Name	Reg. No	Class

OWER	SECO	NDARY	SCHOO	L MAY	FLOWER	SECO	DARY	SCHOO	L MA'	YFLOWE	R SECO	NDARY	SCHOO	L MAYF	LOWER	SECON	IDARY	SCHOOL
OWER	SECO	NDARY	SCHOO	L MAY	FLOWER	SECON	(DARY	SCHOO	OL MA'	YFLOWE	R SECO	NDARY	SCHOO	L MAYF	LOWER	SECON	IDARY	SCHOOL
OWER	SECO	NDARY	SCHOO	L MAY	FLOWER	SECO	IDARY	SCHOO	L MA	YFLOWE	R SECO	NDARY	SCHOO	L MAYF	LOWER	SECON	IDARY	SCHOOL
OWER	SECO	NDARY	SCHOO	L MAY	FLOWER	SECO	DARY	SCHOO	L MA'	YFLOWE	R SECO	NDARY	SCHOO	L MAYF	LOWER	SECON	IDARY	SCHOOL
OWER	SECO	NDARY	SCHOO	L MAY	FLOWER	SECON	DARY	SCHOO	L MA	YFLOWE	R SECO	NDARY	SCHOO	L MAYE	LOWER	SECON	IDARY	SCHOOL
OWER	SECO	NDARY	SCHOO	L MAY	FLOWER	SECO	DARY	SCHOO	DL MA	YFLOWE	R SECO	NDARY	SCHOO	LMAYF	LOWER	SECON	DARY	SCHOOL
OWER	SECO	NDARY	SCHOO	L MAY	FLOWER	SECO	DARY	SCHOO	DL MA	YFLOWE	R SECO	NDARY	SCHOO	LMAYF	LOWER	SECON	DARY	SCHOOL

4EX/5NA

ADDITIONAL MATHEMATICS

4049/01

Paper 1 [90 marks]

PRELIMINARY EXAMINATION

23 AUGUST 2022

2 hours 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

INSTRUCTIONS TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your name, register number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer ALL questions.

Write your answers in the space provided.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

Write the brand and model of your calculator in the space provided below.

INFORMATION FOR CANDIDATES

You are expected to use an electronic calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, the answer should be given to **three** significant figures. Answers in degrees should be given to **one** decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 90.

Brand /	Model	of	Calculator	

This question paper consists of 17 printed pages and 1 blank page

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{n(n-1)...(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$
Area of $\Delta = \frac{1}{2}ab \sin C$

[1]

1 (a) Find the remainder when $9x^3 - 26x^2 + 3x + 14$ is divided by x + 1.

(b) Given that $f(x) = bx^3 - 5x^2 + 2x + 4$ and $g(x) = bx^3 + 6x - 8$ have a common factor x - a, where a is an integer, find the value of b. [4]

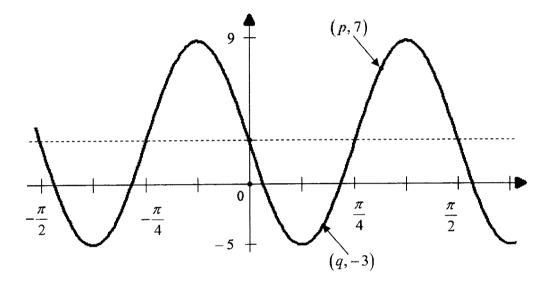
- 2 A curve has the equation $y = \frac{2-x}{3x-4}$, $x \neq \frac{4}{3}$.
 - (i) Find an expression for $\frac{dy}{dx}$. [2]

(ii) Find the coordinates of the points on the curve where the normal is parallel to the line 2y-16x=3. [5]

3 (a) Find the range of values of a for which the inequality $x^2 + ax - 2 < 2(x-1)^2$ for all real values of x.

[4]

(b) The equation of a curve is $y = 2x^3 + (b+1)x^2 - x + b$, where b is a constant. Show that, for all real values of b, the curve will have two distinct stationary points. [4]


- 4 (a) State the range of values
 - (i) for the principal value of $\cos^{-1} x$,

[1]

(ii) of y such that $\sin^{-1} y$ is not defined.

[1]

(b)

The diagram shows part of the graph of $y = a \sin bx + c$, passing through the points (p,7) and (q,-3).

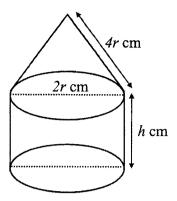
(i) Find the value of the constants a, b and c.

[3]

(ii) Form an equation connecting p, q and π .

5 (a) The population, N, of a certain virus is given by $N = N_o(3^k)$, where N_o and k are constants and t is measured in days. Given that the population of the virus increases by 200% at the end of 15 days, calculate the value of k. [3]

(b) The equation $\log_3 x + 2\log_3 5 = \log_{27} x$ has the solution $x = 5^m$. Find the value of m. [4]


- 6 Given that $\int_{8}^{n} \frac{x-6}{x^2-2x-24} dx = \ln \frac{4}{3}$,
 - (i) state the value(s) of x for the integral to be undefined.

[2]

(ii) find the value of n.

[4]

7 The diagram shows a **solid** made up by a right circular cone and a cylinder of diameter 2r cm. The slant height of the cone is 4r cm and height of the cylinder is h cm.

(i) Given that the total surface area of the solid is 300 cm^2 , express h in terms of r. [2]

(ii) Show that the volume, $V \text{ cm}^3$, of the solid is given by $V = 150 r + \left(\frac{\sqrt{15}}{3} - \frac{5}{2}\right) \pi r^3$. [3]

(iii) Given that r can vary, find the stationary value of V and determine whether this value of V is maximum or minimum. [5]

8 (a) Prove that
$$\frac{\cos A + \sin A}{\cos A - \sin A} = \sec 2A + \tan 2A.$$
 [3]

- (b) The equation of the **gradient** of a curve is $f'(\theta) = \cos 2\theta 3\sin 2\theta$. Given that the curve $y = f(\theta)$ passes through the point $\left(\frac{\pi}{2}, -\frac{1}{2}\right)$, find
 - (i) the equation of the curve,

BP~351

(ii) the coordinates of the turning points of the curve for $0 \le \theta \le \pi$.

[4]

9 (a) (i) Write down, and simplify, the first three terms in the expansion of $(2-3x)^5$ in ascending powers of x. [2]

(ii) Hence, find the coefficient of x^2 in the expansion of $(1-4x^2)(2-3x)^5$. [2]

(b) In the binomial expansion of $\left(\frac{k}{x^3} + x\right)^{12}$, where k is a positive constant, the term independent of x is 27500. Show that k = 5.

- 10 An ice cube retains its shape during melting. When its length is x mm, the surface area, A, is decreasing at a rate of $10 \text{ mm}^2/\text{s}$. The volume, V, of the ice cube changes at the rate of $-45 \text{ mm}^3/\text{s}$,
 - (i) find the value of x.

[5]

(ii) find the rate of change of x for the value found in (i).

[1]

11 (i) $\sqrt{48+24\sqrt{3}}$ can be expressed in the form $a+2\sqrt{3}$, where a is an integer. Find the value of a. [2]

(ii) If the area of a given square is $48+24\sqrt{3}$ cm², find the length of one side of the square. [1]

(iii) The square in part (ii) is the base of a right pyramid with volume $(50+20\sqrt{3})$ cm³. Find the perpendicular height of the pyramid, leaving your answer in the form $(b-c\sqrt{3})$ cm, where b and c are constants.

- A particle moves in a straight line, such that, t seconds after passing a fixed point O, its velocity, v m/s, is given by $v = \frac{2}{5}e^{3t} 6e^{\frac{1}{2}-t}$. The particle comes to an instantaneous rest at point A.
 - (i) Show that the particle reaches A when $t = \frac{1}{8} (1 + 2 \ln 15)$. [2]

(ii) Find the acceleration of the particle at A. [2]

(iii) Find the distance OA. [4]

(iv) Explain whether the particle will pass through point *O* again at some instant during the 2nd second.

[2]

---- End of Paper ----

Name	Reg	. No	Class

MAYFLO	WER	SECONDAR	LY SCHOOL	MAYFL	OWER	SECON	DARY	SCHOOL	MAYE	OWER	SECON	DARY	SCHOO	L MAYE	LOWER	SECONDA	RY SCHOOL
MAYFLO	WER	SECONDAR	RY SCHOOL	L MAYFL	.OWER	SECON	DARY	SCHOOL	MAYF	LOWER	SECON	DARY	SCHOO	MAYF	LOWER	SECONDA	RY SCHOO
MAYFLO	WER	SECONDAR	Y SCHOOL	MAYFL	.OWER	SECON	DARY	SCHOOL	MAYF	LOWER	SECON	DARY	SCHOO	L MAYF	LOWER	SECONDA	RY SCHOOL
MAYFLO	WER	SECONDAR	Y SCHOOL	MAYFL	OWER	SECON	DARY	SCHOOL	MAYF	LOWER	SECON	DARY	SCHOO	L MAYF	LOWER	SECONDA	RY SCHOOL
MAYFLO	WER	SECONDAR	Y SCHOOL	MAYFL	OWER	SECON	DARY	SCHOOL	MAYF	LOWER	SECON	DARY	SCHOO	L MAYF	LOWER	SECONDA	RY SCHOOL
MAYFLO	WER	SECONDAR	A SCHOOL	MAYFL	OWER	SECON	DARY	SCHOOL	MAYF	OWER	SECON	DARY	SCHOO	L MAYF	LOWER	SECONDA	RY SCHOOL
MATELO	MEK	SECONDAR	Y SCHOOL	_ MAYFL	OWER	SECON	DARY	SCHOOL	MAYF	OWER	SECON	DARY	SCHOO	L MAYF	LOWER	SECONDA	RY SCHOOL

4E/5N

ADDITIONAL MATHEMATICS

4049/02

PAPER 2 [90 marks]

PRELIMINARY EXAMINATION

26 August 2022 2 hours 15 minutes

Candidates answer in the Question Paper No additional material required

INSTRUCTIONS TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your name, register number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer ALL questions.

You are reminded of the need for clear presentation in your answers.

Write the brand and model of your calculator in the space provided below.

INFORMATION FOR CANDIDATES

You are expected to use an electronic calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, the answer should be given to **three** significant figures. Answers in degrees should be given to **one** decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 90.

Brand / Model of Calculator

For Examiner's Use

This question paper consists of 22 printed pages, including 2 blank pages.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation
$$ax^2 + bx + c = 0$$
,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

(a+b)ⁿ =
$$a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n$$
,

where *n* is a positive integer and
$$\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{n(n-1)...(n-r+1)}{r!}$$
.

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

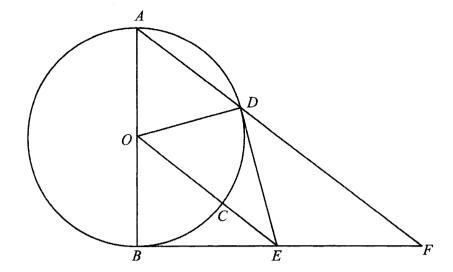
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$


$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$
Area of $\Delta = \frac{1}{2}ab \sin C$

Express $5+8x-2x^2$ in the form $a(x-b)^2+c$, and hence state the coordinates of the turning point of the curve $y=5+8x-2x^2$. [4]

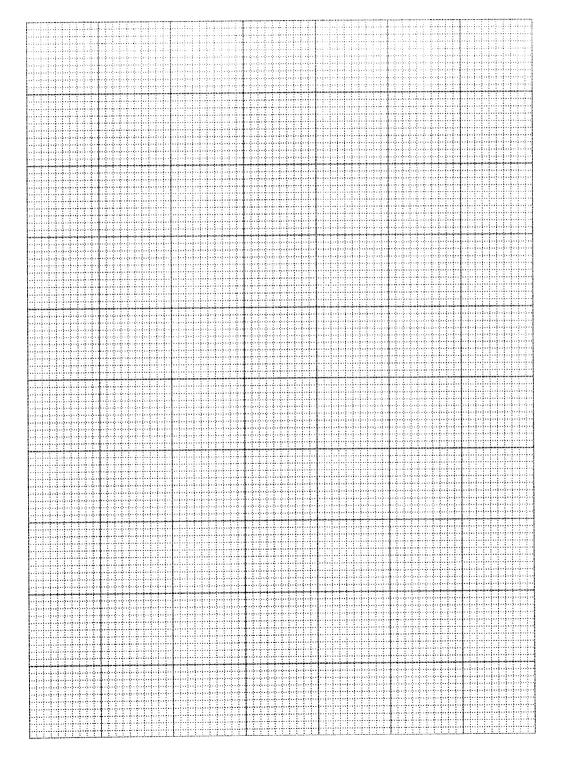
2 Express
$$\frac{4x^2 + 5x - 11}{(x-2)(x^2+1)}$$
 in partial fractions. [6]

TURN OVER FOR QUESTION 3

A, B, C and D are points on a circle with centre O. AB is the diameter of the circle, ADF and OCE are straight lines and lines BEF and DE are tangents to the circle at B and D respectively.

(i) Prove that triangle *OBE* is congruent to triangle *ODE*.

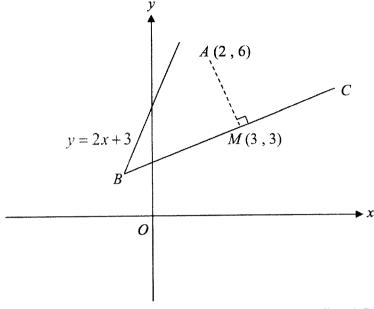
[4]


(ii) Show that E is the midpoint of BF.

[4]

It is known that t and N are related by an equation of the form $N = AB^t$, where A and B are constants. The table shows experimental values of two variables t and N.

t	1	2	3	4	5
N	199	1258	7943	50118	316227


(i) By plotting lg N against t, draw a straight line to represent the above data. [3]

Continuation of working space for question 4(i)

(ii) Use your graph to estimate the value of A and of B.

[4]

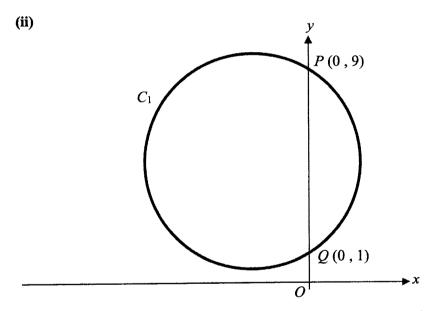
Point A is (2, 6), M is (3, 3) and line AM is perpendicular to line BC. Point B lies on the line with equation y = 2x + 3.

(i) Find the equation of line BC.

[3]

(ii) Find the coordinates of B.

M is the midpoint of BC.


(iii) Find the coordinates of C.

[2]

(iv) Calculate the area of triangle *OAM*.

- 6 (a) A circle, C_1 intersects the y-axis at P(0, 9) and Q(0, 1) and its centre is 3 units to the left of the y-axis.
 - (i) Find the coordinates of the centre and radius of C_1 .

[3]

Hammond drew a diagram of the circle by using the information given.

Explain why his diagram is wrong.

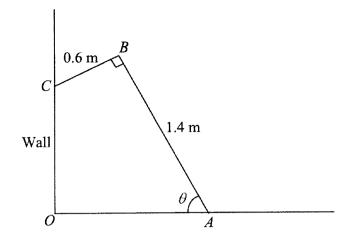
BP~371

- (b) Another circle, C_2 has equation $x^2 + y^2 14x 20y + 113 = 0$. Let L be the centre of C_2 .
 - (i) State the coordinates of L and calculate the radius of C_2 .

[3]

M(2, 2) is a point outside C_2 and N is a point on C_2 .

(ii) Find, in degrees, the greatest angle LMN.


[3]

7 (a) Differentiate $\ln \left[\frac{(x-1)^{\frac{1}{2}}}{x+2} \right]$ with respect to x, for x > 1. [3]

BP~373

(b) (i) Given that
$$y = \frac{x}{(3x+2)^2}$$
, show that $\frac{dy}{dx} = \frac{2-3x}{(3x+2)^3}$. [4]

(ii) Hence, find the value of
$$\int_0^1 \frac{-3x}{(3x+2)^3} dx$$
. [4]

A crowbar ABC is leaning against a vertical wall, where angle $ABC = 90^{\circ}$, AB = 1.4 m and BC = 0.6 m. OA is horizontal and angle OAB is θ and is measured in degrees.

(i) Show that
$$OC = 1.4 \sin \theta - 0.6 \cos \theta$$
 [2]

(ii) Express OC in the form
$$R \sin(\theta - \alpha)$$
, where $R > 0$ and $0^{\circ} \le \alpha \le 90^{\circ}$ [4]

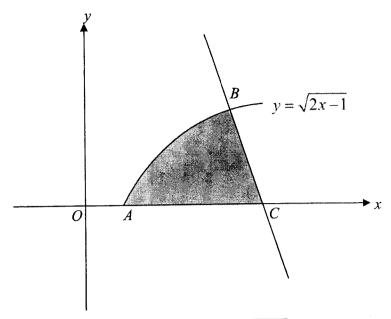
(iii) Find the value of θ if OC = 1 m.

[2]

(iv) Explain the significance when OC is minimum and write down the corresponding value of θ . [2]

9 (a) (i) Prove the identity
$$\sin 2\theta - \tan \theta \cos 2\theta = \tan \theta$$
.

(ii) Hence, solve the equation
$$\sin 2\theta - \tan \theta \cos 2\theta = \frac{3}{\tan \theta}$$
 for $0 \le \theta \le 2\pi$. [4]


(b) Given that $\sin A = -\frac{3}{5}$, $\cos B = \frac{5}{6}$ and both angle A and angle B are in the same quadrant, find the exact value of

(i)
$$\cos(A-B)$$
.

[3]

(ii)
$$\sin \frac{B}{2}$$
.

10

The diagram shows part of the graph of $y = \sqrt{2x-1}$ intersecting the x-axis at A and has a gradient of $\frac{1}{3}$ at B. The normal of the graph at B intersects the x-axis at C. By first finding the coordinates of A, B and C or otherwise, show that the area of the shaded region is $10\frac{1}{2}$ units².

Continuation of working space for question 10

End of Paper

Marking Scheme 2022 Prelim Exam_4EX_AM P1

Qn.	Solutions	Marks
l(a)	$R = 9(-1)^{3} - 26(-1)^{2} + 3(-1) + 14$ = -24	В1
l(b)	$f(a) = g(a)$ $a^{3}b - 5a^{2} + 2a + 4 = a^{3}b + 6a - 8$ $-5a^{2} - 4a + 12 = 0$ $5a^{2} + 4a - 12 = 0$ $(5a - 6)(a + 2) = 0$	M1 for equating
	$\Rightarrow a = \frac{6}{5} \text{or} a = -2$ $\begin{pmatrix} \text{rejected since} \\ a \text{ is an integer} \end{pmatrix}$	M1 for correct a values
	When $a = -2$, factor = $x + 2$ \therefore g(-2) = 0 * or use f(-2) = 0 -8b - 12 - 8 = 0 $b = \frac{20}{-8}$	M1 for correct method to find b
	$b = \frac{20}{-8}$ $= -2\frac{1}{2}$	A1

2(a)	$\frac{dy}{dx} = \frac{(3x-4)(-1)-(2-x)(3)}{(3x-4)^2}$ $= \frac{-3x+4-6+3x}{(3x-4)^2}$	Ml for correct quotient rule
	$=\frac{2}{(3x-4)^2}$	Al
2(b)	$2y - 16x = 3$ $y = 8x + \frac{3}{2}$	
	Gradient of normal = 8	
	Gradient of tangent = $-\frac{1}{8}$	М1
	$\Rightarrow -\frac{2}{(3x-4)^2} = -\frac{1}{8}$ $16 = (3x-4)^2$	M1 (allow e.c.f)
	$3x-4=4 or 3x-4=-4$ $x=\frac{8}{3} or x=0$ $y=-\frac{1}{6} y=-\frac{1}{2}$	MI for both correct x values
	Coordinates = $\left(\frac{8}{3}, -\frac{1}{6}\right)$ or $\left(0, -\frac{1}{2}\right)$	A1 + A1

[Turn over

3(a)	$x^2 + ax - 2 < 2(x-1)^2$	
	$x^2 + ax - 2 < 2x^2 - 4x + 2$	
	$0 < x^2 - (4+a)x + 4$	
	$x^2 - (4+a)x + 4 > 0$	M1
Xe i	$\Rightarrow b^2 - 4ac < 0$	
	$(4+a)^2 - 4(1)(4) < 0$	M1
	(4+a+4)(4+a-4)<0	
	(8+a)a<0	M1 for correct factorization
	$\therefore -8 < a < 0$	A1
3(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 + 2(b+1)x - 1$	M1
	For stationary pts, $\frac{dy}{dx} = 0$	
	$\Rightarrow 6x^2 + 2(b+1)x - 1 = 0$	M1
	Now, discriminant	
	$=4(b+1)^2-4(6)(-1)$	M1
	$=4(b+1)^2+24$	
	Since $4(b+1)^2 + 24 > 0$ for all real values of b,	A1
	the curve will have 2 distinct stationary points.	
4(a)(i)	$0 \le \cos^{-1} x \le \pi \left(or 180^{\circ} \right)$	B1
4(a)(ii)	y > 1, $y < -1$	B1
4(b)(i)	$ a = \frac{14}{2} = 7$	
	a = -7	В1
	$b = \frac{2\pi}{(\pi)} = 4$	В1
	$\left(\frac{1}{2}\right)$	B 1
	$ a = \frac{14}{2} = 7$ $a = -7$ $b = \frac{2\pi}{\left(\frac{\pi}{2}\right)} = 4$ $c = 9 - 7 = 2$	
Ì		76,474
4(b)(ii)	$p - \frac{\pi}{4} = \frac{\pi}{4} - q$ $p + q = \frac{\pi}{2}$	M1
	$n+a=\frac{\pi}{2}$	A1

5(a)	When $t = 0$, $N = N_0$	
	When $t = 15$, $N = 3N_0$	
	$\Rightarrow 3N_0 = N_0 \left(3^{15k}\right)$	M1
	$\Rightarrow 3^1 = 3^{15k}$	M1
	$\Rightarrow 3^{1} = 3^{15k}$ $\Rightarrow k = \frac{1}{15}$	A1
5(b)	$\log_3 x + \log_3 25 = \frac{\log_3 x}{3}$	M1 for change of base
	$\log_3 25x = \log_3 x^{\frac{1}{3}}$	M1 for product law
	$\Rightarrow 25x = x^{\frac{1}{3}}$	
	$\Rightarrow 25x = x^{\frac{1}{3}}$ $\Rightarrow x^{\frac{2}{3}} = \frac{1}{25}$ $\Rightarrow x = \frac{1}{5^{3}}$ $\Rightarrow x = 5^{-3}$	M1
	$\Rightarrow x = \frac{1}{5^3}$	
	$\Rightarrow x = 5^{-3}$	
A TOTAL CONTRACTOR OF THE STATE	$\therefore m = -3$	A1
	OR	
	$\begin{vmatrix} \log_3 x & + & 2\log_3 5 & = & \frac{\log_3 x}{3} \\ 3\log_3 x & + & 6\log_3 5 & = & \log_3 x \end{vmatrix}$	M1 for change of base
	$2\log_3 x = -6\log_3 5$	M1
	$\log_3 x = -3\log_3 5$	A14.4
	$\log_3 x = \log_3 5^{-3}$	M1
	$\Rightarrow x = 5^{-3}$	A1
	$\therefore m = -3$	AI

6(i)	$x^2 - 2x - 24 \neq 0$	M1 for factorization
	$(x-6)(x+4) \neq 0$ Hence, $x \neq 6$ or $x \neq -4$	A1
6(ii)	$\int_{8}^{n} \frac{x-6}{(x-6)(x+4)} dx = \ln \frac{4}{3}$ $\int_{8}^{n} \frac{1}{x+4} dx = \ln \frac{4}{3}$	M1 for simplifying
	$ \left[\ln\left(x+4\right)\right]_{8}^{n} = \ln\frac{4}{3} $	M1 for correct integration
	$\ln(n+4)-\ln 12 = \ln \frac{4}{3}$	
	$\ln\left(\frac{n+4}{12}\right) = \ln\frac{4}{3}$	M1
	$\Rightarrow \frac{n+4}{12} = \frac{4\times4}{3\times4}$	
	$\Rightarrow n+4=16$	
	$\Rightarrow n=12$	A1

	ie, $r\sqrt{15}$
7(ii) $V = \frac{1}{3}\pi r^{2} \left(r\sqrt{15}\right) + \pi r^{2}h$ $= \frac{\sqrt{15}}{3}\pi r^{3} + \pi r^{2} \left(\frac{1}{2\pi r}\right) \left(300 - 5\pi r^{2}\right)$ $= \frac{\sqrt{15}}{3}\pi r^{3} + 150r - \frac{5}{2}\pi r^{3}$ $= 150r + \left(\frac{\sqrt{15}}{3} - \frac{5}{2}\right)\pi r^{3} \qquad (shown)$ A1 7(iii) $\frac{dV}{dr} = 150 + 3\pi r^{2} \left(\frac{\sqrt{15}}{3} - \frac{5}{2}\right)$ M1 for condifferential formula of the properties of	ie, $r\sqrt{15}$
$V = \frac{1}{3}\pi r^{2} (r\sqrt{15}) + \pi r^{2} h$ height of condition in the substitution in the substitution is a substitution in the substitution in the substitution in the substitution is a substitution in the substitution in the substitution in the substitution in the substitution is a substitution in the su	ie, $r\sqrt{15}$
$V = \frac{\pi}{3}\pi r^{3} (r\sqrt{15}) + \pi r h$ height of constant in the substant in t	
$= \frac{\sqrt{15}}{3}\pi r^{3} + 150r - \frac{5}{2}\pi r^{3}$ $= 150r + \left(\frac{\sqrt{15}}{3} - \frac{5}{2}\right)\pi r^{3} \qquad (shown)$ A1 $\frac{dV}{dr} = 150 + 3\pi r^{2}\left(\frac{\sqrt{15}}{3} - \frac{5}{2}\right)$ M1 for condifferential differential diffe	ituting <i>h</i>
$= 150r + \left(\frac{\sqrt{15}}{3} - \frac{5}{2}\right)\pi r^{3} \qquad (shown)$ $7(iii) \qquad \frac{dV}{dr} = 150 + 3\pi r^{2} \left(\frac{\sqrt{15}}{3} - \frac{5}{2}\right)$ M1 for condifferential	
$=150r + \left(\frac{\sqrt{15}}{3} - \frac{5}{2}\right)\pi r^{3} \qquad (shown)$ $\frac{dV}{dr} = 150 + 3\pi r^{2} \left(\frac{\sqrt{15}}{3} - \frac{5}{2}\right)$ M1 for condifferential	
$\frac{dr}{dr} = 150 + 3\pi r^2 \left(\frac{\sqrt{13}}{3} - \frac{3}{2} \right)$ Mil for each differential d	
V = V + V + V + V + V + V + V + V + V +	l l
For stationary value of V , $\frac{\mathrm{d}V}{\mathrm{d}r} = 0$.	en e
$\Rightarrow 150 + 3\pi r^2 \left(\frac{\sqrt{15}}{3} - \frac{5}{2} \right) = 0$	
$\Rightarrow r^2 = \frac{-150}{3\pi \left(\frac{\sqrt{15}}{3} - \frac{5}{2}\right)}$	
$= 13.16412$ $\Rightarrow r = 3.62824 cm$ M1 for convalue	
When $r = 3.62824$, $V = 362.824 \text{ cm}^3$	
$\approx 363 \text{ cm}^3$ A1 for cor	rect V
Now, $\frac{d^2V}{dr^2} = 6\pi r \left(\frac{\sqrt{15}}{3} - \frac{5}{2}\right) = -82.6848 < 0$ M1 for find derivating	- 1
$\Rightarrow V \text{ is a maximum.} $	

$LHS = \frac{(\cos A + \sin A)(\cos A + \sin A)}{\cos^2 A - \sin^2 A}$	M1 for multiplying the conjugate
$= \frac{\cos^2 A + \sin^2 A + 2\sin A \cos A}{\cos 2A}$ $= \frac{1 + \sin 2A}{\cos 2A}$	M1 for either one of the double-angled formula
$= \sec 2A + \tan 2A = RHS (proven)$	A1
$y = \int \cos 2\theta - 3\sin 2\theta d\theta$	
$= \frac{1}{2}\sin 2\theta + \frac{3}{2}\cos 2\theta + c$	M1
When $\theta = \frac{\pi}{2}$, $y = -\frac{1}{2}$. $\therefore -\frac{1}{2} = \frac{1}{2}\sin \pi + \frac{3}{2}\cos \pi + c$	
$\Rightarrow -\frac{1}{2} = -\frac{3}{2} + c$ $\Rightarrow c = 1$	M1 for finding c
Hence, $y = \frac{1}{2}\sin 2\theta + \frac{3}{2}\cos 2\theta + 1$	A1
For turning pts, $f'(\theta) = 0$.	
$\Rightarrow \cos 2\theta - 3\sin 2\theta = 0$	
$\Rightarrow \tan 2\theta = \frac{1}{2}$	M1
(basic = 0.321751)	
$2\theta = 0.321751$, 3.463344	
$\theta = 0.160876, 1.731672$	M1 for correct
$\therefore y = 2.58, -0.581$	values of $ heta$
Coordinates of turning pts are	
(0.161, 2.58) and $(1.73, -0.581)$	A1 + A1
	$cos 2A$ $= \frac{1 + \sin 2A}{\cos 2A}$ $= \sec 2A + \tan 2A = RHS (proven)$ $y = \int \cos 2\theta - 3\sin 2\theta d\theta$ $= \frac{1}{2}\sin 2\theta + \frac{3}{2}\cos 2\theta + c$ $When \theta = \frac{\pi}{2}, y = -\frac{1}{2}.$ $\therefore -\frac{1}{2} = \frac{1}{2}\sin \pi + \frac{3}{2}\cos \pi + c$ $\Rightarrow -\frac{1}{2} = -\frac{3}{2} + c$ $\Rightarrow c = 1$ $Hence, y = \frac{1}{2}\sin 2\theta + \frac{3}{2}\cos 2\theta + 1$ $For turning pts, f'(\theta) = 0.$ $\Rightarrow \cos 2\theta - 3\sin 2\theta = 0$ $\Rightarrow \tan 2\theta = \frac{1}{3}$ $(basic = 0.321751)$ $2\theta = 0.321751, 3.463344$ $\theta = 0.160876, 1.731672$ $\therefore y = 2.58, -0.581$ $Coordinates of turning pts are$

9(a)(i)	$(2-3x)^5 = 2^5 + 5(2^4)(-3x) + 10(2^3)(-3x)^2 + \dots$	M1
	$\approx 32 - 240x + 720x^2$	A1
9(a)(ii)	$(1-4x^2)(32-240x+720x^2)$	M1
	Coeff of $x^2 = 720 - 4(32)$ = 592	A1
9(b)	$(r+1)term = {}^{12}C_r \left(\frac{k}{x^3}\right)^{12-r} x^r$	
	$= {}^{12}C_r \cdot k^{12-r} \cdot x^{3r-36+r}$ = ${}^{12}C_r \cdot k^{12-r} \cdot x^{4r-36}$	M1
	For x^0 , $4r-36=0$ r=9	M1 for finding r
	$\Rightarrow \qquad ^{12}C_9 \ k^3 = 27500$	M1 for equating
	$\Rightarrow k^3 = 125$ $\Rightarrow k = 5 (shown)$	A1
	$\Rightarrow \qquad k=5 (shown)$	12.
	·	

10(i)	$A = 6x^2$	$V = x^3$	
	$\frac{dA}{dx} = 12x$	$\frac{dV}{dx} = 3x^2$	
	1		
	$\frac{dA}{dt} = \frac{dA}{dx} \cdot \frac{dx}{dt}$	$\frac{dV}{dt} = \frac{dV}{dx} \cdot \frac{dx}{dt}$	M1 for either of the correct chain rule
	$-10 = (12x)\frac{dx}{dt}$	$-45 = \left(3x^2\right)\frac{dx}{dt}$	
	$\frac{dx}{dt} = -\frac{5}{6x}$	$\frac{dx}{dt} = -\frac{15}{x^2}$	M1 + M1
	$\Rightarrow \qquad -\frac{5}{6x} = -\frac{15}{x^2}$		M1 for equating
	$\Rightarrow 5x^2 = 90x$		
	$\Rightarrow x(x-18) = 0$ $\Rightarrow x = 0 (rejected) or$	$x = 18 \ mm$	A1
10(ii)	$\frac{dx}{dt} = -\frac{5}{6 \times 18} = -\frac{5}{108}$		B1
11(i)	$48 + 24\sqrt{3} = (a + 2\sqrt{3})^2$		
	$=a^2+4a\sqrt{3}+1$	2	M1 for expansion
	$\Rightarrow 24 = 4a$ $\Rightarrow a = 6$		A1
	<i>→ u</i> − 0		
11(ii)	$6+2\sqrt{3}$		B1
11(iii)	$\frac{1}{3} \left(48 + 24\sqrt{3} \right) h = 50 + 26$	$0\sqrt{3}$	M1 for correct volume formula
	$h = \frac{50 + 20\sqrt{3}}{16 + 8\sqrt{3}} \times \frac{16 - 8\sqrt{3}}{16 - 8\sqrt{3}}$	$\frac{\overline{3}}{\overline{3}}$	M1 for multiplying conjugate surd
	$=\frac{800-80\sqrt{3}-480}{64}$		
5.00	$=\frac{320-80\sqrt{3}}{64}$		
	$=5-\frac{5}{4}\sqrt{3}$		A1

12(i)	When $v = 0$,	
	$\frac{2}{5}e^{3t} = 6e^{\frac{1}{2}-t}$	
	$e^{4t-\frac{1}{2}}=15$	M1
	$4t - \frac{1}{2} = \ln 15$	
	$t = \frac{1}{4} \left(\frac{1}{2} + \ln 15 \right)$	
	$=\frac{1}{8}(1+2\ln 15) \qquad (shown)$	A1
12(ii)	$a = \frac{6}{5}e^{3t} + 6e^{\frac{1}{2}-t}$	M1
	When $t = \frac{1}{9}(1 + 2\ln 15) \approx 0.802013$ sec,	
	$a = 17.74389 \approx 17.7 \ m/s^2$	A1
12(iii)	$s = \int \frac{2}{5} e^{3t} - 6e^{\frac{1}{2}-t} \mathrm{d}t$	
	$=\frac{2}{15}e^{3t} + 6e^{\frac{1}{2}-t} + c$	M1
	When $t = 0$, $s = 0$.	
	$\Rightarrow 0 = \frac{2}{15} + 6e^{\frac{1}{2}} + c$	
	$\Rightarrow c = -\left(\frac{2}{15} + 6e^{\frac{1}{2}}\right)$	M1
	When $t = \frac{1}{8}(1 + 2\ln 15) \approx 0.802013 \text{ sec},$	
	Displacement $OA = -4.111031$	M1
	Distance $OA = 4.11 m$	A1
12(iv)	When $t = 1$, $s = -3.71 m$	M1 for finding
	When $t = 2$, $s = 45.1 m$	correct displacement at either t = 1 or t = 2
	During the 2 nd second, the displacement changes from negative to	A1 for correct
	positive. Hence, the particle will pass through point O again during the 2^{nd} second.	explanation

2022 4E5N Prelim Amath Paper 2 MS

Qn	Solution	Marking Scheme
1	$5 + 8x - 2x^2 = -2(x^2 - 4x) + 5$	M1 for factorizing -2
	$=-2\left[\left(x-2\right)^{2}-4\right]+5$	M1 for +4 and -4 or equivalent
	$=-2(x-2)^2+13$	A1
	t.p. is (2, 13)	A1
2	$\frac{4x^2 + 5x - 11}{(x - 2)(x^2 + 1)} = \frac{A}{5(x - 2)} + \frac{Bx + C}{5(x^2 + 1)}$	
	$(x-2)(x^2+1)^{-1}5(x-2)^{-1}5(x^2+1)$	
	$4x^{2} + 5x - 11 = A(x^{2} + 1) + (Bx + C)(x - 2)$	M1 for "getting rid" of denominator
	Let $x = 2$: $15 = 5A$	M1 for substituting values or
	A=3	correct expansion B1
	Let $x = 0$: $-11 = 3 - 2C$ C = 7	
	Let $x = 1: -2 = 6 + (B + 7)(-1)$	B1 (can give ecf)
	B=1	B1 (can give ecf)
	$\frac{4x^2 + 5x - 11}{(x - 2)(x^2 + 1)} = \frac{3}{x - 2} + \frac{x + 7}{x^2 + 1}$	A1 (no ecf)
	$(x-2)(x^2+1)$ $x-2$ x^2+1	
3i	OB = OD	B1
	OE = OE (common side)	Bl
	$\angle OBE = \angle ODE \ (= 90)$	B1
	BE = DE (Pythagoras' Thm)	
	$\triangle OBE \equiv \triangle ODE \text{ (SSS or RHS)}$	A1 must include SSS or RHS
3ii	from (i) $\angle BOE = \angle DOE$	B1
	$\angle BAF = \frac{1}{2} \angle BOD$ (angle at centre =	M1 (must have reason)
	2×angle at circumference)	
	= ∠BOE	
	$\angle ABF = \angle OBF$ (common angle)	
	$\triangle OBE$ is similar to $\triangle ABF$ (AA)	M1 for conclusion
	$\frac{BE}{E} = \frac{OB}{AB}$	
	BF AB	
	$\frac{BE}{BF} = \frac{1}{2}$	
	$BE = \frac{1}{2}BF$	A1 for either
	There E is the midpoint of BF	

4i	lg N 2.298 3.099 3.899 4.699 5.499	B1 values of lg N
	See pdf file for graph	M1 for scale of axes P1 points plotted correctly and line passes through all points
4ii	$N = AB^t$	
	$\lg N = (\lg B)t + \lg A$	M1 addition or power law
	$\lg A = 1.5$ (allow 1.4 to 1.6)	
	A = 31.6 (allow 25.1 to 39.8)	A1
	$\lg B = \frac{5.5 - 1.5}{5 - 0}$	M1
	$=\frac{4}{5}$ (allow 0.7 to 0.9)	
	B = 6.31 (allow 5.01 to 7.94)	A1
5i	$Grad_{AM} = \frac{3-6}{3-2}$	
	=-3	B1
	$Grad_{BC} = \frac{1}{3}$	M1 for using the formula of perpendicular lines
	equation of BC:	
	$y-3=\frac{1}{3}(x-3)$	
	$y = \frac{1}{3}x + 2$	A1
5ii	$\frac{1}{3}x+2=2x+3$	M1
	$\frac{1}{3}x + 2 = 2x + 3$ $\frac{5}{3}x = -1$	
	$x=-\frac{3}{2}$	
	$y = \frac{9}{5}$ $B(-\frac{3}{5}, \frac{9}{5})$	
	$B(-\frac{3}{9}, \frac{9}{9})$	A1
	5'5'	111

5iii	Let C be (x, y)	
	3 9	
	$\frac{x-\frac{3}{5}}{2} = 3$ or $\frac{y+\frac{9}{5}}{2} = 3$	M1 for either equation
	2 or 2	M1 for either equation
	$x = \frac{33}{5} \qquad \qquad y = \frac{21}{5}$	
	5	
	$C\left(\frac{33}{5}, \frac{21}{5}\right) \text{ or } \left(6\frac{3}{5}, 4\frac{1}{5}\right) \text{ or } (6.6, 4.2)$	A1
5iv	Area of $\triangle OAM = \frac{1}{2} \begin{vmatrix} 0 & 3 & 2 & 0 \\ 0 & 3 & 6 & 0 \end{vmatrix}$	
	$=\frac{1}{2} 18-6 $	M1
	= 6 units ²	A1
6ai	Centre (-3, 5)	B1
	$r = \sqrt{(-3-0)^2 + (5-1)^2}$	M1
	=5	A1
6aii	Since the y-coordinate of centre = 5 and radius = 5 ,	
	the x-axis must be tangent to the circle	A1
	but it is not touching the circle at all	Al
6bi	L(7, 10)	B1
	$r = \sqrt{7^2 + 10^2 - 113}$	M1
	= 6	A1
6bii	$LM = \sqrt{(7-2)^2 + (10-2)^2}$	M1
	$=\sqrt{89}$	
	$\angle LMN = \sin^{-1}\left(\frac{6}{\sqrt{89}}\right)$	M1
		A1
7a	$y = \ln\left[\frac{\left(x-1\right)^{\frac{1}{2}}}{x+2}\right]$	
	$= \ln(x-1)^{\frac{1}{2}} - \ln(x+2)$	M1 for "minus" law
	$=\frac{1}{2}\ln(x-1)-\ln(x+2)$	M1 for power law
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2(x-1)} - \frac{1}{x+2}$	A1
1		

en .		
7bi	$y = \frac{x}{\left(3x+2\right)^2}$	
	$\frac{dy}{dx} = \frac{(3x+2)^2 - x(2)(3x+2)(3)}{(3x+2)^4}$	M1 for quotient rule M1 for chain rule
	, , , ,	TWI TOT CHAIN TAIC
	$=\frac{(3x+2)[(3x+2)-6x]}{(3x+2)^4}$	M1 for factorizing
	$=\frac{2-3x}{\left(3x+2\right)^3}$	A1
7bii	$\int_0^1 \frac{2-3x}{(3x+2)^3} dx = \left[\frac{x}{(3x+2)^2} \right]_0^1$	M1
	$\int_0^1 \frac{2}{(3x+2)^3} + \frac{-3x}{(3x+2)^3} dx = \frac{1}{25}$	M1 for splitting the integral
	$\int_0^1 \frac{-3x}{(3x+2)^3} dx = \frac{1}{25} - \int_0^1 2(3x+2)^{-3} dx$	B1 for $\frac{1}{25}$
	$=\frac{1}{25}-\left[-\frac{(3x+2)^{-2}}{3}\right]_0^1$	
	$=\frac{1}{25}+\frac{1}{3}\left[\frac{1}{25}-\frac{1}{4}\right]$	
	$=-\frac{3}{100}$	A1
8i	100	Ai
01		
	R	
	G -0.6 nr - 7	
	C	
	Wall 1.4 m	
	$O \longrightarrow F \longrightarrow A$	
	r A	
L		

	$BF = 1.4\sin\theta$	M1 (either)
	$BG = 0.6\cos\theta$	
	$OC = 1.4\sin\theta - 0.6\cos\theta$	A1
8ii	$R\sin(\theta-\alpha) = R\sin\theta\cos\alpha - R\cos\theta\sin\alpha$	
	$R\cos\alpha=1.4$	
	$R\sin\alpha=0.6$	
	$R = \sqrt{1.4^2 + 0.6^2}$	M1
	$=\sqrt{2.32} \text{ or } \frac{\sqrt{58}}{5}$	A1
	$\alpha = \tan^{-1} \frac{0.6}{1.4}$	M1 (or $\tan \alpha = \frac{0.6}{1.4}$)
	= 23.19	
	$OC = \sqrt{2.32} \sin\left(\theta - 23.19\right)$	A1
8iii	$\sqrt{2.32}\sin(\theta-23.19)=1$	
	$\sin\left(\theta - 23.19\right) = \frac{1}{\sqrt{2.32}}$	
	basic angle = 41.03	M1 for basic angle
	$\theta - 23.19 = 41.03$	
	$\theta = 64.2$	A1
8iv	Min $OC = 0$ AC is horizontal (or equivalent)	B1
	$\theta - 23.19 = 0$	
	$\theta = 23.2$	A1
9ai	$LHS = \sin 2\theta - \tan \theta \cos 2\theta$	
	$= 2\sin\theta\cos\theta - \tan\theta \left(2\cos^2\theta - 1\right)$	M1 for double angle formula
	$= 2\sin\theta\cos\theta - 2\sin\theta\cos\theta + \tan\theta$	M1 for simplification
	$= \tan \theta$	A1
	= RHS	

9aii	$\tan \theta = \frac{3}{\tan \theta}$	
	$\tan^2\theta = 3$	
	$\tan \theta = \pm \sqrt{3}$	M1
	$\alpha = \tan^{-1} \sqrt{3}$	M1 method to find basic angle
	$=\frac{\pi}{3}$	
	$\theta = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$	M1 showed signs to find
	or 1.04, 2.09, 4.19, 5.24	solutions in correct quadrants A1 for all four solutions
9bi	4 5	
	$\sqrt{A'}$ $\sqrt{B'}$ \sqrt{B}	
	5 3	B1 for either diagram or
		evidence of finding the missing
		side
	A and B are in 4 th quadrant	
	$\cos(A-B) = \cos A \cos B + \sin A \sin B$	
	$(4)(5)(3)(\sqrt{11})$	
	$= \left(\frac{4}{5}\right)\left(\frac{5}{6}\right) + \left(-\frac{3}{5}\right)\left(-\frac{\sqrt{11}}{6}\right)$	B1 substituting the correct
	$= \frac{2}{3} + \frac{\sqrt{11}}{10} \text{ or } \frac{20 + 3\sqrt{11}}{30}$	values A1
	$=\frac{3}{3} + \frac{10}{10}$ or $\frac{30}{30}$	Ai
9bii	$\cos B = 1 - 2\sin^2\frac{B}{2}$	
	$\sin^2\frac{B}{2} = \frac{1}{2}(1-\cos B)$	M1 f1
	$\int_{0}^{\infty} \frac{1}{2} \frac{1}{2} \left(1 - \cos B\right)$	M1 for changing the subject of formula
	$=\frac{1}{12}$	
	R 1	
	$\sin\frac{B}{2} = \frac{1}{\sqrt{12}}$	A1
	1	A1, no marks if $-\frac{1}{\sqrt{12}}$ is not
10	Find <i>A</i> :	rejected.
10	$\sqrt{2x-1} = 0$	M1
	$x = \frac{1}{2}$	
	$\left(\frac{1}{2},0\right)$	B1
	(4)	DI

	Find B:	
100	$y=(2x-1)^{\frac{1}{2}}$	
	$\frac{dy}{dx} = \left(2x - 1\right)^{-\frac{1}{2}}$	M1 for differentiation
	$(2x-1)^{-\frac{1}{2}} = \frac{1}{3}$	M1 for equating dydx to gradient
	2x-1=3	
	x = 5	
	<i>y</i> = 3	
	(5,3)	A1
	Gradient of normal = -3 Let C be $(a, 0)$	B1
	$\frac{0-3}{a-5} = -3$	M1
	a-5=1	
	a = 6 (6,0)	A1
	Shaded Area = $\int_{\frac{1}{2}}^{5} (2x-1)^{\frac{1}{2}} dx + \frac{1}{2} (1)(3)$	M1 for correct limits M1 for forming the expression
	$=\frac{1}{3}\left[\left(2x-1\right)^{\frac{3}{2}}\right]^{\frac{5}{2}}+\frac{3}{2}$	for shaded area M1 for integration
-	$=\frac{1}{3}[27-0]+\frac{3}{2}$	
	=10.5	A1

By plotting $\lg y$ against x, draw a straight line to represent the above data. (i) [3] Ò