

## ZHONGHUA SECONDARY SCHOOL PRELIMINARY EXAMINATION 2020 SECONDARY 4E/5N

| Candidate's Name | Class | Register Number |
|------------------|-------|-----------------|
|                  |       |                 |
|                  |       |                 |
|                  |       |                 |

## ADDITIONAL MATHEMATICS

## 4047/01

2 hours

15 September 2020

PAPER 1

Candidates answer on the Question Paper

### READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer **all** the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [ ] at the end of each question or part question.

The total number of marks for this paper is 80.



#### **Mathematical Formulae**

### 1. ALGEBRA

### Quadratic Equation

For the equation  $ax^2 + bx + c = 0$ ,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

## **Binomial Theorem**

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and 
$$\binom{n}{r} = \frac{n!}{(n-r)! r!} = \frac{n(n-1)\dots(n-r+1)}{r!}$$

#### 2. TRIGONOMETRY

**Identities** 

$$\sin^2 A + \cos^2 A = 1.$$
$$\sec^2 A = 1 + \tan^2 A.$$
$$\csc^2 A = 1 + \cot^2 A.$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\sin 2A = 2 \sin A \cos A$$
$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$
$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for  $\triangle ABC$ 

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2} ab \sin C$$

1 (a) Find the values of x and y which satisfy the equations.

$$3^{x} \times \sqrt{3^{y}} = 1$$
  
$$4^{x-4} \div 32^{y} = 16^{\frac{1}{x}}$$
 [5]

(b) Without using a calculator, find the values of *a* and *b* such that  $7-3\sqrt{3} = (a+b\sqrt{3})(2+\sqrt{3})$ , where *a* and *b* are integers.

[4]

2 Find the set of values of the constant k for which the curve  $y = (k+2)x^2 - 10x + 2k + 1$ lies completely below the line y = 2x + 3. [4]

- 3 Given that  $\sin A = \frac{2}{3}$  and  $\tan B = -\frac{1}{\sqrt{3}}$  where angles A and B lie in the same quadrant, leaving your answers in exact form, calculate the value of
  - (a)  $\cos 2B$  [2]

(b)  $\sec(A-B)$ 

[3]

- 4 In view of a contagious virus, the government of a particular country has imposed a 'Stay-Home-Notice' on her people to reduce the number of human-to-human transmission cases. It is estimated that the percentage of the population, *P*, complying to the Stay-Home-Notice is given by the equation  $P = 100(1 e^{-0.15t})$ , where *t* is the number of days after the imposition.
  - (i) Find the percentage of population complying to the 'Stay-Home-Notice' after 5 days of the imposition. [1]

(ii) Find the number of complete days after the imposition that it will take for at least 90% of the population to comply. [2]

(iii) Is it possible for the percentage of this country's population complying to the 'Stay-Home-Notice' to reach 100%? Explain your answer. [1]

5 (i) In the expansion of  $\left(2-\frac{x}{3}\right)^n$ , show that the ratio of coefficient of the 2<sup>nd</sup> term to that of the 4<sup>th</sup> term can be simplified to the expression  $\frac{216}{(n-1)(n-2)}$ . [4]

(ii) Find the value of n if the ratio in (i) is 108:55.

(iii) Hence, find the term in  $x^5$ .

[2]

[2]

6 The equation of a curve is 
$$y = \frac{2x-9}{\sqrt{x^2+1}}$$
.

(i) Show that 
$$\frac{dy}{dx} = \frac{9x+2}{\sqrt{(x^2+1)^3}}$$
. [3]

(ii) Find the coordinates of the stationary point of the curve, leaving your answer in exact form. [3]

(iii) Find the nature of this stationary point.

[2]



The diagram shows a triangle *ABC* in which *A* lies on the *y*-axis. The equation of *AB* and *BC* are y = 2x + h and x + 2y = 12h. *M* is midpoint of *AB* and *MC* is parallel to the *x*-axis.

(i) Explain why *AB* is perpendicular to *BC*.

[2]

(ii) Show that coordinates of B is (2h, 5h).

[2]

7

(iii) Express the coordinates of M and of C in terms of h. [3]

(iv) Find the value of h if the area of triangle AMC is 125 square units. [2]

Find the

8

(i) gradient of the tangent at the point where the curve passes through the *x*-axis, [4]

(ii) equation of another tangent to the curve that is parallel to the tangent in (i). [4]

9 The equation of a curve is  $y = \cos^3 x + \sin 3x$ .

(i) Find expressions for 
$$\frac{dy}{dx}$$
 and  $\frac{d^2y}{dx^2}$ . [4]

(ii) Given that  $\frac{d^2 y}{dx^2} + 9y = A\cos x$ , find the value of A. [2]

10 The diagram shows an isosceles triangle *RST* with height 12 cm and ST = 10 cm. *PQ* moves towards *ST* at a steady rate of 0.5 cm/s, keeping parallel to *ST*.



If PQ is x cm from R,

(i) Show that 
$$PQ = \frac{5x}{6}$$
 cm.

[1]

(ii) Find the area,  $A \text{ cm}^2$ , of the shaded region in terms of x. [2]

19

[3]

11 It is given that  $f(x) = 3\cos 2x - 1$  and  $g(x) = \frac{2x}{\pi} - 2$ .

- (i) State the least and greatest values of f(x). [2]
- (ii) State the period of f(x). [1]
- (iii) Sketch, on the same axes, the graphs of y = f(x) and y = g(x) for  $-\pi \le x \le \pi$ . [4]

(iv) State, with detailed workings, the number of solutions of the equation  $3\pi \cos 2x = 2x - \pi$  for  $-\pi \le x \le \pi$ . [2]

12 The function f is defined by  $y = (x+1)^3 e^{2x-3}$ , for  $x > -\frac{5}{2}$ , and  $x \neq -1$ . Explain, with working, whether f is an increasing or decreasing function. [4]



## ZHONGHUA SECONDARY SCHOOL PRELIMINARY EXAMINATION 2020

Class

SECONDARY 4E/5N

Candidate's Name

Register Number

# ADDITIONAL MATHEMATICS

PAPER 2

4047/02

17 September 2020 2 hours 30 minutes

Candidates answer on the Question Paper

### **READ THESE INSTRUCTIONS FIRST**

Write your name, class and register number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer **all** the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [ ] at the end of each question or part question.

The total number of marks for this paper is **100**.



### **Mathematical Formulae**

### 1. ALGEBRA

## Quadratic Equation

For the equation  $ax^2 + bx + c = 0$ ,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

#### **Binomial Theorem**

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and 
$$\binom{n}{r} = \frac{n!}{(n-r)! r!} = \frac{n(n-1)\dots(n-r+1)}{r!}$$

### 2. TRIGONOMETRY

**Identities** 

$$\sin^2 A + \cos^2 A = 1.$$
  

$$\sec^2 A = 1 + \tan^2 A.$$
  

$$\csc^2 A = 1 + \cot^2 A.$$
  

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
  

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
  

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
  

$$\sin 2A = 2 \sin A \cos A$$
  

$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$
  

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for  $\triangle ABC$ 

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
$$\Delta = \frac{1}{2} ab \sin C$$

| 1 | (i) Differentiate | $\ln(\cos x)$ with respect to <i>x</i> . | [1] |
|---|-------------------|------------------------------------------|-----|
|   | (ii) Hence find   | $\int \tan x  \mathrm{d}x  .$            | [2] |
|   |                   |                                          |     |

(iii) Differentiate  $x \tan x$  with respect to x. [2]

| (iv) Using the results from (ii) and (iii), hence find | $\int x \sec^2 x  \mathrm{d}x  .$ | [3] |
|--------------------------------------------------------|-----------------------------------|-----|
|--------------------------------------------------------|-----------------------------------|-----|

2 (i) Prove that 
$$\frac{(\sin A + \cos A)(1 - \sin A \cos A)}{\sin^3 A} = 1 + \cot^3 A$$
 [4]

(ii) Hence solve the equation  $(\sin A + \cos A)(1 - \sin A \cos A) = 2\sin^3 A$  for [3]  $0^\circ \le A \le 180^\circ$ . (i) The expression 3x<sup>3</sup> + hx<sup>2</sup> + kx-4, where h and k are constants, has a factor of 3x-1 and leaves a remainder of -4 when divided by x+1. By forming 2 equations, of h and of k, show that the value of h = 11 and k = 8. [4]

(ii) Hence, express 
$$\frac{-x^2+6x+9}{3x^3+hx^2+kx-4}$$
 as the sum of three partial fractions [7]

A particle, moving in a straight line, passes through a fixed point O with a speed of 4 m/s. The acceleration,  $a \text{ m/s}^2$ , of the particle, t s after passing through O, is given

by 
$$a = -\frac{4}{15}e^{-\frac{t}{60}}$$
.

4

(i) Find the exact value of t when the particle is at instantaneous rest.

(ii) Find an expression in term of *t*, for the displacement, from *O*, of the particle *t* seconds after passing *O*.

[3]

[6]

(iii) Hence find the distance of the particle from *O* when it is at instantaneous rest. [1]

4

(iv) Show that the particle is again at *O* at some instant during the thirty-seventh second [2] after first passing through *O*.

(i) The equation  $\log_3 x - \frac{1}{2} \log_{27} x = \log_2 8$  has the solution  $x = 3^k$ . Find the value of k.

[4]

5

(ii) Solve the equation  $2\log_4(x-2) - \log_4(x+10) = \frac{1}{2}$ . [4]

The roots of the quadratic equation  $2x^2 = x + 3$  are  $\alpha$  and  $\beta$ . (i) Find the value of  $\alpha^2 + \beta^2$ . [2]

6

(ii) Find the quadratic equation whose roots are  $\frac{\beta}{\alpha^2}$  and  $\frac{\alpha}{\beta^2}$ . [5]

### 7 The points A(2, 1) and B(11, -2) lie on a circle.

(i) Find the equation of the perpendicular bisector of the chord *AB*. [4]

The line with equation  $y = \frac{4}{3}x - 10$  is a normal to the circle. (ii) Hence, find the equation of the circle.

[5]

[1]

(iii) Find the coordinates of the point on the circle which is at the greatest distance from the *x*-axis.

11



8

The diagram shows part of the graph of y = |3x-7|+2. A horizontal line is drawn from *A* to intersect the graph of y = |3x-7|+2 at *B*. (i) Find the coordinates of *A*, *B* and *C*.

[3]

(ii) Find the set of values of *m* for which the graph of y = |3x-7|+2 and the line y = mx intersects at 2 points.

[2]

[3]

(iii) Solve the equation |3x-7|+2=4x-1

8

13

The resistance to motion, R newtons, of a plank towed through water and its

speed, V m/s is given by  $R = AV^n$ , where A and n are constants. The table shows the corresponding values of V and R.

| · · · · · · · · · · · · · · · · |      |      |      |      |
|---------------------------------|------|------|------|------|
| V                               | 1.65 | 2.46 | 3.68 | 6.05 |
| R                               | 1.87 | 3.70 | 7.33 | 17.1 |
|                                 |      |      |      |      |

9

(ii) Use the graph to estimate the value of each of the constants A and n,[4] giving your answers correct to 1 decimal place.

[3]

(iii) By drawing a suitable line on your graph, solve the equation  $AV^n = V^{1,2}$ , giving [3] your answer correct to 1 decimal place.

<sup>(</sup>i) On the grid on page 15, draw the graph of ln R against ln V, using a scale of 4 cm for 0.5 unit on the ln V-axis and a scale of 5 cm to 1 unit on the ln R-axis.

+ +


The diagram show part of the curve  $y = 3 - \frac{18}{2x+3}$ . The normal to the curve at x = 3 intersects the y-axis at A. Find the exact area of the shaded region. [11]

Continuation of Working Space for Question 10.



11

A rectangular table *PQRS* is positioned at a corner of a room. Given that PQ = 1.6m PS = 0.5 m, angle  $OQP = \theta$  and angle QOP = angle  $RTQ = 90^{\circ}$ , where  $\theta$  varies. (i) Show that  $OT = 1.6 \cos \theta + 0.5 \sin \theta$ .

End of Paper

Answer Key

| 1a  | 1 2                                                    | 7i       | Since the product of 2 gradients is $-1$ .                      |
|-----|--------------------------------------------------------|----------|-----------------------------------------------------------------|
|     | $x = -\frac{1}{2}, y = \frac{1}{2}$ or $x = 1, y = -2$ |          | AB is perpendicular to BC.                                      |
| h   | a = 23, b = -13                                        | ii       | Proof                                                           |
| 2   | <i>k</i> < -5                                          | iii      | M = (h, 3h)  C(6h, 3h)                                          |
| 3a  | 1                                                      | iv       | h = 5                                                           |
| Ju  | $\frac{1}{2}$                                          | 1,       |                                                                 |
| h   | $\frac{2}{\sqrt{15}}$ 12                               | 8i       | dy  = 5                                                         |
|     | $\frac{6\sqrt{13}-12}{11}$                             | 01       | $\left \frac{dy}{dt}\right  = \frac{3}{2}$                      |
| 4.  | 11                                                     |          | $  dx  _{x=-2} = 2$                                             |
| 41  | 52.8%                                                  | 11       | 2y = 5x + 50                                                    |
| 11  | 16                                                     | 9i       | $\frac{dy}{dt} = -3\cos^2 x \sin x + 3\cos^2 x$                 |
|     |                                                        |          | dx                                                              |
|     |                                                        |          | $\frac{d^2y}{dx^2} = -3\cos^3 x + 6\sin^2 x \cos x - 9\sin^3 x$ |
|     | As t gets very large $e^{-0.15t}$                      | ii       | $dx^2$                                                          |
| 111 | approaches zero but will never                         | 11       | $\mathbf{A} = 0$                                                |
|     | reach zero. Therefore, the                             |          |                                                                 |
|     | percentage will not reach 100%.                        |          |                                                                 |
| 5i  | Proof                                                  | 10i      | Proof                                                           |
| ii  | <i>n</i> = 12                                          | ii       | $(0, 5, w^2)$                                                   |
|     |                                                        |          | $60 - \frac{12}{12}x^{-1}$                                      |
| iii | $-\frac{11264}{r^5}$                                   | iii      | 2.5cm <sup>2</sup> /s                                           |
|     | 27 *                                                   |          |                                                                 |
| 6i  | Proof                                                  | 11i      | Least value $= -4$                                              |
|     |                                                        | ••       | Greatest value = 2                                              |
| 11  | $\left(-\frac{2}{2}, -\sqrt{85}\right)$                | 11       | π                                                               |
|     | (9, , )                                                |          |                                                                 |
| iii | minimum point                                          | iii      |                                                                 |
|     |                                                        |          |                                                                 |
|     |                                                        |          | -2 0 2                                                          |
|     |                                                        |          |                                                                 |
|     |                                                        |          |                                                                 |
|     |                                                        |          |                                                                 |
|     |                                                        | 1V<br>12 | 4 solutions                                                     |
|     |                                                        | 12       | $\frac{dy}{dx} = e^{2x-3}(x+1)^2[5+2x]$                         |
|     |                                                        |          | 5                                                               |
|     |                                                        |          | $x > -\frac{1}{2}, 2x + 5 > 0, (x + 1)^2$ and $e^{2x-3}$        |
|     |                                                        |          | > 0                                                             |
|     |                                                        |          | $\frac{dy}{dy} > 0$ the curve is increasing                     |
|     |                                                        |          | dx = -0, the curve is increasing                                |
| 1   |                                                        | 1        |                                                                 |

# Answer Key

| 1(i)  | $-\tan x$                                            | 8(i)   | $A = (0,9), B = \left(\frac{7}{3}, 2\right), C = \left(\frac{14}{3}, 9\right)$ |
|-------|------------------------------------------------------|--------|--------------------------------------------------------------------------------|
| (ii)  | $-\ln(\cos x) + c$                                   | (ii)   | $\frac{6}{7} < m < 3$                                                          |
| (iii) | $\tan x + x \sec^2 x$                                | (iii)  | $x = -4$ (rejected) or $x = \frac{10}{7}$                                      |
| (iv)  | $x\tan x + \ln(\cos x) + c$                          | 9(ii)  | $n = \text{gradient} = 1.7, \ A = e^{-0.24} = 0.8$                             |
| 2(ii) | 45°                                                  | (iii)  | 1.6                                                                            |
| 3(i)  | $h + 3k = 35, \ h - k = 3$                           | 10     | $\frac{33}{8} + 9 \ln 3$                                                       |
| (ii)  | $\frac{2}{3x-1} - \frac{1}{x+2} + \frac{1}{(x+2)^2}$ | 11(ii) | 61.6°                                                                          |
| 4(i)  | $-60\ln\frac{3}{4}$                                  |        |                                                                                |
| (ii)  | $s = -960e^{-\frac{t}{60}} - 12t + 960$              |        |                                                                                |
| (iii) | 32.9 m                                               |        |                                                                                |
| 5(i)  | $\frac{18}{5}$                                       |        |                                                                                |
| (ii)  | x = 8 or $x = -2$ (rejected)                         |        |                                                                                |
| 6(i)  | $\frac{13}{4}$                                       |        |                                                                                |
| (ii)  | $x^2 - \frac{19}{18}x - \frac{2}{3} = 0$             |        |                                                                                |
| 7(i)  | $y = 3x - \overline{20}$                             |        |                                                                                |
| (ii)  | $(x-6)^2 + (y+2)^2 = 25$                             |        |                                                                                |
| (iii) | (6, -7)                                              |        |                                                                                |



# ZHONGHUA SECONDARY SCHOOL PRELIMINARY EXAMINATION 2020 SECONDARY 4E/5N

| Candidate's Name | Class | Register Number |
|------------------|-------|-----------------|
| MARK SCHEME      |       |                 |

# ADDITIONAL MATHEMATICS

# 4047/01

PAPER 1

15 September 2020 2 hours

Candidates answer on the Question Paper

## READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer **all** the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [ ] at the end of each question or part question.

The total number of marks for this paper is 80.



#### **Mathematical Formulae**

#### 1. ALGEBRA

### Quadratic Equation

For the equation  $ax^2 + bx + c = 0$ ,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

#### **Binomial Theorem**

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and 
$$\binom{n}{r} = \frac{n!}{(n-r)! r!} = \frac{n(n-1)\dots(n-r+1)}{r!}$$

#### 2. TRIGONOMETRY

**Identities** 

$$\sin^2 A + \cos^2 A = 1.$$
  

$$\sec^2 A = 1 + \tan^2 A.$$
  

$$\csc^2 A = 1 + \cot^2 A.$$
  

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
  

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
  

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
  

$$\sin 2A = 2 \sin A \cos A$$
  

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$
  

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for  $\triangle ABC$ 

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
$$\Delta = \frac{1}{2} ab \sin C$$

| 1 | (a) | Find the values of <i>x</i> and <i>y</i> which satisfy the equations.                                                                                                                                                                       |                                         |     |
|---|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----|
|   |     | $3^x \times \sqrt{3^y} = 1$                                                                                                                                                                                                                 |                                         |     |
|   |     | $4^{x-4} \div 32^y = 16^{\frac{1}{x}}$                                                                                                                                                                                                      | 1                                       | [5] |
|   |     | $3^{x} \times \sqrt{3^{y}} = 1 \qquad 4^{x-4} \div 32^{y} = 16^{\frac{1}{x}}$ $3^{x} \times 3^{\frac{1}{2}^{y}} = 3^{0} \qquad 2^{2x-8} \div 2^{5y} = 2^{\frac{4}{x}}$ $3^{x+\frac{1}{2}^{y}} = 3^{0} \qquad 2^{2x-8-5y} = 2^{\frac{4}{x}}$ | [M1] applying laws of indices correctly |     |
|   |     | $x + \frac{1}{2}y = 0 \qquad 2x - 8 - 5y = \frac{4}{x}$ $x = -\frac{1}{2}y - (1) \qquad 2x^2 - 5xy - 8x - 4 = 0 - (2)$                                                                                                                      | [A1] for either (1) or (2) correctly    | )   |
|   |     | Sub (1) into (2):<br>$2\left(-\frac{1}{2}y\right)^{2} - 5\left(-\frac{1}{2}y\right)y - 8\left(-\frac{1}{2}y\right) - 4 = 0$ (1)                                                                                                             | [M1] substitution                       |     |
|   |     | $2\left(\frac{1}{4}y^{2}\right) + \frac{5}{2}y^{2} + 4y - 4 = 0$<br>$3y^{2} + 4y - 4 = 0$<br>(3y - 2)(y + 2) = 0<br>$y = \frac{2}{3}  \text{or}  y = -2$                                                                                    |                                         |     |
|   |     | $y = \frac{2}{3}$ $x = -\frac{1}{2}\left(\frac{2}{3}\right) = -\frac{1}{3}$                                                                                                                                                                 | [A1] both $x$ and $y$ corre             | ct  |
|   |     | When<br>$y = -2$ $x = -\frac{1}{2}(-2) = 1$                                                                                                                                                                                                 | [A1] both $x$ and $y$ corre             | ct  |
|   |     |                                                                                                                                                                                                                                             |                                         |     |

| <b>(b)</b> | Without using a calculator, find the values of a and b such that                                                                                                                                                                 |                                                                                              |     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----|
|            | $7-3\sqrt{3} = (a+b\sqrt{3})(2+\sqrt{3})$ , where a and b are integers.                                                                                                                                                          |                                                                                              | [4] |
|            | $7 - 3\sqrt{3} = (a + b\sqrt{3})(2 + \sqrt{3})$ $a + b\sqrt{3} = \frac{7 - 3\sqrt{3}}{2 + \sqrt{3}}$ $= \frac{7 - 3\sqrt{3}}{2 + \sqrt{3}} \times \frac{2 - \sqrt{3}}{2 - \sqrt{3}}$ $7(2 - \sqrt{3}) - 3\sqrt{3}(2 - \sqrt{3})$ | [M1] rationalisation                                                                         |     |
|            | $= \frac{14 - 7\sqrt{3} - 6\sqrt{3} + 9}{4 - 3}$<br>= 23 - 13 \sqrt{3}                                                                                                                                                           | [M1]<br>expansion/simplification                                                             | on  |
|            | $a = 23, \qquad b = -13$<br>Alternative solution                                                                                                                                                                                 | [A1] [A1]                                                                                    |     |
|            | $a(2+\sqrt{3})+b\sqrt{3}(2+\sqrt{3})=7-3\sqrt{3}$ $2a+a\sqrt{3}+2b\sqrt{3}+3b=7-3\sqrt{3}$ $2a+3b+a\sqrt{3}+2b\sqrt{3}=7-3\sqrt{3}$                                                                                              |                                                                                              |     |
|            | 2a + 3b = 7 (1)<br>a + 2b = -3 (2)<br>(2) into (1):<br>2(-3 - 2b) + 3b = 7<br>-6 - 4b + 3b = 7<br>b = -13<br>a = 23                                                                                                              | <ul><li>[M1] grouping</li><li>[M1] simultaneous equation</li><li>[A1]</li><li>[A1]</li></ul> |     |
|            |                                                                                                                                                                                                                                  |                                                                                              |     |

| 2 | Find the set of values of the constant $k$ for which the curve                                                                                                                                   | $w = (k+2)x^2 - 10x + 2k + 1$ lies  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|   | completely below the line $y = 2x + 3$ .                                                                                                                                                         | [4]                                 |
|   | $(k+2)x^{2} - 10x + 2k + 1 < 2x + 3$<br>(k+2)x <sup>2</sup> - 10x + 2k + 1 - 2x - 3 < 0<br>(k+2)x <sup>2</sup> - 12x + 2k - 2 < 0                                                                | [M1] eliminate y                    |
|   | $b^{2} - 4ac < 0 \qquad \text{and} \qquad k + 2 < 0$ $(-12)^{2} - 4(k+2)(2k-2) < 0 \qquad \text{and} \qquad k < -2$ $144 - (8k^{2} + 8k - 16) < 0$ $-8k^{2} - 8k + 160 < 0$ $k^{2} + k - 20 > 0$ | [B1] use of correct<br>discriminant |
|   | (k-4)(k+5) > 0<br>k < -5 or $k > 4\therefore k < -5$                                                                                                                                             | [A1]<br>[A1]                        |
|   |                                                                                                                                                                                                  |                                     |
|   |                                                                                                                                                                                                  |                                     |
|   |                                                                                                                                                                                                  |                                     |
|   |                                                                                                                                                                                                  |                                     |
|   |                                                                                                                                                                                                  |                                     |
|   |                                                                                                                                                                                                  |                                     |

| 3 | Given that $\sin A = \frac{2}{3}$ and $\tan B = -\frac{1}{\sqrt{3}}$ where angles A and B lie in the same quadrant, |                                                                                                                                                                                                                                                                                                                                                      |                                                     |  |  |
|---|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|
|   | leavi                                                                                                               | leaving your answers in exact form, calculate the value of                                                                                                                                                                                                                                                                                           |                                                     |  |  |
|   | (a)                                                                                                                 | $\cos 2B$                                                                                                                                                                                                                                                                                                                                            |                                                     |  |  |
|   |                                                                                                                     | $\cos 2B = 2\cos^2 B - 1$ $= 2\left(-\frac{\sqrt{3}}{2}\right)^2 - 1$ $= 2\left(\frac{3}{4}\right) - 1$ $= \frac{1}{2}$                                                                                                                                                                                                                              | [M1] Applying double<br>angle<br>[A1]               |  |  |
|   |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                      |                                                     |  |  |
|   | (b)                                                                                                                 | $\sec(A-B)$                                                                                                                                                                                                                                                                                                                                          |                                                     |  |  |
|   |                                                                                                                     | $\sec(A-B) = \frac{1}{\cos(A-B)}$ $= \frac{1}{\cos A \cos B + \sin A \sin B}$ $= 1 \div \left(-\frac{\sqrt{5}}{3} \times -\frac{\sqrt{3}}{2} + \frac{2}{3} \times \frac{1}{2}\right)$ $= 1 \div \left(\frac{\sqrt{15}}{6} + \frac{1}{3}\right)$ $= 1 \div \left(\frac{\sqrt{15}+2}{6}\right)$ $= \frac{6}{\sqrt{15}+2}$ $= \frac{6\sqrt{15}-12}{11}$ | [B1] change from sec to cos   [M1] addition formula |  |  |

| 4 | In view of a contagious virus, the government of a particular country has imposed a 'Stay-Home-Notice' on her people to reduce the number of human-to-human transmission cases. It is estimated that the percentage of the population, <i>P</i> , complying to the Stay-Home-Notice is given by the equation $P = 100(1 - e^{-0.15t})$ , where <i>t</i> is the number of days after the imposition |                                                                                                                                                                                        |                        |     |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|
|   | (i)                                                                                                                                                                                                                                                                                                                                                                                                | Find the percentage of population complying to the 'Stay-H                                                                                                                             | Iome-Notice' after 5   | [1] |
|   |                                                                                                                                                                                                                                                                                                                                                                                                    | days of the imposition.<br>$P = 100(1 - e^{-0.15t})$ $= 100(1 - e^{-0.15\times5})$ $= 52.763$ $= 52.8\%$                                                                               | [B1]                   |     |
|   | (ii)                                                                                                                                                                                                                                                                                                                                                                                               | Find the number of days after the imposition that it will tak<br>the population to comply.                                                                                             | te for at least 90% of | [2] |
|   |                                                                                                                                                                                                                                                                                                                                                                                                    | 90 = 100 $(1 - e^{-0.15t})$<br>0.9 = 1 - $e^{-0.15t}$<br>0.1 = $e^{-0.15t}$<br>ln $e^{-0.15t}$ = ln 0.1<br>-0.15t = ln 0.1<br>t = 15.35<br>$\approx 15.4$<br>No. of complete days = 16 | [M1] take ln<br>[A1]   |     |
|   | (iii)Is it possible for the percentage of this country's population complying to the<br>'Stay-Home-Notice' to reach 100%? Explain your answer.                                                                                                                                                                                                                                                     |                                                                                                                                                                                        |                        | [1] |
|   |                                                                                                                                                                                                                                                                                                                                                                                                    | As t gets very large, $e^{-0.15t}$ approaches zero but will never<br>reach zero. Therefore, the percentage will not reach<br>100%.                                                     | [B1]                   |     |

| 5 | (i) | In the expansion of $\left(2-\frac{x}{3}\right)^n$ , show that the ratio of coefficient of the 2 <sup>nd</sup> term    |                                               |      |
|---|-----|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|
|   |     | to that of the 4 <sup>th</sup> torm can be simplified to the expression -                                              | 216                                           | [4]  |
|   |     | to that of the 4 term can be simplified to the expression (                                                            | (n-1)(n-2).                                   |      |
|   |     | $\left(2-\frac{x}{3}\right)^n$                                                                                         |                                               |      |
|   |     | $=2^{n}-\binom{n}{1}2^{n-1}\binom{x}{3}+\binom{n}{2}2^{n-2}\binom{x}{3}^{2}-\binom{n}{3}2^{n-3}\binom{x}{3}^{3}+\dots$ | [M1] binomial theore general term used        | m or |
|   |     | $=2^{n}-\frac{2^{n-1}nx}{3}+\frac{2^{n-2}n(n-1)x^{2}}{2\times 9}-\frac{2^{n-3}n(n-1)(n-2)x^{3}}{6\times 27}+\dots$     |                                               |      |
|   |     | $-\frac{2^{n-1}n}{3}$                                                                                                  | [B1]                                          |      |
|   |     | Cofficient of $\frac{1}{T_4} = \frac{1}{2^{n-3}n(n-1)(n-2)}$                                                           | [B1]                                          |      |
|   |     | $=\frac{54 \times 2^{n-1-n+3}}{(n-1)(n-2)}$                                                                            | [M1] simplification<br>leading to correct ans | wer  |
|   |     | $=\frac{54 \times 2^2}{(n-1)(n-2)}$                                                                                    |                                               |      |
|   |     | $=\frac{216}{(n-1)(n-2)}$                                                                                              | A.G.                                          |      |
|   |     |                                                                                                                        |                                               |      |
|   |     |                                                                                                                        |                                               |      |
|   |     |                                                                                                                        |                                               |      |
|   |     |                                                                                                                        |                                               |      |
|   |     |                                                                                                                        |                                               |      |
|   |     |                                                                                                                        |                                               |      |
|   |     |                                                                                                                        |                                               |      |
|   |     |                                                                                                                        |                                               |      |
|   |     |                                                                                                                        |                                               |      |
|   |     |                                                                                                                        |                                               |      |

| (ii)  | Find the value of $n$ if the ratio in (i) is $108:55$ .                                                                                                                                                                                               | [2]          |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| (ii)  | Find the value of <i>n</i> if the ratio in (i) is 108:55.<br>$\frac{216}{(n-1)(n-2)} = \frac{108}{55}$ 11880 = 108 ( $n^2 - 3n + 2$ )<br>110 = $n^2 - 3n + 2$<br>$n^2 - 3n - 108 = 0$<br>( $n - 12$ )( $n + 9$ ) = 0<br>n = 12 or $n = -9$ (rejected) | [M1]<br>[A1] |
| (iii) | Hence, find the term in $x^5$ .                                                                                                                                                                                                                       | [2]          |
|       | $T_{6} = {\binom{12}{5}} 2^{12-5} {\binom{-x}{3}}^{5}$ $= -\frac{11264}{27} x^{5}$                                                                                                                                                                    | [M1]<br>[A1] |

| 6 | The equation of a curve is $y = \frac{2x-9}{\sqrt{x^2+1}}$ . |                                                                                                                                                                                                                                                             |                                             |       |
|---|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------|
|   | (i)                                                          | Show that $\frac{dy}{dx} = \frac{9x+2}{\sqrt{(x^2+1)^3}}$ .                                                                                                                                                                                                 |                                             | [3]   |
|   |                                                              | $y = \frac{2x-9}{\sqrt{x^2+1}}$ $\frac{dy}{dx} = \frac{\left(x^2+1\right)^{\frac{1}{2}}(2) - (2x-9)\frac{1}{2}\left(x^2+1\right)^{-\frac{1}{2}}(2x)}{x^2+1}$ $= \frac{2\left(x^2+1\right)^{\frac{1}{2}} - x(2x-9)\left(x^2+1\right)^{-\frac{1}{2}}}{x^2+1}$ | [M1] quotient rule<br>[B1] correct expressi | on    |
|   |                                                              | $=\frac{\left(x^{2}+1\right)^{-\frac{1}{2}}\left[2\left(x^{2}+1\right)-x(2x-9)\right]}{x^{2}+1}$ $=\frac{\left(x^{2}+1\right)^{-\frac{1}{2}}\left[2x^{2}+2-2x^{2}+9x\right]}{x^{2}+1}$                                                                      | [A1] factorisation lea<br>to correct answer | nding |
|   |                                                              | $=\frac{2+9x}{\left(x^{2}+1\right)^{\frac{3}{2}}}$                                                                                                                                                                                                          | [A.G]                                       |       |
|   |                                                              |                                                                                                                                                                                                                                                             |                                             |       |
|   |                                                              |                                                                                                                                                                                                                                                             |                                             |       |
|   |                                                              |                                                                                                                                                                                                                                                             |                                             |       |
|   |                                                              |                                                                                                                                                                                                                                                             |                                             |       |

| (ii)      | Find the coordinates of the stationary point of the curve, leaving your answer in exact form.                                                                                                  |      | [3] |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
|           | For stationery points.                                                                                                                                                                         |      | 1   |
|           | $\frac{dy}{dx} = 0$                                                                                                                                                                            | [M1] |     |
|           | $\frac{2+9x}{x^3} = 0$                                                                                                                                                                         |      |     |
|           | $(x^2+1)^2$<br>2+9x=0                                                                                                                                                                          |      |     |
|           | $x = -\frac{2}{9}$                                                                                                                                                                             | [A1] |     |
|           | $\therefore y = \frac{2\left(-\frac{2}{9}\right) - 9}{\sqrt{\left(-\frac{2}{9}\right)^2 + 1}}$                                                                                                 |      |     |
|           | $=\frac{-\frac{4}{9}-9}{\sqrt{\frac{85}{81}}}$                                                                                                                                                 |      |     |
|           | $= \frac{-\frac{85}{9}}{\frac{\sqrt{85}}{9}}$ $= -\frac{-\frac{85}{\sqrt{85}}}{\sqrt{85}} = -\sqrt{85}$                                                                                        |      |     |
|           | Coordinates = $\left(-\frac{2}{9}, -\sqrt{85}\right)$                                                                                                                                          | [A1] |     |
| <br>(iii) | Find the nature of this stationary point.                                                                                                                                                      |      | [2] |
|           | $\begin{array}{c c} \mathbf{x} & \left(-\frac{2}{9}\right)^{-} & -\frac{2}{9} & \left(-\frac{2}{9}\right)^{+} \\ \hline \text{Sign} & - & 0 & + \\ \hline \text{slope} & & & & \\ \end{array}$ | [M1] |     |
|           | $\left(-\frac{2}{9}, -\sqrt{85}\right)$ is a minimum point.                                                                                                                                    | [A1] |     |
|           |                                                                                                                                                                                                |      |     |



| (iii) | Express the coordinates of <i>M</i> and of <i>C</i> in terms of <i>h</i> .                                                                                                                                                                                            | [3]                  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|       | $A(0,h)$ $M = \left(\frac{2h+0}{2}, \frac{5h+h}{2}\right)$ $= (h,3h)$ When $y = 3h$ ,<br>x + 2(3h) = 12h<br>x + 6h = 12h<br>x = 6h<br>C(6h,3h)                                                                                                                        | [B1]<br>[M1]<br>[A1] |
|       |                                                                                                                                                                                                                                                                       |                      |
| (iv)  | Find the value of h if the area of triangle AMC is 125 squar<br>Area<br>$= \frac{1}{2} \begin{vmatrix} 0 & 6h & h & 0 \\ h & 3h & 3h & h \end{vmatrix}$ $= \frac{1}{2} (18h^2 + h^2 - 6h^2 - 3h^2)$ $= 5h^2$ $\therefore 5h^2 = 125$ $h^2 = 25$ $h = \sqrt{25}$ $= 5$ | [M1]                 |

| 8 | The equation of a curve is $y = \frac{x-6}{x+4} + 4$ , where $x \neq -4$ .                  |                                                                                       |              |  |  |
|---|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------|--|--|
|   | Find the                                                                                    |                                                                                       |              |  |  |
|   | (i) gradient of the tangent at the point where the curve passes through the <i>x</i> -axis, |                                                                                       |              |  |  |
|   |                                                                                             | When $y = 0$<br>$\frac{x-6}{x+4} + 4 = 0$ $x-6 = -4x - 16$ $5x = -10$                 | [M1]         |  |  |
|   |                                                                                             | $x = -2$ $\frac{dy}{dx} = \frac{x + 4 - (x - 6)}{(x + 4)^2}$ $= \frac{10}{(x + 4)^2}$ | [M1]<br>[A1] |  |  |
|   |                                                                                             | $\frac{dy}{dx}\Big _{x=-2} = \frac{10}{(-2+4)^2}$ $= \frac{5}{2}$                     | [A1]         |  |  |
|   |                                                                                             |                                                                                       |              |  |  |
|   |                                                                                             |                                                                                       |              |  |  |
|   |                                                                                             |                                                                                       |              |  |  |
|   |                                                                                             |                                                                                       |              |  |  |

| (ii) | equation of another tangent to the curve that is parallel to the tangent in (i). [4] |      |  |  |
|------|--------------------------------------------------------------------------------------|------|--|--|
|      |                                                                                      |      |  |  |
|      |                                                                                      |      |  |  |
|      |                                                                                      |      |  |  |
|      |                                                                                      |      |  |  |
|      |                                                                                      |      |  |  |
|      | $\frac{dy}{dx} = \frac{5}{2}$                                                        | [M1] |  |  |
|      | $\frac{10}{(1-1)^2} = \frac{5}{2}$                                                   |      |  |  |
|      | $(x+4)^2 = 2$<br>$(x+4)^2 = 4$                                                       |      |  |  |
|      | $x + 4 = \pm 2$                                                                      |      |  |  |
|      | x = -2 or $x = -6$                                                                   | [A1] |  |  |
|      | $x = -6$ , $y = \frac{-6-6}{-6+4} + 4 = 10$                                          |      |  |  |
|      | Equation:                                                                            |      |  |  |
|      | $\frac{y-10}{x+6} = \frac{5}{2}$                                                     | [M1] |  |  |
|      | 2y - 20 = 5x + 30                                                                    | [A1] |  |  |
|      | 2y = 5x + 50                                                                         | []   |  |  |
|      |                                                                                      |      |  |  |
|      |                                                                                      |      |  |  |
|      |                                                                                      |      |  |  |
|      |                                                                                      |      |  |  |
|      |                                                                                      |      |  |  |
|      |                                                                                      |      |  |  |
|      |                                                                                      |      |  |  |
|      |                                                                                      |      |  |  |
|      |                                                                                      |      |  |  |
|      |                                                                                      |      |  |  |
|      |                                                                                      |      |  |  |
|      |                                                                                      |      |  |  |
|      |                                                                                      |      |  |  |

9
 The equation of a curve is 
$$y = \cos^3 x + \sin 3x$$
.
 [4]

 (i)
 Find expressions for  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$ .
 [4]

 y =  $\cos^3 x + \sin 3x$ 
 [4]

  $\frac{dy}{dx} = 3\cos^2 x(-\sin x) + 3\cos 3x$ 
 [M1] chain rule seen

  $\frac{dy}{dx} = -3\cos^2 x \sin x + 3\cos 3x$ 
 [A1]

  $\frac{d^2y}{dx^2} = -3[\cos^2 x \cos x + \sin x(2\cos x)(-\sin x)] - 9\sin 3x$ 
 [M1] product rule seen

  $= -3\cos^3 x + 6\sin^2 x \cos x - 9\sin 3x$ 
 [A1]

| (ii)                                                                                                                                                                                | Given that $\frac{d^2 y}{dx^2} + 9y = A\cos x$ , find the value of A. | [2] |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----|--|--|
| $-3\cos^{3}x + 6\sin^{2}x\cos x - 9\sin 3x + 9\cos^{3}x + 9\sin 3x$<br>= $6\cos^{3}x + 6\sin^{2}x\cos x$<br>= $6\cos x(\cos^{2}x + \sin^{2}x)$ [M1] identity seen<br>= $6\cos x(1)$ |                                                                       |     |  |  |
| A = 6                                                                                                                                                                               | 5 [A1]                                                                |     |  |  |
|                                                                                                                                                                                     |                                                                       |     |  |  |
|                                                                                                                                                                                     |                                                                       |     |  |  |
|                                                                                                                                                                                     |                                                                       |     |  |  |
|                                                                                                                                                                                     |                                                                       |     |  |  |
|                                                                                                                                                                                     |                                                                       |     |  |  |



| (iii) | Find the rate of change of the shaded area when $PQ$ is halfway towards $AB$ from $C$ .                                                             | [3] |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|       | $\frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dt} \qquad [B1]  use \ of \ chain \ rule \ correctly$ $\frac{dA}{dx} = -\frac{10}{12}x \qquad [B1]$ |     |
|       | $\frac{dA}{dt} = -\frac{10}{12}(6) \times (0.5)$                                                                                                    |     |
|       | $= -2.5 \qquad [B1]$ Area is decreasing at a rate of 2.5cm <sup>2</sup> /s                                                                          |     |
|       |                                                                                                                                                     |     |
|       |                                                                                                                                                     |     |
|       |                                                                                                                                                     |     |
|       |                                                                                                                                                     |     |
|       |                                                                                                                                                     |     |
|       |                                                                                                                                                     |     |
|       |                                                                                                                                                     |     |
|       |                                                                                                                                                     |     |
|       |                                                                                                                                                     |     |



| (iv) | State, with detailed workings, the number of solutions of the equation |     |
|------|------------------------------------------------------------------------|-----|
|      | $3\pi\cos 2x = 2x - \pi$ for $-\pi \le x \le \pi$ .                    | [2] |

 $3\pi \cos 2x = 2x - \pi$  $3\cos 2x = \frac{2x}{\pi} - 1$  $3\cos 2x - 1 = \frac{2x}{\pi} - 2$ [B1] for manipulation

Since there are 4 intersection points, there are 4 solutions [B1] dep

The function f is defined by  $y = (x+1)^3 e^{2x-3}$ , for  $x > -\frac{5}{2}$ , and  $x \neq -1$ . Explain, with 12 [4] working, whether f is an increasing or decreasing function.

$$\frac{dy}{dx} = 3(x+1)^2 e^{2x-3} + 2(x+1)^3 e^{2x-3} \qquad [M1] \text{ product rule } [A1]$$
$$\frac{dy}{dx} = e^{2x-3}(x+1)^2 [3+2(x+1)]$$
$$\frac{dy}{dx} = e^{2x-3}(x+1)^2 [5+2x]$$

Given that

$$x > -\frac{5}{2}$$
,  $2x + 5 > 0$ ,  $(x + 1)^2$  and  $e^{2x-3} > 0$ , [M1]

 $\therefore \frac{dy}{dx} > 0$ , the curve is increasing [A1] dep.

| 1 (i) Differentiate $\ln(\cos x)$ with respect to x.                                |                                                           |           |                                |     |  |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------|--------------------------------|-----|--|
|                                                                                     |                                                           |           |                                |     |  |
| Answer                                                                              | 1                                                         | Marks     | Guidance                       |     |  |
| $\frac{d}{dr}\ln(co)$                                                               | $sx) = \frac{1}{\cos x} \times (-\sin x)$                 |           |                                |     |  |
| dx                                                                                  | $\frac{\cos x}{\sin x}$                                   | h         |                                |     |  |
|                                                                                     | $= \frac{-\frac{1}{\cos x}}{\cos x}$                      | – B1      |                                |     |  |
|                                                                                     | $=-\tan x$                                                |           |                                |     |  |
|                                                                                     |                                                           |           |                                |     |  |
| 1                                                                                   | (ii) Hence find $\int \tan x  dx$                         |           |                                | [2] |  |
|                                                                                     |                                                           | I         |                                |     |  |
| Answer                                                                              |                                                           | Marks     | Guidance                       |     |  |
| $\int \tan x  d$                                                                    | x                                                         |           |                                |     |  |
| $=-\int -t$                                                                         | an $x  dx$                                                | M1        | Reverse differentiation        |     |  |
| $=-\ln(cc)$                                                                         | $(\cos x) + c$                                            | A1        |                                |     |  |
| 1                                                                                   | (iii) Differentiate wten w with respect to w              |           |                                | [2] |  |
| 1                                                                                   | (iii) Differentiate x tai x with respect to x             |           |                                |     |  |
| Answer                                                                              |                                                           | Marks     | Guidance                       |     |  |
| $d(x \tan x) = \tan x + x \cos^2 x$                                                 |                                                           |           | Product rule                   |     |  |
| $\frac{dx}{dx}$                                                                     | $(x) = \tan x + x \sec x$                                 | A 1       |                                |     |  |
|                                                                                     |                                                           | AI        |                                |     |  |
| 1                                                                                   | (iv) Using the results from (ii) and (iii), he            | ence find | $\int x \sec^2 x  \mathrm{d}x$ | [3] |  |
|                                                                                     |                                                           | 1         |                                | ·   |  |
| Answer                                                                              |                                                           | Marks     | Guidance                       |     |  |
| $x \tan x$ -                                                                        | $+c_1 = \int \tan x + x \sec^2 x  \mathrm{d}x$            | M1        | Reverse differentiation        |     |  |
| $x \tan x + \mathbf{c}_1 - \int \tan x  \mathrm{d}x = \int x \sec^2 x  \mathrm{d}x$ |                                                           |           | Split to 2 integrals           |     |  |
| $\int x \sec^2 x$                                                                   | $x  \mathbf{d}x = x \tan x - (-\ln(\cos x)) + \mathbf{c}$ |           |                                |     |  |
| $= x \tan x + \ln(\cos x) + c \qquad A1$                                            |                                                           |           |                                |     |  |
|                                                                                     |                                                           |           |                                |     |  |
|                                                                                     |                                                           |           |                                |     |  |
|                                                                                     |                                                           |           |                                |     |  |
|                                                                                     |                                                           |           |                                |     |  |

2 (i) Prove that 
$$\frac{(\sin A + \cos A)(1 - \sin A \cos A)}{\sin^3 A} = 1 + \cot^3 A$$
 [4]

| Answer                                                           | Marks | Guidance                           |
|------------------------------------------------------------------|-------|------------------------------------|
| $\sin A + \cos A - \sin^2 A \cos A - \sin A \cos^2 A$            | M1    | Correct expansion                  |
| $LHS sin^3 A$                                                    | D1    |                                    |
| $\sin A + \cos A - (1 - \cos^2 A) \cos A - \sin A(1 - \sin^2 A)$ | BI    | Use of $2 4 \cdot 1 = 2 4 \cdot 1$ |
| $\equiv \frac{1}{\sin^3 A}$                                      |       | $\cos^2 A + \sin^2 A = 1$          |
| $= \sin A + \cos A - \cos A + \cos^3 A - \sin A + \sin^3 A$      | B1    |                                    |
| $-\frac{1}{\sin^3 A}$                                            |       |                                    |
| $=$ $\frac{\cos^3 A + \sin^3 A}{\sin^3 A}$                       |       |                                    |
| $\sin^3 A$                                                       |       |                                    |
| $=$ $\frac{\cos^3 A}{\cos^3 A}$ $\pm \frac{\sin^3 A}{\cos^3 A}$  | B1    |                                    |
| $\sin^3 A \sin^3 A$                                              |       |                                    |
| $= 1 + \cot^3 A$                                                 |       |                                    |
|                                                                  |       |                                    |

Alternative solution

| Answer                                                                   | Marks | Guidance                       |  |  |
|--------------------------------------------------------------------------|-------|--------------------------------|--|--|
| $\lim_{HS^{-}} (\sin A + \cos A) \qquad (1 - \sin A \cos A)$             | B1    |                                |  |  |
| $\lim_{n \to \infty} \frac{1}{\sin A} \times \frac{1}{\sin^2 A}$         | DI    |                                |  |  |
| $= (1 + \cot A) \times (1 + \sin A \cos A)$                              | BI    | Use of $\frac{\cos A}{\sin A}$ |  |  |
| $=$ (1 + cot A) × $\left(\frac{1}{\sin^2 A} - \frac{1}{\sin^2 A}\right)$ |       | sin A                          |  |  |
| $= (1 + \cot A) \times (\cos ec^2 A - \cot A)$                           |       |                                |  |  |
|                                                                          | B1    | Use of                         |  |  |
| $= (1 + \cot A) \times (1 + \cot^2 A - \cot A)$                          |       | $1 + \cot^2 A = \cos ec^2 A$   |  |  |
| = $1 + \cot A - \cot^2 A + \cot^3 A - \cot A - \cot^2 A$                 | D1    |                                |  |  |
| = 1 + cot <sup>3</sup> A                                                 | BI    | Correct expansion              |  |  |
|                                                                          |       |                                |  |  |

| 2 | (ii) Hence solve the equation      | $(\sin A + \cos A)(1 - \sin A \cos A) = 2\sin^3 A$ for | [3] |
|---|------------------------------------|--------------------------------------------------------|-----|
|   | $0^{\circ} \le A \le 180^{\circ}.$ |                                                        |     |

| Answer                                                                         | Marks | Guidance                               |
|--------------------------------------------------------------------------------|-------|----------------------------------------|
| $\frac{(\sin A + \cos A)(1 - \sin A \cos A)}{\sin^3 A} = 2$ $1 + \cot^3 A = 2$ | B1    |                                        |
| $\cot^{3}A = 1$<br>$\cot A = 1$<br>$\tan A = 1$                                | M1    | Taking cube root without negative sign |
| $A = 45^{\circ}$                                                               | A1    |                                        |

| 3 | (i) The expression $3x^3 + hx^2 + kx - 4$ , where h and k are constants, has a                              |      |
|---|-------------------------------------------------------------------------------------------------------------|------|
|   | factor of $3x-1$ and leaves a remainder of $-4$ when divided by $x+1$ .                                     |      |
|   | By forming 2 equations of <i>h</i> and of <i>k</i> , show that the value of $h = 11$ and $k = 8$ .          | [4]  |
|   | By forming 2 equations of <i>n</i> and of <i>k</i> , show that the value of <i>n</i> . If and <i>k</i> = 0. | [ '] |

| Answer                                                                                                  | Marks     | Guidance                                |
|---------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------|
| Let $f(x) = 3x^3 + hx^2 + kx - 4$                                                                       |           |                                         |
| (3x-1) is a factor of f (x)                                                                             |           | (1)                                     |
| $f\left(\frac{1}{3}\right) = 0$                                                                         | M1        | Realise $f\left(\frac{1}{3}\right) = 0$ |
| $3 \times \left(\frac{1}{3}\right)^3 + h\left(\frac{1}{3}\right)^2 + k\left(\frac{1}{3}\right) - 4 = 0$ |           |                                         |
| $\frac{1}{9} + \frac{h}{9} + \frac{k}{3} - 4 = 0$                                                       |           |                                         |
| h + 3k = 35(1)                                                                                          |           |                                         |
| Divisor = $x + 1$ , reminder = $-4$                                                                     |           |                                         |
| f(-1) = -4                                                                                              |           |                                         |
| -3 + h - k - 4 = -4                                                                                     |           |                                         |
| h - k = 3(2)                                                                                            | M1        | Realise $f(-1) = -4$                    |
| (1) - (2), 4k = 32                                                                                      |           |                                         |
| k = 8                                                                                                   | DI        | DM on correct equation $(1)$            |
| h = 3 + k                                                                                               | DMI<br>B1 | and (2)                                 |
| =3+8=11                                                                                                 | DI        |                                         |
|                                                                                                         |           |                                         |
|                                                                                                         |           |                                         |

|--|

| Answer                                                                          | Marks | Guidance                    |
|---------------------------------------------------------------------------------|-------|-----------------------------|
| Let $3x^3 + 11x^2 + 8x - 4 = (3x - 1)(x^2 + bx + 4)$                            |       |                             |
| comparing the coefficient of $x^2$ ,                                            |       |                             |
| 11 = -1 + 3b                                                                    |       |                             |
| b = 4                                                                           |       |                             |
| $3x^{3} + 11x^{2} + 8x - 4 = (3x - 1)(x^{2} + 4x + 4)$                          | M1    | Long division or inspection |
| $= (3x-1)(x+2)^2$                                                               | A1    |                             |
| $-x^2+6x+9$ A B C                                                               |       |                             |
| $\frac{1}{(3x-1)(x+2)^2} = \frac{1}{3x-1} + \frac{1}{x+2} + \frac{1}{(x+2)^2}$  | M1    |                             |
| $-x^{2} + 6x + 9 = A(x+2)^{2} + B(3x-1)(x+2) + C(3x-1)$                         | M1    |                             |
| Let $x = -2$                                                                    |       |                             |
| $-(-2)^{2}+6(-2)+9=C(-7)$                                                       |       |                             |
| -4 - 12 + 9 = -7C                                                               |       |                             |
| C = 1                                                                           |       |                             |
| Let $x = \frac{1}{3}$                                                           |       |                             |
| $-\frac{1}{9} + \frac{6}{3} + 9 = A\left(\frac{7}{3}\right)^2$                  |       |                             |
| 98 49 <i>A</i>                                                                  |       |                             |
| $\frac{1}{9} = \frac{1}{9}$                                                     |       |                             |
| A = 2                                                                           |       |                             |
| comparing coefficients of $x^2$ ,                                               |       |                             |
| -1 = A + 3B                                                                     |       | A1 for each correct A, B, C |
| -1 - 2 = 3B                                                                     |       |                             |
| B = -1                                                                          |       |                             |
| $\frac{-x^2 + 6x + 9}{-x^2 + 6x + 9} = \frac{2}{-x^2 - 1} + \frac{1}{-x^2 - 1}$ |       |                             |
| $(3x-1)(x+2)^2 = 3x-1 + x+2 + (x+2)^2$                                          |       |                             |

| 4 | A particle, moving in a straight line, passes through a fixed point O with a speed<br>of 4 m/s. The acceleration, $a \text{ m/s}^2$ , of the particle, t s after passing through O, is<br>given by $a = -\frac{4}{15}e^{-\frac{t}{60}}$ . |     |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | (i) Find the exact value of t when the particle is at instantaneous rest.                                                                                                                                                                 | [6] |

| Answer                                                               | Marks | Guidance                                     |
|----------------------------------------------------------------------|-------|----------------------------------------------|
| $v = \int -\frac{4}{15} e^{-\frac{t}{60}} dx$                        | M1    | Integrating <i>a</i>                         |
| $= -\frac{4}{15} \times \frac{e^{-\frac{t}{60}}}{-\frac{1}{60}} + c$ | A1    | Correct integration<br>(accept without + +c) |
| $v = 16e^{-\frac{1}{60}} + c$                                        |       |                                              |
| when $t = 0$ , $v = 4$                                               |       |                                              |
| $4 = 16e^0 + c$                                                      |       |                                              |
| c = -12                                                              |       |                                              |
| $v = 16e^{-\frac{t}{60}} - 12$                                       | A1    |                                              |
| At instantaneous rest, $v = 0$                                       |       |                                              |
| $16e^{-\frac{t}{60}} - 12 = 0$                                       | M1    | Equating <i>v</i> to zero                    |
| $e^{-\frac{t}{60}} = \frac{12}{16}$                                  |       |                                              |
| $-\frac{t}{60} = \ln\frac{3}{4}$                                     | M1    | Taking logarithm                             |
| $t = -60\ln\frac{3}{4}$                                              | A1    |                                              |

| 4 | (ii) Find an expression in term of t, for the displacement, from O, of the |     |
|---|----------------------------------------------------------------------------|-----|
|   | particle <i>t</i> seconds after passing O.                                 | [3] |

| Answer                                                                                                                                           | Marks | Guidance             |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|
| $s = \int 16e^{-\frac{t}{60}} - 12  \mathrm{d}t$                                                                                                 | M1    | Integrating to get s |
| $= \frac{16e^{-\frac{t}{60}}}{-\frac{1}{60}} - 12t + c$<br>= $-960e^{-\frac{t}{60}} - 12t + c$<br>when $t = 0, s = 0$<br>$0 = -960e^{0} - 0 + c$ | A1    |                      |
| 960 = c                                                                                                                                          |       |                      |
| $s = -960e^{-\frac{t}{60}} - 12t + 960$                                                                                                          | A1    |                      |

| (ii) Hence find the distance of the particle from O when it is at instantaneous | [1] |
|---------------------------------------------------------------------------------|-----|
| rest.                                                                           |     |

| Answer                                                                | Marks | Guidance |
|-----------------------------------------------------------------------|-------|----------|
| when $v = 0, t = -60 \ln \frac{3}{4}$                                 |       |          |
| $s = -960 \times \frac{3}{4} + 720 \ln \frac{3}{4} + 960$<br>= 32.9 m | A1    |          |

| (iv) Show that the particle is again at O at some instant during the | [2] |
|----------------------------------------------------------------------|-----|
| thirty-sixth second after first passing through O.                   |     |

| Answer                                                                                                                                                                                                                                         | Marks | Guidance |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
|                                                                                                                                                                                                                                                |       |          |
| when $t = 36$ , $s = -960e^{-\frac{36}{60}} - 12(36) + 960$                                                                                                                                                                                    |       |          |
| = 1.14 m                                                                                                                                                                                                                                       |       |          |
| when $t = 37$ , $s = -960e^{-\frac{37}{60}} - 12(37) + 960$                                                                                                                                                                                    | B1    |          |
| = -2.15 m<br>When t=36, particle is on the right side of O with displacement of 1.14<br>and when t=37, particle is on the left side of O with s=-2.15. Hence at<br>some instant during the 37 <sup>th</sup> second the particle is again at O. | B1    |          |

| 5 | (i) The equation $\log_3 x - \frac{1}{2}\log_{27} x = \log_2 8$ has the solution $x = 3^k$ . |     |
|---|----------------------------------------------------------------------------------------------|-----|
|   | Find the value of k.                                                                         | [4] |

| Answer                                                                  | Marks | Guidance               |
|-------------------------------------------------------------------------|-------|------------------------|
| $\log_3 x - \frac{1}{2} \times \frac{\log_3 x}{\log_3 27} = \log_2 2^3$ | M1    | Change of base law     |
| $\log_3 x - \frac{1}{6}\log_3 x = 3$                                    |       |                        |
| $\frac{5}{6}\log_3 x = 3$                                               | M1    | Simplify to single log |
| $\log_3 x = \frac{18}{5}$                                               |       |                        |
| $x = 3^{\frac{18}{5}}$                                                  | A1    |                        |
| By comparing with $3^k$                                                 |       |                        |
| $k = \frac{18}{5}$ or $k = 3.6$                                         | A1    |                        |

## Alternatively

| Answer                                                             | Marks | Guidance                    |
|--------------------------------------------------------------------|-------|-----------------------------|
|                                                                    |       |                             |
| since $x = 3^k$ is a solution,                                     |       |                             |
| $\log_3 3^k - \frac{1}{2} \times \log_{27} 3^k = \log_2 2^3$       | M1    | Substitution                |
| $k \log_3 3 - \frac{1}{2} \times \frac{\log_3 3^k}{\log_3 27} = 3$ | M1    | Applying power law          |
| $k - \frac{1}{2} \times \frac{k \log_3 3}{\log_3 3^3} = 3$         |       |                             |
| $k - \frac{1}{2} \times \frac{k \log_3 3}{3 \log_3 3} = 3$         |       |                             |
| $k - \frac{1}{2} \times \frac{k}{3} = 3$                           |       |                             |
| $\frac{5k}{6} = 3$                                                 | B1    | Reduce to a linear equation |
| $k = \frac{18}{5} = 3.6$                                           | A1    |                             |

5 (ii) Solve the equation 
$$2\log_4(x-2) - \log_4(x+10) = \frac{1}{2}$$
. [4]

| Answer                                        | Marks | Guidance                             |
|-----------------------------------------------|-------|--------------------------------------|
| $2\log_4(x-2) - \log_4(x+10) = \frac{1}{2}$   |       |                                      |
| $\log_4 \frac{(x-2)^2}{(x+10)} = \frac{1}{2}$ | M1    | Apply power or subtraction law       |
| $\frac{(x-2)^2}{(x+10)} = 4^{\frac{1}{2}}$    | M1    | convert to index form or equivalent. |
| $\left(x-2\right)^2 = 2\left(x+10\right)$     |       |                                      |
| $x^2 - 4x + 4 - 2x - 20 = 0$                  |       |                                      |
| $x^2 - 6x - 16 = 0$                           |       |                                      |
| (x-8)(x+2) = 0                                |       |                                      |
| x = 8 or $x = -2$ (rejected)                  | A1 A1 | x = -2, must be rejected             |
|                                               |       |                                      |
|                                               |       |                                      |
|                                               |       |                                      |
|                                               |       |                                      |

| 6 | The roots of the quadratic equation $2x^2 = x + 3$ are $\alpha$ and $\beta$ . |     |
|---|-------------------------------------------------------------------------------|-----|
|   | (i) Find the value of $\alpha^2 + \beta^2$ .                                  | [4] |

| Answer                                                                                                                                                                                                                                  | Marks | Guidance |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| $2x^{2} = x + 3$ $\alpha + \beta = -\left(\frac{-1}{2}\right) = \frac{1}{2}$ $\alpha\beta = -\frac{3}{2}$ $(\alpha + \beta)^{2} = \alpha^{2} + 2\alpha\beta + \beta^{2}$ $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$ | M1    |          |
| $= \left(\frac{1}{2}\right)^2 - 2 \times \left(-\frac{3}{2}\right)$ $= \frac{13}{4}$                                                                                                                                                    | A1    |          |

| 6 | (ii) Find the quadratic equations whose roots are $\frac{\beta}{\alpha^2}$ and $\frac{\alpha}{\beta^2}$ . | [3] |
|---|-----------------------------------------------------------------------------------------------------------|-----|
|---|-----------------------------------------------------------------------------------------------------------|-----|
| Answer                                                                                                           | Marks | Guidance      |
|------------------------------------------------------------------------------------------------------------------|-------|---------------|
| sum of roots = $\frac{\beta}{\alpha^2} + \frac{\alpha}{\beta^2}$                                                 |       |               |
| $=\frac{\beta^3+\alpha^3}{\alpha^2\beta^2}$                                                                      | M1    |               |
| $=rac{ig(lpha+etaig)ig(lpha^2-lphaeta+eta^2ig)}{lpha^2eta^2}$                                                   | B1    | or equivalent |
| $=\frac{\left(\frac{1}{2}\right)\left(\frac{13}{4}-\left(-\frac{3}{2}\right)\right)}{2}$                         |       |               |
| $\frac{9}{4}$                                                                                                    |       |               |
| $= \frac{1}{2} \times \frac{19}{4} \times \frac{4}{9}$                                                           |       |               |
| $=\frac{19}{18}$                                                                                                 | A1    |               |
| product of roots = $\frac{\beta}{\alpha^2} \times \frac{\alpha}{\beta^2} = \frac{1}{\alpha\beta} = -\frac{2}{3}$ | A1    |               |
| Quadratic equation is $x^2 - \frac{19}{18}x - \frac{2}{3} = 0$                                                   | A1    |               |
|                                                                                                                  |       |               |

| 7 | The points A(2,1) and B(11, $-2$ ) lie on a circle.                  |     |
|---|----------------------------------------------------------------------|-----|
|   |                                                                      |     |
|   | (i) Find the equation of the perpendicular bisector of the chord AB. | [4] |

| Answer                                                             | Marks | Guidance |
|--------------------------------------------------------------------|-------|----------|
| gradient of $AB = \frac{3}{-9} = -\frac{1}{3}$                     |       |          |
| gradient of the perpendicular bisector = $-\frac{1}{-\frac{1}{2}}$ | M1A1  |          |
| = 3                                                                |       |          |
| midpoint of $AB = \left(\frac{13}{2}, -\frac{1}{2}\right)$         | B1    |          |
| Equation of perpendicular bisector is                              |       |          |
| $y + \frac{1}{2} = 3\left(x - \frac{13}{2}\right)$                 | Al    |          |
| y = 3x - 20                                                        |       |          |
|                                                                    |       |          |

| 7 | The line with equation $y = \frac{4}{3}x - 10$ is a normal to the circle. |     |
|---|---------------------------------------------------------------------------|-----|
|   | (ii) Hence, find the equation of the circle.                              | [5] |

| Answer                                                                          | Marks | Guidance                                                                                     |
|---------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------|
| For centre of circle, $\frac{4}{3}x - 10 = 3x - 20$ $\frac{5}{3}x = 10$ $x = 6$ | M1A1  | Equating eqn of normal to<br>eqn of perpendicular bisector<br>A1 for the value of <i>x</i> . |
| y = 18 - 20 = -2<br>centre = (6, -2)                                            | B1    |                                                                                              |
| radius, $r = \sqrt{(6-2)^2 + (-2-1)^2}$ or $r = 11-6$<br>= 5 = 5                | A1    |                                                                                              |
| Equation of circle is $(x-6)^2 + (y+2)^2 = 25$                                  | Al    |                                                                                              |

7 (iii) Find the coordinates of the point on the circle which is at the greatest distance [1] from the *x*-axis.

| Answer          | Marks | Guidance |
|-----------------|-------|----------|
| point = (6, -7) | A1    |          |
|                 |       |          |



| Answer                             | Marks | Guidance |
|------------------------------------|-------|----------|
| At <i>A</i> , $y = 0, x = 9$       |       |          |
| A = (0,9)                          | A1    |          |
| At $C, y = 9$ ,                    |       |          |
| 9 =  3x - 7  + 2                   |       |          |
| 3x-7  = 7                          |       |          |
| 3x - 7 = 7                         |       |          |
| $x = \frac{14}{3}$                 |       |          |
| $C = \left(\frac{14}{3}, 9\right)$ | A1    |          |
| $B = \left(\frac{7}{3}, 2\right)$  | A1    |          |

| 8 | (ii) Find the set of values of <i>m</i> for which the graph of $y =  3x-7 +2$ and the line | [2] |
|---|--------------------------------------------------------------------------------------------|-----|
|   | y = mx intersects at 2 points.                                                             |     |

[3]

| Answer                                              | Marks | Guidance |
|-----------------------------------------------------|-------|----------|
| gradient $OB = \frac{2}{\frac{7}{3}} = \frac{6}{7}$ | M1    |          |
| $\frac{6}{7} < m < 3$                               | A1    |          |

|  | (iii) | Solve the equation | 3x-7 +2=4x-1 |
|--|-------|--------------------|--------------|
|--|-------|--------------------|--------------|

8

| Answer     |                                        | Marks | Guidance         |
|------------|----------------------------------------|-------|------------------|
| 3 <i>x</i> | x-7 +2=4x-1                            |       |                  |
| 3x         | x-7  = 4x - 3                          |       |                  |
| 3 <i>x</i> | $z - 7 = \pm (4x - 3)$                 | M1    |                  |
| 3 <i>x</i> | x - 7 = 4x - 3 or $3x - 7 = -(4x - 3)$ |       |                  |
| <i>x</i> = | =-4(rejected) or                       | A1    | Must be rejected |
| 7 <i>x</i> | c = 10                                 |       |                  |
| <i>x</i> = | $=\frac{10}{7}$                        | A1    |                  |
|            |                                        |       |                  |

| 9 | The resistance to motion, <i>R</i> newtons, of a plank towed through water and its      |                |                      |               |              |  |     |  |
|---|-----------------------------------------------------------------------------------------|----------------|----------------------|---------------|--------------|--|-----|--|
|   | speed, V m/s is given by $R = AV^n$ , where A and n are constants.                      |                |                      |               |              |  |     |  |
|   | The table sl                                                                            | nows the corr  | responding v         | alues of V an | d <i>R</i> . |  |     |  |
|   | V 1.65 2.46 3.68 6.05                                                                   |                |                      |               |              |  |     |  |
|   | R                                                                                       | 1.87           | 3.70                 | 7.33          | 17.1         |  |     |  |
|   | (i) On the grid on page 15, draw the graph of ln <i>R</i> against ln <i>V</i> , using a |                |                      |               |              |  | [3] |  |
|   | scale of 4 cm for 0.5 unit on the ln V-axis and a scale of                              |                |                      |               |              |  |     |  |
|   | 5 cm t                                                                                  | o 1 unit on th | e ln <i>R</i> -axis. |               |              |  |     |  |

| Answer                                                                      |       |       | Marks | Guidance |                                             |  |
|-----------------------------------------------------------------------------|-------|-------|-------|----------|---------------------------------------------|--|
| $\ln R = \ln A + n \ln V$                                                   |       |       |       |          |                                             |  |
| ln V                                                                        | 0.501 | 0.900 | 1.30  | 1.80     |                                             |  |
| ln <i>R</i>                                                                 | 0.626 | 1.31  | 1.99  | 2.84     |                                             |  |
| Axes and scale A1<br>All points plotted correctly join with a straight line |       |       |       | A2       | Deduct 1 mark for any point plotted wrongly |  |

| (ii) Use the graph to estimate the value of each of the constants A and n, giving | [4] |
|-----------------------------------------------------------------------------------|-----|
| your answers to 1 decimal place.                                                  |     |

| Answer |                                                    | Marks    | Guidance                   |
|--------|----------------------------------------------------|----------|----------------------------|
|        | From the graph, $\ln r$ -intercept = $-0.24$       | M1<br>A1 |                            |
|        | $\ln A = \ln r$ -intercept = $-0.24$               |          |                            |
|        | $A = e^{-0.24} = 0.8$ (to dec pl)                  |          |                            |
| 1      | gradient = $\frac{2.84 - (-0.24)}{1.80 - 0} = 1.7$ | M1       | Must indicate the 2 points |
|        | n = gradient = 1.7  (to 1 dec pl)                  | A1       | used to find gradient      |

| (iii) By drawing a suitable line on your graph, solve the equation $AV^n = V^{1,2}$ , giving | [4] |
|----------------------------------------------------------------------------------------------|-----|
| your answer correct to 1 decimal place.                                                      |     |

| Answer                          | Marks | Guidance                     |
|---------------------------------|-------|------------------------------|
| $\ln A + n \ln V = 1.2 \ln V$   |       |                              |
| Draw $\ln R = 1.2 \ln V$        | B1    | Correct line drawn           |
| From the graph, $\ln V = 0.475$ | M1    | Reading off the lnV          |
| $V = e^{0.475}$                 |       | coordinate from the point of |
| = 1.6 (to 1 dec pl)             | A1    | intersection                 |
|                                 |       |                              |



| 11 | A rectangular table <i>PQRS</i> is positioned at a corner of a room. Given that $PQ = 1.6m$            |     |
|----|--------------------------------------------------------------------------------------------------------|-----|
|    | $PS = 0.5$ m, angle $OQP = \theta$ and angle $QOP =$ angle $RTQ = 90^{\circ}$ , where $\theta$ varies. |     |
|    | (i) Show that $OT = 1.6 \cos \theta + 0.5 \sin \theta$ .                                               | [3] |
|    | P<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O                                                    |     |

| Answer                                                                   | Marks | Guidance                            |
|--------------------------------------------------------------------------|-------|-------------------------------------|
| $\angle RQT = 180^{\circ} - 90^{\circ} - \theta = 90^{\circ} - \theta$   |       | $\angle QRT = \theta$ can be in the |
| $\angle QRT = 180^{\circ} - (90^{\circ} + 90^{\circ} - \theta) = \theta$ | M1    | diagram                             |
| $\cos\theta = \frac{OQ}{1.6}$                                            | B1    |                                     |
| $OQ = 1.6\cos\theta$                                                     |       |                                     |
| $\sin\theta = \frac{QT}{0.5}$                                            | B1    |                                     |
| $QT = 0.5\sin\theta$                                                     |       |                                     |
| OT = OQ + QT                                                             |       | Award 3 marks only if it is         |
| $= 1.6\cos\theta + 0.5\sin\theta$                                        |       | complete.                           |

| 11 (ii) Find the value of $\theta$ for which $OT = 1.2$ m    |       |          |  |
|--------------------------------------------------------------|-------|----------|--|
| Answer                                                       | Marks | Guidance |  |
| Let $1.6\cos\theta + 0.5\sin\theta = R\cos(\theta - \alpha)$ | M1    |          |  |
| $R = \sqrt{1.6^2 + 0.5^2} = \sqrt{2.81}$                     | B1    |          |  |
| $\alpha = \tan^{-1} \frac{0.5}{1.6} = 17.354^{\circ}$        | B1    |          |  |
| $\sqrt{2.81}\cos(\theta - 17.354^\circ) = 1.2$               |       |          |  |
| $\cos(\theta - 17.354^{\circ}) = \frac{1.2}{\sqrt{2.81}}$    | M1    |          |  |
| $\theta - 17.354^\circ = 44.286^\circ$                       |       |          |  |
| $\theta = 61.6^{\circ}$ (to 1 dec pl)                        | A1    |          |  |
|                                                              |       |          |  |

#### (ii) Find the value of $\theta$ for which OT = 1.2

[5]