

SINGAPORE CHINESE GIRLS' SCHOOL PRELIMINARY EXAMINATION 2021 SECONDARY FOUR O-LEVEL PROGRAMME

CANDIDATE NAME					
CLASS CENTRE NUMBER	4 S		REGISTER NUMBER INDEX NUMBER		
MATHEMATIC PAPER 1	S			4048/0)1
Friday		20 August 2	021	2 hour	S
Candidates answe	er on the Question P	aper.			
READ THESE IN	NSTRUCTIONS FI	RST			
Answer all question of the use of an applif the degree of an answer to three signals.	HB pencil for any diagonal state of the second seco	it must be shown ult in loss of marks ulator is expected ified in the quest re answers in deg	with the answer. s. l, where appropriate ion, and if the ansv	wer is not exact, give t	
The number of ma	arks is given in brack of marks for this pap		of each question or	part question.	
				For Examiner's Use	

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}a\hat{b} \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

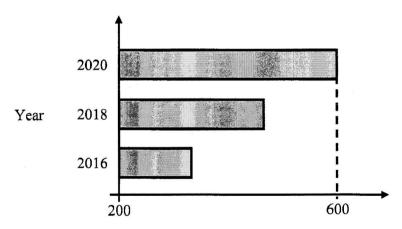
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\Sigma fx}{\Sigma f}$$

Standard Deviation =
$$\sqrt{\frac{\Sigma f x^2}{\Sigma f} - \left(\frac{\Sigma f x}{\Sigma f}\right)^2}$$

1	A number, when rounded off to one significant figure, is 300
	Write down the smallest possible value of this number.


 [1]

2 Write the following numbers in order of size, starting with the largest.

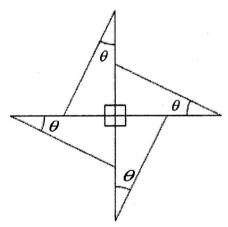
$$-\sqrt{6}$$
 , 24.5% , $\frac{245}{999}$, $-\frac{49}{20}$

Answer	,	,,	[1]
	largest	smallest	

3 The chart below shows the number of subscriptions to a local newsletter from 2016 to 2020.

Number of Subscriptions

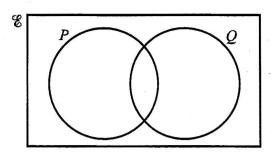
(a)	State one misleading feature of the chart.	
	······································	
		[1]
(b)	Explain how this feature affects the reader's interpretation of the chart.	
	*	
		[1]


4 (a) Solve the inequalities $3x < 4x + 5 \le 20$.

Answer	***************************************	[2]

(b) $W = \{\text{integers } x: 3x < 4x + 5 \le 20 \}$ A number is selected at random from the set W. Find the probability that the number selected is a prime number.

Answer	 [1]


5 The figure below is made up of four congruent right-angle triangles.

It is given that the length of the longest side of the right-angle triangle is 15 cm and $\sin \theta = \frac{3}{5}$.

Without solving for θ , calculate the perimeter of the figure.

6 (a) On the Venn diagram, shade the region which represents $(P' \cap Q)'$.

[1]

- (b) $\mathscr{C} = \{s, i, n, g, a, p, o, r, e\}$ $A \cup B = \mathscr{C}$ $A \cap B = \{s, g, p\}$ $\{o, e\} \cap B = \emptyset$, $\{n, r\} \subset B$, $a \in A$, $i \notin B$
 - (i) List the elements in the set B.

Answer[1]]	
-----------	---	--

(ii) Write down the set $(A \cup B)'$.

Answer	[1]
--------	-----

- 7 1 microgram = 10^{-6} grams 1 milligram = 10^{-3} grams
 - (a) It is given that k micrograms = 1 milligram. Find the integer value of k.

Answer
$$k = \dots$$
 [1]

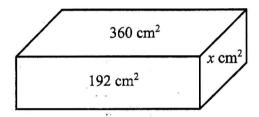
(b) It is recommended that a person consumes 750 micrograms of vitamin A daily. Meg ate a baked sweet potato that contains 1.7 milligrams of vitamin A. Calculate the amount of vitamin A that she has consumed in excess as a percentage of the recommended daily intake.

Answer % [2]

8 When written as the product of their prime factors,

$$360 = 2^3 \times 3^2 \times 5,$$

$$192 = 2^6 \times 3$$
.

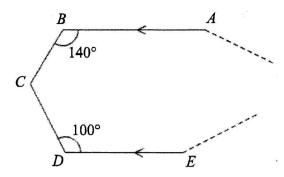

(a) x is a number between 100 and 140.

The highest common factor (HCF) of x, 192 and 360 is 24.

Find the value of x.

Answer
$$x = \dots$$
 [2]

(b) The diagram below shows a rectangular block of wood with three of its faces marked $x \text{ cm}^2$, 192 cm² and 360 cm².



The lengths, in cm, of the sides of the wood are whole numbers. Find the dimensions of the block of wood.

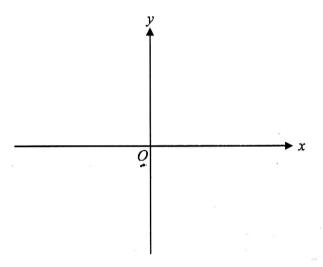
Answer	cm ×	cm ×		cm	[1]
--------	------	------	--	----	-----

9 The present ages of Nur and her sister are in the ratio 11:8. 14 years ago, the ratio of their ages is 5:3. Calculate Nur's present age.

10 The diagram shows part of a n-sided polygon, ABCDE..., where AB is parallel to ED.

Angle $ABC = 140^{\circ}$ and angle $CDE = 100^{\circ}$.

The exterior angles of the remaining parts of the polygon are 36° each. Find the value of n.


Answer $n = \dots$ [3

11	The graph of	v = (n-x)(x-a)	passes through the points	(0, -5)	and (5, 0).
11	THE graph of	y - (p - x)(x - q)	passes infough the points	(0,)	and (3, 0).

(a) State the value of p and of q, where q > p.

Answer	<i>p</i> =	
	<i>a</i> =	[2]

(b) Hence, sketch the graph of y = (p-x)(x-q), indicating clearly the coordinates of the points where the graph crosses the axes and the coordinates of the turning point on the curve.

[2]

12 (a) Factorise completely $6xy-9y^2-2x+3y$.

Answer[2]

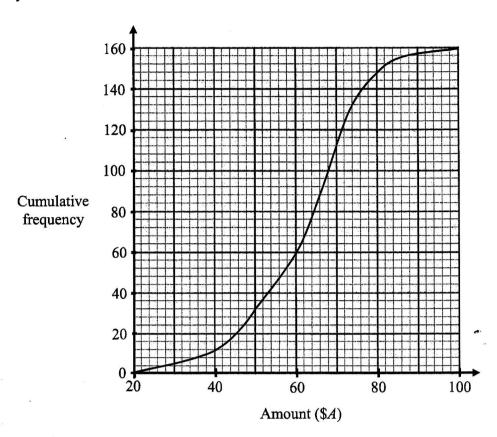
(b) Hence, simplify $\frac{24xy - 36y^2 - 8x + 12y}{(1 - 3y)^2} \div (4x^2y^2 - 6xy^3).$

Answer[3]

13	Lee made tea to sell over a particular weekend.
	The matrix, M, shows the number of cups of tea he made

Honey Milk
$$\mathbf{M} = \begin{pmatrix} 60 & 80 \\ 50 & 70 \end{pmatrix}$$
Saturday
Sunday

He sold 85% of each type of tea on Saturday and 90% of each type of tea on Sunday.


				100	
(a)	Evaluate the matrix	S =	(0.85)	0.9)	Μ.

	Answer $S = \dots$	[1]
(b)	State what each element of matrix S represents.	
		
		[1]
Lee cent	sold each cup of honey tea at a profit of n cents and each cup of milk tea at a loss of 20 ts.	¥
(c)	The matrix V, where $V = \frac{1}{100}SF$, represents the total profit, in dollars, he earned over the weekend.	
	(i) Write down the matrix \mathbf{F} , in terms of n .	
	Answer $\mathbf{F} = \dots$	[1]
	(ii) Hence, find the value of n , given that he earned a total profit of \$21.80.	

Answer $n = \dots$ [2]

160 students were surveyed on the amount of pocket money they received in a week.

The cumulative frequency curve below shows the distribution of the amount of pocket money received.

(a) (i) Complete the grouped frequency table for the amount of pocket money received.

Amount (\$A)	20 ≤ <i>A</i> < 40	40 ≤ A < 60	60 ≤ A < 80	80 ≤ <i>A</i> < 100
Frequency				

(ii) State the modal interval.

Answer	***************************************	[1]
12,00,00	***************************************	L-1

(b) Use the curve to estimate the 30th percentile.

Answer	\$	•	•		•						•	•	•		•	•	•				1]	

(c) Raj says,

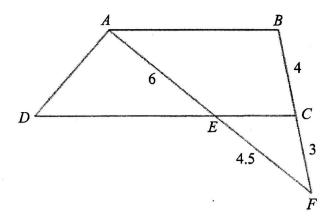
"The range of pocket money received in a week is 100-20=80."

Explain why he is wrong.

.....[1]

[1]

	(d)	Steph says,	
		"80% of the students received at least \$73 for pocket money in a week."	
		Is Steph correct? Justify your answer with clear calculations.	
		······································	
		г	·11
			[2]
15	(a)	Given that $\frac{a+3b}{3} = 2(b-a)$, find the ratio $a:b$.	
*			
		Answer [[2]
	(b)	Use factorisation to solve the equation.	
		(5c+1)(3-c)=11	


16	(a)	Simplify	$6^{m} + 1$
10	(a)	Simping	$\overline{36^m-1}$

Answer		[2]
21/15//07	***************************************	[-]

(b) Given that $\sqrt{7^n} \div 49^{\frac{1}{n}} + 1 = 2\left(\frac{1}{14^0}\right)^n$, find the values of n.

Answer n = [3]

17

The diagram shows a quadrilateral ABCD. E is a point on DC such that AE and BC produced meet at F. AE = 6 cm, EF = 4.5 cm, CF = 3 cm and BC = 4 cm.

(a) Prove that triangle ABF is similar to triangle ECF.

Answer

(b)	Stating your reasons clearly, explain why ABCD is a trapezium.	
	· · · · · · · · · · · · · · · · · · ·	
		[1]
	the midpoint of AE . a point on DC such that triangle AMB is congruent to triangle EMN .	LTJ
(c)	Find the ratio $EN:CN$.	

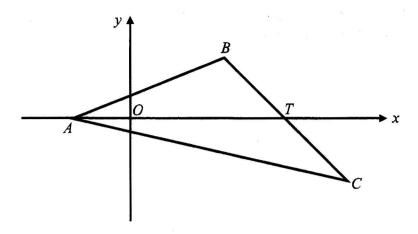
[1]

[2]

The diagram shows two geometrically similar empty bottles. The larger bottle has a base area of 90 cm². The smaller bottle has a base area of 62.5 cm².

(a) The height of the larger bottle is 15 cm. Calculate the height of the smaller bottle.

Answer	 cm	[2]
22100110	 	L-J


Kim filled the empty bottles with homemade sanitiser up to their maximum capacities. She sells the larger bottle at \$3.90 each and the smaller bottle at \$2.90 each.

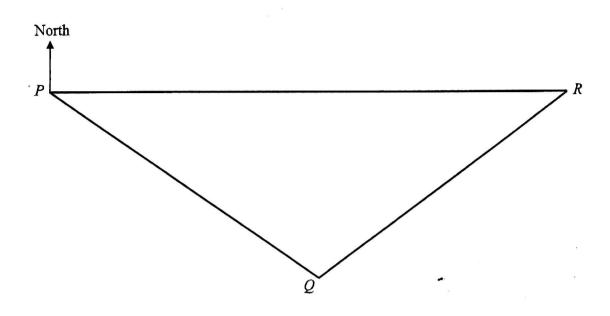
(b) Determine if the cost of the sanitiser is directly proportional to the capacity of the bottle.

Answer

 	 •••

19 In the diagram, ABC is a triangle.

A is a point on the x-axis such that the equation of the line AB is 5y-6x=12.

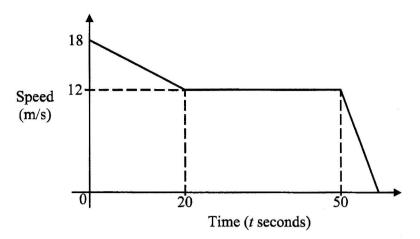

BC intersects the x-axis at T such that BC = 2BT.

The equation of the line BC is 3x + y = 15.

Calculate the area of triangle ABC.

20 The diagram shows a triangular park *PQR* on horizontal ground. *R* is due east of *P*.

Scale: 1 cm to 200 m



(a) Measure and write down the bearing of R from Q.

		Answer°	[1]
(b)	Cons	struct	
	(i)	the perpendicular bisector of PQ ,	[1]
	(ii)	the bisector of angle PRQ .	[1]
(c)		elter is to be built in the park, nearer to Q than to P and nearer to PR than to QR . le the region where the shelter is to be built.	[1]
(d)		jogged from point P , in a straight line, to point R at an average speed of 8 km/h. ulate the total time she took, giving your answer in minutes and seconds.	

Answer min s [2]

21 The diagram shows the speed-time graph for a bus journey.

(a) The bus decelerates to a stop at a constant rate of 1.5 m/s² for the last k seconds of its journey.
 Calculate the value of k.

Answer $k = \dots $ [1	1	ı
------------------------	---	---

(b) Find the speed of the bus at t = 12.

Answer m/s [2]

(c) Calculate the distance travelled by the bus in the first 50 seconds.

Answer m [1]

(d) A car starts its journey at the same place and time as the bus. It accelerates uniformly from rest until it overtakes the bus at t = 50. Calculate the speed of the car at this instant.

Answer m/s [2]

P(RNS SCYS 2021 Sec 40LP Mathematics Preliminary Examinations Paper 1 Marking Scheme

Qn	Answer	Marks	Remarks
	Total Marks: [80 Marks]		
1	250	B1	,
2	$\frac{245}{999}$, 24.5%, $-\sqrt{6}$, $-\frac{49}{20}$	B1	
3a	 The vertical axis (or year-axis) is incomplete. The bars for 2017 and 2019 are not represented. The horizontal axis (or number of subscriptions-axis) does not start from zero. 	B1	Accept other valid features.
3b	 It will mislead the reader into thinking that the number of subscriptions is always increasing when there may be a decrease in subscriptions in the years 2017 or 2019. It will mislead the reader into thinking that the number of subscriptions is tripled from 2016 to 2020, based on the length of the bars. 	В1	Accept other valid reasons based on the feature in (a).
4a	$3x < 4x + 5 \le 20$ $3x < 4x + 5$ or $4x + 5 \le 20$	M1	M1 6
	$-x < 5 \qquad \text{or} 4x \le 15$ $x > -5 \qquad \text{or} x \le 3.75$.М1	M1 for splitting inequalities and simplifying like terms.
	$\therefore -5 < x \le 3.75$ $W = \{ -4, -3, -2, -1, 0, 1, 2, 3 \}$	A1	
4b	W = {-4, -3, -2, -1, 0, 1, 2, 3} ∴ P(prime no.) = $\frac{2}{8} = \frac{1}{4}$	B1	
5	$\sin \theta = \frac{3}{5} = \frac{9}{15}$ i.e. Length of opp. side = 9 cm Length of adj. side = $\sqrt{15^2 - 9^2}$	M1	M1 for using sine ratio to obtain opposite side of right-angle tri.
ti .	= 12 cm ∴ Perimeter of figure = 4(15+3) = 72 cm	A 1	
6a		B1	
6bi	$B = \{s, g, p, n, r\}$	B1	, ; ; ; <u>-</u>
6bii	{ } or ∅	B1	
7a	k = 1000	B1	
7b	Additional percentage $= \frac{1.7 \times 10^{-3} - 750 \times 10^{-6}}{750 \times 10^{-6}} \times 100\%$	M1	
	≈ 126.666° =127 % (3 s.f.)	A1	,

Qn	Answer	Marks	Remarks
8a	$HCF = 24 = 2^3 \times 3$	B1	
	$x = 2^3 \times 3 \times 5$		
	$\therefore x = 120$	B1	
8b	8 cm × 15 cm × 24 cm	B1	Accept in any order
9	Method 1		
	Let Nur's present age be 11x years old.		
	$\frac{11x - 14}{8x - 14} = \frac{5}{3}$	M1	M1 for forming equation.
÷		1,11	land to to think of the second
	33x - 42 = 40x - 70		
	7x = 28		
	x = 4	A1	
	\therefore Nur's present age = 11(4) = 44 years old	A1	
	Method 2		
	Difference in units for present ages = $11 - 8 = 3$ Difference in units 14 years ago = $5 - 3 = 2$		
	LCM of 3 and 2 = 6 units	M1	M1 for showing units for
	i.e Ratio of Nur : Sis : Difference		difference in ages is the same.
	22:16:6 (Present) 15:9:6 (14 years ago)		
	$\therefore \text{Nur's present age} = \frac{14}{7} \times 22$	M1	M1
	7 = 44 years old	A 1	
10	B A	211	
	140°	·,	*
	$C \leftarrow T$	a.	
	100°		
	$D \longrightarrow E$		
	$\angle BCD = \angle BCT + \angle TCD$		
	$\angle BCD = 40^{\circ} + 80^{\circ}$		
	∠BCD = 120°	B1 s.o.i.	
	Total exterior angles of remaining polygon		
	$=360^{\circ}-40^{\circ}-80^{\circ}-60^{\circ}$		
	=180°		
	$\therefore n = \frac{180^{\circ}}{36^{\circ}} + 3$	M1	M1 for division to get remaining
	36° 13°		angles.
	= 8	Al	21.6.1.1
11a	p = 1, q = 5	B1, B1	B1 for both answers.
11b	(3, 4)		B1 for open downwards graph
			with $(0, -5)$ and $(5, 0)$ labelled at
		B2	the correct positions.
		152	B1 for (3, 4) and (1, 0) labelled
	O(1,0) (5,0)		at the correct positions.
	(0, -5) \$\frac{1}{4}\$		
L	7-1-7	L	

Qn	Answer	Marks	Remarks
12a	$6xy - 9y^2 - 2x + 3y$		
	=3y(2x-3y)-(2x-3y)	M1	M1 for factorising after grouping
	= (2x - 3y)(3y - 1)	A1	(up to one mistake).
		Aı	
12b	$\frac{24xy - 36y^2 - 8x + 12y}{(1 - 3y)^2} \div (4x^2y^2 - 6xy^3)$		M1 for factorising 4 and
	$(1-3y)^2 \qquad (m y m y y y y y y y $		replacing with answer in (a). B1 for $2xy^2(2x-3y)$.
	$= \frac{4(2x-3y)(3y-1)}{(3y-1)^2} \times \frac{1}{2xy^2(2x-3y)}$	M1,B1	B) for $2xy$ $(2x-3y)$.
	$(3y-1)^2$ $2xy^2(2x-3y)$,	
	_ 2	A1	No need to expand denominator.
	$=\frac{2}{xy^2(3y-1)}$	AI	If expanded wrongly, no A1.
13a	$S = (96 \ 131)$	B1	
13b	96 represents the total number of cups of honey	B1	Accept: "weekend/both days"
	tea sold over the weekend.		
	131 represents the total number of cups of milk		*
	tea sold over the weekend. OR		
8 ≠ 1	S represents the total number of cups of each type	8	
	of tea sold over the weekend.		
13ci	$\mathbf{F} - \begin{pmatrix} n \end{pmatrix}$	D1	
	$\mathbf{F} = \begin{pmatrix} n \\ -20 \end{pmatrix}$	B1	
13cii	$\frac{1}{n}$ (or $\frac{1}{n}$) (21.8)		
	$\frac{1}{100}(96 131)\binom{n}{-20} = (21.8)$,
	(0.96n-26.2)=(21.8)	M1	M1 for multiplication of
	0.96n = 48		matrices resulting in 1×1 matrix.
	$\therefore n = 50$	A1	
14ai	12, 48, 88, 12	B1	
14aii	$60 \le A < 80$	B1	
14b	\$56	B1	
14c	Since the highest amount of pocket money received		
8	is a value smaller than \$100 based on the grouped		
	frequency table, he is wrong as he assumed the highest value is exactly \$100.	B 1	
	OR	D 1	
	Since the exact amount of pocket money received		
	by each student is not known , he is wrong to	E 1 11	
	assume the lowest and highest amount of money		
14d	received is \$20 and \$100 respectively. Method 1		
14u	80% of students = $0.8 \times 160 = 128$ students.	M1	
	Since the top 128 students received at least \$50,		
	then Steph is not correct.	A1	
· ·			
		12	

Qn	Answer	Marks	Remarks
14d	Method 2 Percentage who received at least \$73 $= \frac{160-128}{160} \times 100\%$ $= 20\%$ Since the percentage of students who received at least \$73 is 20%, then Steph is not correct.	-M1	
15a	$\frac{a+3b}{3} = 2(b-a)$ $a+3b = 6b-6a$ $7a = 3b$ $\frac{a}{b} = \frac{3}{7}$	M1	M1 for simplifying like terms.
15)	$\therefore a:b=3:7$	AI	No marks awarded for Q15b if
15b	$(5c+1)(3-c) = 11$ $15c-5c^{2}+3-c = 11$ $5c^{2}-14c+8=0$	B1 o.e.	show $5c+1=11$ or $3-c=11$.
	(5c-4)(c-2)=0	M1	
	$c = \frac{4}{5} \text{or} c = 2$	A1	A1 for both answers.
16a	$\frac{6^m + 1}{36^m - 1} = \frac{6^m + 1}{(6^m - 1)(6^m + 1)}$	M1	M1 for applying difference of two squares.
,	$=\frac{1}{6^m-1}$	Al	e e
16b	$\sqrt{7^{n}} \div 49^{\frac{1}{n}} + 1 = 2\left(\frac{1}{14^{0}}\right)^{n}$ $7^{\frac{n}{2}} \div 7^{\frac{2}{n}} + 1 = 2(1)$ $7^{\frac{n}{2} \cdot \frac{2}{n}} = 7^{0}$	B1	B1 for any two: $7^{\frac{n}{2}}$, $7^{\frac{2}{n}}$ or 1^n (or 1) seen.
	$\frac{n}{2} - \frac{2}{n} = 0$ $n^2 = 4$	M1	M1 for applying laws of indices and comparing index.
	$\therefore n=2 \text{ or } n=-2$	A1	
17a	$\frac{AF}{EF} = \frac{10.5}{4.5} = \frac{7}{3}$, $\frac{BF}{CF} = \frac{7}{3}$	B1	B1 for checking ratios of both
	EF 4.5 3 CF 3 $\angle AFB = \angle EFC$ (common angle) $\therefore \triangle ABF$ is similar to $\triangle ECF$.	B1	pairs of corresponding sides. Minus 1 mark overall if conclusion missing.
	•		

Answer	Marks	Remarks
Since $\triangle ABF$ is similar to $\triangle ECF$, then	a 8	
$\angle ABF = \angle ECF$. By the property of corresponding	**	
angles in parallel lines, AB is parallel to EC (or		
DC). Since there exists a pair of opposite and		
parallel lines, ABCD is a trapezium.	B1	
7:10	B1	
∴ Height of smaller bottle = $15 \times \sqrt{\frac{62.5}{90}}$	M1	M1 for taking square root of ratio of areas to obtain ratio of
= 12.5 cm	A 1	sides.
Method 1		
Ratio of vol. of small to large bottle = $\left(\sqrt{\frac{62.5}{90}}\right)^3$	M1	M1 for taking cube of ratio of sides.
$=\frac{125}{216}$	M1	M1 for showing mode of
	1411	comparison clearly.
		Either cost vs common volume
- ·		Or common cost vs volume.
bottle is not the same, then the cost of the sanitiser		A1 for not directly proportional
is not directly proportional to the quantity of		and reasoning (only if
sanitiser.	A1	comparison is valid).
Method 2		
Ratio of vol. of small to large bottle = $\left(\sqrt{\frac{62.5}{90}}\right)^3$	M1	M1 for taking cube of ratio of sides.
$=\frac{125}{216}$		
	M1	M1 for ratio of cost.
Since the ratio of the volume of the small bottle to the large bottle is not the same as the ratio of	A 1	Al for <u>not</u> directly proportional and reasoning (only if
	angles in parallel lines, AB is parallel to EC (or DC). Since there exists a pair of opposite and parallel lines, $ABCD$ is a trapezium. 7:10 ∴ Height of smaller bottle = $15 \times \sqrt{\frac{62.5}{90}}$ = 12.5 cm Method 1 Ratio of vol. of small to large bottle = $\left(\sqrt{\frac{62.5}{90}}\right)^3$ = $\frac{125}{216}$ Cost per unit vol. of large bottle = $3.9 \div 216$ = $\$0.018$ (2 s.f.) Cost per unit vol. of small bottle = $2.9 \div 125$ = $\$0.023$ (2 s.f.) Since the cost per unit volume for each type of bottle is not the same, then the cost of the sanitiser is not directly proportional to the quantity of sanitiser. Method 2 Ratio of vol. of small to large bottle = $\left(\sqrt{\frac{62.5}{90}}\right)^3$ = $\frac{125}{216}$ Ratio of cost of small to large bottle = $\frac{29}{39}$	angles in parallel lines, AB is parallel to EC (or DC). Since there exists a pair of opposite and parallel lines, $ABCD$ is a trapezium. 10 11 12: 10 13 14: Height of smaller bottle = $15 \times \sqrt{\frac{62.5}{90}}$ 15: Height of smaller bottle = $15 \times \sqrt{\frac{62.5}{90}}$ 16: $15 \times \sqrt{\frac{62.5}{90}}$ 17: $10 \times \sqrt{\frac{62.5}{90}}$ 18: $15 \times \sqrt{\frac{62.5}{90}}$ 19: $15 \times \sqrt{\frac{62.5}{90}}$ 10: $15 \times \sqrt{\frac{62.5}{90}}$ 11: $15 \times \sqrt{\frac{62.5}{90}}$ 12: $15 \times \sqrt{\frac{62.5}{90}}$ 13: $15 \times \sqrt{\frac{62.5}{90}}$ 14: $15 \times \sqrt{\frac{62.5}{90}}$ 15: $15 \times \sqrt{\frac{62.5}{90}}$ 16: $15 \times \sqrt{\frac{62.5}{90}}$ 17: $15 \times \sqrt{\frac{62.5}{90}}$ 18: $15 \times \sqrt{\frac{62.5}{90}}$ 19: $15 \times \sqrt{\frac{62.5}{90}}$ 10: $15 \times \sqrt{\frac{62.5}{90}}$ 10: $15 \times \sqrt{\frac{62.5}{90}}$ 10: $15 \times \sqrt{\frac{62.5}{90}}$ 10: $15 \times \sqrt{\frac{62.5}{90}}$ 11: $15 \times \sqrt{\frac{62.5}{90}}$ 12: $15 \times \sqrt{\frac{62.5}{90}}$ 13: $15 \times \sqrt{\frac{62.5}{90}}$ 14: $15 \times \sqrt{\frac{62.5}{90}}$ 15: $15 \times \sqrt{\frac{62.5}{90}}$ 16: $15 \times \sqrt{\frac{62.5}{90}}$ 17: $15 \times \sqrt{\frac{62.5}{90}}$ 18: $15 \times \sqrt{\frac{62.5}{90}}$ 19: $15 \times \sqrt{\frac{62.5}{90}}$ 10: $15 \times \sqrt{\frac{62.5}{90}}$ 11: $15 \times \sqrt{\frac{62.5}{90}}$ 12: $15 \times \sqrt{\frac{62.5}{90}}$ 13: $15 \times \sqrt{\frac{62.5}{90}}$ 14: $15 \times \sqrt{\frac{62.5}{90}}$ 15: $15 \times \sqrt{\frac{62.5}{90}}$ 16: $15 \times \sqrt{\frac{62.5}{90}}$ 17: $15 \times \sqrt{\frac{62.5}{90}}$ 18: $15 \times \sqrt{\frac{62.5}{90}}$ 18: $15 \times \sqrt{\frac{62.5}{90}}$ 19: $15 \times \sqrt{\frac{62.5}{90}}$ 10: $15 \times \frac{62.5$

Qn	Answer	Marks	Remarks
19	$5y-6x=12\cdots\cdots(1)$		
	3x + y = 15		
	$y = -3x + 15 \cdot \cdot \cdot \cdot \cdot (2)$		
	Sub. (2) into (1): $5(-3x+15)-6x=12$ -21x=-63	M1	M1 for solving equations by elimination/substitution.
	x = 3, i.e. $y = -3(3) + 15 = 6Coordinates of B are (3, 6).$	A1	A1 for both x and y correct.
	Sub. $y = 0$ into (1) and $y = 0$ into (2): x = -2 and $x = 5Coordinates of A and T are (-2, 0) and (5, 0) respectively.$	M1	M1 for finding either A or T.
	Since $BC = 2BT$, coordinates of C are $(7, -6)$.	√B1	B1 for coordinates of <i>C</i> . Allow e.c.f. based on student's coordinates of <i>B</i> .
	$\therefore \triangle ABC = \frac{1}{2}(7)(12) = 42 \text{ units}^2$ OR	A1	If B1 not seen, award working for calculation of area – M1 and accurate answer – A1.
	$\therefore \Delta ABC = (9)(12) - \frac{1}{2}(4)(12) - \frac{1}{2}(5)(6) - \frac{1}{2}(9)(6)$		
	$= 42 \text{ units}^2$		
20a	Bearing of R from $Q = 053.5^{\circ}$	B1	Accept: 053°, 053.5°, 054°
20b	Scale: 1 cm to 200 m	B1	Perpendicular bisector of PQ.
20c	<u>, X</u>	B1	Bisector of angle <i>PRQ</i> .
200	North	B1	Shaded area.
	0 par		
20d	$\therefore \text{ Total time} = \frac{(14.2 \times 200) \div 1000}{8}$ $= 0.355 \text{ hours}$	M1	M1 for dividing distance by speed (units for distance must be the same).
	= 21 min 18 s	A1	Accept: 14.2 cm (21min 18 s), 14.25 cm (21 min 23 s), 14.3 cm (21 min 27 s).

Qn	Answer	Marks	Remarks
21a	$\frac{12}{k} = 1.5$		
	$\therefore k = 8$	B1	, :
21b	Let the speed of the bus at $t = 12$ be v m/s. $\frac{v-12}{12-20} = \frac{18-12}{0-20}$ $v-12 = 2.4$	M1	M1 for using gradient/equation of line method to find speed.
r.	v = 14.4 \therefore Speed of bus is 14.4 m/s.	A1	
21c	:. Distance travelled = $\frac{1}{2}(20)(6) + (12)(50)$		9
	=660 m	B1	
21d	Let the speed of the car at $t = 50$ be w m/s.		
	$\frac{1}{2}(50)(w) = 660$	M1	M1 for attempt to form equation showing distance travelled by
	w = 26.4 ∴ Speed of car is 26.4 m/s.	A1	car is equal to distance travelled by bus.

SINGAPORE CHINESE GIRLS' SCHOOL PRELIMINARY EXAMINATION 2021 SECONDARY FOUR O-LEVEL PROGRAMME

CANDIDATE NAME			
CLASS CENTRE NUMBER	4 S	REGISTE NUMBER INDEX NUMBER	R
MATHEMATIC PAPER 2	S	,	4048/02
Friday	27	August 2021	2 hours 30 minutes
Candidates answe	r on the Question Paper.		
READ THESE IN	ISTRUCTIONS FIRST		
Write in dark blue You may use an H	, , , , , , , , , , , , , , , , , , , ,	or graphs.	er on all the work you hand in.
Omission of esser The use of an app If the degree of act to three significant	ed for any question, it mus tial working will result in lo roved scientific calculator curacy is not specified in the figures. Give answers in o	is expected, where approprions of the constitution of the constitu	er is not exact, give the answer
The number of ma	xamination, fasten all you rks is given in brackets [] of marks for this paper is 1	at the end of each question	or part question.
			For Examiner's Use

Mathematical Formulae

Compound Interest

Total amount =
$$P(1 + \frac{r}{100})^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1	(a)	Simplify	$\sqrt{\frac{16}{b}} \div \left(a^2b\right)^{-3}.$
---	-----	----------	--

Answer[2]

(b)
$$x = \frac{3}{\sqrt{yz^2}} + 1$$

(i) Evaluate x when $y = 9$ and $z = -2$.

Answer $x = \dots$ [1]

(ii) Express z in terms of x and y.

Answer $z = \dots [2]$

(c) Solve
$$\frac{6}{m+4} - 5 = \frac{7}{2m-3}$$
.

Answer
$$m = \dots [4]$$

2 (a) A map is drawn to a scale of 1: 250 000.

	(i)	Two lighthouses are 382 km apart. Calculate the distance, in cm, between the two lighthouses on the map.
		Answer
	(ii)	A lake is represented by an area of 6.4 cm ² on the map. Calculate the actual area, in km ² , of the lake.
		Answer km ² [2]
(b)	Duri	opkeeper makes a profit of 25% if he sells a teapot for \$81.25. ng a sale, the shopkeeper decides to reduce the selling price by d %. the value of d if the shopkeeper does not make a profit or a loss.
		•

Answer $d = \dots [3]$

(c)	In 20	In 2020, a precious stone was valued at Laotian Kip (K) 90 million.								
	(i)	The exchange rate between Singapore Dollars (\$) and Laotian Kip (\mathbb{K}) was $$1 = \mathbb{K} 6542$.								
		Calculate the value, in Singapore Dollars, of the precious stone.								
		•								
		Answer \$	[2]							
	(ii)	The value of the precious stone increased by 0.8% every year since 2000. Calculate the value of the precious stone in 2000 in Laotian Kip (K) . Leave your answer, correct to 4 significant figures, in standard form.								
			۰.							
		Answer K	[2]							
		y a second of the second of th								

3 (a) (i) Express $12-5x+x^2$ in the form $c+(d+x)^2$.

				Answer	••••		[2]
(ii)	Hence, ex values of	•	equation $12-5x$	$+x^2=h$	loes not have s	olutions for som	е
	Answer .						•••
	•	•••••			• • • • • • • • • • • • • • • • • • • •		•••
							•••
							[1]

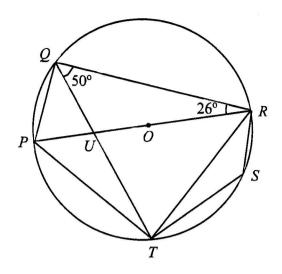
(b) The times, to the nearest minute, taken by two groups of students, Group A and Group B, to complete a puzzle were recorded.

The results are shown in the stem-and-leaf diagram.

Group A								Group B							
8	9 8	8	7 5 8	5 4 3 6	4 2 1 4	9 2 0 1 3	2 3 4 5 6 7 8	5 2 4 1	7 5 4 2	8 6 6 3	7 7	8 7	9 8	9	
Key (Group A) 2 3 means 32 minutes									4	Key 2 mea	(Grounns 42		ıtes		

(i) Write down the median time for Group A.

Answer	 minutes	[1]


(ii) Find the interquartile range of Group B.

			Answer	minutes	[1]
(iii)	Calculat	te the standard deviation of Grou	pB.		
			4	i	F17
				minutes	[1]
(iv)		the interquartile range or standar etation of the spread of times for		~ ~ ~	
	Ańswer				
				· · · · · · · · · · · · · · · · · · ·	•••
			••••••		•••
					[1]
(v)		vo comments comparing the time lete the puzzle.	es taken by	Group A and Group B studen	its
	Answer				•••
					•••
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•••
					•••
				, , , , , , , , , , , , , , , , , , ,	[2]

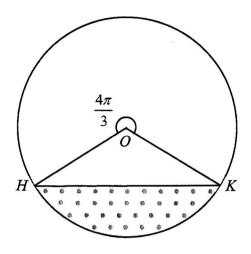
4 (a) In the diagram, which is not drawn accurately, O is the centre of the circle passing through P, Q, R, S and T.

The diameter of the circle, PR, intersects QT at U.

Angle $TQR = 50^{\circ}$ and angle $QRP = 26^{\circ}$.

	T 1			C		
(i)	Find	giving	reasons	tor	each	answer.
\ . . /	1 11149	Dr	1			

(a)	angle	PTO
•	4,	ungio	1 1 2


		Answer	 o	[1]
(b)	angle RST,		. 4	
		Answer	 o	[1]
(c)	angle <i>PQT</i> ,			
		Answer	 o	[1]
(d)	angle <i>PUQ</i> .			
		Answer	 o	[1]

(ii) A point V lies between P and R such that angle PVQ is smaller than 52° . On the diagram, mark and label clearly a possible position for the point V. [1]

(b) The diagram shows the cross-section of a cylindrical tunnel of length 300 m. A level surface, HK, is laid inside the tunnel to carry vehicles and the space below HK is filled with rubble.

The centre of the circle is O and reflex angle $HOK = \frac{4\pi}{3}$ radians.

The perimeter of the major sector HOK is 49.5 m.

(i) Calculate the radius of the tunnel.

Answer	m	[2]

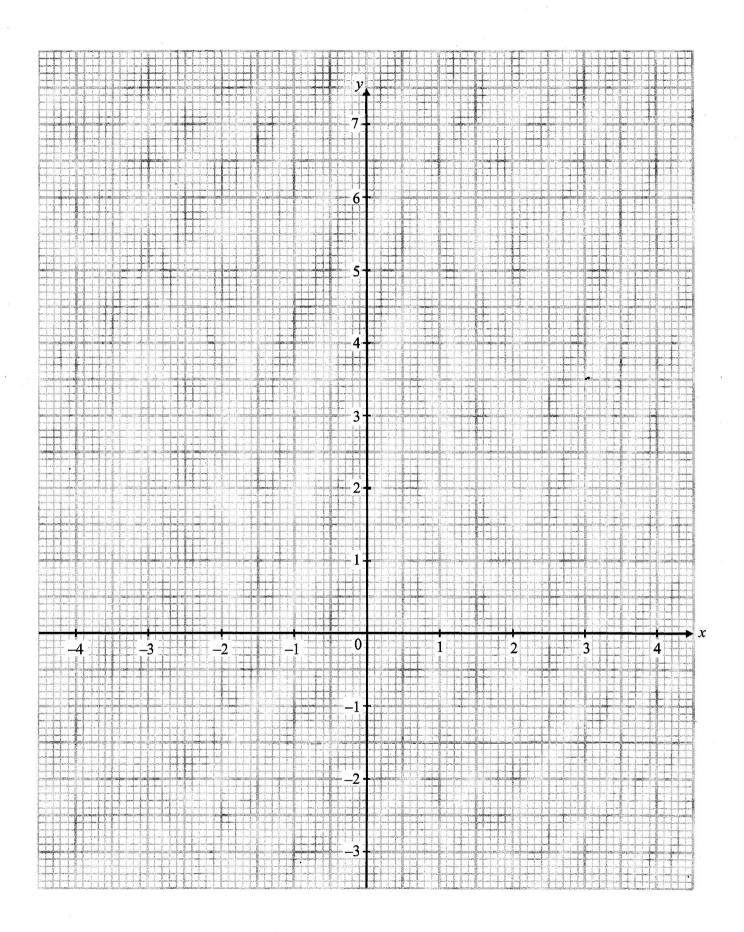
(ii) Calculate the volume of rubble in the tunnel.

The variables x and y are connected by the equation $y = 2 + 3x - \frac{1}{5}x^3$.

Some corresponding values of x and y are given in the table below.

x	-4	-3	-2	-1	0	1	2	3	4
у	2.8	-1.6	-2.4	-0.8	2	4.8	6.4	5.6	1.2

- (a) On the grid opposite, draw the graph of $y = 2 + 3x \frac{1}{5}x^3$ for $-4 \le x \le 4$. [3]
- (b) Use your graph to write down an equality in x to describe the range of values of x where the gradient of the graph is positive.

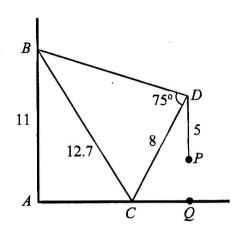

- (c) (i) On the same axes, draw the graph of 2y-x-6=0 for $-4 \le x \le 4$. [2]
 - (ii) Show that the points of intersection of the line and the curve give the solutions of the equation $2x^3 25x + 10 = 0$.

Answer

[2]

(iii) Use your graphs to solve the equation $2x^3 - 25x + 10 = 0$.

Answer $x = \dots$ or \dots [2]


6 In the diagram, AB is a vertical wall.

A beam, CD, rests with one end, C, on horizontal ground. It is held in place by two cables, BC and BD.

AB = 11 m, CD = 8 m, BC = 12.7 m and angle $BDC = 75^{\circ}$.

A weight, P, hangs on a rope of length 5 m from D.

Q is a point on AC produced such that it is vertically below D and P.

(a) Calculate angle CBD.

Answer	 0	[2]

(b) Show that angle *DCQ*, correct to 1 decimal place, is 52.5°.

Answer

(c) Calculate CP.

iel.	<i>Answer</i> m	[3]
(d)	Calculate the area of triangle BCD.	
	<i>Answer</i> m ²	[1]
	additional cable is to be added to hold up the beam. α cable will be secured to the point B .	
(e)	Calculate the shortest possible length of the cable that is to be added.	
	,	

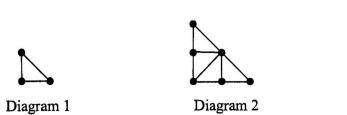
7	(a)	A cylindrical wax pellet has a height of 18 mm.
		The volume of the pellet is 3000 mm ³ .

Calculate the radius of the pellet.

Answer	mm	[2]
Answer	mm	[2]

(b) Some wax pellets were melted and made into a pyramidal candle as shown.

The candle has a horizontal square base WXYZ. XZ meets WY at N such that V is vertically above N. WZ = 62 mm and VN = 57 mm.


(i) Determine the minimum number of wax pellets needed to make the candle.

All the surfaces of the candle are to be coated with a layer	of glitter.
It costs 0.06 cents to coat 10 mm ² of the candle.	

(ii) Calculate the cost, correct to the nearest cent, of coating the candle.

Answer	cents	[4]
Answer	cents	[4]

8 (a) A series of diagrams made of dots and lines is shown below.

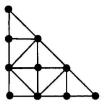


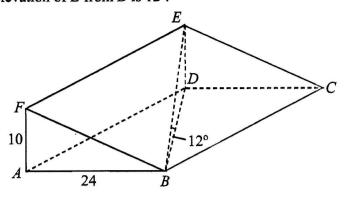
Diagram 3

Diagram	Number of dots along outer edges	Number of lines joining dots	Number of small right-angled triangles
1	3	3	1
2	6	9	4
3	9	18	9
	·		
n		<i>q</i> •	

(i)	Draw Diagram	4
111	Diaw Diagram	т.

Answer

(ii)	Diagram P has 387 dots along the outer edges. Write down the value of P .	[1]
(iii)	Answer $P = \dots$ Write down the number of small right-angled triangles in Diagram 24.	[1]
(iv)	Answer Express q in terms of n .	[1]

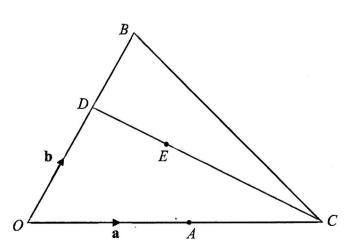

Answer $q = \dots$ [1]

ני			a missile is fired, the probability that it hits the target is 0.85.
	(i)	Find	I the probability that
		(a)	the first two missiles miss the target,
			Answer[1]
		(b)	the first missile misses the target and the second missile hits the target,
			Answer[1]
		(c)	the target is hit in at most three attempts by the missile launcher.
		8 m	
y as			
			Answer[2]
	(ii)		I the probability, in terms of n , that the target is still not hit after n missiles are
		fired	l.
2			
			Answer[1]
	(iii)	Wri	te down the probability, in terms of n , that the target is hit after n missiles are
	(111)	fired	
			·
			Answer[1]

9 (a) ABCDEF is a wedge with a horizontal rectangular base ABCD. Rectangle AFED is vertical.

AF = DE = 10 cm and AB = 24 cm.

The angle of elevation of E from B is 12° .


(i) Calculate BD.

Answer	cm	[2]	•
--------	----	-----	---

(ii) Calculate the volume of the wedge.

Answer	 cm^3	[3]
Answer	 cm3	

(b)

OBC is a triangle.

A is a point on OC such that OA:AC=5:4.

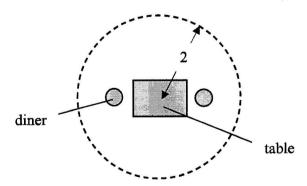
D is a point OB such that 2OD = 3DB.

 $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(-)	Express OC in terms of a and/of b, as simply as possible.
	Answer[1]
(ii)	Express \overrightarrow{AB} in terms of a and/or b , as simply as possible.
	<i>Answer</i> [1]
(iii)	Express \overrightarrow{CD} in terms of a and/or b , as simply as possible.
	A
	Answer[1]
It is	given that $\overline{CE} = \frac{2}{3}\overline{CD}$.
(iv)	Express \overline{AE} in terms of a and/or b , as simply as possible.
is .	Answer[1]
(v)	Hence, write down two facts about A , E and B .
	Answer
	[2]
(vi)	Find the ratio area of triangle ODE : area of triangle CEA .
. ,	,
•	
	<i>Answer</i> : [1]

10 On 30 December 2020, a nurse working at the National Centre for Infectious Diseases (NCID) became the first person in Singapore to receive a COVID-19 vaccination.

As of 14 June 2021, a total of 1 990 994 persons have completed the full vaccination regimen.


(a) Given that Singapore has a population of approximately 5 900 000 in June 2021, calculate the percentage of the population who have completed the full vaccination regimen in Singapore as of 14 June 2021. Give your answer to a reasonable degree of accuracy.

Answer % [2]

(b) Peter owns a restaurant.

During the COVID-19 Phase 2 (Heightened Alert), dining-in at his restaurant was restricted to group sizes of up to 2 persons starting 21 June 2021. This meant that a maximum number of 2 diners could be seated at the same table at any time.

In consideration of the Safety Management Measures which require a minimal distance between the diners, he decided to arrange the tables in his restaurant such that each table is placed in a circular area of radius 2 m starting 21 June 2021. The circular areas of adjacent tables should not overlap.

The restaurant has a rectangular seating area of 26 m by 9 m.

Write down the greatest number of diners that could be seated in the restaurant at any time on 21 June 2021.

Answer[1]

(c) The restaurant temporarily suspended operations in mid-May 2021 and resumed operations on 21 June 2021 with the following operating hours.

Operating Hours	
11.00am to 10.30pm	
NO Service Charge or Goods and Services Tax (GST)! Food delivery service is unavailable.	Open for business every day of the week!

The costs involved in operating his restaurant in a typical week starting21 June 2021 are given below.

Costs involved in operating restaurant in a typical week			
Salary for each cook	\$ 775		
(3 cooks are required)	Ψ 7 7 3		
Salary for each staff member (excluding cooks)	\$ 450		
(6 staff members, excluding cooks, are required)	\$ 450		
Cost of ingredients for food	\$ 6 000		
Rental of restaurant	\$ 3 000		
General utilities	\$ 2 000		
Miscellaneous costs	\$ 800		

Based on his experience, Peter estimated that the restaurant would seat an average of 60 diners per day of operation and each diner would typically spend a median amount of \$ 28. He also estimated that the restaurant would collect an average of \$ 400 per day of operation from takeaway orders.

Peter knew that he would make a loss by operating his restaurant for 3 weeks starting from 21 June 2021 and his friend has agreed to give him a loan to help him tide over this period.

Suggest a suitable amount Peter should loan from his friend to cover his loss over these 3 weeks.

Justify any decisions you make and show your calculations clearly.

SINGAPORE CHINESE GIRLS' SCHOOL PRELIMINARY EXAMINATION 2021 SECONDARY FOUR O-LEVEL PROGRAMME

CANDIDATE NAME			,			
CLASS CENTRE	4 S		NU INE	GISTER IMBER DEX		
NUMBER			NU	IMBER [
MATHEMATIC PAPER 2	cs		-		4048	/02
Friday		27 A	ugust 2021	2 h	ours 30 minu	tes
Candidates answe	er on the C	luestion Paper.			ja.	
READ THESE IN	ISTRUCT	TIONS FIRST				
Write your name, o Write in dark blue You may use an H Do not use staples	or black po IB pencil fo	en. or any diagrams or		number on al	ll the work you ha	nd in.
Omission of essent The use of an apposite the degree of action to three significant	ed for any itial workin roved scie curacy is n figures. G	ng will result in loss entific calculator is not specified in the live answers in deg	e shown with the are of marks. expected, where are question, and if the grees to one decimal, unless the question.	opropriate. answer is not al place.		
	rks is give	n in brackets [] at	ork securely togethe the end of each qu		question.	
				For E	Examiner's Use	1
					* 2	

Mathematical Formulae

Compound Interest

Total amount =
$$P(1 + \frac{r}{100})^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1 (a) Simplify
$$\sqrt{\frac{16}{b}} \div (a^2b)^{-3}$$
.

$$\sqrt{\frac{16}{b}} \div (a^2b)^{-3} = \frac{4}{b^{\frac{1}{2}}} \times a^6b^3$$
$$= 4a^6b^{\frac{5}{2}}$$

Answer
$$4a^6b^{\frac{5}{2}}$$
 [2]

(b)
$$x = \frac{3}{\sqrt{yz^2}} + 1$$

(i) Evaluate x when y = 9 and z = -2.

Answer
$$x = 1.5$$
 [1]

(ii) Express z in terms of x and y.

$$(x-1)^2 = \frac{9}{yz^2}$$

$$yz^2 = \frac{9}{(x-1)^2}$$

$$z = \pm \sqrt{\frac{9}{y(x-1)^2}}$$

Answer
$$z = \pm \sqrt{\frac{9}{y(x-1)^2}}$$
 [2]

(c) Solve
$$\frac{6}{m+4} - 5 = \frac{7}{2m-3}$$
.
 $6(2m-3) - 7(m+4) = 5(m+4)(2m-3)$
 $12m-18-7m-28 = 10m^2 + 25m-60$
 $5m^2 + 10m-7 = 0$
 $m = \frac{-10 \pm \sqrt{10^2 - 4(5)(-7)}}{2(5)}$
 $= 0.549$ or -2.55 (3sf)

Answer
$$m = 0.549$$
 or -2.55 [4]

- 2 (a) A map is drawn to a scale of 1: 250 000.
 - (i) Two lighthouses are 382 km apart.

 Calculate the distance, in cm, between the two lighthouses on the map.

(ii) A lake is represented by an area of 6.4 cm² on the map. Calculate the actual area, in km², of the lake.

Actual area =
$$6.4 \times (2.5)^2$$

= 40 km^2

Answer
$$40 \text{ km}^2$$
 [2]

(b) A shopkeeper makes a profit of 25% if he sells a teapot for \$81.25. During a sale, the shopkeeper decides to reduce the selling price by d %. Find the value of d if the shopkeeper does not make a profit or a loss.

Cost price =
$$\frac{100}{125} \times 81.25$$

= \$65
 $\frac{100-d}{100} \times 81.25 = 65$
 $d = 20$

Answer
$$d = 20$$
 [3]

- (c) In 2020, a precious stone was valued at Laotian Kip (K) 90 million.
 - (i) The exchange rate between Singapore Dollars (\$) and Laotian Kip (K) was \$1 = K 6542.
 Calculate the value, in Singapore Dollars, of the precious stone.

Value =
$$\$ \left(\frac{90 \times 10^6}{6542} \right)$$

= $\$ 13757.26 \text{ (nearest cent)}$

(ii) The value of the precious stone increased by 0.8% every year since 2000. Calculate the value of the precious stone in 2000 in Laotian Kip (₭). Leave your answer, correct to 4 significant figures, in standard form.

Let KP be the value in 2000.

$$90 \times 10^6 = P \left(1 + \frac{0.8}{100} \right)^{20}$$
$$P = 7.674 \times 10^7$$

Answer
$$\times$$
 7.674×10⁷ [2]

(a) (i) Express $12-5x+x^2$ in the form $c+(d+x)^2$.

$$\left(x - \frac{5}{2}\right)^2 + 12 - \frac{25}{4}$$
$$= 5\frac{3}{4} + \left(-\frac{5}{2} + x\right)^2$$

Answer
$$5\frac{3}{4} + \left(-\frac{5}{2} + x\right)^2$$
 [2]

Hence, explain why the equation $12-5x+x^2=h$ does not have solutions for some (ii) values of h.

Answer

The minimum value of $12-5x+x^2$ is $5\frac{3}{4}$. Hence the equation $12-5x+x^2=h$ does not have solutions when $h < 5\frac{3}{4}$.

Or,
Since
$$\left(x - \frac{5}{2}\right)^2 \ge 0$$
, $\left(x - \frac{5}{2}\right)^2 + 5\frac{3}{4} \ge 5\frac{3}{4}$. Hence the equation $12 - 5x + x^2 = h$ does not have solutions when $h < 5\frac{3}{4}$.

(b) The times, to the nearest minute, taken by two groups of students, Group A and Group B, to complete a puzzle were recorded. The results are shown in the stem-and-leaf diagram.

Write down the median time for Group A. (i)

2 | 3 means 32 minutes

Answer 51 minutes

[1]

(ii) Find the interquartile range of Group B.

Answer 14 minutes

[1]

(iii) Calculate the standard deviation of Group B.

Answer 15.4 minutes

[1]

(iv) Would the interquartile range or standard deviation be a more appropriate representation of the spread of times for Group B? Explain your answer.

Answer

The interquartile range would be a more appropriate representation as there are outliers of 95 minutes and 96 minutes in the data for **Group B**. The interquartile range, unlike the standard deviation, is not sensitive to outliers. [1]

(v) Make two comments comparing the times taken by Group A and Group B students to complete the puzzle.

Answer

Group A

Group B

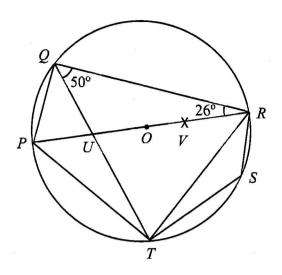
median = 51 minutes interquartile range

median = 54 minutes interquartile range

= 17 minutes

= 14 minutes

As the median time for Group B is longer than that of Group A, the students in Group B generally took a longer time to complete the puzzle.


As the interquartile range of Group A is larger than that of Group B, the times taken by the students in Group A to complete the puzzle are generally more widely spread.

[2]

4 (a) In the diagram, which is not drawn accurately, O is the centre of the circle passing through P, Q, R, S and T.

The diameter of the circle, PR, intersects QT at U.

Angle $TQR = 50^{\circ}$ and angle $QRP = 26^{\circ}$.

- (i) Find, giving reasons for each answer,
 - (a) angle PTQ,

angle $PTQ = 26^{\circ}$ (angles in same segment)

Answer 26° [1]

(b) angle RST,

angle $RST = 130^{\circ}$ (angles in opposite segments)

Answer 130° [1]

(c) angle PQT,

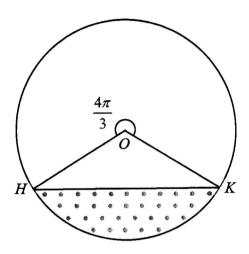
angle $PQT = 40^{\circ}$ (right angle in semi-circle)

Answer 40° [1]

(d) angle PUQ.

angle $PUQ = 76^{\circ}$ (exterior angle of triangle)

Answer 76° [1]


(ii) A point V lies on PR such that angle PVQ is smaller than 52°.

On the diagram, mark and label clearly a possible position for the point V. [1]

(b) The diagram shows the cross-section of a cylindrical tunnel of length 300 m. A level surface, HK, is laid inside the tunnel to carry vehicles and the space below HK is filled with rubble.

The centre of the circle is O and reflex angle $HOK = \frac{4\pi}{3}$ radians.

The perimeter of the major sector HOK is 49.5 m.

(i) Calculate the radius of the tunnel.

Let r m be radius.

$$2r + r\left(\frac{4\pi}{3}\right) = 49.5$$

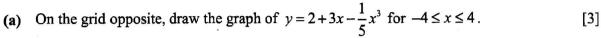
 $r = 7.9983 \text{ m}$
 $= 8.00 \text{ m (3sf)}$

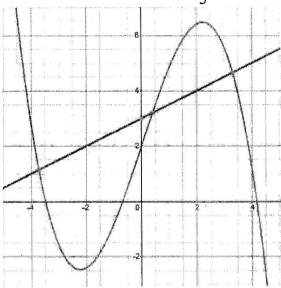
(ii) Calculate the volume of rubble in the tunnel.

Area of minor sector HOK

$$=\frac{1}{2}(7.9983)^2\left(\frac{2\pi}{3}\right)$$

Area of minor segment HOK


$$= \frac{1}{2} (7.9983)^2 \left(\frac{2\pi}{3} - \sin \frac{2\pi}{3} \right)$$


Volume =
$$\frac{1}{2} (7.9983)^2 \left(\frac{2\pi}{3} - \sin \frac{2\pi}{3} \right) (300)$$

= 11800 m³ (3sf)

Answer
$$11800 \text{ m}^3$$
 [4]

5 The variables x and y are connected by the equation $y = 2 + 3x - \frac{1}{5}x^3$. Some corresponding values of x and y are given in the table below.

x	-4	-3	-2	-1	0	1	2	3	4
у	2.8	-1.6	-2.4	-0.8	2	4.8	6.4	5.6	1.2

(b) Use your graph to write down an equality in x to describe the range of values of x where the gradient of the graph is positive.

Answer
$$-2.25 < x < 2.25$$
 [1] (accept -2.4 , -2.35 , -2.3 , -2.2 , -2.15 , -2.1 and 2.1 , 2.15 , 2.2 , 2.3 , 2.35 , 2.4)

(c) (i) On the same axes, draw the graph of
$$2y-x-6=0$$
 for $-4 \le x \le 4$. [2]

(ii) Show that the points of intersection of the line and the curve give the solutions of the equation $2x^3 - 25x + 10 = 0$.

Answer

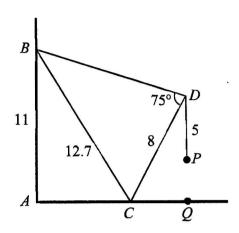
$$2+3x-\frac{1}{5}x^{3} = \frac{1}{2}x+3$$

$$20+30x-2x^{3} = 5x+30$$

$$2x^{3}-25x+10=0$$
[2]

(iii) Use your graphs to solve the equation $2x^3 - 25x + 10 = 0$.

Answer
$$x = -3.7, 0.4, 3.3$$
 [2] (accept $-3.75, -3.65, 0.35, 0.45, 3.25, 3.35$)


6 In the diagram, AB is a vertical wall.

A beam, \overline{CD} , rests with one end, C, on horizontal ground. It is held in place by two cables, BC and BD.

AB = 11 m, CD = 8 m, BC = 12.7 m and angle $BDC = 75^{\circ}$.

A weight, P, hangs on a rope of length 5 m from D.

Q is a point on AC produced such that it is vertically below D and P.

(a) Calculate angle CBD.

$$\frac{\sin \angle CBD}{8} = \frac{\sin 75^{\circ}}{12.7}$$

$$\angle CBD = 37.478^{\circ}$$
= 37.5° (1dp)

Answer
$$37.5^{\circ}$$
 [2]

(b) Show that angle DCQ, correct to 1 decimal place, is 52.5°.

Answer

$$\sin \angle ACB = \frac{11}{12.7}$$

$$\angle ACB = 60.013^{\circ}$$
Angle $DCQ = 180^{\circ} - (180^{\circ} - 75^{\circ} - 37.478^{\circ})$

$$- 60.013^{\circ}$$

$$= 52.465^{\circ}$$

$$= 52.5^{\circ} \text{ (1dp)}$$

[2]

(c) Calculate CP.

$$\angle CDQ = 180^{\circ} - 90^{\circ} - 52.465$$

= 37.535°
 $CP^2 = 5^2 + 8^2 - 2(5)(8)\cos 37.535^{\circ}$
 $CP = 5.0558 \text{ m}$
= 5.06 m (3sf)

(d) Calculate the area of triangle BCD.

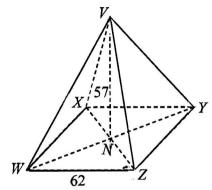
Area =
$$\frac{1}{2}$$
(12.7)(8)sin 67.522°
= 46.940 m²
= 46.9 m² (3sf)

Answer
$$46.9 \,\mathrm{m}^2$$
 [1]

An additional cable is to be added to hold up the beam. The cable will be secured to the point B.

(e) Calculate the shortest possible length of the cable that is to be added.

Let l m be length of cable.


$$l = \frac{46.940}{\frac{1}{2}(8)}$$

= 11.7 m (3sf)

7 (a) A cylindrical wax pellet has a height of 18 mm. The volume of the pellet is 3000 mm³.

Calculate the radius of the pellet.

Let r mm be radius. $\pi r^2 (18) = 3000$ r = 7.28 mm

(b) Some wax pellets were melted and made into a pyramidal candle as shown.

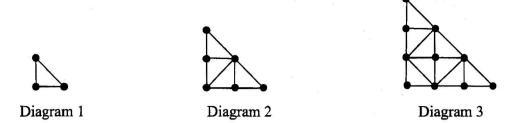
The candle has a horizontal square base WXYZ. XZ meets WY at N such that V is vertically above N. WZ = 62 mm and VN = 57 mm.

(i) Determine the minimum number of wax pellets needed to make the candle.

Number of pellets =
$$\frac{\frac{1}{3}(62)^2(57)}{3000}$$

= 24.345

Minimum number of pellets = 25


All the surfaces of the candle are to be coated with a layer of glitter. It costs 0.06 cents to coat 10 mm² of the candle.

(ii) Calculate the cost, correct to the nearest cent, of coating the candle.

Let M be midpoint of WZ.

$$VM = \sqrt{31^2 + 57^2}$$
= $\sqrt{4210}$
Cost = $\left[4\left(\frac{1}{2}\right)(62)\sqrt{4210} + 62^2\right] \times \frac{0.06}{10}$
= 71 cents (nearest cent)

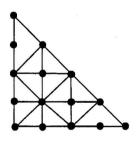

8 (a) A series of diagrams made of dots and lines is shown below.

Diagram	Number of dots along outer edges	Number of lines joining dots	Number of small right-angled triangles
1	3	3	1
2	6	9	4
3	9	18	9
	:		
n		$oldsymbol{q}$	n ey y

(i) Draw Diagram 4.

Answer

[1]

(ii) Diagram P has 387 dots along the outer edges. Write down the value of P.

Answer
$$P = 129$$
 [1]

(iii) Write down the number of small right-angled triangles in Diagram 24.

(iv) Express q in terms of n.

Answer
$$q = \frac{3}{2}\dot{n^2} + \frac{3}{2}n$$
 [1]

- (b) A missile launcher is programmed to fire missiles at enemy aircraft until the aircraft is hit. Each time a missile is fired, the probability that it hits the target is 0.85.
 - (i) Find the probability that
 - (a) the first two missiles miss the target,

P(the first two missiles miss the target) = 0.15^2

$$= 0.0225 \text{ or } \frac{9}{400}$$

Answer 0.0225 or
$$\frac{9}{400}$$
 [1]

(b) the first missile misses the target and the second missile hits the target,

P(the first missile misses the target and the second missile hits the target) = 0.15(0.85)

$$= 0.1275 \text{ or } \frac{51}{400}$$

Answer 0.1275 or
$$\frac{51}{400}$$
 [1]

(c) the target is hit in at most three attempts by the missile launcher.

P(hit in at most 3 attempts)
=
$$0.85 + 0.15(0.85) + (0.15)^2(0.85)$$

= 0.996625 or $\frac{7973}{8000}$

Or,

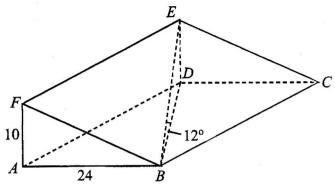
P(hit in at most 3 attempts) =
$$1 - (0.15)^3$$

= 0.996625 or $\frac{7973}{8000}$

Answer 0.996625 or
$$\frac{7973}{8000}$$
 [2]

(ii) Find the probability, in terms of n, that the target is still not hit after n missiles are fired.

Answer
$$0.15^n$$
 [1]


(iii) Write down the probability, in terms of n, that the target is hit after n missiles are fired.

Answer
$$0.85(0.15)^{n-1}$$
 [1]

9 (a) ABCDEF is a wedge with a horizontal rectangular base ABCD. Rectangle AFED is vertical.

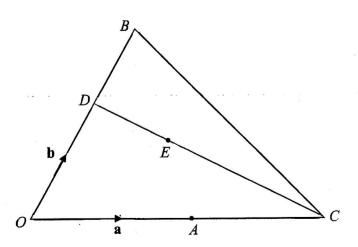
AF = DE = 10 cm and AB = 24 cm.

The angle of elevation of E from B is 12° .

(i) Calculate BD.

$$\tan 12^{\circ} = \frac{10}{BD}$$
 $BD = 47.046 \text{ cm}$
 $= 47.0 \text{ cm}$

Answer 47.0 cm


[2]

(ii) Calculate the volume of the wedge.

$$BC = \sqrt{47.046^2 - 24^2}$$
= 40.464 cm
Volume = $\frac{1}{2}(10)(24)(40.464)$
= 4860 cm³

[3]

(b)

OBC is a triangle.

A is a point on OC such that OA : AC = 5 : 4.

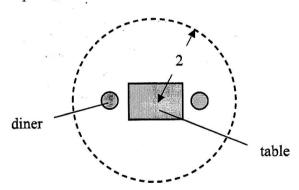
D is a point OB such that 2OD = 3DB.

OA=	\mathbf{a} and $OB = \mathbf{b}$.
(i)	Express \overline{OC} in terms of a and/or b , as simply as possible.
	Answer
	Answer[1]
(#1)	The state of the s
(ii)	Express \overrightarrow{AB} in terms of a and/or b , as simply as possible.
	Answer[1]
	12700707 1111111111111111111111111111111
(iii)	Express \overrightarrow{CD} in terms of a and/or b , as simply as possible.
(111)	Express CD in terms of a and/of b, as simply as possible.
	Answer[1]
T. 1	$\frac{1}{2}$
It is	given that $\overrightarrow{CE} = \frac{2}{3}\overrightarrow{CD}$.
(iv)	Express \overline{AE} in terms of a and/or b , as simply as possible.
, ,	
	and the state of t
	,
	Answer[1]
	TT Code 1 1 T 1 T
(v)	Hence, write down two facts about A , E and B .
	Annuar
	Answer
	[2]
(vi)	Find the ratio area of triangle <i>ODE</i> : area of triangle <i>CEA</i> .
a (5)	

10 On 30 December 2020, a nurse working at the National Centre for Infectious Diseases (NCID) became the first person in Singapore to receive a COVID-19 vaccination.

As of 14 June 2021, a total of 1 990 994 persons have completed the full vaccination regimen.

(a) Given that Singapore has a population of approximately 5 900 000 in June 2021, calculate the percentage of the population who have completed the full vaccination regimen in Singapore as of 14 June 2021. Give your answer to a reasonable degree of accuracy.


Percentage =
$$\frac{1990994}{5900000} \times 100$$

= 34% (2sf)

[2]

(b) Peter owns a restaurant.

During the COVID-19 Phase 2 (Heightened Alert), dining-in at his restaurant was restricted to group sizes of up to 2 persons starting 21 June 2021. This meant that a maximum number of 2 diners could be seated at the same table at any time.

In consideration of the Safety Management Measures which require a minimal distance between the diners, he decided to arrange the tables in his restaurant such that each table is placed in a circular area of radius 2 m starting 21 June 2021. The circular areas of adjacent tables should not overlap.

The restaurant has a rectangular seating area of 26 m by 9 m.

Write down the greatest number of diners that could be seated in the restaurant at any time on 21 June 2021.

Answer 24

[1]

(c) The restaurant temporarily suspended operations in mid-May 2021 and resumed operations on 21 June 2021 with the following operating hours.

The costs involved in operating his restaurant in a typical week starting21 June 2021 are given below.

Costs involved in operating restaurant in a typical week				
Salary for each cook (3 cooks are required)	\$ 775			
Salary for each staff member (excluding cooks)	¢ 450			
(6 staff members, excluding cooks, are required)	\$ 450			
Cost of ingredients for food	\$ 6 000			
Rental of restaurant	\$ 3 000 \$ 2 000			
General utilities Miscellaneous costs	\$ 2000			

Based on his experience, Peter estimated that the restaurant would seat an average of 60 diners per day of operation and each diner would typically spend a median amount of \$28. He also estimated that the restaurant would collect an average of \$400 per day of operation from takeaway orders.

Peter knew that he would make a loss by operating his restaurant for 3 weeks starting from 21 June 2021 and his friend has agreed to give him a loan to help him tide over this period.

Suggest a suitable amount Peter should loan from his friend to cover his loss over these 3 weeks.

Justify any decisions you make and show your calculations clearly.

Total operation costs in a week
$$= 3(775) + 6(450) + 6000 + 3000 + 2000 + 800$$
 $= 16825

Estimated average revenue per day =
$$60(28) + 400$$

= \$ 2 080

Estimated loss over the 3 weeks =
$$3(16825 - 14560)$$

= \$ 6 795

Peter should take a loan of \$ 7 000 from his friend to cover his loss over the 3 weeks. This will also give him a buffer of approximately \$ 205 to cover any unexpected costs which may arise during this period.

Or,

Total operation costs in a week =
$$3(3775) + 6(450) + 6000 + 3000 + 2000 + 800$$
 = \$ 16 825

Total operation costs in 3 weeks =
$$3(16825)$$

= $$50475$

Estimated average revenue per day =
$$60(28) + 400$$

= \$ 2 080

Estimated loss over the 3 weeks =
$$50475 - 43680$$

= $$6795$

Peter should take a loan of \$ 7 000 from his friend to cover his loss over the 3 weeks. This will also give him a buffer of approximately \$ 205 to cover any unexpected costs which may arise during this period.

[7]