NAME:	9	(

CLASS: 4 (

MATHEMATICS

4048

Paper 1

26 August 2021

Candidates answer on the Question Paper.

2 hours

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class in the space at the top of this page.

Write in dark blue or black pen.

You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters and glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 80.

For Examiners' Use

Question	1	2	3	4	5	6	7	8	9
	1	- 4	3	7	<u>J</u>	0		0	9
Marks					8				
Question	10	11	12	13	14	15	16	17	18
Marks					*				
Question	19	20	21	22	23	24	25		
Marks									
Table of F	enalties	3	Units		Clarity	y / Logic	Precisi	on / Accuracy	
Parent's N	lame an	ıd							
Signature									
			Total	-	(20			5
Date:						7()			

This document consists of 19 printed pages.

1 (a) Given that $3^{27} \div 27^3 = 3^k$, find k.

Marchine executive Street	7	111	ł
Anguer F	A TRACE OF STREET AND A STREET AND A STREET ASSESSMENT OF THE STREET ASSESSMENT ASSESSME		ı.
ZING ITO IV			ı

(b) Simplify $\frac{4x^{-4}}{y^{-\frac{4}{3}}} \times \frac{y^{\frac{2}{3}}}{18} \div \frac{1}{27}$, leaving your answers in positive indices.

Answer[2]

The curve below has an equation $y = x^n + c$. State a possible value of n and the value of c.

Answer n =

c =[2

[Turn Over]

3	Jasmin has 240 two-centimetre cubes. She arranges all of the cubes into a cuboid. The perimeter
	of the base of the cuboid is 40 cm. Each side of the cuboid has a length greater than 4 cm.
	Find the height of the cuboid.

Answer	*******	 cm [2]

Violet intends to arrange n regular pentagons in a ring. The diagram shows the partially completed ring.
Find n.

The bar chart shows the number of traffic accidents resulting in injury from 2014 to 2018. (https://www.budgetdirect.com.sg/car-insurance/research/road-accident-statistics-insingapore)

Number of Accidents Resulting in Injuries (2014 - 2018)

State how this bar chart can be misleading to the reader.

Given that $\zeta = \{\text{all triangles}\}\$, $R = \{\text{right-angled triangles}\}\$ 6 (a) and $S = \{ \text{triangles with three unequal sides} \}$

> A is a triangle with 45°, 45° and 90°. B is a triangle with 7 cm, 7 cm and 3 cm. C is a triangle with sides 9 cm, 12 cm and 15 cm.

Represent the above information on a Venn Diagram in the space below.

(b) Write down the set represented by the following shaded regions.

a constructional and a		
		F-17
Answer	6	 . 111
A ALFONDON BURNESS OF THE PARTY		

7 The speed of light is 3×10^8 m/s. Earth is 150 million km from the sun. How long does light take to travel from the sun to the earth? Give your answer, correct to the nearest minute.

Answerminutes [2]

A maximum quadratic curve with the equation $y = -x^2 + bx + c$ has a turning point at (3,7), find the value of b and of c.

9 Solve the equation
$$\frac{1}{x+1} - \frac{6x^2 - 10}{1 - x^2} = 4$$
.

10 Simplify
$$\frac{27-12x^2}{-3-2x^2+5x} \times \frac{1-x}{-2x-3}$$
.

Answer [3]

In the diagram below, XZ is the chord of a circle. XY is the diameter of the circle, centre O.

Given that XZ = 9 cm and $YZ = \sqrt{63}$ cm, calculate

(a) the length of XY,

(b) $\angle YXZ$,

Answer ° [1]

(c) \(\angle YOZ\) in radian,

4nswerrad [2]

(d) the area of the major segment YXZ.

Answercm² [3]

$y=x^3-4$	$y = -3(4)^x$	y=4-x ²	y=4x ⁻²
y=-2x ⁻⁴	$y=4-x^3$	y=-3(-4) ^x	$y=x^2+4$

Write down a possible equation for each of the sketch graphs below. In each case select one of the equations from the box above.

Answer [1]

Answer[1]

$$Answer x = \dots [3]$$

In the diagram shown below, it is given that AP = 5 cm, BP = 2 cm and AR = 3 cm. ARC, ABP and RQP are straight lines.

Show, with clear reasons, that triangle ABC is congruent to triangle ARP.

Answer

15	A lake has an actual area of 2.5 km ² . The area of the lake on the between two towns on the map is 45 cm. Find the actual distantowns.	
		ı <i>swer</i> km [3]
16	(a) Solve the inequalities $\frac{8x-12}{2} \le 3x+1 < \frac{17x}{3}$.	
		Answer [3
	(b) Hence, write down all the prime numbers that satisfy	$\frac{8x-12}{2} \le 3x+1 < \frac{17x}{3},$
		Answer[1

Answer [2]

18 The Venn diagram shows the elements of ξ and three sets A, B and C. $\xi = \{x: x \text{ is a positive integer such that } 0 < x < 14\}$

(a) Describe in words the elements in set C.

Answer

(b) Use one of the symbols below to complete each statement.

$$\emptyset \subset \not\subset \not\in \xi$$

(i)
$$A' \cap (B \cap C) = \dots$$

r crajaci de M. Carderla de la dispedica A

LY.	workers can complete the assembly in x days. If 6 more wo be completed 3 days in advance. (a) Find the value of x.	rkers are involved, the ass	embly can
		Answer x =	[2]
	(b) Find the number of workers required if the assembl	y is to be completed in 2 o	lays.
		Answer	D
20	In the figure, $ABCD$ is a quadrilateral. The point X is such of angle ABC and angle ADC respectively.		
	Reflex angle $BCD = 200^{\circ}$ and reflex angle $BXD = 225^{\circ}$. Calculate angle BAD .		
		/ X	$\sum_{\mathcal{D}}$
		\sim	
		Answer	° [4
Sec	ondary Four Preliminary Mathematics Examination 2021		[Turn Over]

Find the time taken for the container to be completely filled.

Answers [1]

[1]

(b) Sketch the graph of the water-level against time below.

A popular drink is produced in two similar bottle sizes. The height of the large bottle A is 18 cm while the height of the smaller bottle B is 12 cm.

If the selling prices of bottles A and B are \$24.90 and \$6.90 respectively, which bottle provides better value for money? Justify your answer clearly.

Answer

The cumulative frequency diagram shows the times taken by 200 girls from school A running 2.4 km test. The box-and-whisker plot shows the times for another group of girls from school B.

Timing in minutes

Timing in minutes

(a) 75% of the girls in school B failed the test. If the passing time is the same for both schools, find the number of girls who passed in school A.

Answer		I	1]
--------	--	---	---	---

(b)	30% of the girls in school	ol A took longer th	an <i>t</i> minutes. Find		
(e)	Find the percentage of g complete the run.	irls in school A wh	Answe 20 took between 14	7	[2 minutes to
	complete the run.				
			Answe	"	[2
					444
	at in This part of	ajkuja del a riskalisti			
			#34 MAC		

	Answercn	1 [2]
(b)	Construct the perpendicular bisector AD.	[1]
(c)	Construct the bisector of the angle BAD.	[1]
(d)	ABCD represents a plot of land which is to be used for a park. A café is to be built in park, nearer to A than to D and nearer to AD than AB. Shade the region where the cafe	is
	to be built	[1]

25	IC are	I and Beng Hai want to rent lockers in school. The lo on the lower level and Lockers 2A to 2C are on the audent randomly.	ckers are in two levels. Lockers next level. Lockers are assigned	1A to to
	(a)	Using a possibility diagram, represent the two locke	ers that the two boys can be alloc	ated.
	Answe			
a Novastik				
and and				
				c.
AG .				1
				10.4
		Find the anabability that Ahmad and Dana Unions	madmado allandad badana ana	[2]
	(b)	Find the probability that Ahmad and Beng Hai are reach other on Level 2.	andonny anocaleu lockers next	io
i yariyajir				
495 p				
			Answer	[4]
	(c)	Find the probability that Ahmad and Beng Hai are a different levels.	andomly allocated lockers on	
			Answer	[1]
	(d)	If the locker 2C was not available, find the probabil allocated lockers next to each other at any level.	lity that the friends will be	
	- [1], 4			
				19.5 2 <u>1.82</u> 3
		End of Paper	Answer	[2]
Seco	ndary F	our Preliminary Mathematics Examination 2021	[Turn	Over]

6.0 19.08 1

BIA BATT	ر ا	,
NAME:		
1 12 2112		

CLASS: 4 (

S4

MATHEMATICS

4048

Paper 1

26 August 2021

Candidates answer on the Question Paper.

2 hours

READ THESE INSTRUCTIONS FIRST

MARKING SCHEME

)

Write your name, index number and class in the space at the top of this page. Write in dark blue or black pen.

You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters and glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 80.

For Examiners' Use

Question	1	2	3	4	5	6	7	8	9
Marks					1		r		
Question	10	11	12	13	14	15	16	17	18
Marks									
Question	19	20	21	22	23	24	25		
Marks									
Table of F	enalties		Units	1	Clarity	/ Logic	Precisio	n / Accuracy	
Parent's Name and Signature			н			-			
			Total			20		a 2	<u>, , , , , , , , , , , , , , , , , , , </u>
Date:					C				

This document consists of 19 printed pages.

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1(a) Given that $3^{27} \div 27^3 = 3^k$, find k.

$$3^{27} \div 3^9 = 3^k$$

$$3^{27-9} = 3^k$$

$$k = 18$$

Answer k = [1]

(b) Simplify $\frac{4x^{-4}}{-\frac{4}{3}} \times \frac{y^{\frac{2}{3}}}{18} \div \frac{1}{27}$, leaving your answers in positive indices.

$$\frac{4y^{\frac{4}{3}}}{x^{4}} \times \frac{y^{\frac{2}{3}}}{18} \times 27$$

$$= \frac{6y^{\frac{6}{3}}}{x^{4}}$$

$$= \frac{6y^{2}}{x^{4}}$$

Answer_____[2]

The curve below has an equation $y = x^n + c$. State a possible value of n and the value of c.

 $y = x^{n} + c$ n = -1 c = 1Answer n = c = [2]

Jasmin has 240 two-centimetre cubes. She arranges all of the cubes into a cuboid. The perimeter of the base of the cuboid is 40 cm. Each side of the cuboid has a length greater than 4 cm. Find the height of the cuboid.

Dimension of cuboid is
$$2l \times 2b \times 2h = 2^3 \times lbh$$

= $2^3 \times 240$
 $240 = 2^4 \times 3 \times 5$
 $40 = 4l + 4b$
 $10 = l + b$
 $10 = 2 + 2^3$ (rej), $10 = 2^2 + (2 \times 3)$
 $2^4 \times 3 \times 5 = (2^2)(2 \times 3)h$
 $h = 10$
Height is 20 cm

Answer	cm	[2]
Aliswei	CIII	12.

Violet intends to arrange n regular pentagons in a ring. The diagram shows the partially completed ring. Find n.

Interior angle of the regular pentagon =
$$\frac{180(5-2)}{5}$$
= 108
Interior angle of the regular *n*-side polygon form in the centre of the ring = $360-2(108)$
= 144
$$144 = \frac{180(n-2)}{n}$$

$$144n = 180n - 360$$

$$36n = 360$$
 $n = 10$

 $Answer n = \underline{\hspace{1cm}} [3]$

The bar chart shows the number of traffic accidents resulting in injury from 2014 to 2018. (https://www.budgetdirect.com.sg/car-insurance/research/road-accident-statistics-insingapore)

Number of Accidents Resulting in Injuries (2014 – 2018)

State how this bar chart can be misleading to the reader.

[1]

The bars in the bar chart do not start from zero. The relative heights of the bars can mislead the reader into thinking the differences are larger than what is actually given. For example, The frequency for 2016 is 8304 and the frequency for 2017 is 7726, so the difference is 578, but the height of the 2016 bar is twice that for the 2017 bar.

6 (a) Given that

 $\zeta = \{ \text{all triangles} \}$

 $R = \{ \text{right-angled triangles} \}$

 $S = \{ \text{triangles with three unequal sides} \}$

A is a triangle with 45°, 45° and 90°.

B is a triangle with 7 cm, 7 cm and 3 cm.

C is a triangle with sides 9 cm, 12 cm and 15 cm.

Represent the above information on a Venn Diagram in the space below.

[2]

(b) Write down the sets represented by the following shaded region

Answer	[1]

 $(A \cup B)' \cup (A \cap B)$

7 The speed of light is 3×10^8 m/s. Earth is 150 million km from the sun. How long does light take to travel from the sun to the earth. Round your answer to the nearest minute.

$$\frac{150000000}{3 \times 10^5} = 500 \text{ s}$$

$$= 8.33 \text{ minutes}$$

$$= 8 \text{ minutes (nearest minute)}$$

Answer__

minutes [2]

A maximum quadratic curve with the equation $y = -x^2 + bx + c$ has a turning point at (3,7), find the value of b and of c.

$$y = -(x-3)^{2} + 7$$

$$y = -(x^{2} - 6x + 9) + 7$$

$$y = -x^{2} + 6x - 9 + 7$$

$$y = -x^{2} + 6x - 2$$
Therefore, $b = 6$ and $c = -2$.

9 Solve the equation $\frac{1}{x+1} - \frac{6x^2 - 10}{1 - x^2} = 4$.

$$\frac{1}{x+1} - \frac{6x^2 - 10}{1 - x^2} = 4$$

$$\frac{1}{x+1} - \frac{6x^2 - 10}{(1 - x)(x+1)} = 4$$

$$\frac{1 - x}{(1 - x)(x+1)} - \frac{6x^2 - 10}{(1 - x)(x+1)} = 4$$

$$\frac{1 - x - 6x^2 + 10}{(1 - x)(x+1)} = 4$$

$$\frac{-6x^2 - x + 11}{(1 - x)(x+1)} = 4$$

$$-6x^2 - x + 11 = 4 - 4x^2$$

$$-6x^2 - x + 11 + 4x^2 - 4 = 0$$

$$-2x^2 - x + 7 = 0$$

$$x = \frac{1 \pm \sqrt{(-1)^2 - 4(-2)(7)}}{2(-2)}$$

$$x \approx 1.6375 \text{ or } x \approx -2.1375$$

$$x \approx 1.64 \text{ or } x \approx -2.14$$

 $Answer x = \underline{\hspace{1cm}} \text{or } x = \underline{\hspace{1cm}} [4]$

10 Simplify $\frac{27-12x^2}{-3-2x^2+5x} \times \frac{1-x}{-2x-3}$.

$$\frac{27 - 12x^2}{-3 - 2x^2 + 5x} \times \frac{1 - x}{-2x - 3}$$

$$= \frac{3(9 - 4x^2)}{(-2x + 3)(x - 1)} \times \frac{1 - x}{-2x - 3}$$

$$= \frac{3(3 - 2x)(3 + 2x)}{(-2x + 3)(x - 1)} \times \frac{-(x - 1)}{-(2x + 3)}$$

$$= 3$$

Answer_____[3]

In the diagram below, XZ is the chord of a circle. XY is the diameter of the circle, centre O. Given that XZ = 9 cm and $YZ = \sqrt{63}$ cm, calculate

(a) the length of XY,

(a) By using Pythagoras Theorem,

$$XY = \sqrt{9^2 + \left(\sqrt{63}\right)^2}$$

$$XY = \sqrt{9^2 + \left(\sqrt{63}\right)}$$
$$= \sqrt{44}$$

Answer XY = [1]

(b) $\angle YXZ$,

(b)
$$\angle YXZ = \tan^{-1} \left(\frac{\sqrt{63}}{9} \right)$$

= 41.4° (1d.p)

Answer ∠YXZ =____° [1]

(c) $\angle YOZ$ in radian,

$$\triangle OXZ$$
 is an isosceles triangle.
(c) $\angle YOZ = 2 \times \angle YXZ$
(1 ext angle = sum of int. opp. angle)
= 82.8192°
= 1.45 rad (3sf)
OR
 $\triangle OXZ$ is an isosceles triangle.
 $\angle XOZ = 180^{\circ} - (2 \times 41.4096)^{\circ}$
= 97.1807° (\angle on a str. line)
 $\angle YOZ = \pi - \left(\frac{97.1807}{180}\right)\pi$
= 1.45 rad (3s.f)

Answer $\angle YOZ =$ rad [2]

(d) the area of the major segment YZ.

(d) Area of the major segment YZ
= area of major sector YZ + area of triangle YOZ $= \frac{1}{2}(6)^{2}(2\pi - 1.445469) + \frac{1}{2}(6)^{2} \sin (1.445469)$ $= 105 \text{ cm}^{2} (3\text{s.f})$ OR
Area of major sector $YOZ = \frac{360 - 82.8192}{360} \times \pi(6)^{2}$ $= 87.0789 \text{ cm}^{2}$ Area of triangle $YOZ = \frac{1}{2} \times (6)^{2} \times \sin(82.8192)$ $= 17.8168 \text{ cm}^{2}$ Area of major segment $YZ = 105 \text{ cm}^{2} (3\text{s.f})$

 $Answer = \underline{\qquad \qquad } cm^2 [3]$

$y = x^3 - 4$	$y = -3(4)^x$	$y = 4 - x^2$	$y = 4x^{-2}$
$y = -2x^{-4}$	$y = 4 - x^3$	$y = -3(-4)^x$	$y = x^2 + 4$

Write down a possible equation for each of the sketch graphs below. In each case select one of the equations from the box above.

(a)
$$y = 4 - x^3$$

(b)

(b)
$$y = -3(4)^x$$

13 Make x the subject in the equation $y = \sqrt{x^2 - 8x + 16 - y^2}$.

$$y = \sqrt{x^2 - 8x + 16 - y^2}$$

$$y^2 = x^2 - 8x + 16 - y^2$$

$$2y^2 = x^2 - 8x + 16$$

$$2y^2 = (x - 4)^2$$

$$x - 4 = \pm \sqrt{2}y$$

$$x = 4 \pm \sqrt{2}y$$

*Answer*_____[3]

In the diagram shown below, it is given that AP = 5 cm, BP = 2 cm and AR = 3 cm. ARC, ABP and RQP are straight lines.

Show, with clear reasons, that triangle ABC is congruent to triangle ARP.

[2]

In triangle ABC and triangle ARP,

Angle A is common.

Angle ABC = Angle ARP = 90° (given)

$$AB = 5 - 2 = 3 \text{ cm} = AR$$

Therefore triangle $ABC \equiv \text{triangle } ARP \text{ (AAS)}$

A lake has an actual area of 2.5 km². The area of the lake on the map is 40 cm². The distance between two towns on the map is 45 cm. Find the actual distance, in kilometres, between the two towns.

Area Scale = $40 \text{ cm}^2 : 2.5 \text{ km}^2$

 $= 40 \text{ cm}^2 : 2.5 \times 100000 \times 100000 \text{ cm}^2$

= 1:625000000

Linear Scale = 1:25000

= 1 cm : 0.25 km

= 45 cm : 11.25 km

OR

Secondary Four Preliminary Mathematics Examination 2021

[Turn Over]

 $40 \text{ cm}^2 \text{ on the map} = 2.5 \text{ km}^2 \text{ on the ground}$ $\sqrt{40}$ cm on the map = $\sqrt{2.5}$ km on the ground $1 \text{ cm} = \frac{\sqrt{2.5}}{\sqrt{40}} \text{ km}$ 45 cm = $45 \times \frac{\sqrt{2.5}}{\sqrt{40}} = 11.25 \text{ km}$ Let the distance between the two towns be d km. $\frac{2025}{d^2} = 16$ $d^{2} = \frac{2025}{16}$ $d = \frac{45}{4} (d > 0)$ km [3] (a) Solve the inequalities $\frac{8x-12}{2} \le 3x+1 < \frac{17x}{3}$. $\frac{8x-12}{2} \le 3x+1 < \frac{17x}{3}$ $\frac{8x-12}{2} \le 3x+1 \quad \text{and} \quad 3x+1 < \frac{17x}{3}$ $3x+1 < \frac{17x}{3}$ $8x-12 \le 6x+2$ $8x-6x \le 2+12$ $2x \le 14$ $x \le 7$ and 9x-17x < -3 -8x < -3 $x \le 7$ Therefore, $\frac{3}{8} < x \le 7$ Answer_ [3]

(b) Hence, write down all the prime numbers that satisfy $\frac{8x-12}{2} \le 3x+1 < \frac{17x}{3}$.

The prime numbers are 2, 3, 5 and 7

Answer_______[1]

16

17 Factorise completely $4x^2 - 12xy + 9y^2 - 1$.

$$4x^{2} - 12xy + 9y^{2} - 1 = (2x - 3y)^{2} - 1^{2}$$
$$= (2x - 3y - 1)(2x - 3y + 1)$$

Answer [2]

The Venn diagram shows the elements of ξ and three sets A, B and C. $\xi = \{x: x \text{ is a positive integer such that } 0 < x < 14\}$

(a) Describe in words the elements in set C.

(a) The elements in set C are the prime numbers between 0 and 14. OR The set C is the set of prime numbers.

(b) Use one of the symbols below to complete each statement.

$$\emptyset \subset \not\subset \not\in \in \xi$$

(i)
$$A' \cap (B \cap C) = \dots$$

(b) (i) \emptyset (ii) \in

- The time taken to assemble a car is inversely proportional to the number of workers involved. 4 workers can complete the assembly in x days. If 6 more workers are involved, the assembly can be completed 3 days in advance.
 - (a) Find the value of x.

```
Let W = number of works, D = number of days required
x = \frac{k}{4}
k = 4x
x - 3 = \frac{k}{10}
k = 10x - 30
10x - 30 = 4x
x = 5
```

 $Answer x = \underline{\hspace{1cm}} [2]$

- (b) Find the number of workers required if the assembly is to be completed in 2 days.
- (b) When x = 5, $5 = \frac{k}{4}$ k = 20 $D = \frac{20}{W}$ When D = 2 days, W = 10 workers.

Answer [2]

In the figure, ABCD is a quadrilateral. The point X is such that XB and XD are the angle bisectors of angle ABC and angle ADC respectively.

Reflex angle $BCD = 200^{\circ}$ and reflex angle $BXD = 225^{\circ}$. Calculate angle BAD.

Obtuse angle $BCD = 360^{\circ} - 200^{\circ} = 160^{\circ}$ (Angles at a point)

Obtuse angle $BXD = 360^{\circ} - 225^{\circ} = 135^{\circ}$ (Angles at a point)

Angle CBX + angle CDX = 360°-160°-135° = 65° (angle sum of quadrilateral BCDX)

Since XB and XD bisect angle ABC and angle ADC respectively.

Angle ABC + angle $ADC = (\angle CBX + \angle CDX) \times 2$

$$=65^{\circ} \times 2 = 130^{\circ}$$

Angle $BAD = 360^{\circ}-130^{\circ}-160^{\circ} = 70^{\circ}$ (angle sum of quadrilateral ABCD)

*Answer*_____[4]

21 (a) An open container in a shape of an inverted cone has radius of 10 cm and height of 30 cm. Water is poured into the container at a constant rate of 5π cm³/s until it is completely filled to the brim. Find the time taken for the container to be completely filled.

(b) Sketch the graph of the water-level against time below.

A popular drink is produced in two similar bottle sizes. The height of the large bottle A is 18 cm while the height of the smaller bottle B is 12 cm.

If the selling prices of bottles A and B are \$24.90 and \$6.90 respectively, which bottle provides better value for money? Justify your answer clearly. [3]

$$\frac{\text{Volume of A}}{\text{Volume of B}} = \left(\frac{18}{12}\right)^3 = \frac{5832}{1728} = \frac{27}{8}$$

Cost of 1 unit³ of volume for
$$A = \frac{$24.90}{27}$$

Cost of 1 unit³ of volume for
$$B = \frac{$6.90}{8}$$

≈ \$0.8625

Since 1 unit³ of liquid in bottle B cost lesser than 1 unit³ of liquid in bottle A, bottle B is more value for money.

Note: Only award first method mark if student use 1cm3 instead of 1unit3

23 The cumulative frequency diagram shows the times taken by 200 girls from school A running 2.4 km test. The box-and-whisker pot shows the times for another group of girls from school B.

Timing in minutes

(a) 75% of the girls in school B failed the test. Find the number of girls who passed in school A.

(a) From school B, $Q_I = 14$ mins, which is the passing time.	
Hence, number of girls in school A who passed the test	
= 60 (from curve)	

Answer.....[1]

(b) 30% of the girls in school A took longer than t minutes. Find t.

[2]

30% of the girls =
$$\frac{30}{100} \times 200 = 60$$

From the curve, 140 girls took 16 minutes or less. So $t = 16$

Answer......[2

(c) Find the proportion of girls in school A who took between 14.5 minutes and 17 minutes to complete the run.

t = 14.5 Cumulative Frequency = 80
t = 17 Cumulative Frequency = 177
Proportion of girls =
$$\frac{177 - 80}{200} \times 100 = 48.5\%$$

Answer_____[2]

24 (a) Construct kite ABCD. AD = CD = 9 cm. AB and BC have already been drawn. Measure and state the length of the longest diagonal.

Answer

(b) Construct the perpendicular bisector BC.

[1] [1]

(c) Construct the bisector of the angle ABC.

(b) / (c) See diagram

(d) ABCD represents a plot of land which is to be used for a park. A café is to be built in park, nearer to A than to D and nearer to AD than AB. Shade the region where the café is to be built.

(d) See diagram

- Ahmad and Beng Hai want to rent lockers in school. The lockers are in two levels. Lockers 1A to 1C are on the lower level and Lockers 2A to 2C are on the next level. Lockers are assigned to each student randomly.
 - (e) Using a possibility diagram, represent the two lockers that the two boys can be allocated such that they are next to each other on the same level.

Answer

	Ahmad				ii.		
Beng		1 A	1B	1C	2A	2B .	2C
Beng Hai	1A		1	1	1	. 1	1
	1B	1	1	1	1	1	1
	1C	1	1		1	1	1
	2A	1	1	1	1 1 9	1	1
	2B	1	1	1	1		1
	2C	1	1	1	1	1	4 (0)

	0	_ [2]
•		

(b) Find the probability that Ahmad and Beng Hai are randomly allocated lockers next to each other on Level 2.

Total number of possible outcomes = 30 P(Ahmad and Beng Hai have lockers on Level 2)	
$=\frac{4}{30}=\frac{2}{15}$	

(c) Find the probability that Ahmad and Beng Hai are randomly allocated lockers on different levels.

Total number of possible outcomes = 30
P(Ahmad and Beng Hai have lockers on different levels) $= \frac{18}{30} = \frac{3}{5}$ Answer______[1]

(d) If the lockers 2C was not available. Find the probability that the friends will be allocated lockers next to each other at any level.

Total number of possible outcomes = 20 P(Ahmad and Beng Hai have lockers next to each other) $= \frac{6}{20} = \frac{3}{10}$

End of paper

	Givent	$hat P_1 =$	=3, show	that $P_2 =$	3m+9.				
	Answer								
				2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
			3 .						
(b)	Given th	at $P_2 =$	=- <mark>3</mark> , find	i the valu	1e of <i>m</i> .				
						Asses	10° m=	************	
				.x:	io Anii o Eeroota o	ZLINGN		************	
(c)	Z2N	By usi	ng the ans	swer in (b), find P	P_4 , P_4 and P_5			
1.77	(i)			35 W 35	to the transfer of the transfe	~ *			
									.*
							ver P3		
							ver P3:	-	··········
							ver P3:		··········
						Answ	ver P3: P4: P5	= =	
	(0)	3y con					ver P3: P4: P5	= =	
	(0)					Answ	ver P3: P4: P5	= =	
	(0)	3y con				Answ	ver P3: P4: P5	= =	
	(0)	3y con				Answ	ver P3: P4: P5	= =	

The diagram shows a pyramid ABCDEFG. The base of the pyramid is a regular pentagon of side 6 cm. The tip F is vertically above the centre of the pentagon, G, and AF = 14 cm.

(a) Calculate the angle AGB.

Augustina	*************************	0	r	1	1	
Answer	***********		1	2.	J	

(b) Show that AG = 5.1039 cm, correct to five significant figures.

Answer

(c) Calculate the height of the pyramid, FG.

Ø	The pyramid is the model for a paper weight that is to be gold plated. To reduce costs the pyramid is made smaller such that the smaller pyramid remains geometrically similar to the original pyramid but its height is reduced by 35%.
	The surface area of the large pyramid is $S \text{ cm}^2$. Express the surface area of the new pyramid as a percentage of S .
	Answer% [3]
3 (1)	Given that the points $P(3,k)$, $Q(1,-2)$ and $R(-4,-6k)$ lie on a straight line, find the
	value of k.
	가는 사이 사고 있다면 가장 경쟁에 되고 한 다시는 이 전혀 하는 전략이 되고 있는 사람들이 하는 것이다. 그는 사용성 경우를 하면 함께 발표하다는 이 소리에 돌아왔다면 하는데 나는 바람이 생각하는 것이다.
	Answer $k = \dots$ [3] (ii) Find the length of the line segment PQ .
	(ii) Find the length of the line segment PQ .
	Answer[2]
Anglican High	School Page 5 of 22 Preliminary Examination 2021 [Turn Over

Quadrilateral ABCD is a field with AB = 90 m and BC = 78 m and A is due north of D. The bearing of B from A is 100° , the bearing of B from C is 025° and the bearing of D from C is 278° .

(a) (i) Show that angle $ABC = 75^{\circ}$.

Answer

(ii) Calculate the bearing of C from D.

[2]

				Answer	************	m [3]
Ö)	A drone lite stopp the drone	hovers at a height of ed at E to take a pic to the top of the ma	f 70 m above <i>D</i> . A ture of the drone wan's head was 58°.	man of heigh hen the maxi Calculate the	1.75 m walks alo mum angle of dep	ng path AC. ression from
	(i) le	ength of <i>DE</i> ,				
				Answer	*****	* D1
	(ii) a	rea of the field ABC	D	Alower	***************************************	
						*

						a 64 6
				Answer		m² [3]
Anglican High S	School		Page 7 of 22		Preliminary Examir	

Calculate the length of AC.

(iii)

Adam runs a drink stall franchise in 4 locations. The number of cups for each type of drink sold a day is shown in the table below.

		Types of	Drink	
		Coffee	Tea	Fruit Juice
Location	Branch A	60	42	5
TPATE CASE CONTRACTOR	Branch B	24	30	0
	Branch C	30	35	14
	Branch D	30	40	20

(a) Represent the above information as a 4×3 matrix P.

Answer
$$P = \begin{bmatrix} \\ \end{bmatrix}$$

(b) The price of drinks are shown in the table below.

Drink	Price (SGD\$)
Coffee	1.50
Tea	
Fruit Juice	2

Represent the above information as a 3×1 matrix N.

Minima Miller Sant Santo. 1996. De-

Answer
$$N = \begin{bmatrix} 1 \end{bmatrix}$$

(c) Evaluate the matrix T = PN.

Answer
$$T = \begin{bmatrix} \\ \end{bmatrix}$$
[1]

(d) State what each of the elements of matrix T represents.

Answer

_____[1]

(e) (i) The cost of all the ingredients per day for Branch A, B, C and D is shown in the table below.

The same of the sa	2 20 20 20 20 20 20 20 20 20 20 20 20 20	100 market 19640		
		All ingredie	ents for drinks	
Branch	In USD		In SGD	
A	p			
В	12		16.20	
C	16		21,60	
D	23		ja –	

Find the value of p and of q.

	4.5				
	128 cm - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		71.52		100000
	American	99 200	and	A-10 000000	
1	MINWEI	U	CIIII	L/	 141

(ii) The rental and operating cost (excluding the cost of ingredients) per day for Branch A, B, C and D is shown in the table below.

Branch	Rental & Operating Cost (SGD)
A	40
В	45
C	50
\mathcal{D}	60

Using matrix operations, calculate the total amount of profit in SGD Adam made that day.

	1			
1 March 1987 1987 1987	19402			
Answer	639			E-194 1
AL DESCRIPTION		W. Windshie	a the array of the first of the contract of th	8 7 8
ALLES TY WIT	324	*****	******************	\$ 46× 1

6 44 boys ran the 2.4 km and their timings are shown in the table.

		Series de la Contraction de la					7
Г		8-2-0	022210	1051211	11 212</th <th>12 < t < 13 13 < t < 14</th> <th></th>	12 < t < 13 13 < t < 14	
1	t (minutes)	92123	321210	1 30 31 21			7
-	The second secon		A CONTRACTOR OF THE PARTY				1
	Frequency	The state of the s	2.5				

(a) The estimated mean timing is 11.477 minutes. Estimate to the nearest integer the value of h and the value of k.

Answe	r h=	********************************
	k =	14

(b) Estimate the standard deviation.

Answer minutes [1]

(6)	Explain why in this case, the mean is better than the median as a measure of central tendency.
	Answer
	[J
0	Another group of 35 boys ran the 2.4 km and their mean and standard deviation were 11.7 minutes and 2.10 minutes respectively. Comment on the timings of these two groups of boys.
	Answer
	re O is the origin. on that the line AB passes through the point $\left(4, \frac{5}{2}\right)$, find a possible equation of the line AB .
	그림 아이들이 있다는 경우를 보고 있다. 그리고 이렇게 되는 것으로 보고 있는 것으로 되었다. 경우를 가장 경우를 통해 하는 것을 통해 되었다. 그리고 있는 것으로 보고 있는 것으로 보고 있다.

In the diagram, line AB and line CD are tangents to point A and point D respectively on the circumference of the circle with centre O. Angle $DAE = 33^{\circ}$, angle $ECD = 59^{\circ}$ and AEC is a straight line. E, F, and G are points on the circumference of the circle. Find angle EOD) 7800 = 1 (9)] = 16. (T pt cital whenen = 7 Cat contest). Find angle EFD. (b) LEFO = LEAO = 33° (Li injune regrent) Find angle EGD.

N. Michael	the circumference of the circle.
	Zinswer
	기계를 하는 이 이렇게 되었다면 하는데 그리고 있다면 살아 나는데 아니다.
	유통하다 그 이 나는 이 그는 사람이 가셨다는 그리고 하는 사람이 바다를 받는다.
	불하는 그 사람은 그렇게 하는 그 있었다. 이렇게 하는 이렇게 살아 되었다. 그는 그 나이다.
	[1880] BRING (1800 - P. 1843) [1884] [1884] - [1884] HERE (1884) - [1884] HERE (1884) - [1884] HERE (1884) - [
	추를 잃어 하다 하는 이번 선생하면 하다면 있는 것이 그렇게 한 나라는 그 날아 없다.
	프라이스레이어 그는 회원부터 그렇게 되는 그 그 어떻게 하되는 것 때
	물통하다 한 경기 이 사람들은 등이 내려왔다. 사람들은 경기를 통해 되었다. 그 사람들
	경에 가장 하는 것으로 가장 하는 것이 되었다. 공항 공기 :
	상보기 가는 그 물과는 요요하다가 그렇게 방안 나가 되었다면 하다. 그리
	그래 프로젝터 모드라면 그 "해 하는 것으로 약 하다고요. 그리
	- 100명 전에 100명 시간에 되는 것이 하면 100명 전에 하는 것이 되었다. 그는 사람이 되는 것이 되었다. 그는 것이 되었다. 그는 것이 되었다. - 150명 전체 :
(e)	Line AB and CD are extended and meet at T. Show that angle $ATD = 4^{\circ}$.
	Answer
	이 많이 되어 그 중국(4)에는 상태하죠? 이 말했다는 라고 아이는 것은 사람이 없다고 있다.

Mr Chan driving a car at 50 km/h passes a lamppost A and stops at lamppost B, one hour later. When Mr Chan passes the lamppost A, Mr Lim, on a motorcycle, starts from A and overtakes Mr Chan. The motorcycle has uniform acceleration of 80 km/h². The speed-time graphs of Mr Chan and Mr Lim are shown in the diagram.

- (a) Find the
 - (i) speed of the car at 0715 h,

Answer	***********************	km/h	[2]
Answer	*********	WITH IT	

(ii) speed of the motorcycle at 0745 h,

Answerkm/h [1]

(iii) time, to the nearest minute, the motorcycle overtakes the car, given that it was between 0720 h and 0745 h.

Answer[4]

(b) Sketch the acceleration time graph for Mr. Chan.

[2]

The diagram below shows a rectangle with breadth (x + 15) cm. The circle with centre at A has a radius of 10 cm. The semicircle with centre at B and the semicircle with centre C are congruent and each has a radius of x cm. The small circle with centre A touches the semicircles at point D and E. The line AO bisects the length of the rectangle and is a tangent to both of the semicircles. (x+15)cm State the length AC, in terms of x. (a) cm [1] State the length OA, in terms of x. (b) (c)

- [3] Solve the equation $x^2 - 10x - 75 = 0$. (d)
- Hence, find the shaded area.

......cm² [2]

A couple intends to purchase a HDB flat and they intend to take a loan from a financial institution.

The formula to calculate the monthly mortgage payment is given by

$$M = \frac{P\left(\frac{i}{100}\left(1 + \frac{i}{100}\right)^n\right)}{\left(\left(1 + \frac{i}{100}\right)^n - 1\right)}$$

Where M is the monthly mortgage payment, P is the principal loan amount, i is the monthly interest rate, and n is the number of months required to repay the loan.

(Source: https://www.businessinsider.com/personal-finance/how-to-calculate-mortgage-payment#:-:text=If%20you%20want%20to%20do,0.04%2F12%20%3D%200.0033).

(a) If the couple takes a \$100000 loan to be repaid in 10 years, find the monthly mortgage payment, assuming an interest rate of 2% per annum.

The couple intends to take a loan from a financial institution, so they will need to pay 25% of the price as down-payment. For the down-payment, they intend to pay up to \$50000.

An online search yielded information in the tables below.

2021 Property Prices in Singapore

(Lype	HDB BTO Flats (Non- Mature Estates)	HDB BTO Flats (Mature Estates)	Resale Flats
Two-Room (Flexi)	\$90,000 to \$162,000	\$137,000 to \$277,000	*
Three-Room	\$164,000 to \$248,000	\$205,000 to \$421,000	\$350,000 to \$380,000
Four-Room	\$253,000 to \$381,000	\$311,000 to \$617,000	\$420,000 to \$550,000
Five-Room	\$405,000 to \$516,000	\$423,000 to \$725,000	\$520,000 to \$700,000

Source: https://www.singsaver.com.sg/blog/costs-of-bto-flat-resale-flat-ec-and-condo-in-singapore

HDB Flat Types	2-Room Flexi	3-Room	4-Room	5-Room
Approx. floor area (square metres)	36 and 45	60 to 65	90	110
Total no. of bedrooms	1	2	\$	3
Total no. of bathrooms		2.	2	2

(Source: https://www.hdb.gov.sg/residential/buying-a-flat/resale/getting-started/types-of-flats)

(b) Determine all the types of flats that the couple can consider purchasing.

Answer

特製 。			Fings (Fig. 1)		West 1					
(6)			nformation noney sper							ie bes
	Ans:	ver								
	- Charles		A. Carlo							
		andraig Andreis								
		ACCOUNTS OF THE								
	A cci	amption:		couldings are st						

		*************	************	*******	***********	•••••••••		*********	***********	******
	******	**************		********	**********	*************		**********		******
										[3
			A Service Transfer				ri ekanasi i			
The	variabl	es of x and	ly are com	nected by	the equat	ion $y = \frac{x}{6}$	$-+\frac{2}{x}-3$.			
Son belo		sponding	values of x	and y, co	orrect to tv			re given	in the tabl	e
*	0.5	1 1	1.5	2	2.5	3	4	5	6	
ן ע	P	-0.83	-1.29	-1.33	-1.16	-0.83	0.17	1.57	3.33	I
(4)	Fine	the value	of p.							
						Ansv	ver p=		•••••••	[]
(b)	Use	a scale of	2 cm to re	present 1	unit, drav	v a horizo	ntal <i>x-</i> axis	from 0 ≤	x≤6.Us	ea
			o represen							

Anglican High School

On your axes, plot the points given in the table and join them with a smooth curve.

[3]

(c) Use your graph to find the solutions of $\frac{x^2}{6} + \frac{2}{x} - 2 = 0$.

Answer
$$x =$$
 or [2]

(d) By drawing a tangent, find the gradient of the curve at (3,-0.83).

(e) (i) On the same axes, draw the line of with gradient -0.5 that passes through the point with coordinates (4,-1).

[1]

(ii) Write down the equation of this line.

Answer[1]

(iii) Write down the x-coordinates of the points where the line intersects the curve.

Answer x = or[2]

(iv) These values of x are the solutions of the equation $x^3 + Ax^2 - 24x + B = 0$. Find the value of A and of B.

PZ ANS Anglican High

Qn	Solutions	
1	A sequence is given by the formula $P_{n+1} = (P_n)^2 + mP_n$, where m is a constant.	
1a	Given that $P_1 = 3$, show that $P_2 = 3m + 9$.	47 ₀₀ =
	$P_2 = (P_1)^2 + m(P_1)$	
	$=3^2+m(3)$	
2	=3m+9 (shown)	
1b	Given that $P = -\frac{3}{4}$, find the value of m ,	
	$P_2 = -\frac{3}{4}$	
	3	
	$3m+9=-\frac{5}{4}$	10 K
	$m = (-3 - 9) \div 3 = -3$	
	$\left(\begin{array}{c} \overline{4} \end{array}\right)$ $\overline{4}$	ا دهو
	$3m+9 = -\frac{3}{4}$ $m = \left(-\frac{3}{4} - 9\right) \div 3 = -3\frac{1}{4}$ (accept - 3.25, $-\frac{13}{4}$)	=
	4	
1ci	By using the answer in (b) , find P_3 , P_4 and P_5 .	8
	$P_{3} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}^{2} + \begin{pmatrix} 13 \\ -4 \end{pmatrix} \begin{pmatrix} 3 \\ -4 \end{pmatrix} = 3$ $P_{4} = (3)^{2} + \begin{pmatrix} -13 \\ -4 \end{pmatrix} (3) = -\frac{3}{4}$	
	$P_5 = \left(\frac{3}{4} \right)^2 + \left(-\frac{13}{4} \right) \left(\frac{3}{4} \right) = 3$	
1cii	By considering the terms of P_1 , P_2 , P_3 , P_4 and P_5 or otherwise, find	
	the value of P_{2016} .	2 1
	$P_1 = 3$	2 2
	$P = -\frac{3}{4}$	
	$P_3 = 3$	
	$P = -\frac{3}{4}$	
	$P_5=3$	
	$P_{2016} = 3(-\frac{13}{4}) + 9 = -\frac{3}{4}$, , , , S

2a	The diagram shows a pyramid $ABCDEFG$. The base of the pyramid is a regular pentagon of side 6 cm. The tip F is vertically above the centre of the pentagon, G , and $AF = 14$ cm. Calculate the angle AGB .	
	angle AGB = $\frac{360}{5}$ = 72°	
		503
2b	Show that $AG = 5.1039$ cm, correct to five significant figures.	[2]
	$\frac{3}{AG} = \sin 36^{\circ}$ $AG = \frac{3}{\sin 36^{\circ}} = 5.10390485$ $= 5.1039 \text{ cm}$ $A = \frac{3}{\sin 36^{\circ}} = 3.10390485$ $= 5.1039 \text{ cm}$ $A = \frac{3}{\sin 36^{\circ}} = 3.10390485$ $= \frac{3}{\sin 36^{\circ}} = 3.10390485$	
2c	Calculate the height of the pyramid, FG.	[2]
20	FG ² = $AF^2 - AG^2$ FG ² = $14^2 - 5.10390485^2 = 169.9501553$ FG = $13.03649321 = 13.0$ cm	L-3
2d	The pyramid is the model for a paper weight that is to be gold plated. To reduce costs the pyramid is made smaller such that the smaller pyramid remains geometrically similar to the original pyramid but its height is reduced by 35%. The surface area of the large pyramid is $S \text{ cm}^3$. Express the surface area of the new pyramid as a percentage of S . $FG = 13.03649321 \text{ cm}$ New height = 0.65×13.03649321 $= 8.473720587 \text{ cm}$	[3]

Page 2 of 18

	$\frac{\text{Surface of small pyramid}}{S} = \frac{8.473720587^2}{13.03649321^2} = 0.4225$	1. 1
4	S 13.03649321 ²	×
	Surface of small pyramid = $0.4225S$	A 188
	5 0 12255	
	The percentage = $\frac{S - 0.4225S}{S} \times 100$	to all a grant
	S	
	= 57.75%	* "
3i	Given that the points $P(3,k)$, $Q(1,-2)$ and $R(-4,-6k)$ lie on a	× ×
	straight line, find the value of k.	
	Gradient of AB = Gradient of AC	
	$\frac{-2-k}{1-3} - \frac{-6k-k}{-4-3}$	
	-7(-2-k) = -2(-7k) $14 + 7k = 14k$	
	14 + 7k = 14k	
	k=2	,
2"	E' 14 1 4 Cd 1' PO	
3ii	Find the length of the line segment PQ.	
	$\sqrt{1 - (2 + 1)^2 + (2 + 2)^2}$	
	Length of line segment $PQ = \sqrt{(3-1)^2 + (2-(-2))^2}$	
	$=\sqrt{4+16}$	
	$=\sqrt{20}$	4
	= 4.47 unit (3s.f)	
	2 111 1 12 22 12 12 12 12 12 12 12 12 12	
4	Quadrilateral $ABCD$ is a field with $AB = 90$ m and $BC = 78$ m and A is due north of D . The bearing of B from A is 100° , the bearing	
	of B from C is 025° and the bearing of D from C is 278° .	
K	of B from 6 to 425 and the obtaining of B from 6 to 270.	
	A	
	90 m	
	B	
	78 m	
2	D	,
	\sim	
		<u> </u>

4ai	Show that angle $ABC = 75^{\circ}$.	
	Draw a north line on point B . Label due south point as E .	
	$\angle EBA = 100^{\circ} \text{ (alt. } \angle, BE // DA)$	20
	$\angle EBC = 25^{\circ}$ (alt. \angle to bearing of B from C)	
	$\angle ABC = 75^{\circ}$	
4aii	Calculate the bearing of C from D ,	
	Draw a north line on point C . Label due south point as F .	
	$\angle FCD = 278^{\circ} - 180^{\circ}$	
	=98°	
	The bearing of C from D = 098°	
4aii	Calculate the length of 4C	
4811	Calculate the length of AC. Using cosine rule,	
	$AC^2 = 90^2 + 78^2 - 2(90)(78)\cos 75^\circ$	
	$AC = \sqrt{0550.18061}$	
	$AC = 102.714 \mathrm{m}$	
	AC = 103 m (3 s.f)	2
4bi	A drone hovers at a height of 70 m above D. A man of height 1.75n	
	walks along path	
	AC. He stopped at E to take a picture of the drone when the	
	maximum angle of depression from the drone to the top of the man's head was 58°.	
	Calculate the length of DE.	
	Vertical height of the drone from man = $(70 - 1.75)$ m	
	= 68.25m	
	$\tan 58^\circ = \frac{68.25}{DE}$	
	DE = 42.647 m	
	DE = 42.6 m (3s.f) Note: If student didnt consider the height of the man in the	
	calculation, zero mark.	
4bii		
	Area of $ABCD = \frac{1}{2}(102.714)(42.647) + \frac{1}{2}(90)(78)\sin 75$	
	$\frac{2}{=5580.621 \text{m}^2}$	
	$= 5580 \text{ m}^2 \text{ (3s.f)}$	
5	Adam runs a drink stall franchise in 4 locations. The number of	
	cups for	
	each type of drink sold a day is shown in the table below.	
L		

			Types of	Drink	,		
			Coffee	Tea	Fruit		
					Juice		
	Location	Branch A	60	42	5		g ·
		Branch B	24	30	0		g sin gr
		Branch C	30	35	14		
		Branch D	30	40	20		¥
5a		ne above info	rmation as	a 4 × 3 ma	trix P.		[1]
	$\mathbf{P} = \begin{pmatrix} 60 & 42 \\ 24 & 30 \\ 30 & 35 \\ 30 & 40 \end{pmatrix}$	0 14				e g	
5b	The price of	drinks are sl	nown in the	table belo	w.		p
	Drink	(P·	rice (SGD\$	3		
	Coffe			.50			
	Tea		1				
		Juice	-2				
				-	NT.		
	Represent th	e above info	rmation as	a 3 × 1 ma	trix N.		
	$\mathbf{N} = \begin{bmatrix} 1 & 1 \\ 1 \\ 2 \end{bmatrix}$. ·	
F =	Evelvete the	· machin T -	DNI				F17
5c	60 42 5	e matrix T =	PN.				[1]
	$\mathbf{T} = \begin{bmatrix} 00 & 42 & 3 \\ 24 & 30 & 0 \\ 30 & 35 & 14 \\ 30 & 40 & 2 \\ 142 \\ 66 \end{bmatrix}$	$ \begin{array}{c c} 1.5 \\ 1 \\ 2 \end{array} $					
	108 125				-		
5d	State what ea	ach of the ele	ements of n	natrix T rej	presents.		
		om all the dr			mount of money b, C and D		
	Or						
					nount of money respectively.	•	4

	Or	± 0 = 0		
	The elements of collected from a respectively.			
	Or			
		matrix T represent the amill the drinks from each bra		
5ei	The cost of all the shown in the tab	[2]		
	1	Δ11 in	gredients for drinks	-
	Branch	In USD	In SGD	-
			27	-
	$\begin{vmatrix} A \\ B \end{vmatrix}$	12	16.20	-
	C	16	21.60	1 1 1
				_
	D	23	q ,	<u> </u>
	Find the value of $p = 20$ q = 31.05	f p and q .		
5eii	The rental and o shown in the tab	perating cost per day for E le below.	Branch A , B , C and D is	[2]
	Branch A B	Rental & Opera Cost (SGD) 40 45	ting	
	D	50 60		
		erations, calculate the total	l amount of profit in	
	Using matrix op SGD Adam mad $\begin{bmatrix} 142 \\ 66 \\ 108 \\ 125 \end{bmatrix} - \begin{bmatrix} 40 \\ 45 \\ 50 \\ 60 \end{bmatrix} - \begin{bmatrix} 75 \\ 4.8 \\ 36.4 \\ 33.95 \end{bmatrix}$	erations, calculate the total le that day.		
	Using matrix op SGD Adam mad $\begin{bmatrix} 142 \\ 66 \\ 108 \\ 125 \end{bmatrix} - \begin{bmatrix} 40 \\ 45 \\ 50 \\ 60 \end{bmatrix} - \begin{bmatrix} 75 \\ 4.8 \\ 36.4 \\ 33.95 \end{bmatrix}$	erations, calculate the total le that day. $ \begin{pmatrix} 27 \\ 16.20 \\ 21.60 \\ 31.05 \end{pmatrix} = \begin{pmatrix} 75 \\ 4.8 \\ 36.4 \\ 33.95 \end{pmatrix} $		

6	44 boys ran	the 2.4 km	and their t	imings are s	hown in the	table.	
	t (minutes)	8 ≤ <i>t</i> < 9	9 ≤ <i>t</i> < 10	10 ≤ <i>t</i> < 11	11≤ <i>t</i> < 12	12≤ <i>t</i> <13	13 ≤ <i>t</i> < 14
8	Frequenc y	1	h	12	11	k	6
6а				477 minutes the value of	s. Estimate to f k.	the [4	.]
ar	$\frac{1+h+12+1}{1(8.5)+h(9)}$	h+k=	=14) + 6(13.5) =		
	9.5(14-k)			9	0.5h + 12.5k =	= 162.988	9
			29.988 9.996 0				
	So $h=4$	1				•	
St.							·
6b	Estimate th	e standard	deviation.	:		[1]
	Standard De	eviation =	$\sqrt{\frac{5867}{44}} - (1$	$1.477)^2 = 1.$	2701minutes		
6с	measure of	central ter	ase, the meandency.	an is better t	han the medi	ian as a [1	.]
	There are no	o outliers.					
6d	Another gro	oup of 35 t		2.4 km and	their mean a	and [2	2]
	deviation w		ninutes and	2.10 minute	s respectivel	y.	
-	the timings The first gro				of 11.477 m	inutes	
	is less than t	the mean o	of the secon	d group with	mean 11.7	minutes.	
	_	1.27 minu	_		tent as their sether second g		
7	It is given th	nat point A such that	lies on the	y-axis while	point B lies	on the <i>x</i> - [3	3]

	$\{4, 5\}$, find the equation of the line AB.	
	$\left(\frac{1}{2}\right)^{1}$, and the equation of the line AB.	
	Gradient of line $AB = -\frac{1}{2}$	
	2	
	Equation of line AB is in the form $y = mx + c$ and using the given	
	point $(4,\frac{3}{2})$,	
	5 1	
	$\frac{5}{2} = -\frac{1}{2}(4) + c$	
	$c = \frac{9}{2}$	
	$c = \frac{1}{2}$	
	$\therefore y_{AB} = -\frac{1}{2}x + \frac{9}{2}$	
	AB 2 2	
-	To the discussed line AD and line CD are tengents to point A and	
8	In the diagram, line AB and line CD are tangents to point A and point D respectively on the circumference of the circle with centre	
	O. Angle $DAE = 33^{\circ}$, angle $ECD = 59^{\circ}$ and AEC is a straight	**
İ	line. E, F , and G are points on the circumference of the circle.	
	\boldsymbol{A}	
	B	× ×
	E F	
	$C \qquad \overline{D}$	
8a	Find angle EOD.	[1]
oa	Angle EOD = 66° (angle at centre = 2 angle at circumference)	r., 1
8b	Find angle EFD	
	Angle $EFD = 33^{\circ}$ (angle in same segment)	
0	Find and a ECD	
8c	Find angle EGD Angle $EGD = 147^{\circ}$ (angle in opp segment)	
	Tingle 202 117 (migle in opp segment)	
8d	A circle is drawn with the line AC as its diameter. Explain why	[2]
	point D will not lie on the circumference of the circle.	
	not he on the chedimerence of the chele.	

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Speed (km/h) $ \frac{50-s}{\left(\frac{15}{60}\right)} = \frac{30}{\left(\frac{20}{60}\right)} $ Speed (km/h) $ s = \frac{50}{60} = \frac{30}{60} $ Mr Chan $ s = \frac{55}{60} = \frac{27}{60} = \frac{1}{60} $	
9ai	Find the speed of the car at 0715 h.	[2]
9	rad, base of isosceles triangle) Angle BAD = 90° - 2° = 88° (tan perpendicular to rad) Angle ATD = 180° - 88° - 88° = 4° (angle sum of triangle) Mr Chan driving a car at 50 km/h passes a lamppost A and stops at lamppost B, one hour later. When Mr Chan passes the lamppost A, Mr Lim, on a motorcycle, starts from A and overtakes Mr Chan. The motorcycle has uniform acceleration of 80 km/h². The speed-time graphs of Mr Chan and Mr Lim are shown in the diagram. Speed (km/h) Mr Chan Mr Lim Time (h)	
8e	Line AB and CD are extended and meet at T. Find the angle ATD. Angle $ADC = 180^{\circ} - 33^{\circ} - 59^{\circ} = 88^{\circ}$ Angle $ODA = \text{angle } OAD = 90^{\circ} - 88^{\circ} = 2^{\circ}$. (tan perpendicular to	
	Angle $ADC = 180^{\circ} - 59^{\circ} - 33^{\circ} = \underline{88}^{\circ}$, and is <u>not 90°</u> , <u>angle in semicircle property does not apply</u> and hence A will not lie on the circumference of the circle.	

Page 9 of 18

9ai i	Find the speed of the motorcycle at 0745 h.	[1]
1	Speed (km/h) $\frac{v-0}{\left(\frac{45}{60}\right)} = 80$ $v = 60 \text{ km/h}$ $v = 60 \text{ km/h}$ $v = 60 \text{ km/h}$	
	Time (h)	
9ai ii	Find the time, to the nearest minute, the motorcycle overtakes the car, given that it was between 0720 h and 0745 h	[4]
11	Let t minutes be the time taken by Mr. Lim to overtake Mr. Chan	
	Speed (km/h) 50 Mr Chan Mr Lim	
	0700 0720 0745 0800 Time (h)	
	Distance travelled by Mr Chan from 0700 to 0720 $= \frac{1}{2} (50 + 20) \times \frac{20}{60} = \frac{35}{3} \text{ km}$ Distance travelled by Mr Chan from 0720 until overtaken $= \left(\frac{t - 20}{60}\right) \times 20 = \frac{t - 20}{3} \text{ km}$ Distance travelled by Mr Lim from 0700 until overtaking Mr Chan $= \frac{1}{2} \times \frac{t}{60} \times \left(80 \times \frac{t}{60}\right) = \frac{t^2}{90} \text{ km}$	

	At the overtaking time,				
	Distance travelled by Mr Chan = Distance travelled by Mr Lim				
	$\frac{35}{3} + \frac{t - 20}{3} = \frac{t^2}{90}$				
	$t^2 = 90\left(\frac{35}{3} + \frac{t - 20}{3}\right)$				
	$\left(\frac{1}{3} - \frac{3}{3}\right)^{\frac{1}{3}}$				
	=1050+30t-600				
	$t^2 - 30t - 450 = 0$				
	$t = \frac{-(-30) \pm \sqrt{(-30)^2 - 4(1)(-450)}}{2(1)}$				
	2(1)				
	= 40.9808 or $-10.9808(NA)$				
	The time is 0741 h.				
9b	Sketch the acceleration time graph for Mr. Chan. [2]				
	Sketch the acceleration time graph for Mr. Chan. [2] Acceleration from $0700 \text{ to } 0720 = \frac{50-20}{} = -90 \text{ km/h}^2$				
	20				
	Acceleration from 0745 to $0800 = \frac{-\frac{-60}{60}}{20-0} = -40 \text{ km/h}^2$				
	Acceleration from $0/45$ to $0800 = \phantom{00000000000000000000000000000000000$				
	$\frac{-15}{60}$				
	Acceleration (km/h²)				
	$\begin{array}{c ccccc} 0 & & & & & & & & & & \\ \hline 0 & 00 & & & & & & & & & \\ \hline 0 & 00 & & & & & & & & \\ \end{array}$ Time (h)				
	0 00 0 20 07 5 0800				
	-80				
	-90				
10	The diagram below shows a rectangle with breadth $(x+15)$ cm. The circle with				
	centre at A has a radius of				
	10 cm. The semicircle with centre at B and the semicircle with centre C are				
	congruent and each has a radius of x cm. The small circle with centre A touches the semicircles at point D and E .				
	The line AO bisects the length of the rectangle and is a tangent to both of the semicircles.				
	iongai of the rectangle and is a tangent to both of the semionoles.				
	10 cm cm				
	Page 11 (x+15)				

10a	Write down an expression, in terms of x , for the length AC .	[1]
	AC = (x+10)cm	
10b	Write down an expression, in terms of x , for the length OA .	[1]
100	OA = (x+15)-10	L*J
	OA = (x+5) cm	
	0.11 - (x + 5) om	
10c	Hence, write down an equation and show that it simplifies to	[3]
	$x^2 - 10x - 75 = 0.$	
	$AC^2 = OA^2 + OC^2$	
	$(x+10)^2 = (x+5)^2 + x^2$	57
	$x^2 + 20x + 100 = x^2 + 10x + 25 + x^2$	2
	$-x^2 + 10x + 75 = 0$	
	$x^2 - 10x - 75 = 0$	
10d	Solve the equation $x^2 - 10x - 75 = 0$.	[2]
104	$x^2 - 10x - 75 = 0$	
	(x-15)(x+5) = 0	
	x = 15 or $x = -5$	
10e	Hence, find the shaded area.	[2]
	Shaded area = $\pi R^2 + \pi r^2 = \pi \left(15^2 + 10^2\right)$	
	≈ 1021.01	
	$\approx 1020 \text{ cm}^2$	
11	A couple intends to purchase a HDB flat and they intend to take a	
	loan from a financial institution. The formula to calculate the monthly	9
	mortgage payment is	9
	given by	

	$M = \frac{P\left(\frac{i}{100}\left(1 + \frac{i}{100}\right)^n\right)}{\left(\left(1 + \frac{i}{100}\right)^n - 1\right)}$	
	Where <i>M</i> is the monthly mortgage payment, <i>P</i> is the principal loan amount, <i>i</i> is the monthly interest rate, and <i>n</i> is the number of months required to repay the loan. (Source: https://www.businessinsider.com/personal-finance/how-to-calculate-mortgage-payment#:~:text=If%20you%20want%20to%20do,0.04%2F12%20%3D%200.0033)	į.
11 a	If the couple takes a \$100000 loan to be repaid in 10 years, find the total interest paid as a percentage of the loan, assuming an interest rate of 2% per annum.	[3]
	$P = 100000 \qquad i = \frac{2}{12} = \frac{1}{6} \qquad n = 10 \times 12 = 120$ $P \left(\frac{i}{100} \left(1 + \frac{i}{100} \right)^n \right)$ $M = \frac{100000 \left(\frac{1}{600} \left(1 + \frac{1}{600} \right)^{120} \right)}{\left(\left(1 + \frac{1}{600} \right)^{120} - 1 \right)}$ $= 920.1345 = \$920.13$	
11 b	The couple intends to take a loan from a financial institution. so they will need to pay 25% of the price as down payment. For the down-payment, they intend to pay up to \$50000. An online search yielded information in the tables below. 2021 Property Prices in Singapore HDB BTO Flats (Non-Flats Mature (Mature Type Estates) Estates) Resale Flats Two-Room \$90,000 to \$137,000 to \$162,000 \$277,000	[3]
	Two-Room \$90,000 to \$137,000 to (Flexi) \$162,000 \$277,000 -	

Three-Room	\$164,000 to \$248,000	The second second	\$350,000 to \$380,000
Four-Room	\$253,000 to	\$311,000 to	\$420,000 to
	\$381,000	\$617,000	\$550,000
Five-Room	\$405,000 to	\$423,000 to	\$520,000 to
	\$516,000	\$725,000	\$700,000

Source: https://www.singsaver.com.sg/blog/costs-of-bto-flat-resale-flat-ec-and-condo-in-singapore

(Source: https://www.hdb.gov.sg/residential/buying-a-flat/resale/getting-started/types-of-flats)
Determine all the types of flats that the couple can consi

Determine all the types of flats that the couple can consider purchasing.

25%	6 of the 2021 Prop	erty Prices in Sin	gapore
Two-Room (Flexi)	\$22,500 to \$40,500	\$34,250 to \$69,250	_
Three- Room	\$41,000 to \$62,000	\$51,250 to \$105,250	Past the \$50000 limit
Four-Room	Past the \$50000 limit	Past the \$50000 \$	Past the 50000 limit

From the table, the following flats are within the couple's means:

- 1. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi),
- 2. Some HDB BTO Flats (Mature Estates) Two-Room (Flexi) in the lower price range
- 3. Some HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range.

	Alternatively, since 25% is \$50000, the full price is budgeted at \$200000.	
	 From the table, the following flats are within the couple's means: HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), Some HDB BTO Flats (Mature Estates) Two-Room (Flexi) in the lower price range 	
	3. Some HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range.	
11c	Based on the information given in the tables only, give the type of flat that gives the best value for the money spent. State one assumption that the couple could have made.	[3]
\$	Since there is a range of prices, use the midpoint for each range to calculate price per sq m. 1. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), Midpoint = \$126000, For 36 sq m, price per sq m is \$126000 / 36 = \$3500 For 45 sq m, price per sq m is \$126000 / 45 = \$2800	•
	2. HDB BTO Flats (Mature Estates) Two-Room (Flexi) Midpoint = \$207000, For 36 sq m, price per sq m is \$207000 / 36 = \$5750 For 45 sq m, price per sq m is \$207000 / 45 = \$4600	
	3. HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range Midpoint = \$206000. Midpoint = 62.5 sq m Price per sq m is \$206000 / 62.5 = \$3296 Based on the price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi) 45 sq m.	
-	OR	
	4. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m is \$2500 to \$4500 For 45 sq m, price per sq m is \$2000 to \$\$3600	
	5. Some HDB BTO Flats (Mature Estates) Two-Room (Flexi) in the lower price range For 36 sq m, price per sq m is \$3805.56 to \$7694.44 For 45 sq m, price per sq m is \$3044.44 to \$6155.56	
a a	6. Some HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range For 60 sq m, price per sq m is \$2733.33 to \$4133.33 For 65 sq m, price per sq m is \$2523.08 to \$3815.38	

	Daged on the price per ag monitories the first choice is a LIDD DT	
	Based on the price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi) 45 sq m in the lower	
	price range.	
	Assumption, only one is needed:	
	1. The prices of the different types of housing remains stable	
	regardless of region.	
	2. All the different types of flats are available.	
	3. Without detailed information, the couple assumes that for	
	each floor area, there can be the full range of prices, e.g. for a	
	 45 m² flat, the prices can range from \$90,000 to \$162,000. 4. Without detailed information, either the range of minimum to 	
	maximum, or the midpoint can be used for calculation.	
	In each category, the lowest price corresponds to the smallest floor	
	area, and the higher price corresponds to the larger floor area.	
12	The variables of x and y are connected by the equation	
	$\frac{1}{11} = \frac{x^2}{1} = \frac{2}{1}$	
	$y = \frac{x^2}{6} + \frac{2}{x} - 3.$	
	Some corresponding values of x and y, correct to two decimal	
	places, are given in the table below.	
	x 0.5 1 1.5 2 2.5 3	
10	y p -0.83 -1.29 -1.33 -1.16 -0.83	F13
12 a	Find the value of p .	[1]
•	x ² · 2	
	Sub x = 0.5 and y = p into $y = \frac{x^2}{6} + \frac{2}{x} - 3$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$p = \frac{0.5^2}{6} + \frac{2}{0.5} - 3 \approx 1.04$	
	6 0.5	
10		
, ,	TTo a goal of 2 cm to manage 1 cm to 1	[2]
12 h	Use a scale of 2 cm to represent 1 unit, draw a horizontal x-axis	[3]
b	from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a	[3]
_	from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a vertical y-axis from $-2 \le y \le 4$.	[3]
	from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a vertical y-axis from $-2 \le y \le 4$. On your axes, plot the points given in the table and join them with	[3]
2	from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a vertical y-axis from $-2 \le y \le 4$.	[3]
_	from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a vertical y-axis from $-2 \le y \le 4$. On your axes, plot the points given in the table and join them with	[3]
_	from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a vertical y-axis from $-2 \le y \le 4$. On your axes, plot the points given in the table and join them with	[3]
	from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a vertical y-axis from $-2 \le y \le 4$. On your axes, plot the points given in the table and join them with	[3]
	from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a vertical y-axis from $-2 \le y \le 4$. On your axes, plot the points given in the table and join them with	[3]
	from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a vertical y-axis from $-2 \le y \le 4$. On your axes, plot the points given in the table and join them with	[3]
_	from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a vertical y-axis from $-2 \le y \le 4$. On your axes, plot the points given in the table and join them with	[3]
2	from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a vertical y-axis from $-2 \le y \le 4$. On your axes, plot the points given in the table and join them with	[3]
2	from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a vertical y-axis from $-2 \le y \le 4$. On your axes, plot the points given in the table and join them with	[3]
2	from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a vertical y-axis from $-2 \le y \le 4$. On your axes, plot the points given in the table and join them with	[3]
_	from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a vertical y-axis from $-2 \le y \le 4$. On your axes, plot the points given in the table and join them with	[3]
_	from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a vertical y-axis from $-2 \le y \le 4$. On your axes, plot the points given in the table and join them with	[3]

	,	
12c	x 2	[2]
120	Use your graph to find the solutions of $\frac{x^2}{6} + \frac{2}{x} - 2 = 0$.	ر کے ا
	$\frac{x^2}{-} + \frac{2}{-} = 0$	
	$\frac{\frac{6}{x^2} + \frac{2}{2}}{\frac{6}{x^2} + \frac{2}{x^2} - \frac{2}{1} = \frac{1}{0} = \frac{1}{1}$	er I
	$\frac{6}{x^2} + \frac{2}{2} - \frac{2}{3} = -\frac{1}{1}$	
	$ \begin{cases} 6 & x \\ y = -1 \end{cases} $	
9	From the graph, when $y = -1$,	
	$x \approx 1.116(\pm 0.2)$ or $x \approx 2.769(\pm 0.2)$	
12	By drawing a tangent, find the gradient of the curve at (3, -0.83).	[2]
d		
	Draw a tangent at (3,-0.83)	
	Therefore gradient $\approx 0.878 \pm 0.2$	
12e i	On the same axes, draw the line of with gradient -0.5 that passes through the point with coordinates $(4,-1)$.	[1]
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	<u>y = =0.5 </u>	
	Page 17 of 18	
	i ago ir oi iu	

	B1 for two parallel lines (one is $y = -0.5x$ and the other is parallel to	y = -0.5x
	and pass through (4,-1))	
12e ii	Write down the equation of this line.	[1]
	From the graph, $y = -0.5x + 1$	
12e iii	Write down the x-coordinates of the points where the line intersects the curve.	[2]
	$x \approx 0.544(\pm 0.2)$ or $x \approx 3.29(\pm 0.2)$	
12e iv	These values of x are the solutions of the equation $x^3 + Ax^2 - 24x + B = 0$. Find the value of A and of B.	[2]
	The values of x are the solutions for the pair of simultaneous equations $y = \frac{x^2}{6} + \frac{2}{x} - 3 \text{ and } y = -0.5x + 1$	
	$\frac{x^2}{6} + \frac{2}{6} - \frac{2}{3} = -0.5x + \frac{1}{1}$ $x^3 + 12 - 18x = -3x^2 + 6x$	
	$x^{3} + 12 - 18x + 3x^{2} - 6x = 0$ $x^{3} + 3x^{2} - 24x + 12 = 0$	
	$x^3 + 3x^2 - 24x + 12 = 0$ Therefore $A = 3$ and $B = 12$	