Name		()	Class 4
	^			

ANGLICAN HIGH SCHOOL

PRELIMINARY EXAMINATION 2020

SECONDARY FOUR

MATHEMATICS Paper 1

4048/01 Monday 14 September 2020 2 hours

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name and index number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is **80**.

For Examiner's Use

Question	1	2	3	4	5	6	7	8	9	10	11	12
Marks												
Question	13	14	15	16	17	18	19	20	21	22	23	
Marks												

	S	Question Number(s)		
Presentation	-1			
Units	-1			00
Significant Figures	-1		Parent's/ Guardian's Name/ Signature/ Date	80

This question paper consists of 21 printed pages.

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \, \cos A$$

Statistics

Mean =
$$\frac{\sum fx}{\sum f}$$

Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$

Anglican High School Preliminary Examinations 2020 Secondary 4 Mathematics Paper 1 Answer all the questions.

1 Calculate $\frac{1458}{23.4 - 3.699^2}$. Write your answer correct to

(a) 4 decimal places,

(b) 4 significant figures.

2 A water tank contains 2.47×10^7 drops of water and 7×10^9 micro-organisms. Let *L* be the average number of micro-organisms per drop of water. Find the value of *L*. Give your answer in standard form.

3 (a) Of the 195 countries in the world, Ryan has visited 20. What percentage of the countries in the world has Ryan visited?

Answer% [1]

(b) At a sale, all prices are reduced by 22.5%. The price of a set of waterproof headphones during the sale is \$139.50. Find its original price.

Answer \$ [1]

4 Show that $3^{3x+2} - 9^{\frac{3}{2}x} + (27)^{x+1}$ is divisible by 5 for all positive integer values.

Answer

5 (a) The highest common factor and lowest common multiple of three numbers are 12 and 2376 respectively. If two of the numbers are 108 and 72, find the smallest possible integer value of the third number.

(b) (i) Express 6468 as a product of its prime factors.

(ii) Find the smallest positive integer k, such that $\sqrt{6468k}$ is an integer.

Answer $k = \dots$ [1]

6 (a) 6 men take 4 hours to dig a trench 6 m deep. How long will it take 10 men to dig a trench 5 m deep?

Answer hours [2]

(b) It is given that y varies directly as the square root of x. Given that y = 24 for a particular value of x. Find the value of y when x is increased by 300%.

- 7 A map has a scale of 1: 30 000. The length of a rectangular park is 8 cm on the map.
 - (a) Find the actual length of the park in km.

Answer km [1]

(b) Given that the park covers an area of 4.5 km^2 . Find the breadth of the park on the map.

8 (a) Convert 9 km/h into m/s.

Answerm/s [1]

(b) A car uses 17.25 litres of fuel to travel a distance of 250 km. Calculate the distance the car can travel with 60 litres of fuel.

Answer km [1]

9 Express as a single fraction in its simplest form $\frac{1}{18x^2-2} + \frac{2}{3x-1}$.

10 (a) Factorise $4a^2b + 4a^2 - b - 1$ completely.

(b) Given that $f = 3g - 2x^3$, express x in terms of f and g.

11 (a) Factorise the expression $6x^2 - 7x - 20$.

(b) Hence, solve the equation $6(y-1)^2 - 7y + 7 = 20$.

Answer $y = \dots$ or \dots [3]

12 (a) (i) Express
$$y = x^2 + 8x + 16$$
 in the form $y = (x-h)^2 + k$.

Answer [1]

Hence, sketch the graph of $y = x^2 + 8x + 16$ on the axes below. Indicate clearly the (ii) coordinates of the points where the graph crosses the axes and the turning point on the curve.

Answer

(b)

[1] Answer

State the coordinates of the turning point for $y = (x+2)^2$. (c)

> Answer (.....) [1]

Anglican High School Preliminary Examinations 2020 Secondary 4 Mathematics Paper 1

13 (a) The sketch represents the graph of $y = kx^n$.

(i) Write down a possible integer value of *n*.

Answer
$$n = \dots$$
[1]

(ii) State the range of values of *k*.

(b) Sketch the graph of $y = -2^x$.

Answer

[1]

14 Given the simultaneous equations

$$2x - y = 11,$$

$$5y - 2px + 7 = 0.$$

(a) Show that $x = \frac{24}{5-p}$.

Answer

(b) State the value of p if there is no solution for the pair of simultaneous equations.

Answer p = [1]

(c) Find the value of y if p = 1.

Answer $y = \dots$ [1]

15 (a) Solve the inequality $\frac{1}{3}(4x-5) \le 1-\frac{1}{5}x$, and illustrate your solution on the number line given in the answer space.

16 An interior angle of a regular *n*-sided polygon is larger than its exterior angle by 50%. Find *n*.

Answer $n = \dots$ [2]

					14	
17	$\xi = -$	${x:x is}$	a positiv	ve integ	ger less than 14}	
	A =	${x:x is}$	a compo	osite nu	umber}	
	<i>B</i> =	$\left\{x:\frac{x}{3}\right\}$ is	s an inte	ger}		
	<i>C</i> =	${x:x is}$	a multip	ole of 6	5}	
	(a)	List th	e elemer	nts in		
		(i)	A', An	swer		[1]
		(ii)	$A' \cap C$			F17
			An	swer		[1]
	(b)				n to represent the sets A and B .	
				lement	s in $A \cap B$.	
		Answe	r	ξ		
						[2]
	(c)	List al	l the pro	per su	bsets of set C.	
		Answe	r	•••••		[1]

Anglican High School Preliminary Examinations 2020 Secondary 4 Mathematics Paper 1

18 The figure below shows the distance-time graph of Anne's 10 km roller skating journey along East Coast Park.

Anne skates at an average speed of 0.3 km/min for the first 15 min. She takes a 5-min break and continues with an average speed of 0.5 km/min to the end point.

(a) Find the distance travelled by Anne in the first 15 min.

(b) Find the total time taken for Anne to complete the 10 km journey.

Answer minutes [1]

(c) Three minutes later, Jane started to skate behind Anne. Find the average skating speed of Jane for them to complete the journey at the same time. Leave your answer correct to 2 decimal places.

Answer km/min [2]

19 In the figure, *AB* is parallel to *CD*. *PQ* and *QR* bisect $\angle APR$ and $\angle CRP$ respectively.

Given that $\angle DRP = 4x^{\circ}$,

(a) express angle QRP in terms of x,

(b) show that *PQ* is perpendicular to *QR*. Answer **20** The map shows four cities on the north coast of Africa. The scale of the map is such that 1 cm on the plan represents 200 km on actual ground.

- (a) Using a compass and a ruler only, construct

 (i) the perpendicular bisector of *LT*.
 (ii) the angle bisector of angle *RAT*.

 (b) An ancient ruin is located at the intersection of the two bisectors in (a).

 (i) Mark and label the position of the ancient ruin with the letter X.
 - (ii) Measure and write down the actual distance, in kilometres, of the ancient ruin from A.

Answer km [1]

- 18
- **21** In the figure, *ABCD* is a square, $\angle AFE = 45^{\circ}$ and the ratio of *AF* : *FB* is 2 : 1.

(a) Name a pair of congruent triangles and state the reasons for the congruency.

Answer [2]

(b) Find the ratio of the area of $\triangle CEF$ to the area of square ABCD.

(c) Given that the area of $\triangle CEF$ is 16 cm². Find the length of the side of the square ABCD.

22 In the diagram, *BCDE* is a straight line, AB = 25 cm, BC = 7 cm and $\angle ACD = 90^{\circ}$.

Given that $\tan \angle CAD = \frac{3}{4}$, find

(a) the length of *CD*,

(b) $\cos \angle ADE$.

Answer $\cos \angle ADE = \dots$ [2]

23 The chart below shows the annual number of Americans who went for cancer screening and abortion.

(a) Use the graph to calculate the annual rate of decrease of cancer screening from 2006 and 2013.

(c) Draw a new graph using the information from the current graph and the axes below. *Answer*

Cancer Screening and Abortion Chart

END OF PAPER

1	(a) 150.0401 (correct to 4 d.p.)(b) 150.0 (correct to 4 s.f.)	2	2.83×10^2 (3 s.f.)
35	(a) 10.3% (to 3s.f) (b) \$180 (a) Smallest possible of the third number is 132 (i.e. $2^2 \times 3 \times 11$) (b) (i) $6468 = 2^2 \times 3 \times 7^2 \times 11$ (ii) $3 \times 11 = 33$	4	$3^{3x+2} - 9^{\frac{3}{2}x} + (27)^{x+1} = 3^{3x}(35)$ Since 35 is a multiple of 5, hence $3^{3x+2} - 9^{\frac{3}{2}x} + \left(\frac{1}{27}\right)^{-x-1}$ is divisible by 5 for all
6 7	(a) 2 hours (b) 48 (a) 2.4 km (b) 6.25cm	-	positive integer values.
8	(a) 2.5 m/s (b) 870 km (3 s.f.) or $869\frac{13}{23}$	9	$\frac{12x+5}{2(3x-1)(3x+1)}$
10	(a) $(b+1)(2a-1)(2a+1)$ (b) $x = \sqrt[3]{\frac{3g-f}{2}}$	11	(a) $(3x+4)(2x-5)$ (b) $y = -\frac{1}{3}$ or $y = \frac{7}{2}$

[1]

Anglican High School 2020 Secondary 4 Preliminary Examination Mathematics Paper 2

Answer **All** the questions

1 (a) (i) Factorise 2px-2p+3qx-3q completely.

(ii) Given that p and q are positive constants, find the value of x for which 2px-2p+3qx-3q=0.

Answer $x = \dots$ [1]

(b) Simplify $(-3p^2q^{-1})^2(p^{-2}q^2)^3$, expressing your final answer in positive indices.

2 In the diagram, BC = 8 cm and AB = 10 cm is the diameter of the semi-circle.

Find

(a) angle *COA* in radians,

		Answer	radians	[2]
(h)	area of the shaded region			

(b) area of the shaded region.

3 In the diagram, not drawn to scale, point A lies on the y-axis and point B lies on the x-axis. The coordinates of C is (5, 6).

(a) Given that C lies on the line AB and that 5OA = 3OB, show that the y-intercept of the line AB is 9.

Answer

[3](b) Given that point *D* lies on the *y*-axis, state the coordinates of *D* such that triangle *ACD* is an isosceles triangle.

	Answer ()	[1]
(d)	Find the area of the parallelogram, OCEA.		

Answerunits² [2]

- Mrs Tan bought x kg of rice for \$65 in December 2019. In February 2020, the price of rice increased and she received 6 kg less for the same amount of money spent.
- (a) Write down an expression for the price of rice per kilogram, in terms of x,

(i)	in December 2019,		
		Answer	\$ [1]
(ii)	in February 2020.		
		Answer	\$ [1]

(b) If the increase in price is \$2 per kilogram of rice, form an equation in x and show that it reduces to $x^2 - 6x - 195 = 0$.

Answer

4

[3]

(c) Solve the equation, giving your answers correct to 2 decimal places.

Answer $x = \dots$ [2]

(d) Hence, find the price of rice per kilogram in February 2020, leaving your answer to the nearest cent.

5 In the diagram, *PQRS* are four points on level ground, and *Q* is due north of *P*.

Given that angle $PQR = 40^{\circ}$, angle $PRQ = 55^{\circ}$, PR = 8 km, RS = 12 km and that QRS is a straight line,

(a) show that the distance PS is 17.836 km.

Answer

[3]

- (b) Using the result in (a), find,
 - (i) the bearing of P from S,

		0
	Answer	 [3]
(ii)	the shortest distance from <i>R</i> to <i>PS</i> .	

Answerkm [2]

[2]

(a) The table below shows the amount of flour, sugar and number of eggs needed for each type of pastry sold in a cafe.

	Flour (g)	Sugar (g)	Number of
			eggs
Cookie	90	50	1.5
Cake	220	200	8
Pancake	60	80	2

The above information is represented by a matrix
$$\mathbf{D} = \begin{pmatrix} 90 & 50 & 1.5 \\ 220 & 200 & 8 \\ 60 & 80 & 2 \end{pmatrix}$$
.

Each kg of flour and sugar costs \$1.50 and \$1.80 respectively. A dozen eggs costs \$2.70. Complete the cost in \$ for every gram of flour and sugar as well as the cost in \$ for each egg in the table below :

Flour(\$/g)	Sugar(\$/g)	1 Egg(\$)

(b) Write down a 3×1 matrix **E** such that its elements represent the unit cost of each ingredient needed for the various pastries.

Answer [1]

(c) Calculate **DE** and state what the elements of **DE** represent.

(d) The cafe prepared 70 cookies, 30 cakes and 120 pancakes on a particular day. Using matrix multiplication, calculate the total cost of the basic ingredients for all the pastries prepared on this day.

Answer \$..... [2]

(a) In the diagram, AD is the diameter of the circle ABDF with centre O. Given BD and AF produced meet at E, AB and FD produced meet at C, $\angle FED = 33^{\circ}$ and $\angle DAB = 16^{\circ}$.

Calculate, stating your reasons clearly,

(i) $\angle ADB$,

	0	
Answer		[2]

(ii) $\angle AFB$,

		Answer	 [1]
(iii)	$\angle DAF.$		

0

(b) Given ABCD is a trapezium with AD = 18 cm, BC = 8 cm and AB = DC. A circle is inscribed in the trapezium as shown.

(i) Show that the length of *AB* is 13 cm, stating your reason(s) clearly. *Answer*

[2]

(ii) Calculate the radius of the circle.

The height of the frustum is 8mm. The area of the two circular bases are 9 mm^2 and 25 mm^2 respectively.

(i) Show that the height of the smaller cone is 12 mm.

Answer

(ii) Find the volume of the frustum.

[2]

(iii) Find the curved surface area of the smaller cone.

(b) In the figure, ADCB is a major segment of a circle, centre O and radius 7 cm. BD = 12 cm. AC is perpendicular to the line BOD. Find the perimeter of the major segment.

Mr Tan is looking to purchase a new car to drive to and from work on weekdays and for leisure on weekends. He estimates the total distance travelled is about 1500 km per month. The average cost of petrol is \$2.20 per litre. To buy a new car, he must pay a down payment of 30% of the selling price of the car before he can take a car loan for the remaining amount from a bank. He has to pay back the loan by monthly instalment. A 5-year car loan simple interest rate offered by most banks is 2.28% per annum. Mr Tan shortlisted 3 cars with all the relevant cost as shown in the table.

	Car A	Car B	Car C
Selling Price	\$87 999	\$108 999	\$107 888
Fuel Consumption(km per litre)	17.2	14.9	17.8
Car Insurance per year	\$ 1 200	\$ 1500	\$ 1 500
Engine Capacity(in cubic cm)	1 598	1 499	1 197
Monthly Car Maintenance	\$200	\$200	\$200
Monthly Car Park charges	\$150	\$150	\$150

He also finds out that the annual road tax of the car is determined by the engine capacity of the car is as follows:

```
Annual Road Tax = [$500 + 0.75(Engine Capacity minus 1000)] \times 0.782
```

- (a) After reviewing the information, Mr Tan decides to buy Car A.
 - (i) calculate the down payment.

Answer \$..... [1]

(ii) calculate the total **monthly** expenditure including monthly instalment payment and all the other monthly costs.

(b) An alternative to buying a car is to rent an electric car that is easily accessible from his house and workplace. Subscription per month is \$15 and it costs 33 cents per minute of use. Mr Tan estimates that the average daily travel time to and from work is about 1 hour and 20 minutes. On weekends, he needs to use the car for about 5 hours for leisure activities. Calculate his monthly expenditure to rent a car.

Answer \$..... [2]

(c) Do you think Mr Tan should buy or rent a car? Justify your answer.
--

Answer......[1]

10 (a) Team Alpha and Delta are competing in the badminton finals. Each game will only result in a win or a loss. The competition ends when a team wins 2 games out of 3.

The probability of Alpha team winning in a game is $\frac{5}{8}$.

(i) Draw a tree diagram to show all the possible outcomes for Alpha team. *Answer*

[2]

(ii) Calculate the probability, expressing your answers in fraction, that Alpha team wins the competition.

10 (b) The frequency table shows the weight in kg of 80 persons who join an exercise club.

Weight	$30 < x \le 40$	$40 < x \le 50$	$50 < x \le 60$	$60 < x \le 70$	$70 < x \le 80$
Frequency	8	17	34	18	3

(i) Find the mean weight.

Answerkg [1]

(ii) Find the standard deviation.

Answerkg [1]

(iv) minimum mark obtained by the top 2.5% of the cohort,

(v) probability that one student scored 28 marks or less and the other student scored more than 76 marks when two students are chosen at random.

11 The variables *x* and *y* are connected by the equation

$$y = \frac{5x}{4} + \frac{1}{x^2}.$$

The table below shows some values of *x* and the corresponding values of *y*, correct to 1 decimal place.

x	0.5	1	1.5	2	3	4	5
у	4.6	2.3	2.3	2.8	3.9	5.1	р

(a) Calculate the value of *p*.

Answer
$$p = \dots$$
[1]

(b) Using a scale of 2 cm to represent 1 unit on each axis, draw a horizontal *x*-axis for $0 \le x \le 5$ and a vertical *y*-axis for $0 \le y \le 8$. On your axes, plot the points given in the table and join them with a smooth curve. [3]

(c) From the graph, find the values of x for which $\frac{5x}{4} + \frac{1}{x^2} - 3 = 0$.

- (d) By drawing a tangent, find the gradient of the curve at the point (1, 2.3).

(e) (i) On the same axes, draw the graph of
$$y = \frac{1}{2}x + 2$$
. [2]

(ii) Write down the *x*-coordinates of the points where the two graphs intersect.

- (iii) Find the equation in the form $3x^3 + ax^2 + bx + c = 0$, which is satisfied by the values of x found in part (e)(ii).

Answer key for paper 2		
	$9q^4$ 2	(a) 1.29 radians
1 (a)(i) $(2p+3q)(x-1)$ (ii) $x=1$ (b)	$\frac{p^2}{p^2}$	(b) $4.09cm^2$
3 (b) A(0, 9). D(0, 3) (c) <i>E</i> (5, 15)	4	(a) (i) ¢ 65 (ii) ¢ 65
(d) 45 unit ²		(a) (i) $\$ \frac{65}{x}$ (ii) $\$ \frac{65}{x-6}$
5 (b)(i) 061.6° (ii) 4.41 km		(c) $x = 17.28$ or $x = -11.28$
(c) 0.231 km.		(d) \$5.76 (to nearest cent)
7 (a) (i) 74 ^o (ii) 74 ^o (iii) 41 ^o	6	(a) 0.0015, 0.0018, 0.225(egg)
(b) (i) 13 (Tangent from ext. point)		(0.0015) (0.5625)
(ii) 6 cm		(b) $\mathbf{E} = \begin{pmatrix} 0.0018 \\ 0.0018 \\ 0.225 \end{pmatrix}$ (c) $\begin{pmatrix} 0.0023 \\ 2.49 \\ 0.684 \end{pmatrix}$
8 (a) (ii) $130\frac{2}{3}mm^2$ or $131mm^2(3sf)$		0.225 0.684
(a) (ii) 130 - nun or 131nun (33) 3		(c) The elements in DE represents the cost
(iii) $64.4mm^2$		price (in dollars) needed for the making of
		one cookie, one cake and one pancake
(b) $42.9cm(3sf)$		respectively
		(d) \$196.16
9 (a)(i) \$26,399.70 (ii) \$1847.36		
		as some students may assume up to 23 working
days and 4 weekends or 21 working day (c) Acceptable responses such as	ys and 5 we	ekends)
	and to pay	down novment and menthly instalment
		down payment and monthly instalment.
2. Although it is more expensive to	•	t is very convenient.
3. Any other reasonable justificatio		
10 (a)(i)	11	(a) $p \approx 6.3$
(a) <u>5</u> 5		av
5 $\overline{8}$ W $\overline{8}$ W	7	
$\overline{8}$ W \sim L \sim W	(>	
$5 \frac{3}{8} \frac{5}{5} \frac{3}{8}$	E.	8
$\frac{5}{8}$ $\frac{8}{3}$ $\frac{8}{3}$ W	τ	7 y= 2 + 2
$\frac{3}{2}$ L $\stackrel{0}{\longrightarrow}$ W		67
		5- 19= 52+2
$\frac{3}{8}$ $\frac{1}{8}$ $\frac{3}{8}$		u de la constance de la consta
(ii) $\frac{175}{256}$		3
(") 256		24
(b) (i) 53.875 kg or $\frac{431}{8}$ kg or $53\frac{7}{8}$ kg		
0 0		
(ii) 9.87 kg		(b) (c) From the graph, when $y = 3$,
(iii) (1) The mean weight is lower. Joggi has helped to reduce weight.	ng	
(2) Standard deviation is higher imp	olies	$x = 0.7 \text{ or } x = 2.2$ (Accept ± 0.20) (d) From the tangent at (1, 2.3),
that weight loss after exercising is more		the gradient is $-0.75 (\pm 0.2)$
spread out. (accept "not consistent")		1
		(e) (i) Draw graph of $y = \frac{1}{2}x + 2$
(c) (i) 20 students (ii) 15 students		$\frac{1}{2}$
(c) (i) 20 students (ii) 15 students (iii) 56 marks (iv) 90 marks (v) $\frac{3}{199}$		(ii) The <i>x</i> coordinates are 0.9 and 2.3

Anglican High School Preliminary Examination 2020 Secondary Four Mathematics Paper 1 (4048/01)

Marking Scheme

Qn		Solution	Marks	Remarks
1	(a)	$\frac{1458}{23.4 - 3.699^2} = 150.0401 \text{ (correct to 4 d.p.)}$	B1	
	(b)	$\frac{1458}{23.4 - 3.699^2} = 150.0 \text{ (correct to 4 s.f.)}$	B1	
2	Greates	t possible value of L = $\frac{7 \times 10^9}{2.47 \times 10^7}$	M1	
		$= 2.83 \times 10^2$ (3 s.f.)	A1	
3	(a)	Percentage of countries visited by Ryan = $\frac{20}{195} \times 100\%$	B1	
	(b)	= 10.3% (to 3s.f) Original price = $\frac{100}{77.5} \times \$139.50 = \$180$	B1 B1	
	1	2	1	
4	3 ^{3x+2} -	$-9^{\frac{3}{2}x} + (27)^{x+1} = 3^{3x+2} - 3^{3x} + 3^{3x+3}$ $= 3^{3x}(3^2 - 1 + 3^3)$ $= 3^{3x}(35)$	M1	M1 – express all in index notation with base 3
		5 is a multiple of 5, hence $3^{3x+2} - 9^{\frac{3}{2}x} + \left(\frac{1}{27}\right)^{-x-1}$ is divisible all positive integer values.	A1	Any multiple of 5
5	(a)	Prime factorization of the numbers HCF and LCM are $12 = 2^2 \times 3$ $2376 = 2^3 \times 3^3 \times 11$ Prime factorization of the numbers are $72 = 2^3 \times 3^2$ $108 = 2^2 \times 3^3$ Let <i>x</i> be the third number. Smallest possible value of $x = 2^2 \times 3 \times 11 = 132$	M1	M1 – prime factorisation
	(b)(i)		A1 B1	
	(b)(i)	$6468 = 2^2 \times 3 \times 7^2 \times 11$		
	(b)(ii)	$k = 3 \times 11 = 33$	B1	

6	(a)	1 man will take 24 hours to dig 6m trench.		
		10 men will take 2.4hours to dig 6m trench.	M1	Accept
		Time taken to dig a 5m trench = $2.4 \times \frac{5}{6}$ hours		procedures
		= 2 hours	A1	
	(b)	$y = k\sqrt{x}$		
		When $x = a$, $y = 24$		
		$24 = k\sqrt{a}$		
		$k = \frac{24}{\sqrt{a}}$	M1	No mark if
		4		<i>k</i> expressed in terms of
		When $x = 4a$,		x
		$y = \left(\frac{24}{\sqrt{a}}\right)\sqrt{4a}$		
		y = 48	A1	
7	(a)	1 cm on map represents 0.3 km on actual ground. Actual length of park = 8×0.3 km = 2.4 km	B1	
	(b)	Area scale of map = $1 \text{ cm}^2 : 0.09 \text{ km}^2$	M1	
		Area of park on map = $\frac{4.5}{0.09}$ = 50 cm ²		
		Breadth of park on the map = $\frac{50}{8}$ = 6.25 cm	A1	
8	(a)	0 km 0000 m		
0	(a)	$\frac{9 \text{ km}}{1 \text{ h}} = \frac{9000 \text{ m}}{3600 \text{ s}} = 2.5 \text{ m/s}$	B1	
	(b)	Distance travelled with 60 litres of fuel		Accept
		$= \frac{250}{17.25} \times 60 = 869.6 \approx 870 \text{ km (3 s.f.)}$	B1	$869\frac{13}{23}$
		11.25		23
9		$\frac{1}{18x^2 - 2} + \frac{2}{3x - 1}$		
		$18x^2 - 2 3x - 1$		
		$=\frac{1}{2(9x^2-1)}+\frac{2}{3x-1}$		
		$2(9x^2-1)$ $3x-1$		
		$= \frac{1}{2(3-1)(3-1)} + \frac{2}{3x-1}$	M1	
		1+2(2)(3x+1)	2.61	
		$=\frac{1+2(2)(3x+1)}{2(3x-1)(3x+1)}$	M1	
		$=\frac{1+12x+4}{2(3x-1)(3x+1)}$		
		(-2(3x-1)(3x+1))		
		$=\frac{12x+5}{2(3x-1)(3x+1)}$	A1	
		2(3x-1)(3x+1)		

				1
10	(a)	$4a^2b + 4a^2 - b - 1$		
		$=4a^{2}(b+1)-(b+1)$	M1	Grouping
		$=(b+1)(4a^2-1)$		
		=(b+1)(2a-1)(2a+1)	A1	Special
	(b)	$f = 3g - 2x^3$	AI	product
	(~)	$ \begin{array}{l} f = 3g - 2x \\ 2x^3 = 3g - f \end{array} $		
		$x^3 = \frac{3g - f}{2}$	M1	
		$x = \sqrt[3]{\frac{3g - f}{2}}$	A1	
		V 2	AI	
11	(a)	$6x^2 - 7x - 20 = (3x + 4)(2x - 5)$	B1	
	(b)	$6(y-1)^2 - 7y + 7 = 20$		
		$6(y-1)^2 - 7(y-1) - 20 = 0$	M1	Deduct 1
		$\begin{bmatrix} 3(y-1) + 4 \end{bmatrix} \begin{bmatrix} 2(y-1) - 5 \end{bmatrix} = 0$		mark for
		$ \begin{array}{c} \begin{bmatrix} 2 & (y - 1) & y \end{bmatrix} \begin{bmatrix} 2 & (y - 1) & y \end{bmatrix} = 0 \\ (3y + 1)(2y - 7) = 0 \end{array} $	M1	skipping step
		$y = -\frac{1}{3}$ or $y = \frac{7}{2}$	A1	
		$y = -\frac{1}{3}$ or $y = -\frac{1}{2}$	111	
12	(a)(i)	$y = x^2 + 8x + 16$		
		$y = (x+4)^2 - 4^2 + 16$		
		$y = (x+4)^2$	D1	
	(a)(ii)	y = (x + 4)	B1	
	(")(")	у 🛉		
		(0, 16)	G2	G1 for
				correct shape
				G1 for both
				correct
		$(-4,0) \qquad 0 \qquad x$		coordinates or label on
				axes
	1			
	(b)	x = 0	B1	

(a)(ii) $k < 0$ B1 (b) y x G1 y x G1 Curr pass thro (0, -1) y x G1 Curr pass thro (0, -1) y x G1 M1 M1 y x G1 M1 M1 M1 x	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
(b) (b) (c) (c) (c) (c) (c) (c) (c) (c	number
14 (a) $2x - y = 11 Eq (1)$ 5y - 2px + 7 = 0 Eq (2) From Eq (1), $y = 2x - 11 Eq (3)$ Substitute Eq (3) into Eq (2), 5(2x - 11) - 2px + 7 = 0 10x - 55 - 2px + 7 = 0 2x(5 - p) = 48 $x = \frac{24}{5 - p}$ M1 M1 M1 (b) $p = 5$ B1 (c) When $p = 5, x = \frac{24}{4} = 6$ D1	
Image: constraint of the second system o	
Image: 10 part of the second system of t	ve must
Image: 10 minipage of the second system	
Image: 14 (a) $2x - y = 11 Eq (1)$ $5y - 2px + 7 = 0 Eq (2)$ From Eq (1), $y = 2x - 11 Eq (3)$ Substitute Eq (3) into Eq (2), Substitute Eq (3) into Eq (2), $5(2x - 11) - 2px + 7 = 0$ $10x - 55 - 2px + 7 = 0$ $2x(5 - p) = 48$ $x = \frac{24}{5 - p}$ A1 (b) $p = 5$ (c) When $p = 5, x = \frac{24}{4} = 6$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
(c) $y = 2x + 7 = 0$ Eq (2) From Eq (1), $y = 2x - 11$ Eq (3) Substitute Eq (3) into Eq (2), 5(2x - 11) - 2px + 7 = 0 10x - 55 - 2px + 7 = 0 2x(5 - p) = 48 $x = \frac{24}{5 - p}$ (b) $p = 5$ (c) When $p = 5$, $x = \frac{24}{4} = 6$ D1	
(c) $y = 2x + 7 = 0$ Eq (2) From Eq (1), $y = 2x - 11$ Eq (3) Substitute Eq (3) into Eq (2), 5(2x - 11) - 2px + 7 = 0 10x - 55 - 2px + 7 = 0 2x(5 - p) = 48 $x = \frac{24}{5 - p}$ (b) $p = 5$ (c) When $p = 5$, $x = \frac{24}{4} = 6$ D1	
(c) $y = 2x + 7 = 0$ Eq (2) From Eq (1), $y = 2x - 11$ Eq (3) Substitute Eq (3) into Eq (2), 5(2x - 11) - 2px + 7 = 0 10x - 55 - 2px + 7 = 0 2x(5 - p) = 48 $x = \frac{24}{5 - p}$ (b) $p = 5$ (c) When $p = 5$, $x = \frac{24}{4} = 6$ D1	
(c) $y = 2x + 7 = 0$ Eq (2) From Eq (1), $y = 2x - 11$ Eq (3) Substitute Eq (3) into Eq (2), 5(2x - 11) - 2px + 7 = 0 10x - 55 - 2px + 7 = 0 2x(5 - p) = 48 $x = \frac{24}{5 - p}$ (b) $p = 5$ (c) When $p = 5$, $x = \frac{24}{4} = 6$ D1	
(c) $y = 2x + 7 = 0$ Eq (2) From Eq (1), $y = 2x - 11$ Eq (3) Substitute Eq (3) into Eq (2), 5(2x - 11) - 2px + 7 = 0 10x - 55 - 2px + 7 = 0 2x(5 - p) = 48 $x = \frac{24}{5 - p}$ (b) $p = 5$ (c) When $p = 5$, $x = \frac{24}{4} = 6$ D1	
(c) $y = 2x + 7 = 0$ Eq (2) From Eq (1), $y = 2x - 11$ Eq (3) Substitute Eq (3) into Eq (2), 5(2x - 11) - 2px + 7 = 0 10x - 55 - 2px + 7 = 0 2x(5 - p) = 48 $x = \frac{24}{5 - p}$ (b) $p = 5$ (c) When $p = 5$, $x = \frac{24}{4} = 6$ D1	
From Eq (1), $y = 2x - 11$ Eq (3) Substitute Eq (3) into Eq (2), 5(2x - 11) - 2px + 7 = 0 10x - 55 - 2px + 7 = 0 2x(5 - p) = 48 $x = \frac{24}{5 - p}$ (b) $p = 5$ (c) When $p = 5$, $x = \frac{24}{4} = 6$ D1	
Substitute Eq (3) into Eq (2), 5(2x-11)-2px+7=0 10x-55-2px+7=0 2x(5-p)=48 $x = \frac{24}{5-p}$ (b) $p=5$ (c) When $p=5, x = \frac{24}{4} = 6$ N1 M1 corr substitutes A1	
$5(2x-11)-2px+7=0$ $10x-55-2px+7=0$ $2x(5-p)=48$ $x=\frac{24}{5-p}$ (b) $p=5$ (c) When $p=5, x=\frac{24}{4}=6$ (c) When $p=5, x=\frac{24}{4}=6$ (c) P1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	for
$10x-35-2px+7=0$ $2x(5-p)=48$ $x=\frac{24}{5-p}$ A1 (b) $p=5$ (c) When $p=5, x=\frac{24}{4}=6$ D1	
$x = \frac{24}{5-p}$ A1 (b) $p = 5$ B1 (c) When $p = 5$, $x = \frac{24}{4} = 6$ D1	stitution
$x = \frac{24}{5-p}$ A1 (b) $p = 5$ B1 (c) When $p = 5$, $x = \frac{24}{4} = 6$ D1	
(b) $p = 5$ B1 (c) When $p = 5$, $x = \frac{24}{4} = 6$ D1	
(b) $p = 5$ B1 (c) When $p = 5$, $x = \frac{24}{4} = 6$ D1	
When $p = 5$, $x = \frac{1}{4} = 6$	
y = 2(6) - 11 = 1 B1	
15 (a) $\frac{1}{4x-5} \le 1 - \frac{1}{4x-5}$	
15 (a) $\frac{1}{3}(4x-5) \le 1-\frac{1}{5}x$	
$5(4x-5) \le 15-3x \tag{M1}$	
$20x + 3x \le 15 + 25$	
$23x \le 40$	
17	
$x \le 1\frac{17}{23} \tag{A1}$	
B1	
$1\frac{17}{23}$	
(b) 0, 1 B1	

16	Interior $x^{\circ} + 1.5$	be the exterior angle. angle of the polygon = $1.5x^{\circ}$ $x^{\circ} = 180^{\circ}$		
	$2.5x^{\circ} = 180^{\circ}$ $x^{\circ} = 72^{\circ}$ Hence, $n = \frac{360^{\circ}}{72^{\circ}}$			
		n=5	A1	
	1		1	
17		$\boldsymbol{\xi} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$		
		$A = \{4, 6, 8, 9, 10, 12\}$		
		$B = \{3, 6, 9, 12\}$		
		$C = \{6, 12\}$		
	(a)(i)	$A' = \{1, 2, 3, 5, 7, 11, 13\}$ or $1, 2, 3, 5, 7, 11, 13$	B1	
	(a)(ii)	$A' \cap C = \{ \}$ or \emptyset or null/empty set or no element	B1	
	(b)			
		ξ A 6 9 12 B	B1 B1	B1 for correct Venn Diagram B1 for correct elements in $A \cap B$
	(c)	{ },{6},{12}	B1	
	<u> </u>		<u> </u>	I
18	(a)	Distance travelled by Anne in 15 min = $0.3 \times 15 = 4.5$ km	B1	
	(b)	Time taken from rest to the end of journey		
		$=\frac{10-4.5}{0.5}=11$ min		
		0.5 Total time taken = $15 + 5 + 11 = 31 \text{ min}$	B1	
	(c)	Jane needs to complete the 10 km in $(31-3) = 28$ min	M1	
		Average speed of Jane is $\frac{10}{28} \approx 0.36$ km/min (2 d.p.)	Al	

19	(a)	$\angle QRP = \frac{180^\circ - 4x^\circ}{2} = 90^\circ - 2x^\circ$ (supplementary angles)	B1	
			DI	
	(b)	$\angle APR = 4x^{\circ}$ (alternate angles, $AB // CD$)		$\mathbf{D} = 1 + 1$
		Since QP bisects $\angle APR$, $\angle QPR = 2x^{\circ}$	M1	Deduct 1 for
		$\angle PQR + \angle QRP + \angle QPR = 180^{\circ}$ (sum of angles in triangle)	M1	presentation
		$\angle PQR + 90^{\circ} - 2x^{\circ} + 2x^{\circ} = 180^{\circ}$		without
		$\angle PQR = 180^\circ - 90^\circ$		reason
		$\therefore \angle PQR = 90^{\circ}$. 1	
		Hence, PQ is perpendicular to QR .(shown)	A1	
20	(a)(i)		Ġħ G1	
	(a)(ii)		G1 G1	
	(b)(i)	R R L X		
	(b)(ii)	$AX = 4.5 \times 200 = 900 \text{ km}$	B1	Accept
			DI	$\pm 20 \text{ km}$
21	(a)	Given $CD = CB$.		B1 for valid
		Given $\angle AFE = 45^{\circ}$ and $\angle FAE = 90^{\circ}$, $\angle AEF = 45^{\circ}$.		proof and reasons
		$\therefore \Delta FAE$ is an isosceles right-angled triangle.	B1	B1 for
		Hence, $AF = AE$ and $FB = ED$.		correct pair
		By Pythagoras' Theorem, $FC = EC$.		and
				congruency
		$\Delta CDE \equiv \Delta CBF \text{ (SSS)}$	B1	condition, accept other
				valid
				solution
	(b)	Let sides of square be $3a$.		
		Area of square = $9a^2$		Accept other
		Area of $\triangle CEF =$		solutions.
		$=9a^{2} - \left(\frac{1}{2} \times 3a \times a\right) - \left(\frac{1}{2} \times 3a \times a\right) - \left(\frac{1}{2} \times 2a \times 2a\right)$		
		$=9a^2 - \frac{3}{2}a^2 - \frac{3}{2}a^2 - 2a^2$		
		$=4a^2$	M1	
		Area of $\triangle CEF$: Area of square = $4a^2: 9a^2 = 4:9$	A1	
	1	-	***	

	1		
	(c)	Area of square = $\frac{16 \text{ cm}^2}{4} \times 9 = 36 \text{ cm}^2$	M1
		Length of side of square = $\sqrt{36} = 6$ cm	A1
22	(a)	$AC = \sqrt{25^2 - 7^2} = 24 \text{ cm}$ Given that $\tan \angle CAD = \frac{3}{4}$,	M1
		Given that $\tan \angle CAD = \frac{3}{4}$,	
		CD 3	
		$\frac{CD}{24} = \frac{3}{4}$	
		CD = 18 cm	A1
	(b)	$AD = \sqrt{24^2 + 18^2} = 30 \text{ cm}$	M1
		$\cos \angle ADE = -\cos \angle ADC$	
		18	
		$= -\frac{18}{30}$ $= -\frac{3}{5}$	
		3	
		$=-\frac{1}{5}$	A1
23	(a)	Rate of decrease of cancer screening = $\frac{2007371 - 935573}{8}$	
		0	B1
		=133974.75 persons per year	
	(b)	The scale on the vertical axis is not defined.	B1
	(c)	Cancer Screening and Abortion Ch	
		Thousands	
		2500	
		2000	
		Cancer Screening	
		1500	
			<u>C1</u>
	K		G1
	Exa		
		0	
		2005 2006 2007 2008 2009 2010 2011 2012 2013	

Anglican High School Preliminary Examination 2020 Secondary Four Mathematics Paper 2 (4048/2)

1	(a) (i) Factorise $2px-2p+$	3qx - 3q completely.	[2]
	2px-2p+3qx-3q = 2p(x-1)+3q(x-1) = (2p+3q)(x-1)	M1 A1 Grouping $(2p+3q)$	

- (ii) Given that p and q are positive constants, find the value of x for which 2px-2p+3qx-3q=0. [1] (2p+3q)(x-1)=0 (x-1)=0 or (2p+3q)=0 [optional in this case.] x=1 B1
 - (b) Simplify $\left(-3p^2q^{-1}\right)^2 \left(p^{-2}q^2\right)^3$, expressing your final answer in positive indices. [2]

	•
$\left(-3p^2q^{-1}\right)^2\left(p^{-2}q^2\right)^3$	
$=9p^4q^{-2}p^{-6}q^6$	M[1] (correct use of $(ab)^n = a^n b^n$)
$=9p^{-2}q^{4}$	
$=\frac{9q^4}{p^2}$	A[1]

2 In the diagram, BC = 8 cm and AB = 10 cm is the diameter of the semi-circle.

Find,

- (a) $\angle COA$ in radians. [2]
- (b) Area of the shaded region. [3]

(a)	$\cos \angle ABC = \frac{8}{10}$	
	$\angle ABC = 0.64350$	M1
	Using ext $\angle =$ sum of int \angle of \triangle	
	$\angle COA = 2 \times \angle ABC$	
	=1.2870	
	=1.29 radians	A1
	Alternatively,	
	$\cos \angle CAB = \frac{6}{10}$	M1
	$\angle CAB = 0.92730$	
	$\angle COA = \pi - 0.92730 - 0.92730$	
	=1.2870	4.1
	=1.29 radians	A1
(b)	Area of shaded region = Area of sector <i>COA</i> - Area of triangle <i>COA</i>	
	$=\frac{1}{2}\times5^{2}\times1.2870-\frac{1}{2}\times5^{2}\times\sin1.2870$	M1,M1for each correct
	=16.088 - 12.000	term.
	=4.088	
	$= 4.09 cm^2$	A1

3 In the diagram, not drawn to scale, point A lies on the y-axis and point B lies on the x-axis. The coordinates of C is (5, 6).

- (a) Given that point C lies on the line AB and that 5OA = 3OB, show that the y-intercept of the line AB is 9. [3]
- (b) Given that point D lies on the *y*-axis, state the coordinate of D such that triangleACD forms an isosceles triangle, [1]
- (c) Given further that OCEA is a parallelogram, find the coordinates of the point E. [1]
- (d) Find the area of the parallelogram, OCEA.

[2]

(a)	$\frac{OA}{OC} = \frac{3}{5}$	
	OC 5	
	Hence gradient of $AB = -\frac{3}{5}$	M[1] (deducing gradient)
	Equation of <i>AB</i> :	
	$y - 6 = -\frac{3}{5}(x - 5)$ $y = -\frac{3}{5}x + 9$	
	$y = -\frac{3}{5}x + 9$	M[1] (correct equation)
	Since the <i>y</i> -intercept of $AB = 9$, therefore the line AB cuts the <i>y</i> -axis at 9. (shown)	A[1]
(b)	Coordinates of $A = (0, 9)$.	
	Coordinates of $D = (0, 3)$	B[1]
(c)	Distance of $OA = 9$ units	
	E = (5, 15)	B[1]
(d)	Area of parallelogram = 9×5	M[1]
	$=45 \text{ unit}^2$	A[1]

4 Mrs Tan bought *x* kg of rice for \$65 in December 2019. In February 2020, the price of rice increased and she received 6 kg less for the same amount of money spent.

(a) Write down an expression for the price of rice per kilogram, in terms of x,

	(i)	in December 2019,	[1]
	(ii)	in February 2020.	[1]
)	If the	increase in price is \$2 per kilogram of rice, form an equation in x and show	that

- (b) If the increase in price is \$2 per kilogram of rice, form an equation in x and show that it reduces to $x^2 6x 195 = 0$. [3]
- (c) Solve the equation, giving your answers correct to 2 decimal places. [2]
- (d) Hence, find the price of rice per kilogram in February 2020, leaving your answer to the nearest cent. [1]

4(a)	(i)	Price per kg in Dec 2019 = $\$\frac{65}{x}$	B1	
	(ii)	Price per kg in Jan 2020 = $\$\frac{65}{x-6}$	B1	

4(b)	$\frac{65}{x-6} - \frac{65}{x} = 2$	M1	
	65x - 65(x - 6) = 2x(x - 6)	M1	
	$65x - 65x + 390 = 2x^2 - 12x$		
	$2x^2 - 12x - 390 = 0$		
	$x^2 - 6x - 195 = 0$	A1	
4(c)			
	$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-195)}}{2(1)}$	M1	M1- show substitution into
	$x = \frac{6 \pm \sqrt{816}}{2}$		quadratic formula
	x = 17.28 or $x = -11.28$	A1	A1 for both correct answers
4(d)	Price per kg in Jan 2020 = \$		
	$\frac{65}{17.28-6} = 5.76 (to nearest cent)	B1	

5 In the diagram, *PQRS* are four points on level ground, and *Q* is due north of *P*.

Given that angle $PQR = 40^{\circ}$, angle $PRQ = 55^{\circ}$, PR = 8 km, RS = 12 km and that QRS is a straight line,

- (a) show that the distance *PS*, corrected to 5 significant figures, is 17.836 km, [2]
- (b) using the result in (a), find,
 - (i) the bearing of P from S.
 - (ii) the shortest distance from R to PS. [2]

[3]

(c) A vertical tower stands at point *R*. Evan, walking along *PS* and stops at a point where the greatest angle of elevation of the top of the tower, *T*, is 3° . Find the height of the tower. [2]

(a)	angle $SRP = 180^{\circ} - 55^{\circ}$ (angles on a straight line)	
	=125°	M1 if 125° is shown
	$PS^{2} = 12^{2} + 8^{2} - 2(12)(8)\cos 125^{\circ}$	M1 (correct angle, formula)
	= 318.127	M1 or with implicit square root
	PS = 17.836 km (to 5 sf) (shown)	
	1 ODD 1000 400 550 (1 ' (' 1)	
(b)(i) (Mtd 1)	angle $QPR = 180^\circ - 40^\circ - 55^\circ$ (angles in a triangle) = 85°	
	$\frac{\sin RPS}{12} = \frac{\sin 125}{17.836}$	N/F13
	12 17.836 angle $RPS = 33.444$ (to 3 dp)	M[1]
	angle $NSP = 180^\circ - 85^\circ - 33.444^\circ$ (interior angles)	
	$= 61.6^{\circ} (\text{to 1 dp})$	
		M[1]
	Bearing of <i>P</i> from $S = 061.6^{\circ}$	
		A[1]
(b)(i) (Mtd 2)	$\frac{\sin RSP}{8} = \frac{\sin 125}{17.836}$	
(1/1/4 =)	angle $RSP = 21.556$ (to 3 dp)	M[1]
	angle $QSN = 40^{\circ}$ (alternate angles)	
	= 40°	
	angle $NSP = 40^{\circ} + 21.556^{\circ}$	
	$= 61.6^{\circ}$ (to 1 dp)	M[1]
	Bearing of <i>P</i> from $S = 061.6^{\circ}$	A[1]
(b)(ii)	Let the shortest distance be d km.	
(Mtd 1)	Area of $RPS = \frac{1}{2}(8)(17.836)\sin 33.444^{\circ}$	M[1]
	$\frac{1}{2}(17.836)(d) = \frac{1}{2}(8)(17.836)\sin 33.444^{\circ}$	M[1]
	<i>d</i> = 4.4090 (to 5 sf)	
	= 4.41 (to 3 sf)	A[1]
	Hence the shortest distance is 4.41 km.	

(b)(ii) (Mtd 2)	Let the shortest distance be d km. Area of RPS = $\frac{1}{2}(8)(12)\sin 125^{\circ}$ $\frac{1}{2}(17.836)(d) = \frac{1}{2}(8)(12)\sin 125^{\circ}$ d = 4.4090 (to 5 sf) = 4.41 (to 3 sf)	M[1]
(c)	Hence the shortest distance is 4.41 km. Let the height of the tower be h km. $\tan 3^\circ = \frac{h}{4.4179}$ h = 0.23153 (to 5 sf) h = 0.231 (to 3 sf) The height of the tower is 0.231 km.	A[1] M[1] for correct equation A[1]

6 (a) The table below shows the amount of flour, sugar and number of eggs needed for each type of pastry sold in a cafe.

	Flour (g)	Sugar (g)	Number of eggs
Cookie	90	50	1.5
Cake	220	200	8
Pancake	60	80	2

	(90	50	1.5	ł
The above information is represented by a matrix $\mathbf{D} =$				
	60	80	2))

Each kg of flour and sugar costs \$1.50 and \$1.80 respectively. A dozen eggs costs \$2.70. Complete the cost in \$ for every gram of flour and sugar as well as the cost in \$ for each egg in the table below:

Flour(\$/g)	Sugar(\$/g)	1 Egg(\$)

[2]

(b) Write down a 3×1 matrix E such that its elements represent the unit cost of each ingredients needed for the various pastries. [1]

- (c) Calculate **DE** and state what the elements of **DE** represents.
- (d) The cafe prepared 70 cookies, 30 cakes and 120 pancakes on a particular day. Using matrix multiplication, calculate the total cost of the basic ingredients for all the pastries prepared on this day.
 [2]

Q6a)	0.0015, 0.0018, 0.225(egg)	
Qua)	0.0013, 0.0018, 0.223(egg)	B1when both ans for flour
		and sugar are correct.
		B1 for egg.
b)	(0.0015)	60
,	E = 0.0018	
		B1
	(0.225)	
c)	$(90 \ 50 \ 1.5)(0.0015)$	
	$\mathbf{DE} = \begin{pmatrix} 90 & 50 & 1.5 \\ 220 & 200 & 8 \\ 60 & 80 & 2 \end{pmatrix} \begin{pmatrix} 0.0013 \\ 0.0018 \\ 0.225 \end{pmatrix}$	
	60 80 2 0 225	
	(0.5625)	B1
	= 2.49	D1
	$= \begin{pmatrix} 0.0025\\ 2.49\\ 0.684 \end{pmatrix}$	
	The elements in DE represents the cost price (in	
	dollars) needed for the making of one cookie, one cake	B1
	and one pancake respectively.	
d)	(0.5625)	
	Total cost = $(70 \ 30 \ 120)$ 2.49	
	Total cost = $(70 \ 30 \ 120) \begin{pmatrix} 0.5625 \\ 2.49 \\ 0.684 \end{pmatrix}$	
	=(196.155)	M1
		A1
	The total cost is \$196.16	

[2]

(a) In the diagram, AD is the diameter of the circle ABDF with centre O. Given BD and AF produced meet at E, AB and FD produced meet at C, $\angle FED = 33^{\circ}$ and $\angle DAB = 16^{\circ}$.

Calculate, stating your reasons clearly,

- (i) $\angle ADB$ [2]
- (ii) $\angle AFB$, [1]
- (iii) $\angle DAF$. [2]
- (b) Given ABCD is a trapezium with AD = 18 cm, BC = 8 cm and AB = DC. A circle is inscribed in the trapezium as shown.

- (i) Show that the length of AB is 13 cm, stating your reason(s) clearly. [2]
- (ii) Calculate the radius of the circle.

7

[2]

7		N/1	
7ai)	$\angle ABD = 90^{\circ}$ (angle in semi-circle)	M1	
	$\angle ADB = 180^{\circ} - 90^{\circ} - 16^{\circ}$		
	= 74° (sum of angles in a triangle)	A1	
ii)	$\angle AFB = \angle ADB$ (Angles in the same segment)	B1	
	= 74°		
iii)	$\angle DAF + 33^\circ = 74^\circ$ (ext angle =sum of opp int angle of triangle)	M1	
	$\angle DAF = 74^\circ - 33^\circ$		
	= 41°	A1	
		211	
	Alternatively,		
	$\angle ADE = 180^{\circ} - 74^{\circ}$ (angle on a straight line)		
		M1	
	$\angle DAF + \angle ADE + 33^\circ = 180^\circ$ (sum of angle in triangle)	A 1	
	$\angle DAF = 180^{\circ} - 33^{\circ} - 106^{\circ}$	A1	
	= 41°	Minus 1 mark for	
		incorrect reasons, or	
		self created reasons.	
bi)	AB = 4 + 9 (Tangent from ext point)	B1 for stating 4+9	
	=13	B1 for quoting	
		tangent from external	
		point.	
ii)	Let this distance be x cm.	N (1	
	By Pythagoras Theorem,	M1	
	$x = \sqrt{169 - 25}$		
	= 12	A1	
	Hence, the radius of the circle = 6 cm		
8 (a) A piece solid cone is cut into a smaller piece of cone and a frustum as shown in the			

(a) A piece solid cone is cut into a smaller piece of cone and a frustum as shown in the diagram.

Given that the height of the frustum is 8mm and the two circular base areas of 9 mm^2 and 25 mm^2 respectively.

(i) Show that the height of the smaller cone is 12 mm. [2]

(ii)	Find the volume of the frustum.	[3]
(iii)	Find the curved surface area of the smaller cone.	[3]

(b) In the figure, ADCB is a major segment of a circle, centre O and radius 7 cm. BD = 12 cm. AC is perpendicular to the line BOD. Find the perimeter of the major segment. [4]

8ai)Let x be the height of the smaller cone Using area of similar objects, $\left(\frac{x}{x+8}\right)^2 = \frac{9}{25}$ M1 $\frac{x}{x+8} = \frac{3}{5}$ $5x = 3x + 24$ $2x = 24$ $x = 12mm(shown)$ A18aii)Volume of frustum $= Volume of big cone - volume of small cone= \frac{1}{3}\pi R^2 H - \frac{1}{3}\pi r^2 hAccept calcof volumeusing R and r= \frac{1}{3}[25 \times (8+12)] - \frac{1}{3}(9 \times 12)= \frac{500}{3} - 36M1 for bigcone answer= 130\frac{2}{3}mm^2 or 131mm^2(3sf)A18aiii)Curved surface area of small cone =\pi rlSince area of small circle, \pi r^2 = 9, r = \sqrt{\frac{9}{\pi}} \approx 1.6926mmM1$
$\left(\frac{x}{x+8}\right)^2 = \frac{9}{25}$ $\frac{x}{x+8} = \frac{3}{5}$ $5x = 3x + 24$ $2x = 24$ $x = 12mm(shown)$ 8 <i>aii</i>) Volume of frustum $= \text{Volume of big cone - volume of small cone}$ $= \frac{1}{3}\pi R^2 H - \frac{1}{3}\pi r^2 h$ $= \frac{1}{3} [25 \times (8+12)] - \frac{1}{3} (9 \times 12)$ $= \frac{500}{3} - 36$ $= 130 \frac{2}{3}mm^2 or 131mm^2 (3sf)$ 8 <i>aiii</i>) Curved surface area of small cone $= \pi rl$ Since area of small circle, $\pi r^2 = 9, r = \sqrt{\frac{9}{\pi}} \approx 1.6926mm$ M1
$\frac{x}{x+8} = \frac{3}{5}$ $5x = 3x + 24$ $2x = 24$ $x = 12mm(shown)$ 8 <i>aii</i>) Volume of frustum $= \text{Volume of big cone - volume of small cone}$ $= \frac{1}{3}\pi R^2 H - \frac{1}{3}\pi r^2 h$ $= \frac{1}{3} [25 \times (8+12)] - \frac{1}{3} (9 \times 12)$ $= \frac{500}{3} - 36$ $= 130 \frac{2}{3}mm^2 or 131mm^2 (3sf)$ 8 <i>aiii</i>) Curved surface area of small cone $= \pi rl$ Since area of small circle, $\pi r^2 = 9, r = \sqrt{\frac{9}{\pi}} \approx 1.6926mm$ M1
$\frac{x}{x+8} = \frac{3}{5}$ $5x = 3x + 24$ $2x = 24$ $x = 12mm(shown)$ 8 <i>aii</i>) Volume of frustum $= \text{Volume of big cone - volume of small cone}$ $= \frac{1}{3}\pi R^2 H - \frac{1}{3}\pi r^2 h$ $= \frac{1}{3} [25 \times (8+12)] - \frac{1}{3} (9 \times 12)$ $= \frac{500}{3} - 36$ $= 130 \frac{2}{3}mm^2 or 131mm^2 (3sf)$ 8 <i>aiii</i>) Curved surface area of small cone $= \pi rl$ Since area of small circle, $\pi r^2 = 9, r = \sqrt{\frac{9}{\pi}} \approx 1.6926mm$ M1
$5x = 3x + 24$ $2x = 24$ $x = 12mm(shown)$ 8aii) Volume of frustum $= \text{Volume of big cone - volume of small cone}$ $= \frac{1}{3}\pi R^2 H - \frac{1}{3}\pi r^2 h$ $= \frac{1}{3} \left[25 \times (8 + 12) \right] - \frac{1}{3} (9 \times 12)$ $= \frac{500}{3} - 36$ $= 130 \frac{2}{3}mm^2 or 131mm^2 (3sf)$ 8aiii) Curved surface area of small cone $= \pi rl$ Since area of small circle, $\pi r^2 = 9$, $r = \sqrt{\frac{9}{\pi}} \approx 1.6926mm$ M1
$2x = 24$ $x = 12mm(shown)$ 8 <i>aii</i>) Volume of frustum $= \text{Volume of big cone - volume of small cone}$ $= \frac{1}{3}\pi R^2 H - \frac{1}{3}\pi r^2 h$ $= \frac{1}{3} \left[25 \times (8 + 12) \right] - \frac{1}{3} (9 \times 12)$ $= \frac{500}{3} - 36$ $= 130 \frac{2}{3}mm^2 or 131mm^2 (3sf)$ 8 <i>aiii</i>) Curved surface area of small cone = πrl Since area of small circle, $\pi r^2 = 9, r = \sqrt{\frac{9}{\pi}} \approx 1.6926mm$ M1
x = 12mm(shown) 8 <i>aii</i>) Volume of frustum $= Volume of big cone - volume of small cone$ $= \frac{1}{3}\pi R^2 H - \frac{1}{3}\pi r^2 h$ $= \frac{1}{3} \left[25 \times (8 + 12) \right] - \frac{1}{3} (9 \times 12)$ $= \frac{500}{3} - 36$ $= 130 \frac{2}{3}mm^2 or 131mm^2 (3sf)$ 8 <i>aiii</i>) Curved surface area of small cone = πrl Since area of small circle, $\pi r^2 = 9, r = \sqrt{\frac{9}{\pi}} \approx 1.6926mm$ M1 Accept calc of volume using R and r M1 for big cone answer M1 for small cone answer M1 M1 M1 M1
8aii)Volume of frustum = Volume of big cone - volume of small cone $= \frac{1}{3}\pi R^2 H - \frac{1}{3}\pi r^2 h$ Accept calc of volume using R and r $= \frac{1}{3}\left[25 \times (8+12)\right] - \frac{1}{3}(9 \times 12)$ M1 for big cone answer $= \frac{500}{3} - 36$ M1 for small cone answer $= 130\frac{2}{3}mm^2 or 131mm^2(3sf)$ A18aiii)Curved surface area of small cone $=\pi rl$ Since area of small circle, $\pi r^2 = 9, r = \sqrt{\frac{9}{\pi}} \approx 1.6926mm$ M1
= Volume of big cone - volume of small coneAccept calc of volume using R and r $= \frac{1}{3}\pi R^2 H - \frac{1}{3}\pi r^2 h$ M1 for big cone answer $= \frac{1}{3} [25 \times (8+12)] - \frac{1}{3} (9 \times 12)$ M1 for big cone answer $= \frac{500}{3} - 36$ M1 for small cone answer $= 130\frac{2}{3}mm^2$ or $131mm^2(3sf)$ A18aiii) Curved surface area of small cone $=\pi rl$ M1Since area of small circle, $\pi r^2 = 9, r = \sqrt{\frac{9}{\pi}} \approx 1.6926mm$ M1
$= \sqrt{64} \text{ of volume of sing cone - volume of sinal cone}$ $= \frac{1}{3}\pi R^{2}H - \frac{1}{3}\pi r^{2}h$ $= \frac{1}{3}\left[25 \times (8+12)\right] - \frac{1}{3}(9 \times 12)$ $= \frac{500}{3} - 36$ $= 130\frac{2}{3}mm^{2} or 131mm^{2}(3sf)$ 8 <i>aiii</i>) Curved surface area of small cone = πrl Since area of small circle, $\pi r^{2} = 9, r = \sqrt{\frac{9}{\pi}} \approx 1.6926mm$ M1 for small M1
$= \frac{1}{3}\pi R^{2}H - \frac{1}{3}\pi r^{2}h$ $= \frac{1}{3}\left[25 \times (8+12)\right] - \frac{1}{3}(9 \times 12)$ $= \frac{500}{3} - 36$ $= 130\frac{2}{3}mm^{2} or 131mm^{2}(3sf)$ 8 <i>aiii</i>) Curved surface area of small cone $= \pi rl$ Since area of small circle, $\pi r^{2} = 9, r = \sqrt{\frac{9}{\pi}} \approx 1.6926mm$ M1 with the second state of the second
$= \frac{500}{3} - 36$ $= 130\frac{2}{3}mm^{2} or 131mm^{2}(3sf)$ 8 <i>aiii</i>) Curved surface area of small cone = πrl Since area of small circle, $\pi r^{2} = 9, r = \sqrt{\frac{9}{\pi}} \approx 1.6926mm$ M1
$= \frac{500}{3} - 36$ $= 130\frac{2}{3}mm^{2} or 131mm^{2}(3sf)$ 8 <i>aiii</i>) Curved surface area of small cone = πrl Since area of small circle, $\pi r^{2} = 9, r = \sqrt{\frac{9}{\pi}} \approx 1.6926mm$ M1
$= 130 \frac{2}{3} mm^{2} or 131 mm^{2} (3sf)$ $8aiii) \text{Curved surface area of small cone} = \pi rl$ Since area of small circle, $\pi r^{2} = 9, r = \sqrt{\frac{9}{\pi}} \approx 1.6926 mm$ M1
8 <i>aiii</i>) Curved surface area of small cone = πrl Since area of small circle, $\pi r^2 = 9, r = \sqrt{\frac{9}{\pi}} \approx 1.6926mm$ M1
Since area of small circle, $\pi r^2 = 9$, $r = \sqrt{\frac{9}{\pi}} \approx 1.6926mm$ M1
Slant height of small cone = $\sqrt{1.6926^2 + 12^2} \approx 12.1187mm$
Therefore curved surface area of small cone $=\pi(1.692)(12.1187)$ M1
$= 64.441 mm^2$
-64 Amm^2
Al
$8b) AD = \sqrt{7^2 - 5^2}$
$=\sqrt{24}cm$
$AC = 2\sqrt{24}$ M1
≈ 9.79796 <i>cm</i>
$\angle AOD = \cos^{-1}\frac{5}{7}$
$\approx 0.77519 rad or 44.415^{\circ}$ M1
Arc ABC = $7 \times 2(\pi - 0.77519)cm$ OR $x = 2\pi \times 7 \times \frac{271.17^{\circ}}{360^{\circ}}$
≈ 33.1296cm ≈ 33.1296cm M1
Perimeter = 9.79796 + 33.1296
$\approx 42.927 cm$
= 42.9 cm(3sf) A1

Mr Tan is looking to purchase a new car to drive to and from work on weekdays and for leisure on weekends. He estimates the total distance travelled is about 1500 km per month. The average cost of petrol is \$2.20 per litre. To buy a new car, he must pay a down payment of 30% of the selling price of the car before he can take a car loan for the remaining amount from a bank. He has to pay back the loan by monthly instalment. A 5-year car loan simple interest rate offered by most banks is 2.28% per annum. Mr Tan shortlisted 3 cars with all the relevant cost as shown in the table.

	Car A	Car B	Car C
Selling Price	\$87 999	\$108 999	\$107 888
Fuel Consumption(km per litre)	17.2	14.9	17.8
Car Insurance per year	\$ 1 200	\$ 1500	\$ 1 500
Engine Capacity(in cubic cm)	1 598	1 499	1 197
Monthly Car Maintenance	\$200	\$200	\$200
Monthly Car Park charges	\$150	\$150	\$150

He also finds out that the annual road tax of the car is determined by the engine capacity of the car is as follows:

```
Annual Road Tax = [\$500 + 0.75(Engine Capacity minus 1000)] \times 0.782
```

From the information provided,

(a) Calculate

9

- (i) the down payment to buy car A. [1]
- (ii) the total monthly expenditure including monthly bank instalment and all the other monthly costs to own a car. [7]
- (b) An alternative to buying a car is to rent an electric car that is easily accessible from his house and workplace. Subscription per month is \$15 and it costs 33 cents per minute of use. Mr Tan estimates that the average daily travel time to and from work is about 1 hour and 20 minutes. On weekends, he needs to use the car for about 5 hours for leisure activities. Calculate his monthly expenditure to rent a car. [2]
- (c) Do you think Mr Tan should buy or rent a car? Justify your answer. [1]

9 <i>ai</i>)		
	Car A down payment(30% of \$87,999) =\$26,399.70	B1
9aii)	For Car A	
	Loan Amount=\$87,999-\$26,399.70	
	=\$61,599.30	
	Loan Interest over 5 years = $61,599.30 \times \frac{2.28}{100} \times 5$	
	= \$7,022.32	M1
	Monthly Car Instalment = $\frac{61,599.3+7,022.32}{60}$	
	= \$1,143.69	A1
	Monthly Distance covered by $car = 1500 \text{km}$	AI
	Amount of petrol needed= $\frac{1500}{17.2}$	
	= 87.209 litre	M1
	(1)Monthly petrol consumption= $$2.20 \times 87.209$	
	= \$191.86	A1
	(2) Monthly car insurance $=\frac{1200}{12} = \$100$	B1
	(3) Monthly road tax= $\frac{[500+0.75(1598-1000)] \times 0.782}{12}$	
	(3) Monthly road tax= $\frac{12}{12}$	DI
	= \$61.81	B1
	(4) Monthly Maintenance cost=\$200	
	(5) Monthly Car Park charges=\$150	
	(6) Total monthly cost = $$1143.69+703.67$	B1
	=\$1847.36	
9b) Mo	onthly cost of renting a car based on 20 workdays and 4 weekends	
= \$15	$+80 \min \times 20$ working days $\times 0.33 + 5 \times 60 \min \times 4$ weekends $\times 0.33$	M1
= \$92		A1
Accept	AI	
workin	g days and 4 weekends or 21 working days and 5 weekends.	
9c) Ac	ceptable responses such as	
<i>,</i>	Renting is better as there is no need to pay down payment and monthly	B1 for any of the 4.
	instalment.	
b)	Although it is more expensive to buy a car, it is very convenient.	
c)	Any other reasonable justification.	
c)	Any other reasonable justification.	

	Breakdown of cost of owning a car	Car A				
9ai	Down payment	\$26,399.70		B1		
9aii	Loan Interest	\$7,022.32		M1		
	Monthly Instalment	\$1,143.69		A1		
	Monthly Petrol needed in litres	87.209		M1		
	Monthly Petrol Cost	\$191.86		A1		
	Monthly Car Insurance	\$100		B1		
	Monthly Road Tax	\$61.81		B1		
	Monthly Maintenance/Servicing	\$200				
	Monthly Car Park Charges	\$150				
9aiii)	Total Monthly Cost	\$1847.36		B1		
9b)	Monthly Cost Renting Electric car	Fr \$939 to \$1064.40		M1, A1		
9c)	Acceptable responses.					
	a) Renting is better as there is no need to pay down payment and monthly instalment.					
	b) Although it is more expensive to buy a car, it is very convenient.					
	c) Any other reasonable justification.					

10(a) Team Alpha and Delta are competing in a best of 3 games badminton finals. Each game will only result in a win or a loss. The competition ends when either one wins 2 games out of 3. The probability of Alpha team winning in any one game is $\frac{5}{8}$.

(ii) Calculate the probability, expressing your answers in fraction, that Alpha team wins the completion.

10 (b) The frequency table shows the weight in kg of 80 persons who join an exercise club.

Weight	$30 < x \le 40$	$40 < x \le 50$	$50 < x \le 60$	$60 < x \le 70$	$70 < x \le 80$
Frequency	8	17	34	18	3

From the graph, find the

(i)	number of students who scored 28 or less marks.	[1]
(ii)	number of students who scored more than 76 marks.	[1]
(iii)	upper quartile	[1]

- (iv) minimum mark attained by the top 2.5% of the cohort.
- (v) probability that 1 student scored 28 marks or less and the other student score more than 76 marks when 2 students are chosen at random. [2]

[1]

10bi) Mean = 53.875 kg or $\frac{431}{8}$ kg or $53\frac{7}{8}$ kg	B1
Standard deviation = $\sqrt{\frac{8 \times 35^2 + 17 \times 45^2 + 34 \times 55^2 + 18 \times 65^2 + 3 \times 75^2}{80} - \left(\frac{431}{8}\right)^2}$	
$ \begin{array}{rcl} = & 9.8734 \\ = & 9.87 \mathrm{kg} \end{array} $	B1
10biii) (1) The mean weight is lower. Jogging has helped to reduce weight.	B1
(2) Standard deviation is higher implies that weight loss after exercising is more spread out.(accept "not consistent")	B1
10ci) 20 students	
10cii) 200-185= 15 students	B1
10ciii) Upper quartile = 56 marks	B1
10civ) 90 marks	B1
	B1
10 <i>cv</i>) Probability(1 stud ≤ 28 and 1 stud ≥ 76)	
$= 2 \times \frac{20}{200} \times \frac{15}{199} \text{ or } \frac{20}{200} \times \frac{15}{199} + \frac{15}{200} \times \frac{20}{199}$	
$=\frac{3}{199}$	M1
177	A1

11 The variables *x* and *y* are connected by the equation

$$y = \frac{5x}{4} + \frac{1}{x^2}.$$

The table below shows some values of x and the corresponding values of y, correct to 1 decimal place.

X	0.5	1	1.5	2	3	4	5
y	4.6	2.3	2.3	2.8	3.9	5.1	р

(a) Calculate the value of *p*.

- (b) Using a scale of 2 cm to represent 1 unit on each axis, draw a horizontal *x*-axis for $0 \le x \le 5$ and a vertical *y*-axis for $0 \le y \le 8$. On your axes, plot the points given in the table and join them with a smooth curve. [3]
- (c) From the graph, find the value of x in the range $0 \le x \le 5$ for which $\frac{5x}{4} + \frac{1}{x^2} 3 = 0$ [2]
- (d) By drawing a tangent, find the gradient of the curve at the point (1, 2.3). [2]

(e) (i) On the same axes, draw the graph of
$$y = \frac{1}{2}x + 2$$
. [2]

- (ii) Write down the *x*-coordinates of the points where the two graphs intersect. [1]
- (iii) Find the equation in the form $3x^3 + ax^2 + bx + c = 0$, which is satisfied by the values of x found in part (e)(ii). [1]

Qn	Solution	Marks	Remarks
11(a)	$p = \frac{5(5)}{4} + \frac{1}{(5)^2} = 6.29 \approx 6.3$	B1	

