$

Titration 2 involved 20.0 cm³ barium hydroxide and sulfuric acid.

$$Ba(OH)_2 + H_2SO_4 \rightarrow BaSO_4 + 2H_2O$$

To determine the end-point of a titration, the electrical conductivity of the solution was monitored. With the data collected, graphs were plotted and shown below.

titration 1: volume of aqueous iron(II) nitrate / cm³ titration 2: volume of sulfuric acid/ cm³

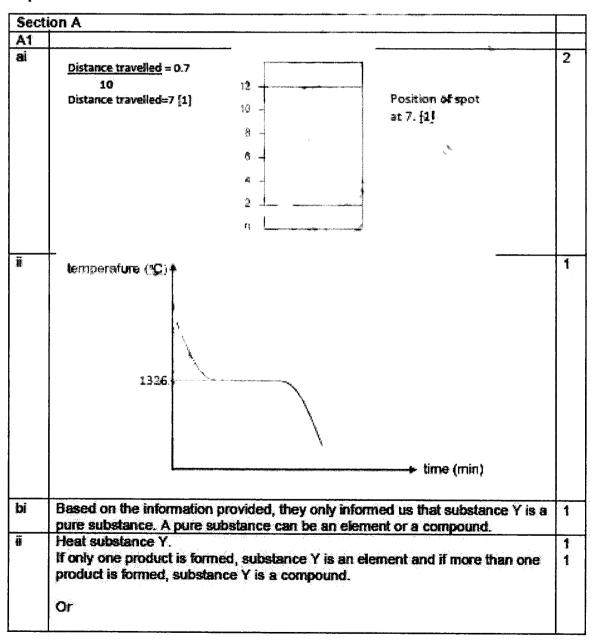
(a)(i)	One difference between the graphs obtained from titration 1 and titration 2 is that the electrical conductivity decreases to 0 S/m for titration 2 but not for titration 1. Explain why this is so.	[4]

(ii)	State another difference in the graphs obtained for titration 1 and titration 2.	[1]
(iii)	Suggest a reason for the difference in (a)(ii).	[2]
(b)	Determine the concentration of sodium hydroxide used in titration 1 given that the concentration of iron(II) nitrate used was 0.563 mol/dm ³ .	[3]

END OF PAPER

The Periodic Table of Elements

	0	N	£	mage state	*	10	Š	neon	ଛ	₽	¥	uotis	\$	88	추	Waton	¥	ঠ	×e	mount	133	8	듄	adon	1		-		
F				***			····				*******			_						······	+							•••••	E
						-				_				_		_			e		-			**		16	2	month	
***	>						and the same of th	******	******		CONTRACTOR OF THE PARTY OF THE	er er	********			,000000	*********	*****	g G	hafishiceen:		******	50608050006	0000000	*********		ec~~	ewii.	,,,,,
11.5	≥					anni-na.	or entreened	******			***********	=			-anieranai	<u> </u>			హ	-	-	ener disco	iaura	cecemoo	****		`	Terovium	in
111	=					ıs	ω	posou	-	13	₹	aluminium	27	34	Ga	C) Linguist	٤	49		maga.	2	õ	F	thallium	ğ				_
						L		**************************************		L	************	***************************************		တ္တ	5	zine	స్ట	48	3	Cadmium Cadmium	112	8	Ç	mercury	ఇ	112	5	mnouwedoa	***
														23	ਠੋ	cobber	20	47	₽	i s	2	62	₹	ē	197	111	2	Dentgenum	***
3														28	Z	nickel	SS	94	P	magage d	2 2	82	đ	platinum	195	110	ŝ	darmstadtium	
100 100 100 100 100 100 100 100 100 100														27	රි	cobatt	S.	\$	줃	modium	103		<u>_</u>	midin	192	109	ž	meimenum	
		****	I	hydropen	-														2	₹.	- 1			_				****	
									***********					52	M	manganese	83	43	ည	lechmetium 1	. 4	e	8	therwan	186	107	ਲਿ	Dollarium	
						umber	2		mass					24	ర	chromium	52	42	№	-			*********	***********	accessors		annann		œ
					Key	proton (atomic) number	atomic symbo	name	relative atomic mass					23		_	51	1.7	£			(3	프	tantalum	181	\$	පි	dubraum	
						proton	**************************************	e38600X4	relati					ដ	-	titanium	48	0\$	Ż	zirconium	5	2	Ī	hafnium			ř	Rutherfordum	
																	45	88	> -	withium of the contract of the	8	U - /a	Shionerthe			89 – 103	actinoids		
-	=					4	Be	beryllium	රා	12	Ş	magnesum	24	ୟ	င်း	Calcum	40	38	ഗ്	strontium	00	S	œ œ	barium	137	88	æ	radium	
***************************************	-					ო	コ	#Hrium	7	*-	2	Bodhim	ន	19	¥	potassaum	88	37	æ	rubidum	8	8	රි	Caesium	133	83	ŭ	francium	


nthanoids	24	ထို	නී	8	6	62	ಔ	64	92	8	29	8	69	2	,
	3	ပီ	ፚ	2	Æ	£	砬	පි	2	റ്	우	ய்	E	\$	3
	tardhanum	Cerium	presendymann	nechmin	promethium	The same of the sa	europium	gadolinium	terbium	dysprosium	holmean	extrium	ficilism	ytterbium	luterium
	138	4	141	144	l	ই	152	157	158	163	165	167	169	173	175
ctinoids	89	8	9	ଞ	83	8	88	86	26	88	66	8	101	102	103
	Ş	E	Fa C	>	2	2	Am	5	ð	ซ	ũ	표	Ş	2	٦
	actinium	thoram.	protectimentm	UKSKNARM.	первилит	plutomium	amencium	Gunum	berkelium	californium	emsteinium	formium	mendelevium	nobelium	lawrencium
		232	23.	238	I	ı	ł	ı	ı	ı	ı	I	ı	ı	ŧ

The volume of one mole of any gas is 24 dm3 at room temperature and pressure (r.t.p.).

Paper 1

1	2	3	4	5	6	7	8	9	10
8	В	Α	В	D	С	С	В	В	D
	.			.				4	
11	12	13	14	15	16	17	18	19	20
A	D	D	D	C	D	Α	D	В	В
21	22	23	24	25	26	27	28	29	30
В	8	D	Α	C	С	D	В	C	D
				-					
31	32	33	34	35	36	37	38	39	40
C	В	D	С	C	В	A	С	D	С

Paper 2

Page 1 of 6

	Carry out thermal decomposition If substance Y did not break down into simpler substance, it is an element but if it breaks down to simpler substances, it is a compound.	
A2 ai	Down the group from chlorine to iodine, as the electronegativity decreases, the	1
	bond dissociation energy decreases.	1
ii	Down the group, the atomic radius increases and	1
	the attraction between the nucleus between the shared electrons decreases. Hence, the electronegativity decreases. Thus, the amount of energy required to break the bond would be lower.	1
b	Fluorine has a small atomic radius and this cause the electrons in the atoms to repel each other. Hence, the bond dissociation energy is lower than expected.	1
A3	report edon other. Floride, the benta dispersion of the	
а	4Cu + 2NO ₂ → 4CuO + N ₂	1
- <u>i</u> i	Nitrogen dioxide is reduced.	1
•	The oxidation state of nitrogen decreases from +4 to 0 in nitrogen gas.	1
b	To remove the carbon dioxide gas/ unreacted oxides of nitrogen so that the nitrogen gas collected is pure.	1
С	Acetonitrile: % of nitrogen =34.15%	1
	N, N-dimethylnitrous amide: % of nitrogen = 37.8%	
	Ethylenediamine: % of nitrogen = 46.7%	
	The identity of the unknown organic compound is N, N-dimethylnitrous amide.	1
	The percentage of nitrogen in N, N-dimethylnitrous amide is the same as the	
	unknown organic compound.	
A4 a		
	H_{C}	1
	Name of polymer: poly(styrene)	1
b	It should be carried out at 90 °C.	1
	At a 90 °C, the styrene monomers have a higher kinetic energy.	1
	This leads to a higher frequency effective collision and hence the rate of	1
	polymerisation is higher.	4
С	In the absence of catalyst, the rate of polymerisation of styrene decreases. The activation energy of the reaction is higher and lesser number of reacting particles would have the minimum energy.	1
A5	The change is endothermic as the temperature of the mixture decreases after	1
а	KC/ is added into the water.	
b	Energy taken in to break the bond in the KC <i>l</i> is more than the energy given out when the water molecules form bonds with the ions.	1
C	5 g of KC/ takes in 1160 J of energy	1
	0.067114 mols of KC/ takes in 1160 J of energy	1
	1 mol of KC/ takes in 1160/0.067114 = 17284 J/mol = 17.3 kJ/mol	<u> 1</u>
		2 of 6

A6	· · · · · ·					
а	beaker	anode	cathode	e	lectrolyte]]
	A	Bubbles are formed	Bubbles are formed	no v	isible change	1
	В	decrease in size	increase in size	no v	isible change	
	С	decrease in size	increase in size	Soluti	ion turns blue	1
	D	Bubbles are formed	increase in size		solution turns olourless	1
bi	ions prefer	entially discharged at	change to the electrolyts the electrodes to form h removed from the electr	ydrage		**
ii			remain unchanged as it the regulation of copper			1
	ions will be	e preferentially dischar resence of copper(II) is	ed to form copper(il) ions ged at the cathode, ons in the electrolytis, the			1
С		H' → 2H ₂ O + O ₂ + 4e Cu ²⁺ + 2e- → Cu	·			1
A7		PROPERTY MATERIAL MAT	and the second of the second o			
ai		statem	rent		True / False	1 2
	Сотроин	d P can be made by f	ermentation.		False	
,	Compour organic a	d Q can be made by	eacting compound P wi	th an	False	
	Water is a	iso produced during t	he formation of compou	nd Q	true	
i	All correct – 2 correct – 1 or 0 corre	1 M				
ii			the yeast will be denate	ured ar	nd too low, the	
	OR					
		the oxidation of the a	cohol produced.			
bi	Propyl proj					1
ĬĬ	AS 8 SOIVE	nt; for perfume; for foo	d Havouring			11

	H H O H-O-C-C-C-OH CH3H	1
A8		
ai	Polyester composites are too brittle/ break easily.	1
ii	Glass fibre has too high a density.	1
b	Kevlar has amide linkages but polyester has ester linkages. Kevlar is formed from reacting an amine with an organic acid while polyester is formed by reacting an alcohol with an organic acid.	1 1
С	Silicon dioxide has a high MP It has a giant molecular structure with strong covalent bonds between the silicon and oxygen atoms.	1
	Thus, a large amount of energy is needed to overcome these bonds.	1
	Or	-
	Silicon dioxide is a poor conductor of electricity. There are no free moving electrons or ions to	1
	Carry electrical charges from one end to the other.	1_
<u>В9</u> а	Carbon dioxide is an acidic oxide that can dissolve in rain to form a weak carbonic acid. The acidic solution can then react with calcium carbonate to form salt, water and carbon dioxide gas.	1
		1
bi ci	Sodium hydroxide The soap needs to first react with the calcium ions found in hard water to form the insoluble curds before it can be used for cleaning purposes.	1
ii	Mass of CaCO ₃ = 275 x 0.5 = 137.5 mg	1
	No. of moles of $CaCO_3 = 137.5/100 = 1.375$ mmoles (0.001375 mols)	1
	No. of moles of soap = $1.375 \times 2 = 2.75$ mmoles Mass of soap = $2.75 \times (12 \times 18 + 35 + 32 + 23) = 841.5$ mg or 0.8415 g	1
d	Sodium carbonate will <u>undergo precipitation</u> with chlorides and sulfates of calcium and magnesium to form insoluble CaCO ₃ or MgCO ₃ .	1 1
	The insoluble salts can be then removed by filtration. Equation	1
B10		
		1
а	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Page 4 of 6

	Name: heptanone	1
b	$C_nH_{2n}O$	1
С	H CH ₂ CH ₃	T
d	122 °C It has a larger molecular size than pentanone. Hence, it has a stronger attraction forces between its molecules. Thus, it needs more energy to overcome these forces leading to a higher temperature.	1 1
ei	When propene reacts with water, it forms propanol. However, when propanone reacts with water, it forms propanediol. The addition reaction between propene with water is the breaking of C=C while	1
ii	the addition reaction between propanone with water is the breaking of C=O. The Universal indicator would appear green. The propanone would not ionise in water to form any H ⁺ ions or OH ⁻ ions. Thus, it will be neutral.	1
E11		
а	Energy was still being absorbed to overcome the activation energy Or most reactant particles have insufficient activation energy to undergo decomposition.	1
b	The volume of carbon dioxide gas collected did not remain constant.	1
ci	48/5 = 9.6 cm ³ /min	1
* * * * * * * * * * * * * * * * * * *	$\text{Li}_2\text{CO}_3 \rightarrow \text{Li}_2\text{O} + \text{CO}_2$ No. of moles of $\text{Li}_2\text{CO}_3 = 1$ / (14+12+16x3) = 0.013514 mols Vol of $\text{CO}_2 = 0.013514 \times 24 = 0.324336 = 324.336 \text{ cm}^3$ Time taken = 324.336 / 9.6 = 33.785 min	1 1 1
di	Copper(II) carbonate decomposes at the fastest rate. It produces the highest volume of carbon dioxide gas at time 5 min or It has the steepest gradient.	1
ii	The volume of carbon dioxide gas will remain at 0 or close to 0 cm ³ . The more reactive the metal, the more thermally stable its carbonate. Hence, potassium carbonate is not able to decompose readily to form carbon dioxide gas.	1
011		
ai	When barium hydroxide reacts with sulfuric acid, barium sulfate salt and water are formed. Barium sulfate is insoluble in water. Hence, when all the barium hydroxide has reacted, solid barium sulfate and water are poor conductors of electricity, and the electrical conductivity decreases to 0 S/m.	1
L	I	1_

	However, when sodium hydroxide reacts with iron(II) nitrate, sodium nitrate and iron(II) hydroxide are formed. Aqueous sodium nitrate contains free moving ions that can carry electrical charges from one end to the other and thus, the electrical conductivity did not decrease to 0 S/m.	3
3	The electrical conductivity of titration 1 remains constant before it increases at 13 cm³ of sulfuric acid while the electrical conductivity of titration 2 decrease before it increases at 15 cm³ of iron(II) nitrate.	1
iii	The sodium nitrate solution formed replaces the hydroxide ions used up in the reaction with sodium hydroxide. Hence, there is no change in the concentration/ amount of free moving ions present in the solution.	1
	However, in titration 2, the hydrogen ions used to react with the hydroxide ions are not replaced due to the formation of insoluble barrum sulfate and water. Hence the concentration of ions in the conical flask decreases overtime.	1
b	No. of moles of iron(II) nitrate = 0.563 x 13/1000 = 0.007319 mols No. of moles of NaOH = 0.007319 x 2 = 0.014638 mols Conc of NaOH = 0.014638 / 0.02 = 0.7319 metrom ³	1