

ANGLICAN HIGH SCHOOL SECONDARY FOUR PRELIMINARY EXAMINATIONS 2020

ADDITIONAL MATHEMATICS

Paper 1

4047/01 1 September 2020 Tuesday 2 hours

Candidates answer on the Question Paper Additional Material: 1 Graph Paper

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.Write in dark blue or black pen.You may use an HB pencil for any diagrams or graphs.Do not use staples, paper clips, highlighters and glue or correction fluid.

Answer **all** the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 80.

r <u>Examiners' l</u>	Use				
Question	Marks	Question	Marks	Table of Penalties	
1		7			
2		8		Units	
3		9		Presentation	
4		10		Accuracy	
5		11		Total:	
6		12			
Parent's Nat	me & Signat	ure:			
Date:					80

This paper consists of 18 printed pages.

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\cos ec^2 A = 1 + \cot^2 A$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\sin 2A = 2\sin A \cos A$$
$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$
$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
Area of $\Delta = \frac{1}{2}ab \sin C$

1 The roots of the quadratic equation $2x^2 - 6x + 1 = 0$ are α and β .

(i) Find the value of
$$\alpha^2 + \beta^2$$
. [3]

(ii) Find the value of
$$\frac{\alpha^2 + \beta^2}{\alpha\beta}$$
. [1]

(iii) Form a quadratic equation with roots
$$\frac{\alpha}{\beta} + 2$$
 and $\frac{\beta}{\alpha} + 2$. [3]

- 2 The mass, *m* grams, of a radioactive substance, present at time *t* days after first being observed, is given by the formula $m = 30 e^{-0.025t}$.
 - (i) Find the mass remaining after 30 days.

[2]

(ii) Find the number of days required for the mass to drop to half of its initial value.Give your answer correct to the nearest integer. [2]

(iii) State the value *m* approaches when *t* becomes large. [1]

Hence, find the value of the constant *a* for which the coefficient of x^2 in the expansion of $(a-x)(2-x)^7$ is 616. [3]

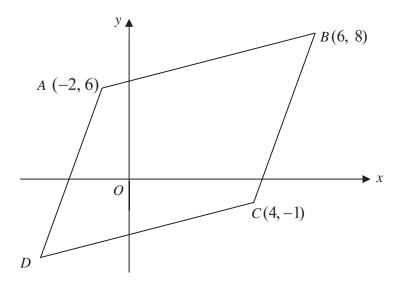
(b) In the expansion of $\left(x^2 - \frac{1}{2x^4}\right)^n$ in descending powers of x, the sixth term is independent of x. Find the value of n and the term independent of x. [4]

[Turn over

[2]

3

4 Solutions to this question by accurate drawing will not be accepted.



The diagram shows a parallelogram *ABCD* in which A(-2, 6), B(6, 8) and C(4, -1) are the coordinates of its vertices. Find the

(i) equation of AD,

[2]

(ii) coordinates of D,

[2]

(iii) equation of the perpendicular bisector of the line AD,

[2]

(iv) area of the parallelogram *ABCD*,

[2]

(v) acute angle the line AB makes with the y-axis. [2]

5 (i) Show that
$$\frac{d}{dx}(\tan^3 5x) = 15\sec^4 5x - 15\sec^2 5x$$
. [3]

(ii) Use your answers to part (i), find $\int \sec^4 5x \, dx$.

[4]

6 (i) Given that
$$y = \frac{3x}{\sqrt{5-4x}}$$
, express $\frac{dy}{dx}$ in the form $\frac{ax+b}{\sqrt{(5-4x)^n}}$ where *a*, *b* and *n* are real constants. [4]

(ii) Hence find the equation of the normal to the curve $y = \frac{3x}{\sqrt{5-4x}}$ at the point on the curve where x = 1. [2]

7 (i) On the same diagram, sketch the graphs of
$$y = 16x^{\frac{5}{3}}$$
 and $y = \frac{9}{\sqrt[3]{x}}$ for $x > 0$. [3]

(ii) Find the x – coordinate of the intersection point of the two graphs. [2]

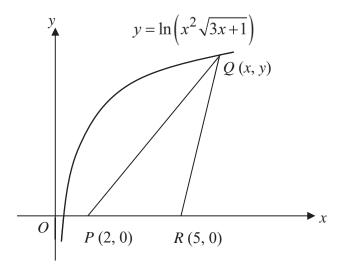
8

Given that $y = \operatorname{cosec} x \tan x$,

(i) show that
$$\frac{dy}{dx} = \sin x \sec^2 x$$
, and [2]

(ii) determine where y is decreasing for $0 \le x \le 2\pi$. [2]

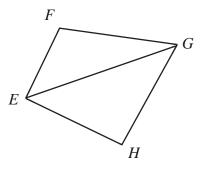
9 The diagram shows the curve $y = \ln(x^2\sqrt{3x+1})$ and three points P(2, 0), Q(x, y) and R(5, 0). The point Q(x, y) lies on the curve.



(i) Show that the area, A units², of the triangle PQR is given by

$$A = 3\ln x + \frac{3}{4}\ln(3x+1).$$
 [2]

(ii) Given that x is increasing at a rate of 0.2 units/s, find the rate at which the area, A, is changing at the instant when x = 15 units. [3]



EFGH is a plot of land that comprises two smaller plots, triangle *EFG* and triangle *EGH*. *EF* and *EH* are perpendicular, angle $FEG = \theta$, EH = 42 m, EG = 55 m and EF = 48 m.

(i) Show that the area, $A m^2$, of *EFGH* can be expressed as $A = 1320 \sin \theta + 1155 \cos \theta$.

(ii) Express A in the form in the form $R\sin(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. [3]

[2]

(iii) Find the value of θ if the area is 1231 m².

[2]

11 (a) The variables x and y are related in such a way that when $\frac{x}{y}$ is plotted

against $\frac{1}{x}$, a straight line is obtained. The line passes through (2, 9) and (5, 3). Find an expression for y in terms of x. [4]

(b) The table shows experimental values of two variables, *x* and *y*.

x	2	4	6	8
У	8.48	5.99	4.90	4.24

It is known that x and y are related by the equation $x^n y = k$, where n and k are constants. Draw a suitable straight line graph to represent the above data and use it to estimate the values of n and k. [6]

12 Solve the equation $3\csc^2 x \sin x = 5(\cos x + \sin x)$, giving the principal values of x, in radians. [5]

ANGLICAN HIGH SCHOOL SECONDARY FOUR PRELIMINARY EXAMINATIONS 2020

ADDITIONAL MATHEMATICS

Paper 2

4047/02 28 August 2020 Friday 2 hours 30 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class in the space at the top of this page.

Write in dark blue or black pen.

You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters and glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100.

Question	Marks	Question	Marks	Table of Penalties	
1		7			
2		8		Units	
3		9		Presentation	
4		10		Accuracy	
5		11		Total:	
6		12			
Parent's N	ame & Sign	ature:			/
				10	

This document consists of 18 printed pages.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\cos ec^2 A = 1 + \cot^2 A$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\sin 2A = 2\sin A \cos A$$
$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$
$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
Area of $\Delta = \frac{1}{2}ab \sin C$

1 (a) The equation of a curve is $y = mx^2 + (m-3)x + m$, where *m* is a constant. Find the range of values of *m* for which the curve lies completely above the *x*-axis. [5]

(b)

Given that $y = ax^2 - 4x + c$ is always negative, give an example of values of *a* and *c* which satisfy the condition.

[2]

2 (a) Given that $2x^4 + 3x^3 + ax^2 - 9x + 9 = (x^2 - 1)(x - 2)Q(x) - 3x^2 + bx + c$ is an identity, state, with reason, the degree of Q(x). [1]

(b) Find the value of a, of b and of c.

(c) Hence, find the remainder when $2x^4 + 3x^3 + ax^2 - 9x + 9$ is divided by (3x-1). [1]

3 (a) Given that
$$p = 3^x$$
 and $q = 3^y$, express $\log_3 \frac{p^7 q}{243}$ in terms of x and y. [4]

(b) Given that
$$\log_2 x - \log_x x^2 = \frac{1}{3} - \log_8 2x$$
, find the value of x, leaving your answer in index form.

[4]

4 (a) Without using a calculator, express
$$\frac{\sqrt{6} - \sqrt{5}}{\sqrt{15} + \sqrt{2}}$$
 in the form of $a\sqrt{10} + b\sqrt{3}$. [4]

(b) Without the use of a calculator, solve the equation $\sqrt[3]{27^x} - 81^{x+1} = 0.$ [3]

5 (a) (i) Given the curve $y = -|3x - x^2| + 4$, find the *x*-coordinates of the points where the curve meets the *x*-axis. [2]

(ii) Sketch the curve $y = -|3x - x^2| + 4$, giving the coordinates of the turning point and of the points where the curve meets the axes. [3]

(b) Explain why there are only two solutions to the equation $-|3x-x^2| = k-4$ for k < 1.75. [2]

(c) Determine the maximum value for *m* for which the line y = mx + 1 intersects the graph of $y = -|3x - x^2| + 4$ at three points. [1]

6 (i) Express
$$\frac{7x+11}{(x-1)(x+2)^2}$$
 in partial fractions.

(ii) Hence, find
$$\int \frac{7x+11}{2(x-1)(x+2)^2} dx$$
. [3]

[4]

7 A piece of wire which has a fixed length of *k* cm long is bent to form a rectangle. Show that the area of the rectangle is a maximum when it is a square.

- 8 Given a circle with the equation (2x+5)(x+2)+(2y+1)(y-5)=0,
 - (i) Express the equation of the circle in standard form.

(ii) Find the length of the chord when the line y = -2x cuts the circle.

9	(a)	(i)	Prove the identity $\sin x \cos x + \cot x \cos^2 x = \cot x$.
---	-----	-----	---

(ii) Hence, solve $\sin 3x \cos 3x + \cot 3x \cos^2 3x = 1$ for $0 \le x \le \pi$. [3]

[4]

(b) (i) On the same axes, sketch the graphs of $y = 3\sin x - 1$ and $y = \tan \frac{x}{2}$ for $0 \le x \le 2\pi$. [5]

(ii) Hence, state the number of solutions of $3\sin x - 1 = \tan \frac{x}{2}$ for $0 \le x \le 2\pi$. [1]

10 Two particles, *A* and *B*, leave a point *O* at the same time and travel in the same direction along the same straight line.

Particle A starts with a velocity of 9 m/s and moves with a constant acceleration of 2 m/s².

Particle *B* starts from rest and moves with an acceleration of *a* m/s², where $a = 1 + \frac{t}{3}$ and

t seconds is the time since leaving *O*. Find

(a) an expression for the velocity of each particle in terms of t,

(b) an expression for the displacement of each particle in terms of t,

[3]

(c) the distance from O at which particle B collides with A,

(d) the speed of each particle at the point of collision.

[2]

[3]

- 11 Given that $\cos A = p$ and that A is acute, express the following in terms of p.
 - (i) $\sin 2A$

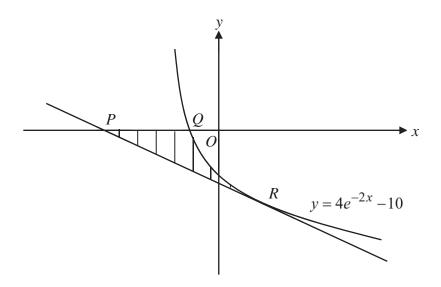
[3]

(ii)
$$\cos\frac{A}{2}$$

[3]

12 The diagram shows the curve, $y = 4e^{-2x} - 10$. The curve crosses the *x*-axis at *Q*. The line *PR* is a tangent to the curve at *R* and intersects the *x*-axis at *P*. The *x*-coordinate of *R* is ln 2.

Find the area of the shaded region, PQR, which is the region enclosed by curve, the *x*-axis and the line *PR* correct to 3 significant figures.

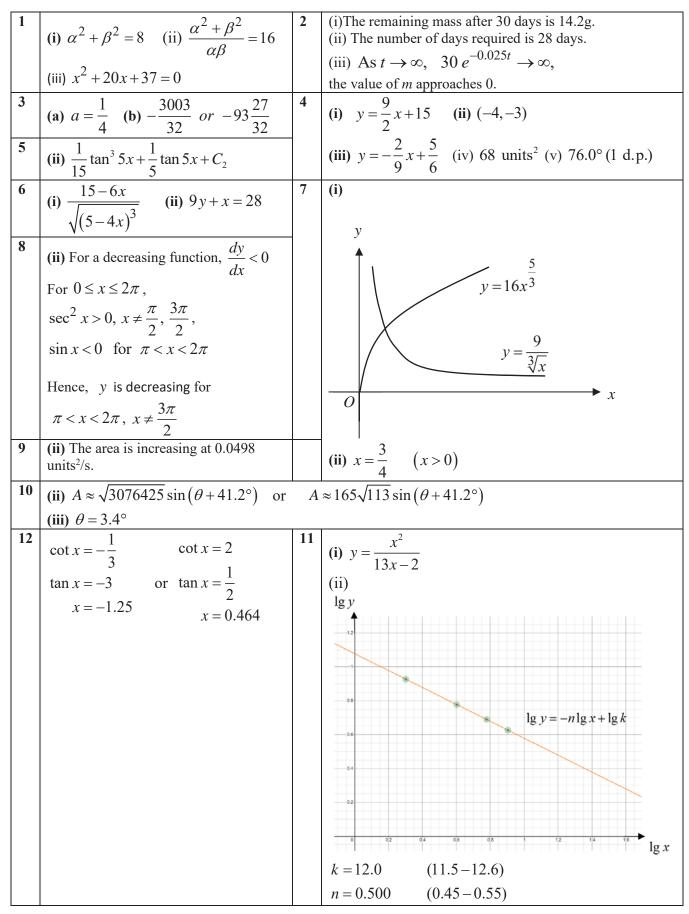


[11]

Continuation of working space for Question 12.

- END OF PAPER -

Answer key for AM P1



Answer key for AM paper 2

1(a)
$$m > 1$$

(b) $a - 1$ and $c = -5$ or
 $a = -2$ and $c = -2$ or
 $a = -2$ and $c = -1$ or any pairs of values
that fulfill the above criteria(a) Since degree of dividend = degree of
quotient + degree of fullows,
degree of $Q(x) = 1$ 3(a) $7x + y - 5$
(b) $x = 2^2$ or $x = 8^2$ or $x = 64^{\frac{1}{4}}$ (a) $\frac{4}{13}\sqrt{10} - \frac{7}{13}\sqrt{5}$ (b) $x = -\frac{4}{3}$ (b) $a = -19, b = -6, c = -5$ (c) $\frac{326}{81}$ 4(a) $\frac{4}{13}\sqrt{10} - \frac{7}{13}\sqrt{5}$ (b) $x = -\frac{4}{3}$ (a) (i) $x = 4$ or $x = -1$ (b) $a = -19, b = -6, c = -5$ (c) $\frac{326}{81}$ 6(i) $\frac{2}{x-1} - \frac{2}{x+2} + \frac{1}{(x+2)^2}$ (ii) $(1 \ln (x-1) - \ln (x+2) - \frac{1}{2(x+2)} + c)$ (a) (i) $x = 4$ or $x = -1$ 7 $x = \frac{k}{4}$, $\frac{d^2A}{dx^2} = 2 - 20$
Therefore, since the stationary value
occurs when the sides of the rectangle are
when it is a square.(b)
 $-|3x - x^2| = k - 4$
 $-|3x - x^2| = k -$

11	(i) $2p\sqrt{1-p^2}$	12	$R(\ln 2, -9) P\left(\ln 2 - \frac{9}{2}, 0\right) Q\left(-\frac{1}{2}\ln \frac{5}{2}, 0\right)$
	(ii) $\sqrt{\frac{p+1}{2}}$		Area = 13.2 units^2

ANGLICAN HIGH SCHOOL SECONDARY FOUR PRELIMINARY EXAMINATIONS 2020

ADDITIONAL MATHEMATICS

Paper 1

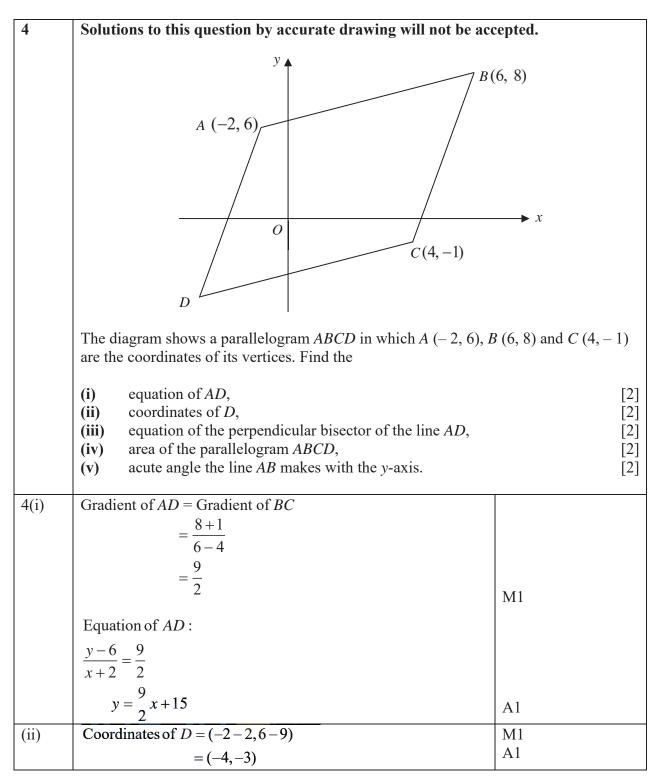
4047/01 1 September 2020 Tuesday 2 hours

Marking Scheme

1	The roots of the quadratic equation $2x^2 - 6x + 1 = 0$ are α and β	
	(i) Find the value of $\alpha^2 + \beta^2$.	[3]
	(ii) Find the value of $\frac{\alpha^2 + \beta^2}{\alpha\beta}$.	[1]
	(iii) Form a quadratic equation with roots $\frac{\alpha}{\beta} + 2$ and $\frac{\beta}{\alpha} + 2$.	[3]
1(i)	$\alpha + \beta = -\left(\frac{-6}{2}\right) = 3$ $\alpha\beta = \frac{1}{2}$	
	$\alpha\beta = \frac{1}{2}$	M1 for both roots
	$(\alpha + \beta)^{2} = \alpha^{2} + 2\alpha\beta + \beta^{2}$ $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$ $\alpha^{2} + \beta^{2} = (3)^{2} - 2\left(\frac{1}{2}\right)$	
	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	
	$\alpha^{2} + \beta^{2} = (3)^{2} - 2\left(\frac{1}{2}\right)$	M1
	$\alpha^2 + \beta^2 = 8$	A1
(ii)	$\frac{\alpha^2 + \beta^2}{\alpha\beta} = 8 \div \frac{1}{2} = 16$	B1
(iii)	$\frac{\alpha\beta}{\beta} + 2 + \frac{\beta}{\alpha} + 2 = \frac{\alpha^2 + \beta^2}{\alpha\beta} + 4$	M1 for sum of roots
	$\frac{\alpha}{\beta} + 2 + \frac{\beta}{\alpha} + 2 = 16 + 4 = 20$	
	$\left(\frac{\alpha}{\beta}+2\right)\left(\frac{\beta}{\alpha}+2\right) = 1 + \frac{2\alpha}{\beta} + \frac{2\beta}{\alpha} + 4$	M1 for product of roots
	$\left(\frac{\alpha}{\beta}+2\right)\left(\frac{\beta}{\alpha}+2\right) = 5 + \frac{2\alpha^2 + 2\beta^2}{\alpha\beta}$	
	$\left(\frac{\alpha}{\beta}+2\right)\left(\frac{\beta}{\alpha}+2\right)=5+2(16)=37$	
	$x^2 - (20)x + 37 = 0$	A1
	$x^2 - 20x + 37 = 0$	

2	The mass, m grams, of a radioactive substance, present at time t days after first being		
	observ	red, is given by the formula $m = 30 e^{-0.025t}$.	
	(i) Find the mass remaining after 30 days.		[2]
	(ii) Find the number of days required for the mass to drop to half of its value at $t = 0$. Give your answer correct to the nearest integer.		
	(iii)	State the value <i>m</i> approaches when <i>t</i> becomes large.	[1]
2(i)		$0 e^{-0.025(30)}$ 4.171	M1
	=1 The re	4.2 maining mass after 30 days is 14.2g.	A1 – 0 mark for omission of unit in answer
(ii)		$15 = 30 \ e^{-0.025t}$ $e^{5t} = \frac{1}{2}$	B1
		$25t = \ln\frac{1}{2}$	
	The nu	t = 27.726 t = 28 unber of days required is 28 days.	A1
(iii)		$\rightarrow \infty$, $30 e^{-0.025t} \rightarrow \infty$, ue of <i>m</i> approaches 0.	A1

3	(a) Find, in ascending powers of x , the first three terms in the expansion of	
	$\left(2-x\right)^7.$	[2]
	Hence, find the value of the constant a for which the coefficient of x^2 in the	
	expansion of $(a-x)(2-x)^7$ is 616.	[3]
	(b) In the expansion of $\left(x^2 - \frac{1}{2x^4}\right)^n$ in descending power	
	is independent of x . Find the value of n and the term i	
3(a)(i)	$(2-x)^7 = 2^7 - {7 \choose 1} (2^6)x + {7 \choose 2} (2^5) x^2 + \dots$	M1 A1
	$= 128 - 448x + 672x^2 + \dots$	
	$(a-x) (2-x)^7 = (a-x) (128 - 448x + 672x^2 +)$	M1
(ii)	$= (a - x) (128 - 448x + 672x^{-} +)$ = + 672ax ² + 448x ² +	M1
	coefficient of x^2 : 672 <i>a</i> + 448 = 616	A1
	$a = \frac{1}{4}$	
(b)	$\left(x^2 - \frac{1}{2x^4}\right)^n$	
	$T_{6} = {\binom{n}{5}} {\left(x^{2}\right)^{n-5}} {\left(-\frac{1}{2x^{4}}\right)^{5}}$	M1
	$= \binom{n}{5} \left(x^{2n-10} \right) \left(-\frac{1}{2} \right)^5 x^{-20}$	
	$= \binom{n}{5} \left(x^{2n-30} \right) \left(-\frac{1}{2} \right)^5$	A1
	As it is independent of x 2n - 30 = 0 n = 15	M1
	Value of the term = $\binom{15}{5} \left(-\frac{1}{2}\right)^5$	
	$=-\frac{3003}{32}$ or $-93\frac{27}{32}$	A1

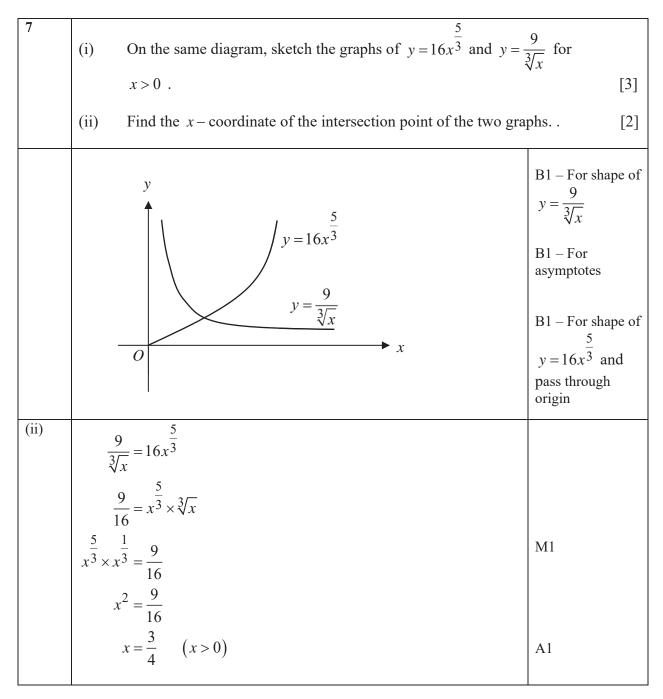


(iii)	Gradient of Perpendicular Bisector = $-\frac{2}{9}$	
	Midpoint of $AD = \left(\frac{-2+(-4)}{2}, \frac{-3+6}{2}\right)$	
	$=\left(-3, \frac{3}{2}\right)$	
	Equation of Perpendicular Bisector	
	$y - \frac{3}{2} = -\frac{2}{9}(x+3)$	M1
	$y = -\frac{2}{9}x + \frac{5}{6}$	A1
(iv)	Area of ABCD	
	$ = \frac{1}{2} \begin{vmatrix} -2 & -4 & 4 & 6 & -2 \\ 6 & -3 & -1 & 8 & 6 \end{vmatrix} $ = $\frac{1}{2} [(6+4+32+36) - (-24-12-6-16)]$	M1 clockwise and -68 (max 1 mark)
	$= 68 \text{ units}^2$	A1
(v)	Angle made by line <i>AB</i> with <i>y</i> -axis	
	$=\tan^{-1}\left(\frac{6+2}{8-6}\right)$	M1 A1 accept both
	$= 76.0^{\circ} (1 \text{ d.p.})$	degrees and radians
	· · · · · · · · · · · · · · · · · · ·	·
5	(i) Show that $\frac{d}{dx}(\tan^3 5x) = 15 \sec^4 5x - 15 \sec^2 5x$.	[3]
	(ii) Use your answers to part (i), find $\int \sec^4 5x dx$.	[4]

	(ii) Use your answers to part (i), find $\int \sec 3x dx$.	[4]
(i)	$\frac{d}{dx}(\tan^3 5x) = 3(\tan^2 5x)(\sec^2 5x)(5)$ = 15(\tan^2 5x)(\sec^2 5x) = 15(\tan^2 5x)(\sec^2 5x)	M1 - power M1 - chain rule differentiate tan 5x
	$= 15(\sec^2 5x - 1)(\sec^2 5x)$ = 15 \sec^4 5x - 15 \sec^2 5x	M1

(ii)	$\frac{d}{dx}(\tan^3 5x) = 15\sec^4 5x - 15\sec^2 5x$	
	Integrate w.r.t. x	
	$\tan^3 5x + C_1 = \int (15\sec^4 5x - 15\sec^2 5x) dx$	M1
	$\tan^3 5x + C_1 = 15 \int \sec^4 5x dx - 15 \int \sec^2 5x dx$	
	$\tan^3 5x + C_1 = 15 \int \sec^4 5x dx - 15 \left(\frac{\tan 5x}{5}\right)$	M1
	$\tan^3 5x + 3\tan 5x + C_1 = 15 \int \sec^4 5x dx$	M1
		A1
	$\int \sec^4 5x dx = \frac{1}{15} \tan^3 5x + \frac{1}{5} \tan 5x + C_2$	If everything is C,
	15 5	minus 1 mark for
		overall presentation

$$\begin{array}{|c|c|c|c|c|} \hline \mathbf{6} & (\mathbf{i}) & \text{Given that } y = \frac{3x}{\sqrt{5-4x}}, \text{ express } \frac{dy}{dx} \text{ in the form } \frac{ax+b}{\sqrt{(5-4x)^n}} \text{ where } a, b \text{ and } n \\ \text{ are real constants.} & [4] \\ \hline (\mathbf{ii}) & \text{Hence find the equation of the normal to the curve } y = \frac{3x}{\sqrt{5-4x}} \text{ at the point on } \\ \text{ the curve where } x = 1. & [2] \\ \hline 6(\mathbf{i}) & y = \frac{3x}{\sqrt{5-4x}} \\ \frac{dy}{dx} = \frac{\sqrt{5-4x} \left(\frac{3x}{dx} - (3x) \frac{d}{dx} \sqrt{5-4x}\right)}{(\sqrt{5-4x})^2} & \text{M1 - Quotient Rule} \\ \\ \frac{dy}{dx} = \frac{\sqrt{5-4x} (3) - (3x) \frac{1}{2} (5-4x)^{-\frac{1}{2}} (-4)}{5-4x} \\ = \frac{\sqrt{5-4x} (3) - (3x) \frac{1}{2} (5-4x)^{-\frac{1}{2}} (-4)}{5-4x} \\ = \frac{\sqrt{5-4x} (3) + \frac{(3x)2}{\sqrt{5-4x}}}{5-4x} \\ = \frac{\sqrt{5-4x} (3) + \frac{(5x)2}{\sqrt{5-4x}}}{5-4x} \\ = \frac{\sqrt{5-4x} (3) + \frac{(5x)2}{\sqrt{5-4x}}}{5-4x} \\ = \frac{(5-4x)(3) + 6x}{(5-4x)\sqrt{5-4x}} \\ = \frac{(5-4x)(3) + 6x}{(5-4x)\sqrt{5-4x}} \\ = \frac{15-6x}{\sqrt{(5-4x)^3}} & \text{A1} \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{3(1)}{\sqrt{5-4(1)}} = 3 \\ \\ \hline (\mathbf{ii}) & y = -\frac{1}{9}x + \frac{28}{9} \\ \\ \hline (\mathbf{ii}) & y = -\frac{1}{9}x + \frac{28}{9} \\ \\ \hline (\mathbf{ii}) & x = 1, \ y = \frac{1}{9}x + \frac{28}{9} \\ \end{bmatrix}$$



8	Given that $y = \operatorname{cosec} x \tan x$,	
	(i) show that $\frac{dy}{dx} = \sin x \sec^2 x$.	[2]
	(ii) determine where y is decreasing for $0 \le x \le 2\pi$.	[2]
8(i)	$y = \operatorname{cosec} x \tan x$	
	$=\frac{1}{x}\times\frac{\sin x}{\cos x}$	
	$\sin x \cos x$ $= \frac{1}{2}$	
	$\cos x$	
	$=(\cos x)^{-1}$	M1
	$\frac{dy}{dx} = (-1)(\cos x)^{-2}(-\sin x)$	
	$=\frac{1}{\cos^2 x}(\sin x)$	M1 – chain rule
		and differentiation of
	$= \sec^2 x \sin x$ Or	trigonometric functions
	OI CI	
	$y = \operatorname{cosec} x \tan x$	
	$=\frac{1}{\sin x} \times \tan x$	
	$= (\sin x)^{-1} \tan x$	
	$\frac{dy}{dx} = \frac{1}{\sin x} \cdot \sec^2 x + \tan x \left(-\sin^{-2} x \cos x \right)$	
	$= \frac{1}{\sin x} \cdot \sec^2 x - \frac{\sin x}{\cos x} \left(\frac{\cos x}{\sin^2 x} \right)$	M1
	$=\frac{1}{\sin x} \cdot \sec^2 x - \frac{1}{\sin x}$	
	$\frac{dy}{dt} = \frac{\sec^2 x - 1}{\frac{1}{2}}$	
	$dx \sin x \\ = \frac{\tan^2 x}{1 + \sin^2 x}$	
	$=\frac{\tan^2 x}{\sin x}$	
	$=\frac{1}{\sin x} \left(\frac{\sin^2 x}{\cos^2 x} \right)$	
	$-\frac{1}{\sin x}\left(\cos^2 x\right)$	MI
	$=\frac{1}{\cos^2 x}(\sin x)$	M1
	$=\sin x \sec^2 x$	
	Or	

	$y = \cos e c x \tan x$	
	$=\frac{\tan x}{\sin x}$	
	$\frac{dy}{dx} = \frac{\sin x \sec^2 x - \tan x \cos x}{\sin^2 x}$	
	$=\frac{\sin x \sec^2 x - \sin x}{2}$	
	$-\sin^2 x$	
	$=\frac{\sin x \left(\sec^2 x - 1\right)}{\sin^2 x}$	
	$=\frac{\sin x \left(\tan^2 x\right)}{\sin^2 x}$	M1
	$=\frac{1}{\sin^2 x}$	1VI 1
	$=\frac{1}{\sin x} \left(\frac{\sin^2 x}{\cos^2 x} \right)$	
	$=\frac{1}{\cos^2 x}(\sin x)$	M1
	$=\sin x \sec^2 x$	
(ii)	For a decreasing function, $\frac{dy}{dx} < 0$	
	For $0 \le x \le 2\pi$, $\sec^2 x > 0$, $x \ne \frac{\pi}{2}$, $\frac{3\pi}{2}$, $\sin x < 0$ for $\pi < x < 2\pi$	B1
		B1 - if didn't
	Hence $\frac{dy}{dx} < 0$ for $\pi < x < 2\pi$, $x \neq \frac{3\pi}{2}$	write $x \neq \frac{3\pi}{2}$, its
	$\frac{dx}{dx}$ 2	$\frac{1}{2}$, its
		acceptable.

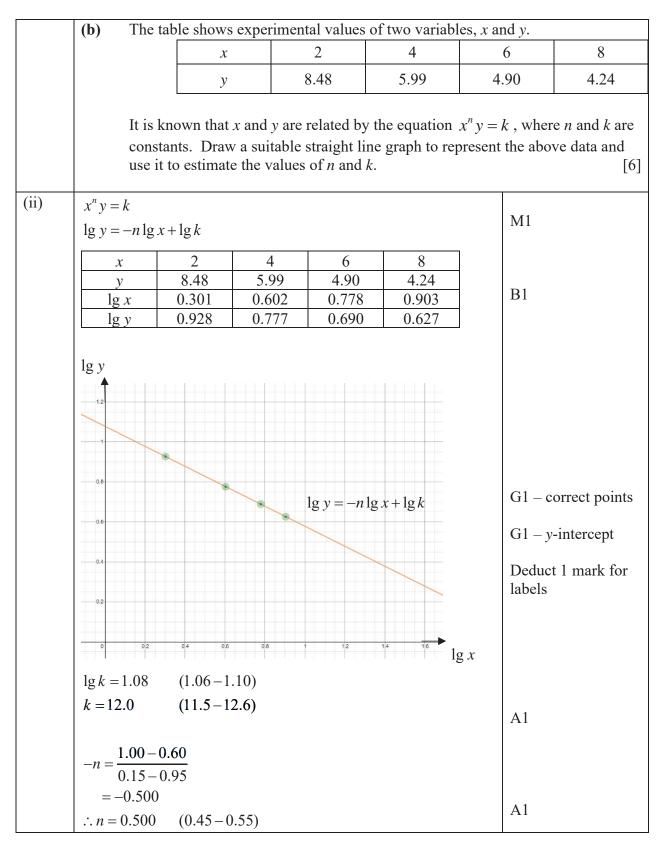
9			
	The diagram shows the curve $y = \ln(x^2\sqrt{3x+1})$ and three points $P(2, 0), Q(x, y)$		
	and $R(5, 0)$. The point $Q(x, y)$ lies on the curve.		
	$y = \ln\left(x^2\sqrt{3x+1}\right)$		
	Q(x, y)		
		→ x	
	$O \mid P(2,0) = R(5,0)$		
	(i) Show that the area, A units ² , of the triangle <i>PQR</i> is given by		
	$A = 3\ln x + \frac{3}{4}\ln(3x+1)$	[2]	
	(ii) Given that x is increasing at a rate of 0.2 units/s, find the rate $\frac{15}{100}$ s = 15 mits		
	A, is changing at the instant when $x = 15$ units.	[3]	
9(i)	$A = \frac{1}{2} \times PR \times y = \frac{1}{2} \times 3 \times \ln\left(x^2 \sqrt{3x+1}\right)$	M1	
	$=\frac{3}{2}\ln\left(x^2\sqrt{3x+1}\right)$		
	$A = \frac{3}{2} \left(\ln x^2 + \ln \sqrt{3x + 1} \right)$	M1 – apply the laws for	
	-	logarithms	
	$=\frac{3}{2}\left(2\ln x + \ln(3x+1)\frac{1}{2}\right)$		
	$=\frac{3}{2}\left(2\ln x + \frac{1}{2}\ln(3x+1)\right)$		
	$=3\ln x \pm \frac{3}{4}\ln \left(3x \pm 1\right)$		
(ii)	$\frac{dx}{dt} = 0.2$ m/s and $x = 15$		
	$A = 3\ln x + \frac{3}{4}\ln\left(3x+1\right)$		
	$\frac{dA}{dx} = 3\left(\frac{1}{x}\right) + \frac{3}{4}\left(\frac{1}{3x+1}\right)(3)$	M1 –	
		differentiation of logarithms	
	$=\frac{3}{x}+\frac{9}{4(3x+1)}$	logarminis	

$\frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dt}$	M1
$= \left(\frac{3}{(15)} + \frac{9}{4(3(15)+1)}\right) \times (0.2)$	A1
= 0.0498 units ² / s The area is increasing at 0.0498 units ² /s.	

10	F $EFGH \text{ is a plot of land that comprises two smaller plots, triangle EFGEGH. EF and EH are perpendicular, angle FEG = \theta, EH = 42 \text{ m}, EEF = 48 m$.	
	(i) Show that the area, $A m^2$, of <i>EFGH</i> can be expressed as	
	$A = 1320\sin\theta + 1155\cos\theta.$	[2]
	(ii) Express A in the form in the form $R\sin(\theta + \alpha)$, where $R > 0$ $0^{\circ} < \alpha < 90^{\circ}$.	and [3]
	(iii) Find the value of θ if the area is 1231 m ² .	[2]
10(i)	Area of triangle $EFG = \frac{1}{2} \times EF \times EG \sin \angle FEG$ $= \frac{1}{2} \times 48 \times 55 \sin \theta$ $= 1320 \sin \theta$ Area of triangle $EGH = \frac{1}{2} \times EH \times EG \sin \angle FEG$ $= \frac{1}{2} \times 42 \times 55 \sin (90^\circ - \theta)$ $= 1155 (\sin 90^\circ \cos \theta - \cos 90^\circ \sin \theta)$ $= 1155 \cos \theta$ A = Area of triangle EFG + Area of triangle EGH $= 1320 \sin \theta + 1155 \cos \theta$	M1 – area of triangle M1 – use of trigonometry
(ii)	$1320\sin\theta + 1155\cos\theta = R\sin(\theta + \alpha) = R\sin\theta\cos\alpha + R\cos\theta\sin\alpha$ $R = \sqrt{1320^2 + 1155^2} = \sqrt{3076425}$ $\tan\alpha = \frac{1155}{1320}, \qquad \alpha = \tan^{-1}\left(\frac{1155}{1320}\right) = 41.1859^{\circ}$ $A = \sqrt{3076425}\sin(\theta + 41.1859^{\circ})$ Or $A \approx 165\sqrt{113}\sin(\theta + 41.2^{\circ})$	M1 – finding R and α A1 A1

(iii)	$\sqrt{3076425}\sin(\theta + 41.1859^\circ) = 1231$	
	$\sin(\theta + 41.1859^{\circ}) = \frac{1231}{\sqrt{3076425}}$	
	Basic angle = $\sin^{-1}\left(\frac{1231}{\sqrt{3076425}}\right)$	
	= 44.57449°	
	$\theta + 41.1859^{\circ} = 44.57449^{\circ}, \ 180 - 44.57449^{\circ}$	M1
	$\theta = 3.3885^\circ, 94.2397^\circ$ (NA)	A1
	$\theta = 3.4^{\circ}$	

11	(a) The variables x and y are related in such a way that when $\frac{x}{y}$ is plotted against $\frac{1}{y}$, a straight line is obtained. The line passes through (2, 9) and (5, 3). Find an	
	x expression for y in terms of x.	[4]
11(i)	Let $Y = \frac{x}{y}, X = \frac{1}{x}$	
	$\text{Gradient} = \frac{9-3}{2-5} = -2$	M1
	$\therefore Y - 3 = -2(X - 5)$ $Y = -2X + 13$	M1
	$\frac{x}{y} = -\frac{2}{x} + 13$	M1
	$\frac{x}{y} = \frac{13x - 2}{x}$ $y = \frac{x^2}{13x - 2}$	A1



12	Solve the equation $3\csc^2 x \sin x = 5(\cos x + \sin x)$ in radians.), giving the principal values of x , [5]
	$3\csc^{2} x \sin x = 5(\cos x + \sin x)$ $3\csc^{2} x \sin x = 5\cos x + 5\sin x$ $3\csc^{2} x = \frac{5\cos x + 5\sin x}{\sin x}$ $= \frac{5\cos x}{\sin x} + \frac{5\sin x}{\sin x}$ $= 5\cot x + 5$ $3\csc^{2} x = 5\cot x + 5$	M1 – use of $\cot x = \frac{\cos x}{\sin x}$, $\csc x = \frac{1}{\sin x}$, $\tan x = \frac{\sin x}{\cos x}$ etc
	$3(\cot^{2} x+1) - 5 \cot x - 5 = 0$ $3 \cot^{2} x + 3 - 5 \cot x - 5 = 0$ $3 \cot^{2} x - 5 \cot x - 2 = 0$	M1 – use identity to change into an equation with single trigonometric term
	$(3 \cot x + 1)(\cot x - 2) = 0$ $\cot x = -\frac{1}{3} \qquad \qquad \cot x = 2$ $\tan x = -3 \qquad \qquad \text{or} \qquad \tan x = \frac{1}{2}$ $x = -1.25 \qquad \qquad x = 0.464$	 M1 – reach quadratic equation and factorize, or use formula A2 – deduct one mark if more than the principal values are given.

ANGLICAN HIGH SCHOOL SECONDARY FOUR PRELIMINARY EXAMINATIONS 2020

ADDITIONAL MATHEMATICS Paper 2

4047/02 28 August 2020 Friday 2 hours 30 minutes

Marking Scheme

1a	The equation of a surger is $u = u^2 + (u = 2)u + u$ where u is a constant	[5]
	The equation of a curve is $y = mx^2 + (m-3)x + m$, where <i>m</i> is a constant.	
	Find the range of values of <i>m</i> for which the curve lies completely above the <i>x</i> -	
	axis. Since the curve is completely above the <i>x</i> -axis,	
	the curve must be a quadratic curve with minimum point , $a > 0$	
	$\therefore m > 0$	B1
	And there will be no point of intersection with the x-axis, $b^2 - 4ac < 0$	
	$(m-3)^2 - 4(m)(m) < 0$	M1
	$ \begin{pmatrix} (m-3)^2 - 4(m)(m) < 0 \\ m^2 - 6m + 9 - 4m^2 < 0 \\ -3m^2 - 6m + 9 < 0 \end{pmatrix}^+ \xrightarrow{+} m $	
	m = 0 $m = 0$ $m = -3$ -1 m	
	$m^2 + 2m - 3 > 0$	M1
	(m+3)(m-1) > 0	1111
	m < -3 or $m > 1$	A1
	-3 0 1	
	Hence, $m > 1$	A1
1b	Given that $y = ax^2 - 4x + c$ is always negative, give an example of values of a	[2]
	and c which satisfy the condition.	
	$b^2 - 4ac < 0$	
	$(-4)^2 - 4ac < 0$	
	$ac > 4, \qquad a < 0$	M1
	a = -1 and $c = -5$ or	
	a = -2 and $c = -2$ or	A1
	a = -5 and $c = -1$ or any pairs of values that fulfill the above criteria	

2a	Given that $2x^4 + 3x^3 + ax^2 - 9x + 9 = (x^2 - 1)(x - 2)Q(x) - 3x^2 + bx + c$	[1]
	is an identity, state, with reason, the degree of $Q(x)$.	
	Since degree of dividend = degree of quotient + degree of divisor, degree of $Q(x)=1$	B1 for reason and answer
	ALTERNATIVE: Must multiply with x3 to give degree 4 in the polynomial on the left.	
2b	Find the value of <i>a</i> , of <i>b</i> and of <i>c</i> .	[5]
	$2x^{4} + 3x^{3} + ax^{2} - 9x + 9 = (x^{2} - 1)(x - 2)Q(x) - 3x^{2} + bx + c$	
	When $x = 1$, 2+3+a-9+9=-3+b+c	
	a = -8 + b + c (1)	M1
	When $x = -1$,	
	2 - 3 + a + 9 + 9 = -3 - b + c	
	a = -20 - b + c(2)	M1
	(1) = (2):	
	-20 - b + c = -8 + b + c	
	-12 = 2b	
	b = -6	
	When $x = 2$, 32 + 24 + 4a - 18 + 9 = -12 - 12 + c	
	c = 47 + 4a + 24	
	c = 4a + 71(3)	M1
	Sub (3) and b = -6 into (2) a = -20 + 6 + 4a + 71	
	a = 4a + 57	M1 for
	a = -19	solving
	Sub a = -19 into (2)	
	c = 4(-19) + 5	
	c = -5	A1 for 3
	a = -19, b = -6, c = -5	answers
2c	Hence, find the remainder when $2x^4 + 3x^3 + ax^2 - 9x + 9$ is divided by $(3x-1)$.	[1]
	Let $f(x) = 2x^4 + 3x^3 - 19x^2 - 9x + 9$	

	(1) $(1)^4$ $(1)^3$ $(1)^2$ (1)	
	$f\left(\frac{1}{3}\right) = 2\left(\frac{1}{3}\right)^4 + 3\left(\frac{1}{3}\right)^3 - 19\left(\frac{1}{3}\right)^2 - 9\left(\frac{1}{3}\right) + 9$	
	$f\left(\frac{1}{3}\right) = \frac{326}{81}$	
	Therefore the reminder is $\frac{326}{81}$.	B1
3a	Given that $p = 3^x$ and $q = 3^y$, express $\log_3 \frac{p^7 q}{243}$ in terms of x and y.	[4]
	$p = 3^x \implies x = \log_3 p$ $q = 3^y \implies y = \log_3 q$	[M1 for change to log]
	$\log_3 \frac{p^7 q}{243} = 7 \log_3 p + \log_3 q - \log_3 3^5$	
	$\log_3 \frac{p^7 q}{243} = 7x + y - 5$	M2 for using rules
		A1
3b	Given that $\log_2 x - \log_x x^2 = \frac{1}{3} - \log_8 2x$, find the value of x by leaving your	[4]
	answer in index form.	
	$\log_2 x - \log_x x^2 = \frac{1}{3} - \log_8 2x$	M1 for power rule and product
	$\log_2 x - 2\log_x x = \frac{1}{3} - (\log_8 2 + \log_8 x)$	rule
	$\log_2 x - 2(1) = \frac{1}{3} - \frac{1}{3}\log_8 8 - \frac{\log_2 x}{\log_2 8}$	M1 for change of base rule
	$\log_2 x - 2 = \frac{1}{3} - \frac{1}{3} - \frac{\log_2 x}{3}$	
	$3\log_2 x - 6 = -\log_2 x$	
	$4\log_2 x = 6$	
	$\log_2 x = \frac{3}{2}$	M1
	$x = 2^{\frac{3}{2}}$ or $x = 8^{\frac{1}{2}}$ or $x = 64^{\frac{1}{4}}$	A1
4 a	Without using a calculator, express $\frac{\sqrt{6} - \sqrt{5}}{\sqrt{15} + \sqrt{2}}$ in the form of $a\sqrt{10} + b\sqrt{3}$.	[4]
		M1 for rationalizati on

	Γ Γ $(\Gamma (\Gamma))(\Gamma (\Gamma))$	M1 for
	$\frac{\sqrt{6} - \sqrt{5}}{\sqrt{15} + \sqrt{2}} = \frac{\left(\sqrt{6} - \sqrt{5}\right)\left(\sqrt{15} - \sqrt{2}\right)}{15 - 2}$	expansion
		M1 fea
	$\frac{\sqrt{6} - \sqrt{5}}{\sqrt{15} + \sqrt{2}} = \frac{\sqrt{90} - \sqrt{12} - \sqrt{75} + \sqrt{10}}{13}$	M1 for simplifying
		Simplifying
	$\frac{\sqrt{6} - \sqrt{5}}{\sqrt{15} + \sqrt{2}} = \frac{3\sqrt{10} - 2\sqrt{3} - 5\sqrt{3} + \sqrt{10}}{13}$	
		Al
	$\frac{\sqrt{6} - \sqrt{5}}{\sqrt{15} + \sqrt{2}} = \frac{4\sqrt{10} - 7\sqrt{3}}{13}$	AI
	$\frac{\sqrt{6} - \sqrt{5}}{\sqrt{15} + \sqrt{2}} = \frac{4}{13}\sqrt{10} - \frac{7}{13}\sqrt{3}$	
	$\sqrt{15} + \sqrt{2}$ 13 13 13	
4h		[2]
4b	Without the use of a calculator, solve the equation $\sqrt[3]{27^x} - 81^{x+1} = 0$.	[3]
	$\sqrt[3]{27^x} - 81^{x+1} = 0$	
	$\frac{x}{x}$	M1 for
	$27^{\frac{x}{3}} - 81^{x+1} = 0$	converting
	$(3^3)^{\frac{x}{3}} - (3^4)^{x+1} = 0$	all terms to
		base 3
	$3^x - 3^{4x+4} = 0$	
	$3^x = 3^{4x+4}$	M1 for using
		if $a^m = a^n$
	By comparing powers,	then $m = n$
	x = 4x + 4	
	$x = -\frac{4}{2}$	
	3	[A1]
5ai		[2]
Sui	Given the curve $y = - 3x - x^2 + 4$, find the <i>x</i> -coordinates of the points where	
	the curve meets the <i>x</i> -axis.	
	When $y = 0$, y = 12, $y = 2$, $y = 1$, $y =$	
	$0 = -\left 3x - x^2\right + 4$	
	$3x - x^2 = 4$ or $3x - x^2 = -4$	M1 for
	$3x - x^2 - 4 = 0$ or $3x - x^2 + 4 = 0$	considering positive and
	$x^2 - 3x + 4 = 0$ or $x^2 - 3x - 4 = 0$	negative
	$b^{2}-4ac = (-3)^{2}-4(1)(4)$ or $(x-4)(x+1)=0$	A1 for
	$b^2 - 4ac = -7$ or $x = 4$ or $x = -1$	answers
5aii	Sketch the curve $y = -3x - x^2 + 4$, giving the coordinates of the maximum	[3]
	point and of the points where the curve meets the axes	

	6 † y	B1 for shape
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 for coordinates of max pt and <i>x</i> - intercepts. B1 for labelling.
5b	Explain why there are only two solutions to the equation $- 3x - x^2 = k - 4$ for k	[2]
	< 1.75.	
	$ < 1.75. - 3x - x^2 = k - 4 - 3x - x^2 + 4 = k $	
	y = k y = k is a horizontal line and when k is lesser than 2.25, it will be below the	B1
	turning point and so it will only intersect the curve at the two outer arms thereby giving two solutions only.	B1
5c	Determine the maximum value of <i>m</i> for which the line $y = mx + 1$ intersects the	[1]
	graph of $y = - 3x - x^2 + 4$ in three points.	
	$m = \frac{4-1}{3-0}$	
	m = 1	B1
6(i)	Express $\frac{7x+11}{(x-1)(x+2)^2}$ in partial fractions.	[4]
	Let $\frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2} = \frac{7x+11}{(x-1)(x+2)^2}$	
	$A(x+2)^{2} + B(x-1)(x+2) + C(x-1) = 7x + 11$	[M1 combining
	when $x = 1$, 9A = 7 + 11	fractions together and
	A=2	equating the numerator]
	when $x = -2$ -3C = -14 + 11	
	C = 1	[M1 for substitution
	when $x = 0$ 4A - 2B - C = 11	or any other method]
	4(2) - 2B - 1 = 11	

$$\frac{-2B = 4}{B = -2}$$

$$\frac{7x + 11}{(x - 1)(x + 2)^2} = \frac{2}{x - 1} - \frac{2}{x + 2} + \frac{1}{(x + 2)^2}$$

$$\frac{7x + 11}{(x - 1)(x + 2)^2} = \frac{2}{x - 1} - \frac{2}{x + 2} + \frac{1}{(x + 2)^2}$$

$$\frac{1}{2(x - 1)(x + 2)^2} = \frac{2}{x - 1} - \frac{2}{x + 2} + \frac{1}{(x + 2)^2} dx$$

$$\frac{13}{10}$$

$$\frac{1}{2(x - 1)(x + 2)^2} dx = \frac{1}{2} \int \frac{2}{x - 1} - \frac{2}{x + 2} + \frac{1}{(x + 2)^2} dx$$

$$\frac{13}{10}$$

$$\frac{1}{2(x - 1)(x + 2)^2} dx = \frac{1}{2} \int \frac{2}{x - 1} - \frac{2}{x + 2} + \frac{1}{(x + 2)^2} dx$$

$$\frac{13}{10}$$

$$\frac{1}{2(x - 1)(x + 2)^2} dx = \frac{1}{2} \int \frac{2}{x - 1} - \frac{2}{x + 2} + \frac{1}{(x + 2)^2} dx$$

$$\frac{13}{10}$$

$$\frac{1}{2(x - 1)(x + 2)^2} dx = \frac{1}{2} \int \frac{2}{x - 1} - \frac{2}{x + 2} + \frac{1}{(x + 2)^2} dx$$

$$\frac{13}{10}$$

$$\frac{1}{2(x - 1)(x + 2)^2} dx = \frac{1}{2} \int \frac{2}{x - 1} - \frac{2}{x + 2} + \frac{1}{(x + 2)^2} dx$$

$$\frac{13}{10}$$

$$\frac{1}{2(x - 1)(x + 2)^2} - \frac{1}{2(x + 2)} + c$$

$$\frac{13}{10}$$

$$\frac{1}{2(x - 1)} - \ln(x + 2) - \frac{1}{2(x + 2)} + c$$

$$\frac{13}{10}$$

$$\frac{1}{2(x - 1)} - \ln(x + 2) - \frac{1}{2(x + 2)} + c$$

$$\frac{13}{10}$$

$$\frac{1}{2(x - 1)} - \ln(x + 2) - \frac{1}{2(x + 2)} + c$$

$$\frac{13}{10}$$

$$\frac{1}{2(x - 2)}$$

$$\frac{13}{10}$$

$$\frac{1}{2(x - 2)}$$

$$\frac{1}{2(x$$

	$x = \frac{k}{4}$ $\frac{d^2 A}{dx^2} = -2 < 0$	[M1]
	dx^2 Therefore, since the stationary value occurs when the sides of the rectangle are $\frac{k}{4}$ cm, and it is a maximum value, the maximum area of the rectangle occurs	[A1]
	when it is a square.	
-		
8	Given a circle with the equation $(2x+5)(x+2)+(2y+1)(y-5)=0$,	
0(')		[6]
8(i)	Express the equation of the circle in standard form.	[5]
	(2x+5)(x+2)+(2y+1)(y-5)=0	M1 for
	$2x^2 + 9x + 10 + 2y^2 - 9y - 5 = 0$	expansion and simplificatio
	$2x^2 + 2y^2 + 9x - 9y + 5 = 0$	n
	$x^{2} + y^{2} + \frac{9}{2}x - \frac{9}{2}y + \frac{5}{2} = 0$ $x^{2} - \frac{9}{2}y + \frac{9}{2}z = 0$	M1 – for getting the centre and
	$x^{2} + \frac{9}{2}x + \left(\frac{9}{4}\right)^{2} + y^{2} - \frac{9}{2}x + \left(\frac{9}{4}\right)^{2} = -\frac{5}{2} + \left(\frac{9}{4}\right)^{2} + \left(\frac{9}{4}\right)^{2}$	radius
	$\left(x + \frac{9}{4}\right)^2 + \left(y - \frac{9}{4}\right)^2 = \frac{61}{8}$	[A1]
	Coordinates of centre = $\left(-\frac{9}{4}, \frac{9}{4}\right)$	[A1]
	Radius of circle = $\sqrt{\frac{61}{8}}$ units	[A1]
	Equation of circle, $\left(x + \frac{9}{4}\right)^2 + \left(y - \frac{9}{4}\right)^2 = \frac{61}{8}$	
8(ii)	Find the length of the chord when the line $y = -2x$ cuts the circle.	[5]
- ()	y = -2x -(1)	L- J
	$\left(x + \frac{9}{4}\right)^2 + \left(y - \frac{9}{4}\right)^2 = \frac{61}{8} $ -(2)	
	Sub (1) into (2) $\left(x + \frac{9}{4}\right)^{2} + \left(-2x - \frac{9}{4}\right)^{2} = \frac{61}{8}$	[M1 for substitution]

	$5x^2 + \frac{27}{2}x + \frac{5}{2} = 0$	[M1 for solving]
	$10x^2 + 27x + 5 = 0$	
	(5x+1)(2x+5) = 0	
	$x = -\frac{1}{5} or x = -\frac{5}{2}$	
	when $x = -\frac{1}{5}$, $y = \frac{2}{5}$	
	when $x = -\frac{5}{2}$, $y = 5$	[A1 for
	Thus the coordinates of the end points of the chord are $\left(-\frac{1}{5}, \frac{2}{5}\right)$ and $\left(-\frac{5}{2}, 5\right)$	correct coordinates]
	Length of chord = $\sqrt{\left(2\frac{3}{10}\right)^2 + \left(-4\frac{3}{5}\right)^2}$	[M1]
	$ \sqrt{\binom{2}{10}} = 5.14 \text{ units (to 3 s.f.)} $	[A1]
9ai	Prove the identity $\sin x \cos x + \cot x \cos^2 x = \cot x$.	[4]
	$LHS = \sin x \cos x + \cot x \cos^2 x$	
	$= \cos x (\sin x + \cot x \cos x)$	[M1]
	$= \cos x \left(\sin x + \frac{\cos x}{\sin x} \cos x \right)$	[M1]
	$= \cos x \left(\sin x + \frac{\cos^2 x}{\sin x} \right)$	
	$= \cos x \left(\frac{\sin^2 x + \cos^2 x}{\sin x} \right)$	[M1]
	$=\cos x \left(\frac{1}{\sin x}\right)$	[M1] [A1]
	$= \cot x = RHS$	[]
	Or	
	$LHS = \sin x \cos x + \cot x \cos^2 x$	
	$=\sin x\cos x + \frac{\cos x}{\sin x}\cos^2 x$	[M1]
	$=\frac{\sin^2 x \cos x}{\sin x} + \frac{\cos^3 x}{\sin x}$	

		1
	. 2 3	
	$=\frac{\sin^2 x \cos x + \cos^3 x}{\sin^2 x \cos^2 x + \cos^3 x}$	
	$\sin x$	
	$=\frac{\cos x \left(\sin^2 x + \cos^2 x\right)}{\sin^2 x + \cos^2 x}$	[M1]
	$-\sin x$	
	$\cos x(1)$	[M1]
	$=\frac{\sqrt{y}}{\sin x}$	
	$= \cot x = RH$	[A1]
9aii	Hence, solve $\sin 3x \cos 3x + \cot 3x \cos^2 3x = 1$ for $0 \le x \le \pi$.	[3]
	Since $\sin x \cos x + \cot x \cos^2 x = \cot x$	
	Since $\sin x \cos x + \cot x \cos x - \cot x$	
	Therefore, $\sin 3x \cos 3x + \cot 3x \cos^2 3x = \cot 3x$	
	Therefore, $\sin 5x \cos 5x + \cot 5x \cos 5x - \cot 5x$	
	and	
	$\sin 3x \cos 3x + \cot 3x \cos^2 3x = 1 \implies \cot 3x = 1$	[M1]
	$0 \le x \le \pi$	
	$\begin{array}{c} 0 \leq x \leq n \\ 0 \leq 3x \leq 3\pi \end{array}$	
	Let the basic angle be α	
	$\tan \alpha = 1$	E) (1]
		[M1]
	$\alpha = \frac{\pi}{4}$	
	$3x = \frac{\pi}{4}, \pi + \frac{\pi}{4}, 2\pi + \frac{\pi}{4}$	
	π 5 π 9 π	
	$3x = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}$	
	$x = \frac{\pi}{12}, \frac{5\pi}{12}, \frac{3\pi}{4}$ rad	[A1]
01:		[6]
9bi	On the same axes, sketch the graphs of $y = 3\sin x - 1$ and $y = \tan \frac{x}{2}$ for	[5]
	2	
	$0 \le x \le 2\pi$.	Forter
		For tan
		curve, [B1] for
		shape,
		[B1] for
		asymptote
		asymptote
		For Sine
		curve,
		[B1] for
		shape
		[B1 for
		correct max
		and
<u> </u>		unu

	y $y = \tan\left(\frac{x}{2}\right)$ $y = \tan\left(\frac{x}{2}\right)$ $y = 3\sin x - 1$	minimum values [B1] for correct period for both graphs [subtract 1mark for wrong or no labels for axes or functions]
9bii	Hence, state the number of solutions of $3\sin x - 1 = \tan \frac{x}{2}$ for $0 \le x \le 2\pi$.	[1]
	From the sketch, the two functions intersect at three points. Hence there are three solutions for the equation for $0 \le x \le 2\pi$	[B1]
10a	Two particles, <i>A</i> and <i>B</i> , leaves a point <i>O</i> at the same time and travel in the same direction along the same straight line. Particle <i>A</i> starts with a velocity of 9 m/s and moves with a constant acceleration of 2 m/s ² . Particle <i>B</i> starts from rest and moves with an acceleration of <i>a</i> m/s ² , where $a = 1 + \frac{t}{3}$ and <i>t</i> seconds is the time since leaving <i>O</i> . Find an expression for the velocity of each particle in terms of <i>t</i> ,	[3]
	For Particle A, $v_A = \int 2 dt$ $v_A = 2t + c$ When $t = 0$, $v_A = 9$ c = 9	
	$v_A = 2t + 9$ For Particle <i>B</i> , $v_B = \int \left(1 + \frac{t}{3}\right) dt$	B1
	$v_{B} = t + \frac{1}{6}t^{2} + c$ When $t = 0$, $v_{B} = 0$, c = 0	M1
	$v_B = t + \frac{1}{6}t^2$	A1
10b	an expression for the displacement of each particle in terms of <i>t</i> ,	[3]

	For Particle A,	
	$s_A = \int (2t+9) dt$	
	$s_A = t^2 + 9t + c$	
	$s_A = t + 9t + C$ When $t = 0$, $s_A = 0$	
	$\begin{array}{c} \text{when } t = 0, \ s_A = 0 \\ c = 0 \end{array}$	
	$s_A = t^2 + 9t$	B1
	For Particle <i>B</i> ,	
	$s_B = \int \left(t + \frac{1}{6}t^2\right) dt$	
	$s_B = \frac{1}{2}t^2 + \frac{1}{18}t^3 + c$	
	When $t = 0$, $s_B = 0$,	M1
	c = 0	
	$s_B = \frac{1}{2}t^2 + \frac{1}{18}t^3$	A1
10c	the distance from <i>O</i> at which particle <i>B</i> collides with <i>A</i> ,	[3]
100	the distance from 0 at which particle b confides with A,	
	When particle <i>B</i> collides with particle <i>A</i> ,	
	$s_A = s_B$	
	$t^{2} + 9t = \frac{1}{2}t^{2} + \frac{1}{18}t^{3}$	M1
	$18t^2 + 162t = 9t^2 + t^3$	
	$t^3 - 9t^2 - 162t = 0$	
	$t(t^2 - 9t - 162) = 0$	
	t(t-18)(t+9) = 0	
	t = 0 (N.A.) or $t = 18$ or $t = -9$ (N.A.)	M1
	i = 0(10.10, 0) $i = 10$ or $i = 0(10.10, 0)$	
	Distance from $O = (18)^2 + 9(18) = 486 \text{ m}$	A1
10d	the speed of each particle at the point of collision.	[2]
	Speed of particle $A = 2(18) + 9 = 45$ m/s	B1
	Speed of particle $B = (18) + \frac{1}{6}(18)^2 = 72 \text{ m/s}$	B1
	6	
11	Given that $\cos A = p$ and that A is acute, express the following in terms of p.	
i	sin 2A	[3]
		M1 for getting the
		length of
	$\left \sqrt{1-p^2} \right $	opposite side
<u>.</u>		
	p	

		M1
	$\sin 2A = 2\sin A\cos A$	
	$=2p\sqrt{1-p^2}$	A1
	$-2p\sqrt{1-p}$	
	Or	
	$\cos^2 A + \sin^2 A = 1$	
	$\sin^2 A = 1 - \cos^2 A$	
	$\sin^2 A = 1 - p^2$	
	•	M1
	$\sin A = \sqrt{1 - p^2}$ (reject negative as A is acute)	1111
		M1
	$\sin 2A = 2\sin A \cos A$	1411
	$=2p\sqrt{1-p^2}$	A1
ii		[3]
	$\cos\frac{A}{2}$	
	- <i>A</i>	
	$\cos A = 2\cos^2 \frac{A}{2} - 1$	M1
	2	
	$\cos\frac{A}{2} = \pm \sqrt{\frac{\cos A + 1}{2}}$	
	$2 \sqrt{2}$	
	$\cos\frac{A}{2} = \pm \sqrt{\frac{p+1}{2}}$	
	$\cos\frac{1}{2} = \pm \sqrt{\frac{1}{2}}$	
	$A = \sqrt{n+1}$ $A = \sqrt{n+1}$	
	$\cos\frac{A}{2} = -\sqrt{\frac{p+1}{2}}$ (rejected) or $\cos\frac{A}{2} = \sqrt{\frac{p+1}{2}}$	M1 for
		rejection
		A1
12	2×	
14	The diagram shows the curve, $y = 4e^{-2x} - 10$. The curve crosses the x – axis at	
	Q. The line <i>PR</i> is a tangent to the curve at <i>R</i> and intersects the x – axis at	
	P. The x-coordinate of $R \operatorname{is} \ln 2$.	
	Find the area of the shaded region, PQR , which is the region enclosed by	
	curve, the x – axis and the line x – axis and the line <i>PR</i> correct to 3 significant	[11]
	figures.	
	6	1]

y 🖌	
$P \qquad Q \qquad x$ $R \qquad y = 4e^{-2x} - 10$	
At R, $x = \ln 2$ $y = 4e^{-2\ln 2} - 10 = -9$	
$R(\ln 2, -9)$	B1
$y = 4e^{-2x} - 10$	
$\frac{dy}{dx} = 4(-2)e^{-2x} = -8e^{-2x}$	
Gradient of line $PR = -8e^{-2\ln 2} = -2$	M1
Equation of line PR $y-(-9) = -2(x-\ln 2)$	1411
$y = -2x + 2\ln 2 - 9$	
y = -2x - 7.6137	A1
At P , $y = 0$ 0 = -2x + 21n 2 = 0	
$0 = -2x + 2\ln 2 - 9$	
$x = \ln 2 - \frac{9}{2}$	
=-3.8069	
$P\left(\ln 2 - \frac{9}{2}, 0\right)$	B1
At Q , $y = 0$ $0 = 4e^{-2x} - 10$	
$4e^{-2x} = 10$	
$e^{-2x} = \frac{5}{2}$	M1 – change index form
$-2x = \ln \frac{5}{2}$	to log form
$x = -\frac{1}{2}\ln\frac{5}{2} = -0.45815$	
$Q\left(-\frac{1}{2}\ln\frac{5}{2},0\right)$	A1
Area of the shaded region, PQR	M1
= Area of the triangle – Area between the curve and the x – axis	1111

Area =
$$\frac{1}{2} \times \left((\ln 2) - \left(\ln 2 - \frac{9}{2} \right) \right) \times (9) - \left| \int_{-\frac{1}{2}\ln\frac{5}{2}}^{\ln 2} (4e^{-2x} - 10) dx \right|$$
 M1
= $\frac{81}{4} - \left| \left[-2e^{-2x} - 10x \right]_{-\frac{1}{2}\ln\frac{5}{2}}^{\ln 2} \right|$ M1
= $\frac{81}{4} - \left| \left[\left[-2e^{-2\ln 2} - 10\ln 2 \right] - \left[-2e^{-2\left(-\frac{1}{2}\ln\frac{5}{2} \right)} - 10\left(-\frac{1}{2}\ln\frac{5}{2} \right) \right] \right] \right|$ M1
= $\frac{81}{4} - \left| -7.01295 \right|$
= 13.23705 = 13.2 units² A1