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1. ALGEBRA

Quadratic Equation
For the quadratic equation ax >+ bx+c¢ =0,

_ —b++b*-4ac

X =
2a

Binomial Theorem

(a+b)"=a" +(Tja”‘b +(2] a"’b’ +...+(Ir:]a'”br +..+Db",

n! _n(n=D....(n—-r+1)
ri(n—r)! r

n
where N is a positive integer and ( J =
r

2. TRIGONOMETRY

Identities
sin?A + cos?A =1
sec?A =1 + tan? A
cosec?A =1 + cot?A

sin(A+ B) =sin Acos B £ cos Asin B
cos(A + B) = cos A cosB F sinAsin B
+
tan(A=+ B) = tan At tan B

1¥tan Atan B
sin2A =2 sin A cos A
cos2A=cos’ A—sin* A=2cos®* A—1=1-2sin’ A

tanZA:M
1—tan” A

Formulae for A ABC
a b c
sinA sinB sinC
a’=Db%+c? - 2bccosA

A =1absinC




1

It is given that cos A=—-m, where m > 0, and that A is obtuse.
Find the value of each of the following in terms of m.

(a) tanA

(b)  cot(180—A)

A
(¢) cos (EJ

(2]

[1]

[3]



(i)  Find the range of values of p for which the line y =2x+5 will meet the curve

y* = px. [4]



(i)  Hence, on the same axes, sketch the graphs of y=2x+5 and y* =5x. 2]



3 The gradient of a curve is ﬂ =p +%, where p and g are constants. The gradient of the
X X

normal at A(1, 4) on the curve is —1 and the tangent to the curve at B(2, 10) is Yy =8X—6.

(i)  Calculate the value of p and of q. [4]



(ii)  Using the value of p and of g found in (i), find the equation of the curve. [2]

(iii) Show that gradient increases as X increases. [2]



4 In the diagram below, AABC is an isosceles triangle with BC =y cm and AB = 2x cm.
It is also given that the perimeter of AABC is 50 cm.

C

(i) Show that the area of AABC is given by A= X~/625—-50x . [3]



(ii)  Given that X is increasing at a rate of 0.2 cm/s, find the rate at which the area is
increasing at the instant when x = 3. [3]



10

(a)  The sum of the coefficients of the first two terms in the expansion, in
X2

descending powers of X, of (1+ 2x)(2x — Lj is 768, where n is a positive

integer greater than 2. Show that n is 8. [4]



11

8
(b)  Find the term containing X’ in the expansion of [2x - Lj ) [4]

X2



12

6 Solutions to this question by accurate drawing will not be accepted.

y
/

D(5, 12)

7 |

B(-1,-2)

In the diagram, ABCD is a rhombus. The points B and D have coordinates (—1, —2) and
(5, 12) respectively.

(i)  Show that the equation of AC is 7y = —3x+41. [4]



13

(i) Giventhataline 5y =3x+55 passes through point A, find the coordinates of A.  [2]

(iii) Find the coordinates of C. [2]



14

(iv)  Find the area of the rhombus ABCD. [2]

(v)  Ifpoint E lies on BD produced such that BD : DE =2 : 3, find the coordinates of
E. (2]



15

n+1

(@)  Given that 3" -3" = PR find the value of 15". [3]



16

(b)  Without using a calculator, find the root of the equation X\/% =+/20 —X+/48 in

a+bc [3]
YRS

the form




8

17

A particle moves in a straight line from a point O such that t seconds after leaving O,

its velocity, v m/s, is given by v =5(4t— 1)2 —125. Find

(i)  the initial acceleration of the particle,

(ii)  the value of t at which the particle is instantaneously at rest,

(iii) the minimum velocity of the particle.

(2]

(2]

(1]



18

S 5
(iv) the distance travelled by the particle in the second second, [5]



19

A

(0,3)

(0, 1)

v
>

~
|\ 2 I

7, 0)

The diagram shows the curve y =a+bcos(cx) for 0<x<27.

(i)  Write down the value of @, of b and of c. [3]



20

(i)  Sketch, on the same diagram, the graph of y = sin(gj +2 for 0<Xx<2r. [3]

(X
(iii) Deduce the largest integer value of k such that a+bcos(cx) > sin [E) +k for

0<x<27. [1]



21

10 A curve has the equation y = x’e**.

Find the x-coordinates of the stationary points and determine the nature of each point [7]



11

22

In an experimental environment, the population of a type of insect was observed. Over a
period of 10 days from the start of the experiment, the number of insects decreased from

1100 to 600. The insect population is given by the formula P = A+900e", where A and k

are constants and t is the number of days from the start of the experiment.

(a)  Find the value of A and of k. [3]

(b)  Explain why the population of the insects approaches the value of A after a long
period of time. [1]

End of Paper
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1. ALGEBRA

Quadratic Equation
For the quadratic equation ax? + bx +¢ =0,

_ —b++b®-4ac

X =
2a

Binomial Theorem

n n n
(a+b)"=a" +[1 ja"‘lb{zja”‘zbz +...+( ja”"br +..+b",
r

n! _n(n-D....(n—-r+1)
ri(n—r)! r

n
where n is a positive integer and [ ) =
r

2. TRIGONOMETRY

Identities
sin?A + cos’A =1
sec?A =1 + tan? A
cosec’A =1 + cot?A
sin(A+ B) =sin Acos B £ cos Asin B
cos(A + B) = cos A cosB F sinAsin B

tan(A+ B) = tin A+tan B
1¥+tan Atan B
sin2A =2 sin A cos A
cos2A=cos’ A—sin® A=2cos’ A—1=1-2sin’ A
2tan A

tan2A=—2
l1—tan” A

Formulae for A ABC

a b C

sinA sinB sinC

az=Db?+c? - 2bccosA

A = JabsinC



1

The expression f(x) = x> +ax® +bx+c leaves the same remainder, R, when it is
divided by x+2 and when it is divided by X — 2.

(i) Evaluate b. [2]

f(X) also leaves the same remainder, R, when divided by x — 1.

(i1)) Evaluate a. [2]

f(X) leaves a remainder of 4 when divided by x — 3.

(i11) Evaluate c. [1]



2 The equation of a polynomial is given by p(X) = 2x> — x> +16x 8.

(i) Show that 2x — 1 is a factor of p(X). [1]

(1)) Show that p(X) = 0 has only one real root. [3]



X% +2X+40

(i) Express 16k 3 in partial fractions. [5]
2
X" +2X+40
iv) Hence find dx 3
() I2x3—x2+16x—8 B]



(a) Solve the equation log, (X + 2) —logﬁ (X —1) =3. [5]



(b) Thecurve y=ax"+7, where a and b are constants, passes through the points

(2,47),(-3,-128) and (5, k). Find the values of a, b and k. [5]



The diagram shows a rod AB which is hinged at A, and a rod BC which is fixed at B
such that angle ABC = 90°. The rods can move in the Xy-plane with origin O where the X
and y axes are horizontal and vertical respectively. The rod AB can turn about A and is
inclined at an angle @ to the y-axis, where 0° < #< 180°. The lengths of AB and BC are
8 m and 5 m respectively.

O
x‘}

Given that C is d m from the y-axis,

(1)  find the values of a and b for which d=a sin &—b cos 6 [2]

Using the values of @ and b found in part (i),

(i) express d in the form R sin (6— @), where R > 0 and 0° < oz < 90°. [3]



Hence
(iii) explain if it is possible for d to be 10 m,

(iv) find the value(s) of & when d =6 m.

[2]

[2]



3
5 (a) Itisgiven that f(x)=In /? .
—X

(i)  Find f'(x) and f " ().

10



(b)

(ii) Hence determine the range of values of x for which both f’(X) and f"'(X) are

positive. [4]
d .2 X . )
Show that i 4sin 5 + 7 ||=ksinX where k is a constant. [3]
X

11



cosec’9—2

(i) Provethat ——————— =cos 26.

cosec 20

(i1)) Hence solve the equation

3

cosec’0—2
s+
cosec “0

cosec 20

=0 for 0<@<5.

[4]

12



7

A quadratic equation with integer coefficients has roots o and 3.

Given that oo — B =2 and o — B = 3, find the quadratic equation without calculating
the values of o and f. [5]

13



The diagram shows the line y = 2 and part of the curve y =sec? Xx—2 . The curve

intersects the X-axis at the point A and line y = 2 at the point B. A straight line through
the origin intersects the curve at point B.

y = sec’X — 2

[\®)
—

(1) Find the x-coordinate of A and B. Express your answers in terms of 7. [3]

14



(i) Determine the area of the shaded region bounded by the curve, the x-axis and the
line OB. Give your answer as exact value. [5]

15



<Y

The diagram shows part of the graph of y=3- |1 - 2X| .

(1) Find the coordinates of the points A, B and C.

(i1)) The line BC makes an angle 6 with the x-axis. Find the value of tan 6.

[3]

[1]

16



(iii) Solve the equation 3 — |1 - 2X| =2x—Xx*.

(iv) Without solving for X, explain why there is no real solution for the equation
stated below.

3-[1-2x|=4+x>

[4]

[3]

17



10 A circle, C,, and another circle, C,, pass through the same point (0, —3).

(1)  Given that the radius of both circles is /5 units and their centres lie on the line

y =X, find the equations of C, and C, . [5]

18



(i) Circle, C, and circle, C,, intersect at a point on the X-axis. Find the X-coordinate

of the point of intersection of C; and C, on the X-axis . [3]

(iii) Given that a point P lies on circle, C; and another point Q lies on circle, C, , find

the greatest distance between P and Q. [3]

19



11

The table below shows experimental values of two variables, X and Y.

X

1

2

3

4

5

y

0.50

2.12

3.18

4.00

4.70

It is known that X and y are related by the equation y

constants.

(i) Plot

y

X

o1 . .
against — and draw a straight line.
X

a

N

+ b\/; where a and b are

[3]

20



(i) Use your graph to estimate the value of each of the constants a and b.

(ii1) By drawing another straight line on the graph in part (i), solve the following
simultaneous equations.

y=i+b\/;
X

Ix
y/x =3

—END -

(3]

[5]

21



BPGH Preliminary Exam 2020

1

(1)
(ii)
(iii)
(1)

(i)

(111)

(iv)

(a)
(b)

(1)
(iii)

(iv)

(a)

(b)

b=—4

X =

N | =

(X2 + 8) =0 no real solution

5  2x
2x=1 x?+8

%hﬂ2x—0—h%x2+8)+c

X=1.68,0.447 (rejected)
a=5,b=3,k=632

d = 8 sinO — 5 cosO
d = /89 sin (0 — 32.0°)
Max value of d = \/8_9 =943

when sin (0 — 32.0°) = 1. So
not possible for d to be 10 m.

71.5°,172.5°
10
1 f'(x)=
(x) 3(25—x2)
" 20X
fr(x)= 5
3(25—x2)
(i) 0<x<5

i[4sin2 (§+ ﬂj:| =2sin X
dx 2

6
7

10

11

(i)

Add Math Paper 2 (Answers)

1.41,2.98,4.55

16x>—24x-7=0

(1)

(i)

(1)

(i)
(iii)
(iv)

(i1)
(iii)
(ii)
(iii)

X-coordinate of A =

NG

X-coordinate of B =

W[y

(1 - \/§ + %) units?

1
A(—l,O),B(E-,3J

C(2,0)

tan 6 =—2

X=2

Max value of 3—|1—2X| is3

when X = l .
2
Min value of 4 + X* is 4

when X = 0.

The curve and line do not
intersect so there is no real
solution.

Ci:(X+ 1)+ (y+1)*=5
Co:(X+2P+(y+2)*=5
X=-3

V2 4245 or 5.89 units

a=-2,b=25

Draw the line —== i

Point of intersection is
(0.5,1.5)
X=2,y=212

22
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1. ALGEBRA

Quadratic Equation
For the quadratic equation ax? + bx + ¢ =0,

—b+b> —4dac

2a

xi=

Binomial Theorem
(a+b) =a" + [T] a"'b+ [;J a b .+ (n] at'b +..4+b",
r

n! _nn=1)...(n-r+l)
r!(n—r)! r!

- - . - n
where # is a positive integer and ( J
¥

2. TRIGONOMETRY

Identities
sin?4 + cos?4 = 1
sec?4 =1 + tan® 4
cosec?A4 =1 + cot? 4
sin(A+ B) =sin Acos B+ cos Asin B

cos(A + B) = cosA cosB FsinAsinB
+
banlald )= tan 4 +tan B

Ixtan Atan B
sin24 =2 sin 4 cos A
cos24=cos® 4-sin A=2cos* A-1=1-2sin* 4

KIASU=gE-=0
- " 1-tan’ 4
ExamPaper ¢
Formulae for A ABC

a b ¢

sind sinB sinC
a?= b2+ ¢2 — 2bccos A

A =absinC



4

1 It is given that cos A =—m, where m > 0, and that A4 is obtuse.
Find the value of each of the following in terms of m.

(@ tand 2]

opp. = JT-m* [Mi]
A |
fan p = - A°M o]

i

m
oz
|
(b)  cot(180-4) = m (1]
& m
L - Bl
e L8
Y
(¢) COS(§] 3 4 [3]
cosh = 2¢c0s 3 - |
-M = lCOSzi = [Ml]
KIASL}ezs o
ExamPaper o g |
1-M :
CUS'&‘-I = J-E—l\% ol - E: [reJECN”
v

(Ar]



2

(a)

5

Find the range of values of p for which the line y = 2x +5 will meet the curve

y:=px.
Y= 2t 5 — 0
e — 0
Wb © b @,
(&IJrS)l = i

41> + qox + a5 = X
41° + 20K -pL T2

a=4, b=40-P, =25

p-tac 20
(20-p)" - #() (25) =0 [mil
2 - O
400 - 40p TP - 400 =

p2- 4op 2 O
pCp-40) 2 0 i)

KIASU4

ExamPaper
Pé Q0 or

7

pz 40 [Al]

Z

5 =0 [M]

[4]



S

(i)  Hence
, on the same axes, sketch
3 the graphs of y =
y=2x+5and y’ =
Yo =5x. 2]

Y= 3145

~ ,*5 [Bﬂ
y=2X [ witws L mark

\jz': ¢, T80 it both grqph.s tersect }

%




dy q

The gradient of a curve is = = p+—5, where p and g are constants. The gradient of the
X

normal at A(1, 4) on the curve is —1 and the tangent to the curve at B(2, 10) is y =8x—6.

(i)  Calculate the value of p and of 4.

Grodient of Jranaed‘ a A= 1
\\}nen 1,:_1. ) —d-i = i;
dx
P+q= | M)
4=\-p — O
When  x= 2, .jﬂi = 8 )

@:@ ) \'P = GLT-BP
P

KIASU=gg1,

ExamPaper ¢
el Cah = b O

1
o
(@)

- -% AN

(4]



Usihg the value & p and of g found8n i),

(b) A Find the equation of the curve. [2]

% = -5

y= [a-g" &
<3
= QY - .3:;’_ +¢ M
Sub x=1, H:H‘J

8
L]-:q—_a‘l'c

A

(¢)  Show that gradient increases asx increases. [2]

= 4 50 I}!

1
KIA@@%:%@ gmdienT increases @S

ExamPape{h‘,¢ L increases -
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4 Inthe diagram below, AABC is an isosceles triangle with BC =y cm and AB = 2x cm.
It is also given that the perimeter of AABC is 50 cm.

1
|
I
[
I
!
I
|
|

,h
y 21 B
(a)  Show that the area of A4BC is given by A =xv/625-50x . 3]
aXt RH = 50
1y = 23

H: JB_IJ [Mﬂ

b= JY=2
= J@ag-0) - X
- JGRS'SOI' M)
a.ds
P\Tﬂﬂ U{: AABC' - _1g ){ m )( [m_J

KIASU§ 75-50% ( shown )

ExamPaperz J
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(b)  Given that x is increasing at a rate of 0.2 cm/s, find the rate at which the area is
increasing at the instant when x = 3. [3]
dx - 0.
JE —
A= % | 65— 50X
L
2 e (i)
4 Ly (pa5-50x) © (-50)
* X(2 (635
_j% . pas-son)” + 20D

aHx

___....-—--"_'_"'-'_-

- JBJS'SUL - m

oA L
%B{="J‘;anlt

_l_S_.C_iL—-—} « o2 [M]

[RE_S-/SO_@) "~ Tas- 900)

3.1 onfs o dsf) LAV
7%

1\

"



5

11

(a)  The sum of the coefficients of the first two terms in the expansion, in
descending powers of x, of (I 4 2x)(2x — ~]—,} is 768, where n is a positive

X
integer greater than 2. Show that n is §. IRV [4‘1

n A
(ax-L) = (Do + (N (z) -

e A a (%) (") ()

= 3 1 - 1 (QWﬂ) (10”3) .
BV n-! n—3+ )
ran (- = (- X
Nt (P S (i)
_ NN n- n-3 ey Qnﬂl e nl T
-2\/_3_(_} ny X
T

2
oL gt = 68 (M)

P(g41) = TS
M = 25k ()

KIASU=;

ExamPaper ¢

own)
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Yerm confaining

8
(b)  Hence, find theﬂx'7 term in the expansion of [Zx ——l—,] .
"

8
(a1~ 3)

Tew = (3) (&1)‘” (' —lLl) (]
() @ (0 O (0™
.t er (o m

§-3r=-T
3r = 1D
r= § [Mi)
To= (%) (n* (1)’ ()
g & 4 CAI
= -3 P

7/
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6  Solutions to this question by accurate drawing will not be accepted.

s
N

D(35, 12)

N h

B(—1,-2)

In the diagram, ABCD is a rhombus. The points B and D have coordinates (—1, —2) and
(5, 12) respectively.

(a)  Show that the equation of AC'is 7y = —3x+41. (4]
+dooi = 51 ld-d
midpoirt of B = (5L BR) [w]
& (&,5)
12t
gradient of B = 531 (i
= I
J
-3
T
37+ CMi)
-3t
_ -3 ¥C
5 :,r(l)
|
e= 5
- N [A)
3
Y= ——11"' F
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(b)  Giventhataline 5y =3x+55 passes through point A4, find the coordinates of 4. [2]

:fH = "31‘l' LH == @
sy = 31155~ O
e
Sub H:S ihfo @,
5(8) = 3%t 55
31-: "|5
g2 =5
A (-5, 8) [AT]
-
(¢)  Find the coordinates of C. [2]
let C ke (1,Y).
5+:L Y = (3 5) (W)
E;E ~1L -5
Exa@ /
5= 4 oy
'_I_: (1 H: ‘1

c(4,2) TAT]
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(d)  Find the area of the rhombus ABCD. [2]
5 -1 9 5 -9 ’ [MO
Area = 2 § -2 2 13 3

1

—H 0-24 0§ +40 48 11§10t 60 ]

1

L (332)

)

1\6 units”
7

(e) If point E lies on BD produced such that BD : DE =2 : 3, find the coordinates of
E. [2]

i in % between B and D = §
i in Yy etween B and D = It
1

= 3

]

RO (512) e 1 tetween D oand E
Mt in Yy between D and E

“’IIZ(IASU@@S atal)

ExamPaper
= (14, 33) (8]

z
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n+l

(@)  Given that 37 -3" = 5—5", find the value of 15",

3o
B .

(M)

pa-) = 9

§ () = 5"

= 5'57 ]
MmN = 5
3" (5") <
Isn oy _§3__ [h‘]
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(b)  Without using a calculator, find the root of the equation x/80 =20 - x

the form a+b\/;.

xJg0 = Jo - 1[4
x5 = s - 4 [3 MI] - Simpl;Fy surds

48 in

(3]

i

A1 + WL3 = 2J5

1 (45 + 4[3) =
aJs

= i)
T gt 4B
N a5 - 4P

26 +2I3 YRRV

10 - all5
g
(afe) - (253)

10 ar

—

KIASU* g@;ﬁ

ExamPaper
- 5 [AT)

Z
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18

A particle moves in a straight line from a point O such that 7 seconds after leaving O,

its velocity, v m/s, is given by v = S(4r—l)2 —125. Find

(a) the initial acceleration of the particle,

dv
A= %
& fO("r’c-l)("r] [Mi]
o  t=0,
a= 10(-)“4)

= -Yom|s® [
V4

(b)  the value of 7 at which the particle is instantaneously at rest,

when V=0,

5(4¢-)'-125 =0 (M)
(4t-1)" = a5

44-1 = 5 o -5 Crfzj-)
1- \.5; CA

(¢)  the minimum velocity of the particle.

Ceil

Wi MAM Veloci’r\; : -5 ml}/

[1]



19

(d) the distance travelled by the particle in the second second, [5]

g = js(4t-s)’—\a5 dt

3
= S5(EN sy ¢ ¢ M)

——

3(4)
sup t=0, §=0,

3

5
&= 2

g= 5(*t"l)3 B -lacjt 4 _i_ [M\]
| &

Sub t= J

= 50 5+ 3

= —~l]3jj
sl t=15 3
5
5(4(\5) 1)~ as(9) tog L
[Mx] =), §=-1133

ot iAS 1

aper / .

5(%33 _a5@) t Ti s——mg;
=

2
= -106%

§=

S=

2
(135 - 13%) + (135-1063) Wi

t

Dionce,  Travel od

Lt

som LAl

Z
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The diagram shows the curve y =a+bcos (cx) for 0<x<2rx.

(a)  Write down the value of a, of b and of c.

Period = W
CLRE|
c
¢ =3 L8]
0= 34 (8r]

KIASU=;

ExamPaper ¢
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(b)  Sketch, on the same axes above, the graph of y =sin (%J +2 for 0<x<2rx. [3]

[1] hqpe Ferinol = QT +%
S
= AT
(] period 1
0] maximum- ) £ i (i) z 4

e sn(z) t 2 3

()  Deduce the largest integer value of & such that a+bcos(cx) > sin (g—) +k for

0<x<2r. k: . (B (1]
b

e
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10 A curve has the equation y = x’¢*".
Find the x-coordinates of the stationary points and determine the nature of each point

Ao gpe™ t 1%e® ]

(7]

e ( 3t21)
& _ o
o
e (3+2x) =0 M)

1= 0 LA o P= "% [Al

G Z
BY Fiest  Deri vative Test,
E_x"" -0 0 0- | [l | -b5 | =Lk
ii* Ve 0 Ve | —ve 0 l Ve i
d% | t
I |
2 Bl W40 B B e
poir of  inflexXion [Af winimum  poinT M)

KIﬁ)SU—E of A="3

ExamPaper ¢
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11 In an experimental environment, the population of a type of insect was observed. Over a
period of 10 days from the start of the experiment, the number of insects decreased from

1100 to 600. The insect population is given by the formula P = 4+900e", where 4 and k
are constants and ¢ is the number of days from the start of the experiment.

(a)  Find the value of 4 and of k. , 4 [3)
P= k4 qDOE’,k
when =0, P:'.}OO)
1100= A+ 900
A = 200. [ 8r)

7

when =10, P=600,

10K
(0o = aoot 900€
4
o 0K 3 M
1ok = Jn%
K= -0.0811 Ch 3sf) [N
<z
(b) H lﬁ‘?!?:—r?@ insects approaches the value of 4 after a long
mp&mpm&pu n
kt

As 1t inceases, et will aPProach 0,
[BI]

0 P will aPPmach 200.

End of Paper



BPGHS Preliminary Exam 2020

Sec 4E/5N Additional Mathematics Paper 2 (Solutions)

)

1G3) |f(-2)=-8+4a-2b+c
f(2) =8+4a+2b+c
-8+4a-2b+c=8+4a+2b+c Ml
-8-2b=8+2b
4b=-16
b=-4 Al
() |f(l)=1+a-4+c=a+c-3
f(1) = f(2)
a+c-3=8+4a-8+c¢ Ml
a-3=4a
a=-1 Al
(i) | fx)=x—x*—4x+c
f(3)=27-9-12+c
6+c=4
c=-2 Al
2(i) 3 2
o( )22 (] (L)
2 2 2
8) 4
=0
Since remainder is 0, 2X — 1 is a factor of p(X). Al
21) [ 2 —=x*+16x—8=0
X’(2x— 1)+8(2x-1)=0
2x—=1D(x*+8)=0
2Xx—1=0 X2+ 8 =0 Ml
X:% no real solution since x> + 8 > 0
There is only one real root. Al, Al
X2 +8
2x—1) 2x* = x*+16x -8
—(2x* = x%)
0+16x—8
- (d6x-8)




2(iii)

X% +2X+40 A  Bx+C
2X — x> +16X-8 2x—1Jr x> +8
A(x2 +8)+(2x—1)(Bx+C)

(2x—1)(x2+8)
X* +2X+40 = A(x2 +8)+(2x—1)(Bx+C)

Sub X = l
2

st

A=5

Subx=0,A=5
40=40-C
C=0

Subx=1
1+2+40=509)+B
B=-2

Ans : > - 22X
2x—1 X +8

Ml

Ml

Al

Al

Al

Deduct 1 m if final ans
not shown.

2(iv) f X2 42X +40
2% —x* +16X—8
- S 2K g Al (1% term)
52X—1 X°+8 A2 (2nd term)
:—ln(2x—1)—ln(x2+8)+c Deduct Il mifcis
2 missing
3(2) log, (x—1) M1
1 X+2) - ————==3
ng( ) logz‘/E
logz(x+2)—210g2(x—l)=3
10 M:3
2> B Ml
(x=1)
X+2 _g
(X_1)2 Ml
x+2:8(x—1)2
8x2 —17x+6=0 Ml
. 17+,)(~17)" —4(8)(6)
) 2(8)
X:17J_r\/ﬁ
16

X=1.68,0.447 (rejected)

Al [ deduct 1 m if did
not reject 0.447]




3(b)

Subx=2,y=47
ax2P+7=47
ax20 =40 —cooeeeee (1)

Subx=-3,y=-128
ax(-3)°+7=—-128

ax(-3)° = =135 —reemeen )

o 240
) (_3)b_—135

ac

b=3

Sub b =3 into (1)
ax2¥=40
a=>5

y=5¢+7
Subx=5,y=Kk
k=5 (57 +7=632

M1 for eqn (1) & (2)

Ml

Al

Al

Al

4(1) | d=8sinO—5cosH A2 [1 m for each term]
4(i1) | d=Rsin (0 —a)
R=+82+5" = /89 Al
tan o = é
8 Al
a=232.0° Al
d = /89 sin (0 — 32.0°)
4(ii)) | Max value of d = /89 =9.43 m Al
when sin (6 — 32.0°) =1 or § = 122° Al
Not possible for d to be 10 m
4@iv) | /89 sin (0 -32.0°=6

6
sin (6 —32.0°) = ——
\89

0 —32.0°=39.49°, 140.51°
0="71.5°,172.5°

Al, Al




S(a)()

1

EWEETAE
f(X)—ln(5 j

1 (5+xj
= ~Inl 222
3 5—X

%[ln(5+x)—ln(5—x)]

M1
) M1
f (X)zl(L+Lj
3\5+X 5-X
:l 5-X+5+X
3| (5+x)(5-x)
_ 10 Al
3(5+x)(5-x)
_ 10
3(25—x2)
" _2
' (x)= 2 (-1)(25-¢) " (-2x)
3
_ 20X
2
3(25—x2) Al
5(a)(ii) | For f'(x) >0
25-x>>0 Ml
S+X)(5-x)>0
-5<x<5 Al
For f""(x) >0
20x>0
x>0 Al
For both f'(x) and f"'(X) to be positive, Al
0<x<5
5(b
®) i 4sin2(§+ﬂ\—‘
dx 2 )]
=4x2sin 5+7r cos 1+7zjxl MI
2 2 2
. X X
=4sin| —+x |cos| —+7
(377 )eo(37)
) X
:251n2(5+7rJ M1

=2sin(X+27) or 2(sinX cos 27z +cos X sin 27)
=2sin X

Al




6(1) 25
LHS = COSEecC 92 2
cosec o
=1— 2 B1
cosec’d
—1-2sin% @ ii
=cos260
6(i1) | cos20+3sin20=0 M1
3 sin 20 = — cos 20
tan29=—% MI
basic £ =0.3218
23 i11t;103229188 ,51;5— 0.3218 ,37—0.3218 A2 Deduct 1 m for
ST st each wrong ans
7 a—-pB=2
a’-p2=3
(a+B)a-PB)=3
3
a+f==
B 5 Al
(a+p) =2 M1
4
2 2 -9
a”+p +2aﬁ—Z
2 9
4+4aﬂ:2
7
=16 Al
Equation is Xz—gx—l=0
2 16
2
16x° -24x-7=0 Al
8(1)) | AtA, sec’x—2=0
coszx:l
2
\F
cosX=,|—
2
X_7r
4 Al




AtB, sec’x—2=2

sec’x = 4 Ml
cos’ X:l
4
\F
cosX=,[—
4
N
E) Al
8(ii Al
(ir) AreaofAOBCzlxzxZ:Z units> , Cis | 2.0
2 3 3 3
Area bounded by curve, X-axis and line X = %
H
= I(seczx—2) dx MI1
3
3
= [tanX—Zx]
3
T 2r T T
= tan ————| tan———
3 3 ( 4 2)
Al
- B-1-Z
6
Required area = %—(\E—l—%j MIl
- (1—'\/5-{-%) units? Al
9(1) | Wheny=0,
1-2x=3
1-2x=3 or 1-2x=-3
x=-1 or xX=2
A(-1,0) C2,0) Al, Al
{1
2 Al
9(11) |tan®=-2 (tan O = gradient of BC) Al
9(iii) 3—|1—2x|:2x—x2
x2—2x+3:|1—2x|
x> —2x+3=1-2x Bl
X2 +2=0
No real solution as x>+ 2 > 0 for all real values of X. Al




X2 —2x+3=2x-1

B1

x> —4x+4=0
(x=2)° =0
X=2 Al
9(i B1
(iv) Max value of 3—|1—2X| is 3 when X = % .
Min value of 4 + x* is 4 when X = 0. Bl
The curve and line do not intersect so there is no real Al
solution.
10(i) | Let the centres of C; and C; be (a, a)
a2+(a+3)2:5 Ml
a’+a’+6a+9-5=0
2 _
2a°+6a+4=0 M1
(2a+2)(a+2)=0
a=-1 or a= -2 Al
C : (x+1)2+(y+1)2:5 Al
Cy: (x+2)7+(y+2)° =5 Al

10(ii) | Ci:Suby=0
G )R . — (1)
Al (both (1) & (2)
Cy:Suby=0 correct)
(X+2P+4=5 —ommeeev )
X+ 12 +1=(x+27+4 Ml
X2A2X L+ 1 =X+ 4x+4+4
2Xx+6=0
X=-3 Al
1) Dist between 2 centres = \/(—1+2)2 +(—1+2)2 =2 Al
Greatest dist = /5 +~/2 +/5 MI
= \/§+2\/§ or 5.89 units Al
11(31) a
=~ +byx
T
y a
—=—+b
Ix o x
1 0.5 0.33 | 0.25 | 0.20 Al (table)

1
x
2 | o5 | 150 | 184 | 20 | 210
Jx

B2 (4 to 5 correct
points for line of best
fit)




(i) |a=- M1, Al
b=25 Al
L) | yfx =3
Yy _3 Al
Ix X
Draw —- against 1
Vx X _

1 B1 (str line graph)

— 1 0.5 0.25

X

y

- 3 1.5 0.75
Jx
Point of intersection is (0.5 , 1.5) Al
Loos
X
x=2 ATl (correct X value)
y

——==15
Jx
y:l.Sx\/E:Z.IZ A1 (correct y value)
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