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The total number of marks for this paper is 100.
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1 (i) Differentiate x2 ln3x with respect to x. [2]

(ii) Hence find x ln3x dx . [3]



 4

2 Express x3 +1
x2 +1( ) x 2( ) in partial fractions. [5]



 5 
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3 The quadratic equation 3x2 + 2x +1= 0  has roots  and .

(i) Show that the value of 3 + 3  is 10
27

. [3]

(ii) Find a quadratic equation whose roots are 1
3 and 1

3 . [3]



6

y

-3

A (0.6, 3) 

x

4

The diagram shows part of the graph y = r q 3 px , where p, q and r are positive 
constants. The graph has a vertex at A (0.6, 3) and y-intercept of -3. 

(i) Determine the values of p, q and r. [3]

(ii) State the value or range of values of k such that k = r q 3 px has
(a) 1 solution, [1] 

      (b) 2 solutions. [1]

O
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y cm 

x cm

3 cm 

5 A buoy is formed by two identical right circular cones of sheet iron joined 
by its bases with a radius of x cm. The buoy has a vertical height of y cm 
and a slant height of 3 cm.

(i) Express y in terms of x. [1]

(ii) Given that x can vary, find the exact value of x for which the
     volume, V, of the buoy is stationary. [4]

y cm 
3 cm
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(iii) Determine with reasons whether this value of V is a maximum or
       minimum. [2]

(iv) Find the exact surface area of the buoy when V is stationary, leaving 
       your answer in terms of . [1]



 9 
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6 The equation of a polynomial is given by p(x) = 2x3 + 2ax2 x2 + ax a where a is a 
constant.
(i) Find the remainder when p(x) is divided  by (x + 1). [1]

(ii) Show that (2x – 1) is a factor of p(x) . [2]



 10

(iii) Showing your working clearly, factorise p(x) completely, leaving 
your answer in terms of a. [2]

(iv) Find the range of values of a for which the equation p(x) = 0 has only 
one real root. [3]

7 The table below shows the data obtained from an experiment on the 



 11 

[Turn Over 

vertical motion based on the oscillation of a spring with different masses 
attached to it. 

Mass, x kg 0.02 0.03 0.04 0.05 0.15 
Frequency of 
oscillations, y

16 13 11.4 10 6 

It is known that the mass, x kg, and the frequency of oscillations per 
second, y, are related by the equation xy2 = k , where k is a constant. 

(a) Plot y2 against 1
x

and draw a straight line graph. [3]

(b) Use your graph to estimate

(i) the frequency of oscillations when a mass of 0.08 kg is attached to the 
spring,

[1]

(ii) the mass which produces 15 oscillations per second, [1]

(iii) the value of k. [1]
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(c) When the spring is replaced by a second spring, the relation between y

and x is represented by y2 = 2
x
+80 .

(i) On the same diagram, draw the line representing the second spring. [1]

(ii) Hence, explain how to find the mass which produces the same 
frequency of oscillations by both springs.

[2]
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8
(i) Prove that sec A+ tan A 1

1 sec A+ tan A
1+ sin A

cos A
. [5]
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(ii) Hence solve the equation sec A+ tan A 1
1 sec A+ tan A

= 3cos A for 0 < A < 2 . [5]



16

A

O

B

D

C

O

9

The diagram shows a circular field with centre O and radius 50 m.
A, B and C are points on the circumference of the field and
angle ABC = . D is a point on BC such that OD is parallel to AC.
The trapezium AODC is the jogging path of a man.

(i) Show that BD = DC= 50cos . [2]

 (ii) Show that the perimeter, L m, of the jogging path AODC can be  

50 m 
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expressed in the form p + qcos + r sin where p, q and r are constants 
to be found. [3]

(iii) Express L in the form of p + Rcos( ) where R > 0   



18

      and 0 < < 90 . [3]

(iv) Hence state the maximum perimeter of the jogging path AODC.
       Find the value of  at which this occurs. [2]

10 (a) Sketch the graph of y = log3 x . [2]

y
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(b) Express log9 4+ log3(x 4) = 2log3 x as a quadratic equation in x and 
     explain why there are no real solutions. [4]

(c) Given that logb(x2 y) = m and logb(x3 y) = n , express, 
logb x and logb y  in terms of m and n. [4]

x
O



 20
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y

O

11

The diagram shows part of the curve y = 4cos x
2

that meets the x-axis at 

x = and x = 3 . The line x = 3
2

meets the x-axis at R and the curve at P.

The normal to the curve at P meets the x-axis at Q.

 (i) Find the equation of the normal at P, expressing your answer in exact form. [4] 

R

P
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(ii) Find the exact coordinates of Q. [2]

(iii) Find the exact area of the shaded region.  [5] 
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12 A circle, C1 has equation x2 + y2 +8x 12y +16 = 0 .

(i) Find the radius and the coordinates of the centre of C1. [3]

(ii) The lowest point on the circle is A. Explain why A lies on the x-axis. [1]



 24

A second circle, C2 , has a diameter PQ. The point P has coordinates (-1, 3) and the 
equation of the tangent to C2 at Q is 2y = x 18 .

(iii) Find the equation of the diameter PQ and hence the coordinates of Q. [4]
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(iv) Find the equation of the circle, C2. [3]



 26

(v) Determine whether the circles C1 and C2 intersect each other. [2]

END OF PAPER 
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1 (i) Differentiate x2 ln3x with respect to x. [2]

dy
dx

= x2 3
3x

+ ln3x(2x)

= x + 2x ln3x

(ii) Hence find x ln3x dx . [3]

x + 2x ln3xdx = x2 ln3x +C
xdx + 2x ln3xdx = x2 ln3x +C

2x ln3xdx = x2 ln3x x2

2
+C

x ln3xdx = 1
2

x2 ln3x x2

4
+ D



2 Express
x3 +1

x2 +1( ) x 2( ) in partial fractions. [5]

x3 +1
x3 2x2 + x 2

= 1+ 2x2 x + 3
(x2 +1)(x 2)

Let

2x2 x + 3
(x2 +1)(x 2)

= Ax + B
x2 +1

+ C
x 2

2x2 x + 3= ( Ax + B)(x 2)+C(x2 +1)
By Substitution: 
At x = 2, 

2(2)2 2+ 3= C(5)

C = 9
5

At x = 0, 

3= 2B +C

2B = 9
5

3

B = 3
5

By comparing coefficient of x2,
A+C = 2

A = 2 9
5
= 1

5

x3 +1
(x2 +1)(x 2)

= 1+ x 3
5(x2 +1)

+ 9
5(x 2)

xxx33333 ++++++++++++111111111111
(((((x2222222222 +++++++++++111))))))))))))((((((((((((x 222222222222))))))))))))))

=========== 111+ xx 33
5555555555555555555(xx2222222222222222222222222222222 ++++++++++++++++++++1111111111111111111111))

++ 9
55((xx



3 The quadratic equation 3x2 + 2x +1= 0  has roots  and .

(i) Show that the value of 3 + 3  is 10
27

. [3]

3x2 + 2x +1= 0

x2 + 2
3

x + 1
3
= 0

+ = 2
3

= 1
3

3 + 3

= +( ) 2 + 2( )
= 2

3
+( )2

3

= 2
3

2
3

2

1

= 2
3

5
9

= 10
27

(ii) Find a quadratic equation whose roots are 1
3 and 1

3 . [3]

1
3 +

1
3

=
3 + 3

3 3

=

10
27
1

27
= 10

===

11111111000000000
222222222227777777
1111111111111

27



y

-3

A (0.6, 3) 

x

1
3

1
3

= 1
3 3

= 1

1
3

3

= 27

x2 10x + 27 = 0

4

The diagram shows part of the graph y = r q 3 px , where p, q and r are positive 
constants. The graph has a vertex at A (0.6, 3) and y-intercept of -3. 

(i) Determine the values of p, q and r. [3]

3 px = 0
px = 3

x = 3
p

3
p
= 0.6

p = 5
r = 3

At the y-intercept of -3, x = 0, 

O

33333333 pxxxx ========= 0000000000000
pppppppxxxxxxxx = 3333

33333333



y cm 

x cm

3 cm 

3= 3 q 3

3q = 6
q = 2

(ii) State the value or range of values of k such that k = r q 3 px has
(a) 1 solution, [1]

k = 3

      (b) 2 solutions. [1]

k < 3 

5 A buoy is formed by two identical right circular cones of sheet iron joined 
by its bases with a radius of x cm. The buoy has a vertical height of y cm 
and a slant height of 3 cm.

 (i) Express y in terms of x. [1]

y2 + x2 = 32

y = ± 9 x2

y = 9 x2

(-ve rejected as vertical height is positive)

y cm 
3 cm 

yyyyyyyyy222222 ++ xxx2 ============= 33333333333332

yyyyy = ±= ±= ±= ±= ±= ±= ±= ±±±±±±± 999999999999 xxxxxxxxxx222222

y 9 x2

(-(-(-(-(-(-(-(-(-( veveveveeveveveveveeveve rrrrrejeeeeeeeeeeeee ecteted d asas vvererttic



(ii) Given that x can vary, find the exact value of x for which the volume, V,
of the buoy is stationary. [4]

V = 2
3

x2 y

= 2
3

x2 9 x2

dV
dx

= 2
3

x2 1
2

9 x2( )
1

2 2x( ) + 9 x2 4
3

x

= 2 x3

3 9 x2
+ 9 x2 4

3
x

= 1

3 9 x2
2 x3 + 4 x(9 x2 )

= 1

3 9 x2
36 x 6 x3

At stationary point, 
dV
dx

= 0

1

3 9 x2
36 x 6 x3 = 0

36 x 6 x3 = 0

x(6 x2 ) = 0

x = 0,x = ± 6

(iii) Determine with reasons whether this value of V is a maximum or
       minimum.

[2]

Using first derivative test, 
x

6 6 6
+

dV
dx

>0 0 <0 

Volume is maximum. 
Using second derivative test,

d 2V
dx2 = 2

3

(18 9x2 ) 9 x2 (18x 3x3) 1
2

9 x2( )
1
2 ( 2x)

9 x2

When

x = 6
d 2V
dx2 = 43.5< 0

Volume is maximum 

dxxxxxxxxxxxx
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(iv) Find the exact surface area of the buoy when V is stationary, leaving 
your answer in terms of . [1]
Surface area

= 2 x( ) 3( )
= 6 6 cm2

6 The equation of a polynomial is given by p(x) = 2x3 + 2ax2 x2 + ax a where a is a 
constant.
(i) Find the remainder when p(x) is divided  by (x + 1). [1]

p( 1)

= 2 1( )3
+ 2a 1( )2

1( )2
+ a( 1) a

= 2+ 2a 1 a a
= 3

Remainder = -3 

(ii) Show that (2x – 1) is a factor of p(x) . [2]

p 1
2

= 2 1
2

3

+ 2a 1
2

2
1
2

2

+ a 1
2

a

= 1
4
+ a

2
1
4
+ a

2
a = 0

Since remainder = 0, (2x – 1) is a factor of p(x).

(iii) By showing clearly your working, factorise p(x) . [2]

           2     2a – 1           a           -a 

0.5                 1               a           a 

          2          2a           2a            0 

Alternatively, by long division 

(iii) B h i l l ki



x2 + ax + a

2x 1 2x3 + (2a 1)x2 + ax + a

2x3 x2

_____________________
2ax2 + ax
2ax2 ax

_____________________
2ax + a
2ax a

2x3 + 2ax2 x2 + ax a = (2x 1)(x2 + ax + a)

(iv) Find the range of values of a for which the equation p(x) = 0 has only
       one real root.

[3]

(2x 1)(x2 + ax + a) = 0
For p(x) = 0 to have only one real root, 

a( )2
4(1)(a) < 0

a2 4a < 0
a(a 4) < 0
0 < a < 4

7 The table below shows the data obtained from an experiment on the vertical 
motion based on the oscillation of a spring with different masses attached to 
it.

Mass, x kg 0.02 0.03 0.04 0.05 0.15 
Frequency of 
oscillations, y

16 13 11.4 10 6 

It is known that the mass, x kg, and the frequency of oscillations per second, 
y, are related by the equation xy2 = k , where k is a constant.

(a) Plot y2 against 1
x

and draw a straight line graph. 

y2 = k
x
1
x

50 33.3 25 20 6.67

y2 256 169 129.96 100 36 

[3]

y
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 – table of values 
 – 5 plotted points 
 – straight line that passes through the points 

(b) Use your graph to estimate 

(i) the frequency of oscillations when a mass of 0.08 kg is attached to the 
spring,

[1]

x = 0.08
1
x
= 12.5

y2 = 65
y = 8.06

 (ii) the mass which produces 15 oscillations per second, [1]
y = 15
y2 = 225
1
x
= 44

x = 0.0227

(iii) the value of k. [1]

k = 230 0
45 0

= 5.11

(c) When the spring is replaced by a second spring, the relation between y

and x is represented by y2 = 2
x
+80 .

(i) On the same diagram, draw the line representing the second spring. [1]

[B1] – drawing the line, needs to pass through vertical intercept 
y2 80 130 180 
1/x 0 25 50 

(ii) Hence, explain how to find the mass which produces the same frequency 
of oscillations by both springs. [2]

Both the lines intersect at (25, 130).
Acceptable range of 1/x-coord 24<1/x<26; Acceptable range of y2-coord 125 < y2 < 135 

The intersection point indicates the mass that produces the same frequency of oscillations by 
both springs  = 1/25 = 0.0400g

 – Acceptable range
1/24 < mass < 1/26 
0.0417g < mass < 0.0385g 

From graph, read off corresponding value of y2

Acceptable range   

 – Acceptable range 7.75 < y < 8.37 

From graph, read off corresponding value of 1/x
Acceptable range 43 < 1/x < 45 

 - Acceptable range 0.0233 < x < 0.0222 

 – Acceptable range 
  5 < k < 5.22 

yyyyy 80 
1/11/1/1//xxxxxx 0 
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(i) Prove that sec A+ tan A 1

1 sec A+ tan A
1+ sin A

cos A
. [5]

LHS

= sec A+ tan A (sec2 A tan2 A)
1 sec A+ tan A

= sec A+ tan A (sec A+ tan A)(sec A tan A)
1 sec A+ tan A

= (sec A+ tan A)[1 (sec A tan A)]
1 sec A+ tan A

= sec A+ tan A

= 1
cos A

+ sin A
cos A

= 1+ sin A
cos A

(ii) Hence solve the equation sec A+ tan A 1
1 sec A+ tan A

= 3cos A for 0 < A < 2 . [5]

1+ sin A
cos A

= 3cos A

1+ sin A = 3cos2 A
1+ sin A = 3(1 sin2 A)

1+ sin A = 3 3sin2 A
3sin2 A+ sin A 2 = 0
3sin A 2( ) sin A+1( ) = 0

sin A = 2
3

, sin A = 1

Basic angle = 0.72973

A = 0.730,2.41 A = 3
2

= 0.0000 737373377330,00000 2.....4144 AAAAAAAAA =
2



A

O

B

D

C

O
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The diagram shows a circular field with centre O and radius 50 m.
A, B and C are points on the circumference of the field and
angle ABC = . D is a point on BC such that OD is parallel to AC.
The trapezium AODC is the jogging path of a man.

(i) Explain why BD = DC = 50cos . [2]
 Method 1 

Angle BDO = Angle OMA = 90
Angle OBD = Angle AOM = 
Triangle OBD is similar to Triangle AOM.
OA
BO

= OM
BD

= 1

OM = BD
Since OM = DC, DC = BD. 
Using triangle OBD,

cos = BD
50

BD = 50cos

Method 2 

Angle ACB = 90  (right angle in a semicircle) 

cos = BC
100

BC = 100cos

Angle ODB = 90 (corresponding angles since OD is parallel to AC)

50 m 

M

ethhhhhhodododododdoddd 2 
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cos = BBBBBBBBBBBBBBCCCCCCC



cos = BD
50

BD = 50cos
DC = 100cos 50cos = 50cos

BD = DC

(ii) Show that the perimeter, L m, of the jogging path AODC can be expressed in 
the form p + qcos + r sin where p, q and r are constants to be found.

[3]

sin = AC
100

AC = 100sin

sin = OD
50

OD = 50sin
L = 50+50cos +100sin +50sin
= 50+50cos +150sin

(iii) Express L in the form of p + Rcos( ) where R > 0
      and 0 < < 90 . [3]

L = 50+50cos +150sin

= 50+ 502 +1502 cos( )
= 50+ 25000 cos 71.6( )

tan = 150
50

= 3

= 71.6

(iv) Hence state the maximum perimeter, L m, of the jogging path OACD.
       Find the value of  at which this occurs. [2]
Maximum L =50+ 25000 =208
Occurs when

cos 71.6( ) = 1

71.6 = 0
= 71.6

aximum L =50++ 25000 =208
ccuccucuuuuuursrsrsrsrrsrsrrss wwwwheheheeeeeeheeeennnnnnnnnnn

cooooooooosss(((((((((( )))))))))))))))))77777777111111111111.....66666666666666 == 111111

71 6 0



10 (a) Sketch the graph of y = log3 x . [2]

y = log3 x = ln x
ln3

 – shape of graph 
– indication of x-intercept
(b) Express log9 4+ log3(x 4) = 2log3 x as a quadratic equation in x and
     explain why there are no real solutions. [4]

log3 4
log3 9

+ log3(x 4) = log3 x2

log3 4
2

+ log3(x 4) = log3 x2

log3 4
1
2 + log3(x 4) = log3 x2

4
1
2 x 4( ) = x2

2x 8 = x2

x2 2x +8 = 0
Discriminant

= 2( )2
4(1)(8)

= 28 < 0
There are no real solutions. 

y

x1     O 

iscriminant

= ((((((( ))))2222222222
222

4444444444(((((((((((111111111111)))))))))((((((((((8888888888))))))))))

= 2222222222222888888888888 <<<<<<<<<<<<<< 00000000000
here are no real solutions



y

O

(c) Given that logb(x2 y) = m and logb(x3 y) = n , express, 
logb x and logb y  in terms of m and n. [4]

logb x2 y( ) = m

logb x2 + logb y = m

2logb x + logb y = m (1)

logb x3 y( ) = n

logb x3 + logb y = n

3logb x + logb y = n (2)

(2) – (1)
logb x = n m

logb y

= m 2(n m)
= 3m 2n

11

The diagram shows part of the curve y = 4cos x
2

that meets the x-axis at x =

and x = 3 . The line x = 3
2

meets the x-axis at R and the curve at P. The 

normal to the curve at P meets the x-axis at Q.

 (i) Find the equation of the normal at P, expressing your answer in exact form. [4] 

R

P



y = 4cos x
2

dy
dx

= 4sin x
2

1
2

= 2sin x
2

At x = 3
2

,

gradient of tangent

= 2sin 3
4

= 2 1
2

= 2

Gradient of normal = 1
2

Coordinate of P:

y = 4cos x
2

= 4cos 3
4

= 4 2
2

= 2 2

P 3
2

, 2 2

Equation of normal: 

y 2 2( ) = 1
2

x 3
2

y = x
2

3
2 2

2 2

OR

y = 2
2

x 3 2
4

4
2

 (equivalent forms are acceptable)  

y 2 22 222 22 22 2222 = 1
222222222222

xxx 3
22222222222222222222222222222222222222222

y ==== xxxxxxxxxxx
2

333333333333
2 2

2 22 22 22 22 22 22 22 22 22 22222 2



(ii) Find the exact coordinates of Q. [2]
At y = 0, 

x
2

3
2 2

2 2 = 0

x
2
= 2 2 + 3

2 2

x = 4+ 3
2

Q(4+ 3
2

,0)

(iii) Find the exact area of the shaded region.  [5] 

Area

=
0

4cos x
2

dx +

3
2

4cos x
2

dx

=
4sin x

2
1
2

0

+
4sin x

2
1
2

3
2

= 8sin
2
+ 8sin 3

4
8sin

2

= 8+ 8 2
2

8

= 8+ 4 2 8

= 16 4 2units2



12 A circle, C1 has equation x2 + y2 +8x 12y +16 = 0 .

(i) Find the radius and the coordinates of the centre of C1. [3]
x2 +8x + y2 12y +16 = 0

x + 4( )2
16+ y 6( )2

36+16 = 0

x + 4( )2
+ y 6( )2

= 62

Radius = 6 
Centre = (-4, 6) 

(ii) The lowest point on the circle is A. Explain why A lies on the x-axis. [1]
Since the circle has centre at (-4, 6) with radius 6, the lowest point on the circle 
is (-4, 0). Therefore, A lies on the x-axis.

A second circle, C2 , has a diameter PQ. The point P has coordinates (-1, 3) and the 
equation of the tangent to C2 at Q is 2y = x 18 .

(iii) Find the equation of the diameter PQ and hence the coordinates of Q. [4]

2y = x 18

y = x
2

9

Gradient of tangent = ½
Gradient of diameter = -2 
Equation of diameter PQ:

y 3= 2(x +1)
y = 2x +1

To find coord of Q, find intersection between equation of tangent and equation 
of diameter 

2x +1= x
2

9

2.5x = 10
x = 4
y = 7
Q(4, 7)

22222xxxxxx ++++++++1111111==== x
2222222222222

99999999999

2.5555555555555555xxxxxxxxx = 1111111100000000
x = 44444444444



(iv) Find the equation of the circle, C2. [3]
Length of PQ

= 1 4( )2
+ (3+ 7)2

= 25+100
= 125

Radius = 125
2

Midpoint of PQ

= 1+ 4
2

, 3 7
2

= 3
2

, 2

Equation of the circle, C2,

x 3
2

2

+ y + 2( )2
= 125

2

2

x 3
2

2

+ y + 2( )2
= 125

4

(v) Determine whether the circles C1 and C2 intersect each other. [2]
Distance between centre of circles C1 and C2

= 4 3
2

2

+ 6+ 2( )2

= 9.71
Sum of radii of circles C1 and C2

= 125
2

+ 6

= 11.6
Since distance between centre of circles C1 and C2 < sum of radii, both 
circles C1 and C2 intersect each other.

END OF PAPER 
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