

ANGLICAN HIGH SCHOOL
PRELIMINARY EXAMINATION 2020
SECONDARY FOUR

MATHEMATICS
4048/01

Paper 1

Monday 14 September 2020
2 hours
Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name and index number on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is $\mathbf{8 0}$.

For Examiner's Use

Question	1	2	3	4	5	6	7	8	9	10	11	12
Marks												
Question	13	14	15	16	17	18	19	20	21	22	23	
Marks												

Table of Penalties		Question Number(s)	
Presentation	-1		
Units	-1		
Significant Figures	-1		

This question paper consists of 21 printed pages.

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
\end{gathered}
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.

1 Calculate $\frac{1458}{23.4-3.699^{2}}$. Write your answer correct to
(a) 4 decimal places,

Answer

(b) 4 significant figures.

Answer

2 A water tank contains 2.47×10^{7} drops of water and 7×10^{9} micro-organisms.
Let L be the average number of micro-organisms per drop of water.
Find the value of L. Give your answer in standard form.

Answer

3 (a) Of the 195 countries in the world, Ryan has visited 20. What percentage of the countries in the world has Ryan visited?

Answer

 \%(b) At a sale, all prices are reduced by 22.5%. The price of a set of waterproof headphones during the sale is $\$ 139.50$. Find its original price.

Answer \$

4 Show that $3^{3 x+2}-9^{\frac{3}{2} x}+(27)^{x+1}$ is divisible by 5 for all positive integer values. Answer

5 (a) The highest common factor and lowest common multiple of three numbers are 12 and 2376 respectively. If two of the numbers are 108 and 72 , find the smallest possible integer value of the third number.

Answer

(b) (i) Express 6468 as a product of its prime factors.

Answer

(ii) Find the smallest positive integer k, such that $\sqrt{6468 k}$ is an integer.

$$
\text { Answer } k=
$$

6 (a) 6 men take 4 hours to dig a trench 6 m deep. How long will it take 10 men to dig a trench 5 m deep?

Answer
 hours

(b) It is given that y varies directly as the square root of x. Given that $y=24$ for a particular value of x. Find the value of y when x is increased by 300%.

$$
\text { Answer } y=
$$

7 A map has a scale of 1:30000. The length of a rectangular park is 8 cm on the map.
(a) Find the actual length of the park in km .
(b) Given that the park covers an area of $4.5 \mathrm{~km}^{2}$. Find the breadth of the park on the map.

Answer

cm

8 (a) Convert $9 \mathrm{~km} / \mathrm{h}$ into m / s.

Answer

m/s
(b) A car uses 17.25 litres of fuel to travel a distance of 250 km . Calculate the distance the car can travel with 60 litres of fuel.

Answer

km

9 Express as a single fraction in its simplest form $\frac{1}{18 x^{2}-2}+\frac{2}{3 x-1}$.

Answer

10 (a) Factorise $4 a^{2} b+4 a^{2}-b-1$ completely.

Answer

(b) Given that $f=3 g-2 x^{3}$, express x in terms of f and g.

11 (a) Factorise the expression $6 x^{2}-7 x-20$.

Answer

(b) Hence, solve the equation $6(y-1)^{2}-7 y+7=20$.

12 (a) (i) Express $y=x^{2}+8 x+16$ in the form $y=(x-h)^{2}+k$.

Answer

(ii) Hence, sketch the graph of $y=x^{2}+8 x+16$ on the axes below. Indicate clearly the coordinates of the points where the graph crosses the axes and the turning point on the curve.

Answer

(b) State the equation of the line of symmetry for $y=x^{2}+4$.

Answer

(c) State the coordinates of the turning point for $y=(x+2)^{2}$.

Answer

.)

13 (a) The sketch represents the graph of $y=k x^{n}$.

(i) Write down a possible integer value of n.

Answer $n=$
(ii) State the range of values of k.

Answer

(b) Sketch the graph of $y=-2^{x}$.

Answer

14 Given the simultaneous equations

$$
\begin{aligned}
& 2 x-y=11 \\
& 5 y-2 p x+7=0
\end{aligned}
$$

(a) Show that $x=\frac{24}{5-p}$.

Answer
(b) State the value of p if there is no solution for the pair of simultaneous equations.

$$
\text { Answer } p=
$$

(c) Find the value of y if $p=1$.

$$
\text { Answer } y=
$$

15 (a) Solve the inequality $\frac{1}{3}(4 x-5) \leq 1-\frac{1}{5} x$, and illustrate your solution on the number line given in the answer space.

Answer
(b) Hence, list all possible whole numbers of the solution.

Answer

16 An interior angle of a regular n-sided polygon is larger than its exterior angle by 50%. Find n.
\qquad

$$
\text { Answer } n=
$$

$17 \xi=\{x: x$ is a positive integer less than 14$\}$
$A=\{x: x$ is a composite number $\}$
$B=\left\{x: \frac{x}{3}\right.$ is an integer $\}$
$C=\{x: x$ is a multiple of 6$\}$
(a) List the elements in
(i) A^{\prime},

> Answer
(ii) $A^{\prime} \cap C$.

> Answer
(b) Draw a Venn diagram to represent the sets A and B.

Label all the elements in $A \cap B$.
Answer

(c) List all the proper subsets of set C.

> Answer

18 The figure below shows the distance-time graph of Anne's 10 km roller skating journey along East Coast Park.

Anne skates at an average speed of $0.3 \mathrm{~km} / \mathrm{min}$ for the first 15 min . She takes a 5 -min break and continues with an average speed of $0.5 \mathrm{~km} / \mathrm{min}$ to the end point.
(a) Find the distance travelled by Anne in the first 15 min .

Answer

\qquad km
(b) Find the total time taken for Anne to complete the 10 km journey.

> Answer
\qquad minutes
(c) Three minutes later, Jane started to skate behind Anne. Find the average skating speed of Jane for them to complete the journey at the same time. Leave your answer correct to 2 decimal places.

19 In the figure, $A B$ is parallel to $C D . P Q$ and $Q R$ bisect $\angle A P R$ and $\angle C R P$ respectively.

Given that $\angle D R P=4 x^{\circ}$,
(a) express angle $Q R P$ in terms of x,
(b) show that $P Q$ is perpendicular to $Q R$.

Answer

20 The map shows four cities on the north coast of Africa. The scale of the map is such that 1 cm on the plan represents 200 km on actual ground.

(a) Using a compass and a ruler only, construct
(i) the perpendicular bisector of $L T$.
(ii) the angle bisector of angle RAT.
(b) An ancient ruin is located at the intersection of the two bisectors in (a).
(i) Mark and label the position of the ancient ruin with the letter \mathbf{X}.
(ii) Measure and write down the actual distance, in kilometres, of the ancient ruin from \boldsymbol{A}.

> Answer
km

21 In the figure, $A B C D$ is a square, $\angle A F E=45^{\circ}$ and the ratio of $A F: F B$ is $2: 1$.

(a) Name a pair of congruent triangles and state the reasons for the congruency.

Answer
\qquad
\qquad
\qquad
(b) Find the ratio of the area of $\triangle C E F$ to the area of square $A B C D$.

> Answer
(c) Given that the area of $\triangle C E F$ is $16 \mathrm{~cm}^{2}$. Find the length of the side of the square $A B C D$.

Answer

cm

22 In the diagram, $B C D E$ is a straight line, $A B=25 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $\angle A C D=90^{\circ}$.

Given that $\tan \angle C A D=\frac{3}{4}$, find
(a) the length of $C D$,

$$
\text { Answer } C D=
$$

\qquad cm
(b) $\cos \angle A D E$.

$$
\begin{equation*}
\text { Answer } \quad \cos \angle A D E= \tag{2}
\end{equation*}
$$

23 The chart below shows the annual number of Americans who went for cancer screening and abortion.

PLANNED PARENTHOOD FEDERATION OF AMERICA:

 ABORTIONSUP-LIFE-SAVING PROCEDURES DOWN
(a) Use the graph to calculate the annual rate of decrease of cancer screening from 2006 and 2013.

Answer
(b) Explain why this graph is misleading.

Answer \qquad
\qquad
\qquad
(c) Draw a new graph using the information from the current graph and the axes below. Answer

Cancer Screening and Abortion Chart

Thousands

END OF PAPER

1	(a) 150.0401 (correct to 4 d.p.) (b) 150.0 (correct to 4 s.f.)	2	2.83×10^{2} (3 s.f.)
3	(a) 10.3% (to 3s.f) (b) \$180	4	$3^{3 x+2}-9^{\frac{3}{2} x}+(27)^{x+1}=3^{3 x}(35)$ Since 35 is a multiple of 5 , hence $3^{3 x+2}-9^{\frac{3}{2} x}+\left(\frac{1}{27}\right)^{-x-1}$ is divisible by 5 for all positive integer values.
5	(a) Smallest possible of the third number is 132 (i.e. $2^{2} \times 3 \times 11$) (b) (i) $6468=2^{2} \times 3 \times 7^{2} \times 11$ (ii) $3 \times 11=33$		
6	(a) 2 hours (b) 48		
7	$\begin{array}{ll}\text { (a) } 2.4 \mathrm{~km} & \text { (b) } 6.25 \mathrm{~cm}\end{array}$		
8	(a) $2.5 \mathrm{~m} / \mathrm{s}$ (b) 870 km (3 s.f.) or $869 \frac{13}{23}$	9	$\frac{12 x+5}{2(3 x-1)(3 x+1)}$
10	(a) $(b+1)(2 a-1)(2 a+1)$ (b) $x=\sqrt[3]{\frac{3 g-f}{2}}$	11	$\text { (a) }(3 x+4)(2 x-5)$ (b) $y=-\frac{1}{3}$ or $y=\frac{7}{2}$

Anglican High School
 2020 Secondary 4 Preliminary Examination Mathematics Paper 2

Answer All the questions

1 (a) (i) Factorise $2 p x-2 p+3 q x-3 q$ completely.

Answer

(ii) Given that p and q are positive constants, find the value of x for which $2 p x-2 p+3 q x-3 q=0$.

Answer $x=$.
(b) Simplify $\left(-3 p^{2} q^{-1}\right)^{2}\left(p^{-2} q^{2}\right)^{3}$, expressing your final answer in positive indices.

In the diagram, $B C=8 \mathrm{~cm}$ and $A B=10 \mathrm{~cm}$ is the diameter of the semi-circle.

Find

(a) angle $C O A$ in radians,

Answer \qquad .radians
(b) area of the shaded region.

3 In the diagram, not drawn to scale, point A lies on the y-axis and point B lies on the x-axis. The coordinates of C is $(5,6)$.

(a) Given that C lies on the line $A B$ and that $5 O A=3 O B$, show that the y-intercept of the line $A B$ is 9 .
Answer
(b) Given that point D lies on the y-axis, state the coordinates of D such that triangle $A C D$ is an isosceles triangle.

Answer (............ ,)
(c) Given further that OCEA is a parallelogram, state the coordinates of the point E.

Answer (............,)
(d) Find the area of the parallelogram, OCEA.

Answer

units ${ }^{2}$

Mrs Tan bought $x \mathrm{~kg}$ of rice for $\$ 65$ in December 2019. In February 2020, the price of rice increased and she received 6 kg less for the same amount of money spent.
(a) Write down an expression for the price of rice per kilogram, in terms of x,
(i) in December 2019,
Answer \$.. [1]
(ii) in February 2020.

Answer \$
(b) If the increase in price is $\$ 2$ per kilogram of rice, form an equation in x and show that it reduces to $x^{2}-6 x-195=0$.
Answer
(c) Solve the equation, giving your answers correct to 2 decimal places.

Answer $x=$. .or
(d) Hence, find the price of rice per kilogram in February 2020, leaving your answer to the nearest cent.

Answer

5 In the diagram, $P Q R S$ are four points on level ground, and Q is due north of P.

Given that angle $P Q R=40^{\circ}$, angle $P R Q=55^{\circ}, P R=8 \mathrm{~km}, R S=12 \mathrm{~km}$ and that $Q R S$ is a straight line,
(a) show that the distance $P S$ is 17.836 km .

Answer
(b) Using the result in (a), find,
(i) the bearing of P from S,

Answer
(ii) the shortest distance from R to $P S$.

Answer
km
(c) A vertical tower stands at point R. Evan, walking along PS and stops at a point where the greatest angle of elevation of the top of the tower, T, is 3°. Find the height of the tower.
(a) The table below shows the amount of flour, sugar and number of eggs needed for each type of pastry sold in a cafe.

	Flour (g)	Sugar (g)	Number of eggs
Cookie	90	50	1.5
Cake	220	200	8
Pancake	60	80	2

The above information is represented by a matrix $\mathbf{D}=\left(\begin{array}{ccc}90 & 50 & 1.5 \\ 220 & 200 & 8 \\ 60 & 80 & 2\end{array}\right)$.
Each kg of flour and sugar costs $\$ 1.50$ and $\$ 1.80$ respectively. A dozen eggs costs
$\$ 2.70$. Complete the cost in $\$$ for every gram of flour and sugar as well as the cost in $\$$ for each egg in the table below :

Flour(\$/g)	Sugar(\$/g)	$1 \operatorname{Egg}(\$)$

(b) Write down a 3×1 matrix \mathbf{E} such that its elements represent the unit cost of each ingredient needed for the various pastries.
(c) Calculate DE and state what the elements of $\mathbf{D E}$ represent.

Answer

\qquad
\qquad
(d) The cafe prepared 70 cookies, 30 cakes and 120 pancakes on a particular day. Using matrix multiplication, calculate the total cost of the basic ingredients for all the pastries prepared on this day.

7 (a) In the diagram, $A D$ is the diameter of the circle $A B D F$ with centre O. Given $B D$ and $A F$ produced meet at $E, A B$ and $F D$ produced meet at C, $\angle F E D=33^{\circ}$ and $\angle D A B=16^{\circ}$.

Calculate, stating your reasons clearly,
(i) $\angle A D B$,

Answer
(ii) $\angle A F B$,

Answer
(iii) $\angle D A F$.
(b) Given $A B C D$ is a trapezium with $A D=18 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $A B=D C$. A circle is inscribed in the trapezium as shown.

(i) Show that the length of $A B$ is 13 cm , stating your reason(s) clearly.

Answer

(ii) Calculate the radius of the circle.

8 (a) A solid cone is cut into a smaller cone and a frustum as shown in the diagram.

The height of the frustum is 8 mm . The area of the two circular bases are $9 \mathrm{~mm}^{2}$ and $25 \mathrm{~mm}^{2}$ respectively.
(i) Show that the height of the smaller cone is 12 mm .

Answer

(ii) Find the volume of the frustum.
(iii) Find the curved surface area of the smaller cone.
. mm^{2}
(b) In the figure, $A D C B$ is a major segment of a circle, centre O and radius 7 cm .
$B D=12 \mathrm{~cm} . A C$ is perpendicular to the line $B O D$. Find the perimeter of the major segment.

B

Answer

cm [4]

9 Mr Tan is looking to purchase a new car to drive to and from work on weekdays and for leisure on weekends. He estimates the total distance travelled is about 1500 km per month. The average cost of petrol is $\$ 2.20$ per litre. To buy a new car, he must pay a down payment of 30% of the selling price of the car before he can take a car loan for the remaining amount from a bank. He has to pay back the loan by monthly instalment. A 5-year car loan simple interest rate offered by most banks is 2.28% per annum. Mr Tan shortlisted 3 cars with all the relevant cost as shown in the table.

	Car A	Car B	Car C
Selling Price	$\$ 87999$	$\$ 108999$	$\$ 107888$
Fuel Consumption(km per litre)	17.2	14.9	17.8
Car Insurance per year	$\$ 1200$	$\$ 1500$	$\$ 1500$
Engine Capacity(in cubic cm)	1598	1499	1197
Monthly Car Maintenance	$\$ 200$	$\$ 200$	$\$ 200$
Monthly Car Park charges	$\$ 150$	$\$ 150$	$\$ 150$

He also finds out that the annual road tax of the car is determined by the engine capacity of the car is as follows:

Annual Road Tax $=[\$ 500+0.75($ Engine Capacity minus 1000 $)] \times 0.782$
(a) After reviewing the information, Mr Tan decides to buy Car A.
(i) calculate the down payment.

Answer \$
(ii) calculate the total monthly expenditure including monthly instalment payment and all the other monthly costs.
(b) An alternative to buying a car is to rent an electric car that is easily accessible from his house and workplace. Subscription per month is $\$ 15$ and it costs 33 cents per minute of use. Mr Tan estimates that the average daily travel time to and from work is about 1 hour and 20 minutes. On weekends, he needs to use the car for about 5 hours for leisure activities. Calculate his monthly expenditure to rent a car.

Answer \$.
(c) Do you think Mr Tan should buy or rent a car? Justify your answer.

Answer \qquad
\qquad
10 (a) Team Alpha and Delta are competing in the badminton finals. Each game will only result in a win or a loss. The competition ends when a team wins 2 games out of 3 . The probability of Alpha team winning in a game is $\frac{5}{8}$.
(i) Draw a tree diagram to show all the possible outcomes for Alpha team.

Answer

(ii) Calculate the probability, expressing your answers in fraction, that Alpha team wins the competition.

Answer
10 (b) The frequency table shows the weight in kg of 80 persons who join an exercise club.

Weight	$30<x \leq 40$	$40<x \leq 50$	$50<x \leq 60$	$60<x \leq 70$	$70<x \leq 80$
Frequency	8	17	34	18	3

(i) Find the mean weight.

Answer
(ii) Find the standard deviation.
(iii) After 6 months of exercising, the mean and standard deviation of these 80 persons are 50 kg and 12.2 kg respectively. Give 2 comments on the effect of exercise.

1 \qquad
\qquad
\qquad

2 \qquad
\qquad
\qquad
10 (c) The cumulative frequency graph below shows the end-of-year Mathematics examination marks of a group of 200 students.

Marks scored by 200 students in the end-of-year examination

From the graph, find the
(i) number of students who scored 28 marks or less,

Answer
(ii) number of students who scored more than 76 marks,

Answer
(iii) the upper quartile,

> Answer
(iv) minimum mark obtained by the top 2.5% of the cohort,

> Answer
(v) probability that one student scored 28 marks or less and the other student scored more than 76 marks when two students are chosen at random.

Answer

11 The variables x and y are connected by the equation

$$
y=\frac{5 x}{4}+\frac{1}{x^{2}} .
$$

The table below shows some values of x and the corresponding values of y, correct to 1 decimal place.

x	0.5	1	1.5	2	3	4	5
y	4.6	2.3	2.3	2.8	3.9	5.1	p

(a) Calculate the value of p.

Answer $p=$
(b) Using a scale of 2 cm to represent 1 unit on each axis, draw a horizontal x-axis for $0 \leq x \leq 5$ and a vertical y-axis for $0 \leq y \leq 8$. On your axes, plot the points given in the table and join them with a smooth curve.
(c) From the graph, find the values of x for which $\frac{5 x}{4}+\frac{1}{x^{2}}-3=0$.

Answer $x=$ \qquad or.
(d) By drawing a tangent, find the gradient of the curve at the point $(1,2.3)$.

Answer
(e) (i) On the same axes, draw the graph of $y=\frac{1}{2} x+2$.
(ii) Write down the x-coordinates of the points where the two graphs intersect.

Answer $x=$ \qquad or.
(iii) Find the equation in the form $3 x^{3}+a x^{2}+b x+c=0$, which is satisfied by the values of x found in part (e)(ii).

Answer key for paper 2

Anglican High School

Preliminary Examination 2020
Secondary Four Mathematics Paper 1 (4048/01)

Marking Scheme

6	(a)	1 man will take 24 hours to dig 6 m trench. 10 men will take 2.4 hours to dig 6 m trench. $\begin{aligned} \text { Time taken to dig a } 5 \mathrm{~m} \text { trench } & =2.4 \times \frac{5}{6} \text { hours } \\ & =2 \text { hours } \end{aligned}$	M1 A1	Accept procedures
	(b)	$y=k \sqrt{x}$ When $x=a, y=24$ $\begin{aligned} & 24=k \sqrt{a} \\ & k=\frac{24}{\sqrt{a}} \end{aligned}$ When $x=4 a$, $\begin{aligned} & y=\left(\frac{24}{\sqrt{a}}\right) \sqrt{4 a} \\ & y=48 \end{aligned}$	M1 A1	No mark if k expressed in terms of x
7	(a)	1 cm on map represents 0.3 km on actual ground. Actual length of park $=8 \times 0.3 \mathrm{~km}=2.4 \mathrm{~km}$	B1	
	(b)	$\begin{aligned} & \text { Area scale of map }=1 \mathrm{~cm}^{2}: 0.09 \mathrm{~km}^{2} \\ & \text { Area of park on map }=\frac{4.5}{0.09}=50 \mathrm{~cm}^{2} \\ & \text { Breadth of park on the map }=\frac{50}{8}=6.25 \mathrm{~cm} \end{aligned}$	M1 A1	
8	(a)	$\frac{9 \mathrm{~km}}{1 \mathrm{~h}}=\frac{9000 \mathrm{~m}}{3600 \mathrm{~s}}=2.5 \mathrm{~m} / \mathrm{s}$	B1	
	(b)	Distance travelled with 60 litres of fuel $=\frac{250}{17.25} \times 60=869.6 \approx 870 \mathrm{~km}$ (3 s.f.)	B1	$\begin{aligned} & \text { Accept } \\ & 869 \frac{13}{23} \end{aligned}$
9		$\begin{aligned} & \frac{1}{18 x^{2}-2}+\frac{2}{3 x-1} \\ & =\frac{1}{2\left(9 x^{2}-1\right)}+\frac{2}{3 x-1} \\ & ==\frac{1}{2(3-1)(3+1)+\frac{2}{3 x-1}} \\ & =\frac{1+2(2)(3 x+1)}{2(3 x-1)(3 x+1)} \\ & =\frac{1+12 x+4}{2(3 x-1)(3 x+1)} \\ & =\frac{12 x+5}{2(3 x-1)(3 x+1)} \end{aligned}$	M1 M1 A1	

10	(a)	$\begin{aligned} & 4 a^{2} b+4 a^{2}-b-1 \\ & =4 a^{2}(b+1)-(b+1) \\ & =(b+1)\left(4 a^{2}-1\right) \\ & =(b+1)(2 a-1)(2 a+1) \end{aligned}$	M1 A1	Grouping Special product
	(b)	$\begin{aligned} & f=3 g-2 x^{3} \\ & 2 x^{3}=3 g-f \\ & x^{3}=\frac{3 g-f}{2} \\ & x=\sqrt[3]{\frac{3 g-f}{2}} \end{aligned}$	M1 A1	
11	(a)	$6 x^{2}-7 x-20=(3 x+4)(2 x-5)$	B1	
	(b)	$\begin{aligned} & 6(y-1)^{2}-7 y+7=20 \\ & 6(y-1)^{2}-7(y-1)-20=0 \\ & {[3(y-1)+4][2(y-1)-5] }=0 \\ &(3 y+1)(2 y-7)=0 \\ & y=-\frac{1}{3} \quad \text { or } \quad y=\frac{7}{2} \end{aligned}$	M1 M1 A1	Deduct 1 mark for skipping step
12	(a)(i)	$\begin{aligned} & y=x^{2}+8 x+16 \\ & y=(x+4)^{2}-4^{2}+16 \\ & y=(x+4)^{2} \end{aligned}$	B1	
	(a)(ii)		G2	G1 for correct shape G1 for both correct coordinates or label on axes
	(b)	$x=0$	B1	
	(c)	$(-2,0)$	B1	

13	(a)(i)	$n=-1$ or $n=-3$	B1	Any negative odd number	
	(a)(ii)	$k<0$	B1		

16	Let x° be the exterior angle. Interior angle of the polygon $=1.5 x^{\circ}$ $\begin{aligned} & x^{\circ}+1.5 x^{\circ}=180^{\circ} \\ & 2.5 x^{\circ}=180^{\circ} \\ & x^{\circ}=72^{\circ} \end{aligned}$ Hence, $n=\frac{360^{\circ}}{72^{\circ}}$ $n=5$		M1 A1	
17		$\begin{aligned} & \xi=\{1,2,3,4,5,6,7,8,9,10,11,12,13\} \\ & A=\{4,6,8,9,10,12\} \\ & B=\{3,6,9,12\} \\ & C=\{6,12\} \end{aligned}$		
	(a)(i)	$A^{\prime}=\{1,2,3,5,7,11,13\}$ or $1,2,3,5,7,11,13$	B1	
	(a)(ii)	$A^{\prime} \cap C=\{ \}$ or \varnothing or null/empty set or no element	B1	
	(b)		B1 B1	B1 for correct Venn Diagram B1 for correct elements in $A \cap B$
	(c)	$\},\{6\},\{12\}$	B1	
18	(a)	Distance travelled by Anne in $15 \mathrm{~min}=0.3 \times 15=4.5 \mathrm{~km}$	B1	
	(b)	Time taken from rest to the end of journey $=\frac{10-4.5}{0.5}=11 \mathrm{~min}$ Total time taken $=15+5+11=31 \mathrm{~min}$	B1	
	(c)	Jane needs to complete the 10 km in $(31-3)=28 \mathrm{~min}$ Average speed of Jane is $\frac{10}{28} \approx 0.36 \mathrm{~km} / \mathrm{min}$ (2 d.p.)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	

19	(a)	$\angle Q R P=\frac{180^{\circ}-4 x^{\circ}}{2}=90^{\circ}-2 x^{\circ}$ (supplementary angles)	B1	
	(b)	$\begin{aligned} & \angle A P R=4 x^{\circ} \text { (alternate angles, } A B / / C D \text {) } \\ & \text { Since } Q P \text { bisects } \angle A P R, \angle Q P R=2 x^{\circ} \\ & \angle P Q R+\angle Q R P+\angle Q P R=180^{\circ} \text { (sum of angles in triangle) } \\ & \angle P Q R+90^{\circ}-2 x^{\circ}+2 x^{\circ}=180^{\circ} \\ & \angle P Q R=180^{\circ}-90^{\circ} \\ & \therefore \angle P Q R=90^{\circ} \end{aligned}$ Hence, $P Q$ is perpendicular to $Q R$.(shown)	M1 M1 A1	Deduct 1 for presentation without reason
20	(a)(i)		G1	
	(a)(ii)		G1	
	(b)(i)		G1	
	(b)(ii)	$A X=4.5 \times 200=900 \mathrm{~km}$	B1	Accept $\pm 20 \mathrm{~km}$
21	(a)	Given $C D=C B$. Given $\angle A F E=45^{\circ}$ and $\angle F A E=90^{\circ}, \angle A E F=45^{\circ}$. $\therefore \triangle F A E$ is an isosceles right-angled triangle. Hence, $A F=A E$ and $F B=E D$. By Pythagoras' Theorem, $F C=E C$. $\Delta C D E \equiv \triangle C B F(\mathrm{SSS})$	B1	B1 for valid proof and reasons B1 for correct pair and congruency condition, accept other valid solution
	(b)	Let sides of square be $3 a$. Area of square $=9 a^{2}$ Area of $\triangle C E F=$ $\begin{aligned} & =9 a^{2}-\left(\frac{1}{2} \times 3 a \times a\right)-\left(\frac{1}{2} \times 3 a \times a\right)-\left(\frac{1}{2} \times 2 a \times 2 a\right) \\ & =9 a^{2}-\frac{3}{2} a^{2}-\frac{3}{2} a^{2}-2 a^{2} \\ & =4 a^{2} \end{aligned}$ Area of $\triangle C E F$: Area of square $=4 a^{2}: 9 a^{2}=4: 9$	M1 A1	Accept other solutions.

Anglican High School

Preliminary Examination 2020

Secondary Four Mathematics Paper 2 (4048/2)

1 (a) (i) Factorise $2 p x-2 p+3 q x-3 q$ completely.
$\square=$

$$
\begin{aligned}
& 2 p x-2 p+3 q x-3 q \\
= & 2 p(x-1)+3 q(x-1) \\
= & (2 p+3 q)(x-1)
\end{aligned}
$$

A1 Grouping $(2 p+3 q)$
(ii) Given that p and q are positive constants, find the value of x for which $2 p x-2 p+3 q x-3 q=0$.

| $(2 p+3 q)(x-1)=0$
 $(x-1)=0 \quad$ or $(2 \mathrm{p}+3 \mathrm{q})=0$ [optional in this case.]
 $x=1$ | B1 |
| :--- | :--- | :--- |

(b) Simplify $\left(-3 p^{2} q^{-1}\right)^{2}\left(p^{-2} q^{2}\right)^{3}$, expressing your final answer in positive indices.

	$\left(-3 p^{2} q^{-1}\right)^{2}\left(p^{-2} q^{2}\right)^{3}$	
$=9 p^{4} q^{-2} p^{-6} q^{6}$	M[1] (correct use of $\left.(a b)^{n}=a^{n} b^{n}\right)$	
$=9 p^{-2} q^{4}$		
$=\frac{9 q^{4}}{p^{2}}$	$\mathrm{~A}[1]$	

2 In the diagram, $B C=8 \mathrm{~cm}$ and $A B=10 \mathrm{~cm}$ is the diameter of the semi-circle.

Find,
(a) $\angle C O A$ in radians.
(b) Area of the shaded region.

(a)	$\begin{aligned} & \cos \angle A B C=\frac{8}{10} \\ & \angle A B C=0.64350 \end{aligned}$ Using ext $\angle=$ sum of int \angle of Δ $\begin{aligned} & \angle C O A=2 \times \angle A B C \\ & =1.2870 \\ & =1.29 \text { radians } \end{aligned}$ Alternatively, $\begin{aligned} & \cos \angle C A B=\frac{6}{10} \\ & \angle C A B=0.92730 \\ & \begin{aligned} \angle C O A & =\pi-0.92730-0.92730 \\ & =1.2870 \\ & =1.29 \text { radians } \end{aligned} \end{aligned}$ Area of shaded region $=$ Area of sector $C O A-$ Area of triangle $C O A$ $\begin{aligned} & =\frac{1}{2} \times 5^{2} \times 1.2870-\frac{1}{2} \times 5^{2} \times \sin 1.2870 \\ & =16.088-12.000 \\ & =4.088 \\ & =4.09 \mathrm{~cm}^{2} \end{aligned}$	M1 A1 M1 A1 M1,M1for each correct term. A1

3 In the diagram, not drawn to scale, point A lies on the y-axis and point B lies on the x-axis. The coordinates of C is $(5,6)$.

(a) Given that point C lies on the line $A B$ and that $5 O A=3 O B$, show that the y-intercept of the line $A B$ is 9 .
(b) Given that point D lies on the y-axis, state the coordinate of D such that triangle $A C D$ forms an isosceles triangle,
(c) Given further that OCEA is a parallelogram, find the coordinates of the point E.
(d) Find the area of the parallelogram, OCEA.

(a)	$\frac{O A}{O C}=\frac{3}{5}$ Hence gradient of $A B=-\frac{3}{5}$ Equation of $A B$: $\begin{aligned} y-6 & =-\frac{3}{5}(x-5) \\ y & =-\frac{3}{5} x+9 \end{aligned}$ Since the y-intercept of $A B=9$, therefore the line $A B$ cuts the y-axis at 9 . (shown)	$\mathrm{M}[1]$ (deducing gradient) $\mathrm{M}[1]$ (correct equation) A[1]
(b)	Coordinates of $A=(0,9)$. Coordinates of $D=(0,3)$	B [1]
(c)	Distance of $O A=9$ units $E=(5,15)$	B [1]
(d)	$\begin{aligned} \text { Area of parallelogram } & =9 \times 5 \\ & =45 \mathrm{unit}^{2} \end{aligned}$	$\begin{aligned} & \mathrm{M}[1] \\ & \mathrm{A}[1] \end{aligned}$

4 Mrs Tan bought $x \mathrm{~kg}$ of rice for $\$ 65$ in December 2019. In February 2020, the price of rice increased and she received 6 kg less for the same amount of money spent.
(a) Write down an expression for the price of rice per kilogram, in terms of x,
(i) in December 2019,
(ii) in February 2020.
(b) If the increase in price is $\$ 2$ per kilogram of rice, form an equation in x and show that it reduces to $x^{2}-6 x-195=0$.
(c) Solve the equation, giving your answers correct to 2 decimal places.
(d) Hence, find the price of rice per kilogram in February 2020, leaving your answer to the nearest cent.

$4(\mathrm{a})$	(i)	Price per kg in $\operatorname{Dec} 2019=\$ \frac{65}{x}$	B1	
	(ii)	Price per kg in Jan $2020=\$ \frac{65}{x-6}$	B1	

\(\left.\left.$$
\begin{array}{|l|l|l|l|}\hline \text { 4(b) } & \begin{array}{l}\frac{65}{x-6}-\frac{65}{x}=2 \\
65 x-65(x-6)=2 x(x-6) \\
65 x-65 x+390=2 x^{2}-12 x \\
2 x^{2}-12 x-390=0 \\
x^{2}-6 x-195=0\end{array} & \text { M1 } & \\
\hline \text { 4(c) } & \begin{array}{l}x^{2}-6 x-195=0 \\
x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(-195)}}{2(1)} \\
x=\frac{6 \pm \sqrt{816}}{2} \\
x=17.28 \text { or } x=-11.28\end{array} & \text { A1 } & \text { M1 }\end{array}
$$ $$
\begin{array}{l}\text { M1- show } \\
\text { substitution into } \\
\text { quadratic formula }\end{array}
$$\right] \begin{array}{l}A1 for both correct

answers\end{array}\right]\)| Price per kg in Jan 2020=\$ |
| :--- |
| $\frac{65}{17.28-6}=\$ 5.76$ (to nearest cent) |

5 In the diagram, $P Q R S$ are four points on level ground, and Q is due north of P.

Given that angle $P Q R=40^{\circ}$, angle $P R Q=55^{\circ}, P R=8 \mathrm{~km}, R S=12 \mathrm{~km}$ and that $Q R S$ is a straight line,
(a) show that the distance PS, corrected to 5 significant figures, is 17.836 km , [2]
(b) using the result in (a), find,
(i) the bearing of P from S.
(ii) the shortest distance from R to PS.
(c) A vertical tower stands at point R.

Evan, walking along PS and stops at a point where the greatest angle of elevation of the top of the tower, T, is 3°. Find the height of the tower.

(a)	$\begin{aligned} \text { angle } S R P & =180^{\circ}-55^{\circ}(\text { angles on a straight line }) \\ & =125^{\circ} \\ P S^{2} & =12^{2} \\ & +8^{2}-2(12)(8) \cos 125^{\circ} \\ & =318.127 \\ P S & =17.836 \mathrm{~km} \text { (to } 5 \mathrm{sf}) \text { (shown) } \end{aligned}$	M1 if 125° is shown M1 (correct angle, formula) M1 or with implicit square root
$\begin{aligned} & \hline \text { (b)(i) } \\ & \text { (Mtd 1) } \end{aligned}$	$\begin{aligned} \text { angle } Q P R & =180^{\circ}-40^{\circ}-55^{\circ} \text { (angles in a triangle) } \\ & =85^{\circ} \\ \frac{\sin R P S}{12} & =\frac{\sin 125}{17.836} \\ \text { angle } R P S & =33.444(\text { to } 3 \mathrm{dp}) \\ \text { angle } N S P & =180^{\circ}-85^{\circ}-33.444^{\circ} \text { (interior angles) } \\ & \left.=61.6^{\circ} \text { (to } 1 \mathrm{dp}\right) \end{aligned}$ Bearing of P from $S=061.6^{\circ}$	M[1] M[1] A[1]
(b)(i) (Mtd 2)	$\begin{aligned} \begin{aligned} \frac{\sin R S P}{8} & =\frac{\sin 125}{17.836} \\ \text { angle } R S P & =21.556 \text { (to } 3 \mathrm{dp}) \\ \text { angle } \mathrm{QSN} & =40^{\circ} \text { (alternate angles) } \\ & =40^{\circ} \end{aligned} \\ \text { angle } \begin{aligned} N S P & =40^{\circ}+21.556^{\circ} \\ & \left.=61.6^{\circ} \text { (to } 1 \mathrm{dp}\right) \end{aligned} \end{aligned}$ Bearing of P from $S=061.6^{\circ}$	M[1] M[1] A[1]
$\begin{aligned} & \hline \text { (b)(ii) } \\ & \text { (Mtd 1) } \end{aligned}$	Let the shortest distance be $d \mathrm{~km}$. $\begin{aligned} \text { Area of } R P S & =\frac{1}{2}(8)(17.836) \sin 33.444^{\circ} \\ \frac{1}{2}(17.836)(d) & =\frac{1}{2}(8)(17.836) \sin 33.444^{\circ} \\ d & =4.4090 \text { (to } 5 \mathrm{sf}) \\ & =4.41 \text { (to } 3 \mathrm{sf}) \end{aligned}$ Hence the shortest distance is 4.41 km .	$\mathrm{M}[1]$ $\mathrm{A}[1]$

$\begin{aligned} & \hline \text { (b)(ii) } \\ & \text { (Mtd 2) } \end{aligned}$	Let the shortest distance be $d \mathrm{~km}$. $\begin{aligned} \text { Area of } R P S & =\frac{1}{2}(8)(12) \sin 125^{\circ} \\ \frac{1}{2}(17.836)(d) & =\frac{1}{2}(8)(12) \sin 125^{\circ} \\ d & =4.4090 \text { (to } 5 \mathrm{sf}) \\ & =4.41 \text { (to } 3 \mathrm{sf}) \end{aligned}$ Hence the shortest distance is 4.41 km .	$\mathrm{M}[1]$ $\mathrm{A}[1]$
(c)	Let the height of the tower be $h \mathrm{~km}$. $\begin{aligned} \tan 3^{\circ} & =\frac{h}{4.4179} \\ h & =0.23153(\text { to } 5 \mathrm{sf}) \\ h & =0.231(\text { to } 3 \mathrm{sf}) \end{aligned}$ The height of the tower is 0.231 km .	$\mathrm{M}[1]$ for correct equation $\mathrm{A}[1]$

6 (a) The table below shows the amount of flour, sugar and number of eggs needed for each type of pastry sold in a cafe.

	Flour (g)	Sugar (g)	Number of eggs
Cookie	90	50	1.5
Cake	220	200	8
Pancake	60	80	2

The above information is represented by a matrix $\mathbf{D}=\left(\begin{array}{ccc}90 & 50 & 1.5 \\ 220 & 200 & 8 \\ 60 & 80 & 2\end{array}\right)$.
Each kg of flour and sugar costs $\$ 1.50$ and $\$ 1.80$ respectively. A dozen eggs costs
$\$ 2.70$. Complete the cost in $\$$ for every gram of flour and sugar as well as the cost in $\$$ for each egg in the table below:

Flour(\$/g)	Sugar(\$/g)	$1 \operatorname{Egg}(\$)$

(b) Write down a 3×1 matrix \mathbf{E} such that its elements represent the unit cost of each ingredients needed for the various pastries.
(c) Calculate $\mathbf{D E}$ and state what the elements of $\mathbf{D E}$ represents.
(d) The cafe prepared 70 cookies, 30 cakes and 120 pancakes on a particular day.

Using matrix multiplication, calculate the total cost of the basic ingredients for all the pastries prepared on this day.

Q6a)	0.0015, 0.0018, 0.225(egg)	B1when both ans for flour and sugar are correct. B1 for egg.
b)	$\mathbf{E}=\left(\begin{array}{c}0.0015 \\ 0.0018 \\ 0.225\end{array}\right)$	B1
c)	$\begin{aligned} \mathbf{D E} & =\left(\begin{array}{ccc} 90 & 50 & 1.5 \\ 220 & 200 & 8 \\ 60 & 80 & 2 \end{array}\right)\left(\begin{array}{c} 0.0015 \\ 0.0018 \\ 0.225 \end{array}\right) \\ & =\left(\begin{array}{c} 0.5625 \\ 2.49 \\ 0.684 \end{array}\right) \end{aligned}$ The elements in DE represents the cost price (in dollars) needed for the making of one cookie, one cake and one pancake respectively.	B1 B1
d)	$\begin{aligned} \text { Total cost } & =\left(\begin{array}{lll} 70 & 30 & 120 \end{array}\right)\left(\begin{array}{c} 0.5625 \\ 2.49 \\ 0.684 \end{array}\right) \\ & =(196.155) \end{aligned}$ The total cost is $\$ 196.16$	M1 A1

7 (a) In the diagram, $A D$ is the diameter of the circle $A B D F$ with centre O. Given $B D$ and $A F$ produced meet at $E, A B$ and $F D$ produced meet at C, $\angle F E D=33^{\circ}$ and $\angle D A B=16^{\circ}$.

Calculate, stating your reasons clearly,
(i) $\angle A D B$
(ii) $\angle A F B$,
(iii) $\angle D A F$.
(b) Given $A B C D$ is a trapezium with $A D=18 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $A B=D C$. A circle is inscribed in the trapezium as shown.

(i) Show that the length of $A B$ is 13 cm , stating your reason(s) clearly.
(ii) Calculate the radius of the circle.

7ai)	$\begin{aligned} \angle A B D & =90^{\circ} \text { (angle in semi-circle) } \\ \angle A D B & =180^{\circ}-90^{\circ}-16^{\circ} \\ & =74^{\circ}(\text { sum of angles in a triangle }) \end{aligned}$	M1 A1
ii)	$\begin{aligned} \angle A F B & =\angle A D B(\text { Angles in the same segment }) \\ & =74^{\circ} \end{aligned}$	B1
iii)	$\begin{aligned} & \angle D A F+33^{\circ}=74^{\circ}(\text { ext angle }=\text { sum of opp int angle of triangle }) \\ & \begin{aligned} \angle D A F & =74^{\circ}-33^{\circ} \\ & =41^{\circ} \end{aligned} \end{aligned}$ Alternatively, $\begin{aligned} & \angle A D E=180^{\circ}-74^{\circ}(\text { angle on a straight line }) \\ & \angle D A F+\angle A D E+33^{\circ}=180^{\circ}(\text { sum of angle in triangle }) \\ & \begin{aligned} \angle D A F & =180^{\circ}-33^{\circ}-106^{\circ} \\ & =41^{\circ} \end{aligned} \end{aligned}$	M1 A1 M1 A1 Minus 1 mark for incorrect reasons, or self created reasons.
bi)	$\begin{aligned} A B & =4+9 \text { (Tangent from ext point) } \\ & =13 \end{aligned}$	B1 for stating 4+9 B1 for quoting tangent from external point.
ii)	Let this distance be $x \mathrm{~cm}$. By Pythagoras Theorem, $\begin{aligned} x & =\sqrt{169-25} \\ & =12 \end{aligned}$ Hence, the radius of the circle $=6 \mathrm{~cm}$	M1 A1

8 (a) A piece solid cone is cut into a smaller piece of cone and a frustum as shown in the diagram.

Given that the height of the frustum is 8 mm and the two circular base areas of $9 \mathrm{~mm}^{2}$ and 25 mm^{2} respectively.
(i) Show that the height of the smaller cone is 12 mm .
(ii) Find the volume of the frustum.
(iii) Find the curved surface area of the smaller cone.
(b) In the figure, $A D C B$ is a major segment of a circle, centre O and radius 7 cm . $B D=12 \mathrm{~cm} . A C$ is perpendicular to the line $B O D$. Find the perimeter of the major segment.

9 Mr Tan is looking to purchase a new car to drive to and from work on weekdays and for leisure on weekends. He estimates the total distance travelled is about 1500 km per month. The average cost of petrol is $\$ 2.20$ per litre. To buy a new car, he must pay a down payment of 30% of the selling price of the car before he can take a car loan for the remaining amount from a bank. He has to pay back the loan by monthly instalment. A 5 -year car loan simple interest rate offered by most banks is 2.28% per annum. Mr Tan shortlisted 3 cars with all the relevant cost as shown in the table.

	Car A	Car B	Car C
Selling Price	$\$ 87999$	$\$ 108999$	$\$ 107888$
Fuel Consumption(km per litre)	17.2	14.9	17.8
Car Insurance per year	$\$ 1200$	$\$ 1500$	$\$ 1500$
Engine Capacity(in cubic cm)	1598	1499	1197
Monthly Car Maintenance	$\$ 200$	$\$ 200$	$\$ 200$
Monthly Car Park charges	$\$ 150$	$\$ 150$	$\$ 150$

He also finds out that the annual road tax of the car is determined by the engine capacity of the car is as follows:

Annual Road Tax $=[\$ 500+0.75($ Engine Capacity minus 1000) $] \times 0.782$

From the information provided,
(a) Calculate
(i) the down payment to buy car \mathbf{A}.
(ii) the total monthly expenditure including monthly bank instalment and all the other monthly costs to own a car.
(b) An alternative to buying a car is to rent an electric car that is easily accessible from his house and workplace. Subscription per month is $\$ 15$ and it costs 33 cents per minute of use. Mr Tan estimates that the average daily travel time to and from work is about 1 hour and 20 minutes. On weekends, he needs to use the car for about 5 hours for leisure activities. Calculate his monthly expenditure to rent a car.
(c) Do you think Mr Tan should buy or rent a car? Justify your answer.

9ai) Car A down payment $(30 \%$ of $\$ 87,999)=\$ 26,399.70$	B1
9aii) For Car A Loan Amount=\$87,999-\$26,399.70 $=\$ 61,599.30$ Loan Interest over 5 years $=61,599.30 \times \frac{2.28}{100} \times 5$ $=\$ 7,022.32$ Monthly Car Instalment $=\frac{61,599.3+7,022.32}{60}$ $=\$ 1,143.69$ Monthly Distance covered by car $=1500 \mathrm{~km}$ Amount of petrol needed $=\frac{1500}{17.2}$ = 87.209litre (1)Monthly petrol consumption $=\$ 2.20 \times 87.209$ $=\$ 191.86$ (2) Monthly car insurance $=\frac{1200}{12}=\$ 100$ (3) $\begin{aligned} \text { Monthly road tax } & =\frac{[500+0.75(1598-1000)] \times 0.782}{12} \\ & =\$ 61.81 \end{aligned}$ (4) Monthly Maintenance cost $=\$ 200$ (5) Monthly Car Park charges $=\$ 150$ (6) Total monthly cost $=\$ 1143.69+703.67$ $=\$ 1847.36$	M1 A1 M1 A1 B1 B1 B1
9b) Monthly cost of renting a car based on 20 workdays and 4 weekends $\begin{aligned} & =\$ 15+80 \mathrm{~min} \times 20 \text { working days } \times 0.33+5 \times 60 \mathrm{~min} \times 4 \text { weekends } \times 0.33 \\ & =\$ 924 \end{aligned}$ Accept answers from $\mathbf{\$ 9 3 9}$ to $\mathbf{\$ 1 0 6 4 . 4 0}$ as some students may assume up to 23 working days and 4 weekends or 21 working days and 5 weekends.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
9c) Acceptable responses such as a) Renting is better as there is no need to pay down payment and monthly instalment. b) Although it is more expensive to buy a car, it is very convenient. c) Any other reasonable justification.	B1for any of the 4 .

	Breakdown of cost of owning a car	Car A			
9ai	Down payment	$\$ 26,399.70$			B1
9aii	Loan Interest	$\$ 7,022.32$			M1
	Monthly Instalment	$\$ 1,143.69$		A1	
	Monthly Petrol needed in litres	87.209		M1	
	Monthly Petrol Cost	$\$ 191.86$		A1	
	Monthly Car Insurance	$\$ 100$		B1	
	Monthly Road Tax	$\$ 61.81$		B1	
Monthly Maintenance/Servicing	$\$ 200$			B1	
9aiii)	Total Monthly Cost	$\$ 150$		M1, A1	
9b)	Monthly Cost Renting Electric car	Fr $\$ 939$ to $\$ 1064.40$		B1fo	
9c)	Acceptable responses. a) Renting is better as there is no need to pay down payment and monthly instalment b) Although it is more expensive to buy a car, it is very convenient. c) Any other reasonable justification.	of the 4			

10(a) Team Alpha and Delta are competing in a best of 3 games badminton finals. Each game will only result in a win or a loss. The competition ends when either one wins 2 games out of 3 . The probability of Alpha team winning in any one game is $\frac{5}{8}$.
(i) Draw a tree diagram to show all the possible outcomes for Alpha team.
(ii) Calculate the probability, expressing your answers in fraction, that Alpha team wins the completion.

10ai)		B1 for $2^{\text {nd }}$ branch with proper label B1 for $3^{\text {rd }}$ branch with proper label
	P(Alpha team wins the match) $=\mathrm{P}($ Alpha wins, Alpha wins) $+\mathrm{P}($ Alpha wins, Delta wins, Alpha wins) $+\mathrm{P}($ Delta wins, Alpha wins, Alpha wins) $\begin{aligned} & =\frac{5}{8} \times \frac{5}{8}+\frac{5}{8} \times \frac{3}{8} \times \frac{5}{8}+\frac{3}{8} \times \frac{5}{8} \times \frac{5}{8} \\ & =\frac{175}{256} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$

10 (b) The frequency table shows the weight in kg of 80 persons who join an exercise club.

Weight	$30<x \leq 40$	$40<x \leq 50$	$50<x \leq 60$	$60<x \leq 70$	$70<x \leq 80$
Frequency	8	17	34	18	3

(i) Find the mean weight.
(ii) Find the standard deviation.
(iii) After 6 months of exercising, the mean and standard deviation of these 80 persons are 50 kg and 12.2 kg respectively. Give 2 comments on the effect of exercise.

10 (c) The cumulative frequency graph below shows the end-of-year Mathematics examination marks of a group of 200 students.

Marks scored by 200 students in the end-of-year examination

From the graph, find the
(i) number of students who scored 28 or less marks.
(ii) number of students who scored more than 76 marks.
(iii) upper quartile
(iv) minimum mark attained by the top 2.5% of the cohort.
(v) probability that 1 student scored 28 marks or less and the other student score more than 76 marks when 2 students are chosen at random.

11 The variables x and y are connected by the equation

$$
y=\frac{5 x}{4}+\frac{1}{x^{2}}
$$

The table below shows some values of x and the corresponding values of y, correct to 1 decimal place.

x	0.5	1	1.5	2	3	4	5
y	4.6	2.3	2.3	2.8	3.9	5.1	p

(a) Calculate the value of p.

$$
\begin{equation*}
\text { Answer } p= \tag{1}
\end{equation*}
$$

(b) Using a scale of 2 cm to represent 1 unit on each axis, draw a horizontal x-axis for $0 \leq x \leq 5$ and a vertical y-axis for $0 \leq y \leq 8$. On your axes, plot the points given in the table and join them with a smooth curve.
(c) From the graph, find the value of x in the range $0 \leq x \leq 5$ for which $\frac{5 x}{4}+\frac{1}{x^{2}}-3=0$ [2]
(d) By drawing a tangent, find the gradient of the curve at the point $(1,2.3)$.
(e) (i) On the same axes, draw the graph of $y=\frac{1}{2} x+2$.
(ii) Write down the x-coordinates of the points where the two graphs intersect. [1]
(iii) Find the equation in the form $3 x^{3}+a x^{2}+b x+c=0$, which is satisfied by the values of x found in part (e)(ii).

Qn	Solution	Marks	Remarks
$11(\mathrm{a})$	$p=\frac{5(5)}{4}+\frac{1}{(5)^{2}}=6.29 \approx 6.3$	B1	

11(b)		G3	G1 - correct scale for axes and labelling. G1 - all points correctly marked G1 - for smooth curve
11(c)	$\begin{aligned} & \frac{5 x}{4}+\frac{1}{x^{2}}-3=0 \\ & \frac{5 x}{4}+\frac{1}{x^{2}}=3 \\ & y=3 \end{aligned}$ From the graph, when $y=3, x=0.7$ or $x=2.2$	G1 B1	G1 for drawing the line $y=3$ Accept ± 0.2
11(d)	From the tangent at $(1,2.3)$, the gradient is $-0.75(\pm 0.2)$	G1+B1	G1 for drawing tangent
11(e)	(i) Draw graph of $y=\frac{1}{2} x+2$	G1+G1	G1 for correct graph G1 for labelling graph
	(ii) The x coordinates are 0.9 and 2.3	B1	Accept ± 0.2
	$\begin{aligned} & \frac{5 x}{4}+\frac{1}{x^{2}}=\frac{1}{2} x+2 \\ & 5 x^{3}+4=2 x^{3}+8 x^{2} \\ & 3 x^{3}-8 x^{2}+4=0 \end{aligned}$	B1	

