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1 Express 
8x2		2x	+19
(1x)(4	+	x2)

  in partial fractions.      [5] 

 

2 (i) On the same axes sketch the curves y = √x  and y = √32	x3.  [2] 

 (ii) Find the x-coordinates of the points of intersection of the two curves. [2]   

 

3 (a) Given that  = sin1ቀെ √ଷଶ ቁ , express   in terms of  .  

Hence, find the exact value of  sin 2 + tan .     [4] 

 (b)  

 

 

 

 

 

 

 

 

 

The figure shows part of the graph of y = a tan (bx) and a point Pቀଷగଶ , െ2ቁ 
marked. Find the value of each of the constants a and b.    [2] 

 

4 The equation of a curve is y = ex + 2ex. 

 
(i) Find the coordinates of the stationary point of the curve, leaving your answer  

in exact form.         [4] 
 

(ii) Determine the nature of this point.       [2] 
 
 

  

y = a tan (bx) 

π 

y 

x O 

P 



4 
 

4047/1/Sec 4 Prelims 2018 
 
 
 
 

 
 

5 (i) Sketch the graph of y = ቚ4 െ ௫ଶቚ െ 1, indicating clearly the vertex and the  

     intercepts on the coordinate axes.      [3] 

 (ii) State the range of y.        [1] 

(iii) Find the values of x for   ቚ4 െ ௫ଶቚ െ 1	= 6.     [2] 

(iv)   The graph y = ቚ4 െ ௫ଶቚ െ 1 is reflected in the y-axis.  
  Write down the equation of the new graph.     [1] 

 

 

6 (a) Find the maximum and minimum values of (1  cos A)2  5 and  

the corresponding value(s) of A where each occurs for 0 ≤ A ≤ 360. [4] 

 

(b) A, B and C are angles of a triangle such that cos A =  1√5
  and sin B = 

5
13
. 

(i) State the range of values for A.     [1]  
 

(ii) Find the exact value of cos (A + B).  
 

Hence find the exact value of cos C.     [4] 
 
 
    

7        (a) (i) Show that 
d
dx
ቀln x

4x
ቁ= 1  ln	x

4x2 .      [3] 

(ii) Integrate 
ln x
x2  with respect to x.       [4] 

 

(b) Given that ׬ f	ሺxሻ5
1 dx	=	8, find ׬ f ሺxሻ2

1 dx െ ׬ [f	ሺxሻ2
5 	+	3x]	dx.  [3] 
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8 (a) A curve C is such that 
dy

dx
 = 8 cos 2x and P ቀπ

3
,	2√3		3ቁ is a point on C. 

(i)  The normal to the curve at P crosses the x-axis at Q.  

Find the coordinates of Q.      [3] 

(ii)       Find the equation of C.      [3] 

(b) Given that y = sin 4x, show that 
d2

y

dx2 ൈ dy

dx
 =  32 sin 8x.   [4] 

 
 

9 (a) Find the range of values of k for which 2x(2x + k) + 6 = 0 has no real roots.[4] 

 
(b) If p and q are roots of the equation x2 + 2x  1 = 0 and p > q,  

express   
qp	2  in the form a + b √2, where a and b are integers.  [5] 

 

 

10  
 
 
 
 
 
 
 
 

 

 
A hexagon ABCDEF has a fixed perimeter of  210 cm.  
BCD and AFE are 2 equilateral triangles and ABDE is a rectangle.  
The length of BC is represented as x cm. 

 
(i) Express AB in terms of x.       [1] 

 
(ii) Show that the area of the hexagon, H is given by  

H = ቀ√ଷଶ െ 2ቁݔଶ ൅  [2]      .ݔ105
 

(iii) Find the value of x for which H is a maximum.    [4] 

A 

F 

E D 

C 

B 

x cm 
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The diagram shows triangle PQR in which the point P is (8, 8) and angle PQR is 90. 

The gradient of PR is   
13
8
	and the equation of QR produced is y = 2x +1. 

The line PR makes an angle   with QR produced. 

 
(i) Find the coordinates of Q.       [4]

       
(ii) Find the value of .        [3] 

  

 

y 

x

O 

y = 2x + 1 

P (8, 8) 

Q 

R
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Answers 

1 51 െ ݔ െ ݔ3 ൅ 14 ൅ ଶݔ
2(i) 

2(ii) 
x = 0 or ଵଶ 

3(a)  = െ గଷ 2sin  cos  + tan  = െ ଷଶ√3
3(b) a = 2;			b = ଵଶ 
4(i) (ln √2,	2√2)   (ii) Minimum point 
5(i) 

5(ii) y   1    (iii)  x =  6 or 22 
5(iv) y = ቚ4 ൅ ௫ଶቚ െ 1
6(a) Max value = 1 when A = 180 

Min value =  5 when A = 0,360 
6(b)(i) 90 < A < 180  or     గଶ < A < π 
6(b)(ii) cos (A + B) =  ଶଶଵଷ√ହ cos C = ଶଶଵଷ√ହ
7(a)(ii)  ׬ lnx௫మ െ = = ݔ݀ ଵ௫ െ ௟௡௫௫ ൅ ܿ       (b) 39 ଵଶ 

8(a)(i) Q( 12	8√3 ൅ గଷ 	 , 0ሻ or (0.809,0)
8(ii) y = 4sin 2x  3   
9(a)  √24 < k < √24 
9(b) p = 1 +√2 	,			q = 1 √2 q

p2 = 7  5√2 
10(i) AB = 105  2x 

10(iii) x = 46.3    Maximum H 
11(i) Q ( 2,  3)    (ii)  = 121.8 

y 

x 

y = െ√32ݔଷ 

y = െ√ݔ 

(8,  1) 

3 

6  10 

y 

x 
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Qn Working Marks 
1 8x2		2x	+19

(1x)(4	+	x2)
ൌ 1ܣ െ ݔ ൅ ݔܤ ൅ 4ܥ ൅ 2ݔ  

8x22x+19 = A(4+x2) +(Bx + C)(1  x) 
Sub x = 1, 8  2 + 19 = 5A A = 5 
Sub x = 0, 19 =4(5) + C C = 1 
Compare coeff of x2, 8 = A  B         B = 3 

8x2		2x	+19
(1x)(4	+	x2)

ൌ 51 െ ݔ െ ݔ3 ൅ 14 ൅ 2ݔ

B1 correct PF 

M1 

A2 For all 3correct 
A1 For 2 correct 

 A1 Only if B1 
awarded 

Total 5 marks 
2(i) G1 

G1 

2(ii) ݔଵଶ ൌ  ଷݔ	32√
x = 32x6 

x(1  32x5) = 0 
x = 0 or ଵଶ 

M1 

A1 
Total 4 marks 

3(a)  = െ గଷ
2sin  cos  + tan  = 2 ቀെ √ଷଶ ቁ ቀଵଶቁ ൅ ൫െ√3൯ 

= െ ଷଶ√3
B1 
B1 value of cos  

B1 value of tan  
B1 

3(b) a = 2 
Period = 2ߨ	ൌ	 గ௕ b = ଵଶ B1 

B1 

Total 6 marks 
4(i) dy

dx
 = ex  2e x = 0 

e2x =2 
x = ln √2 
y = ݁௟௡√ଶ ൅ 2݁ି௟௡√ଶ 
   = √2 + ଶ√ଶ ൈ √ଶ√ଶ = 2√2      Point is (ln √2, 2√2) 

M1 
dy

dx
 = 0 

B1 Differentiate 
A1 value of x 

B1 o.e.  

4(ii) ௗమ௬ௗ௫మ = ex + 2e x 
x = ln √2 , ௗమ௬ௗ௫మ = 2 + ଶ√ଶ > 0
Minimum point 

M1 Knowing test 
       Correct concl  
       based on test 
A1 

Total 6 marks 

y 

x 

y = െ√32ݔଷ 

y = െ√ݔ 
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Qn Working Marks 
5(i) 

G1 vertex 
G1 x ints 
G1 y int 

5(ii) y   1 B1 

5(iii) ቚ4 െ ௫ଶቚ െ 1 = 6ቚ4 െ ௫ଶቚ	= 74 െ ௫ଶ = 7 or 4 െ ௫ଶ =   7
x =  6 or 22 

M1 or by counting 
A1 

5(iv) y = ቚ4 ൅ ௫ଶቚ െ 1 B1 

Total 7 marks 
6(a) (1  cos A)2  5 

Max value = (1(1))2  5 = 1 
When cos A = 1, A = 180 

Min value = (11)2  5 =  5 
When cos A = 1, A = 0,360 

B1 
B1 

B1 
B1 

6(b)(i) 90 < A < 180  or     గଶ < A < π B1  

6(b)(ii) cos (A + B) = cos Acos B  sin Asin B 
          = െ ଵ√ହ ቀଵଶଵଷቁ െ ଶ√ହ ቀ ହଵଷቁ 

          =  ଶଶଵଷ√ହ
cos C = cos (180(A + B)) 
          = cos (A + B) 
          = ଶଶଵଷ√ହ 

B1 value of cos B 
B1 value of sin A 

B1 

B1 e 

Total 9marks 

(8,  1) 

3 

6  10 

y 

x 
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Qn Working Marks 
7(a)(i) 

d
dx
൬lnx4ݔ൰=

	ݔ4 ቀ1ݔቁ 		4ln	xሺ4ݔሻଶ
              = ସିସ௟௡௫ଵ଺௫మ  

= 
1lnx

4௫మ   (shown) 

M1 quotient rule 
M1 diff ln x  
B1  working seen 

7(a)(ii)   ׬ 	1ln2ݔ4ݔ +  lnxସ௫ = ݔ݀ c1 14න lnxݔଶ ݔ݀	 ൌ න14ିݔଶ ݔ݀ െ ݔ4ݔ݈݊ ൅ ܿଵ 

=			 ௫షభିସ െ ௟௡௫ସ௫ ൅ ܿଵ 

׬ lnx௫మ െ = = ݔ݀ ଵ௫ െ ௟௡௫௫ ൅ ܿ

B1 use integn as 
reverse of diff 
Ignore if +c is 
missing 
B1 rearrange terms
B1 ׬ ଶିݔ  ݔ݀

B1  must have +c 

7(b) න ݂ሺݔሻଶ
ଵ ݔ݀ ൅ න ሾ݂ሺݔሻହ

ଶ ൅  ݔሿ݀ݔ3

׬ = ݂ሺݔሻଶଵ ݔ݀ ൅ ׬ ݂ሺݔሻ݀ݔହଶ ൅ ׬ ହଶݔ3  ݔ݀

= 8 + ቂଷ௫మଶ ቃଶହ
=8 + [ଷଶ ሺ25ሻ െ ଷଶ ሺ4ሻሿ 
= 		଻ଽଶ   = 39 ଵଶ 

M1 switch limits 
      and –ve   
      becomes +ve 

B1 correct integral 

A1 

Total 10 marks 
8(a)(i) When x = గଷ, dy

dx
 = 8cosଶగଷ   =   40ሺ2√ଷିଷሻ௫ିഏయ =  1ସ

Q( 12	8√3 ൅ గଷ 	 , 0ሻ or (0.809,0)

B1 

M1 

A1  
8(ii) y = 4sin 2x + c 

Sub ቀగଷ , 2√3 െ 3ቁ 2√3 െ 3 ൌ ݊݅ݏ4 ଶగଷ  + c
               2√3 െ 3 ൌ 4 ቀ√ଷଶ ቁ + c 

y = 4sin 2x  3   

B1 ignore if +c 
      missing 

M1 
A1 

8(iii) dy

dx
 = 4 cos 4x ௗమ௬ௗ௫మ =  16 sin 4x 

d2
y

dx2 ൈ dy

dx
 = ( 16 sin 4x) (4 cos 4x) 

              =  32(2 sin 4x cos 4x) 
              =  32 sin 8x 

B1  ௗௗ௫sin x = cos x 

B1 ௗௗ௫cos x= cos x 

B1 use of chain rule 
B1 2sin4xcos4x seen 

Total 10 marks 
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Qn Working Marks 
9(a) 2x(2x + k) + 6 = 0 

4x2 + 2kx + 6 = 0 
Discriminant < 0 
(2k)2  4(4)(6) < 0 
k2  24 < 0 (k  √24ሻ (k + √24ሻ< 0 
 √24 < k < √24 

B1 For D < 0 
M1 correct sub 
M1 Solve ineq 
A1 (M0 if k < ±√24) 

9(b) x2 + 2x  1 = 0 

x  = ିଶേඥଶమିସሺଵሻሺିଵሻଶ
p = 1 +√2		,			q = 1 √2	q
p2	= 1	√2	൫1	൅√2	൯మ 

= 1	√2	ଷିଶ√ଶ ൈ ଷାଶ√ଶଷାଶ√ଶ 
= ିଷିଶሺଶሻିଷ√ଶିଶ√ଶଽିସሺଶሻ  

    = 7  5√2 

M1   

A1   p > q 

M1 rationalise 

M1 simplify 

A1 
Total 9 marks 

10(i) 4x + 2(AB) = 210 
AB = 105  2x B1 

10(ii) H = 2ቀଵଶቁx2sin 60 + (105  2x)x 

  = √ଷଶ x2 + 105x  2x2 

   = ቀ√ଷଶ െ 2ቁݔଶ ൅  (shown) ݔ105

B1 Area of  
B1  sub & working

10(iii) dH
dx

 = 2ቀ√ଷଶ െ 2ቁ105 + ݔ 
dH
dx

=0 

x = 46.3 ௗమHௗ௫మ = √3  4 < 0   Maximum H 

B1 

M1 
A1 

B1 test & concl 
Total 7marks 

11(i) Eqn of PQ: y  ( 8) = െ ଵଶ(x  8) 

y = െ ଵଶx  4   ----------(1) 
 QR:           y = 2x +1       ----------(2) 
Solving simultaneously  
Q ( 2,  3) 

B1 correct mPQ

B1 form eqn 

M1 
A1 

11(ii) tan α = 2 
α = 63.43 
tan β = ଵଷ଼ 
β = 58.39 

 = 63.43 + 58.39(ext  of )
= 121.8

M1  use grads to  
       Find angles 

M1 manipulate s 
A1 

Total 7 marks 

 
α  β 
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Mathematical Formulae 

1. ALGEBRA
Quadratic Equation 

For the equation ax2 + bx + c = 0, 

x = 
a

acbb

2
42  .

Binomial Theorem 

(a + b)n = an + 







1
n

an   1 b + 







2
n

 an   2 b2 + . . . + 







r

n
an   r br + . . . + bn, 

where n is a positive integer and 







r

n
 = 

!)!(
!

rrn

n


 = 

!
)1).......(1(

r

rnnn 

2. TRIGONOMETRY
Identities 

sin2 A + cos2 A = 1
sec2 A = 1 + tan2 A

cosec2 A = 1 + cot2 A 
sin (A ± B) = sin A cos B ± cos A sin B  
cos (A ± B) = cos A cos B ∓ sin A sin B 

tan (A ± B) = 
୲ୟ୬஺	േ	୲ୟ୬஻ଵ	∓୲ୟ୬஺ ୲ୟ୬஻

sin 2A = 2 sin A cos A 
cos 2A = cos2 A  sin2 A = 2 cos2 A  1 = 1  2 sin2 A 

tan 2A = 
A

A
2tan1

tan2


Formulae for ABC 

C

c

B

b

A

a

sinsinsin


a2 = b2 + c2  2bc cos A 

 = 
2
1

bc sin A
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Answer all questions. 

1 The amount of energy, E erg, generated in an earthquake is given by the equation 
E = 10a + bM,  where a and b are constants and M is the magnitude of the earthquake. 

The table below shows some corresponding values of M and E. 

M 1 2 3 4 5 

E (erg) 2.0  1013 6.3  1014 2.0  1016 6.3  1017 2.0  1019 

(i) Plot lg E against M. [2] 

(ii) Using your graph, find an estimate for the value of a and of b. [3] 

(iii) Using your answers from (ii), find the amount of energy generated, in erg, by an
earthquake of magnitude 7. [2] 

2 (i) Write down the expansion of (3  x)3 in ascending powers of x. [1] 

(ii) Expand (3 + 2x)8, in ascending powers of x, up to the term in x3. [3] 

(iii) Write down the expansion of (3  x)3 (3 + 2x)8 in ascending powers of x, up to x2. [2]

(iv) By letting x = 0.01 and your expansion in (iii), find the value of 2.993  3.028,
giving your answer correct to 3 significant figures.
Show your workings clearly. [2] 

(v) Explain clearly why the expansion in (iii) is not suitable for finding the value of
23  58. [2] 

3 (i) By writing 3 as (2 +  ), show that sin (3 ) = 3 sin   4 sin3 . [3] 

(ii) Solve sin (3 ) = 3 sin  cos  for 0 <   < 360. [5] 

4 The equation x2 + bx + c = 0 has roots  and , where b > 0. 
(i) Write down, in terms of b and/or c, the value of  +  and of . [1] 

(ii) Find a quadratic equation with roots  2 and  2, in terms of a and b. [3] 

(iii) Find the relation between b and c for which the equation found in (ii) has two
distinct roots. [2] 

(iv) Give an example of values of b and c which satisfy the relation found in (iii). [1]
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5 In the diagram, A, B, C and D are points on the circle centre O. 
  AP and BP are tangents to the circle at A and B respectively. 

DQ and CQ are tangents to the circle at D and C respectively. 
POQ is a straight line. 

(i) Prove that angle COD = 2  angle CDQ. [3] 

(ii) Make a similar deduction about angle AOB. [1] 

(iii) Prove that 2  angle OAD = angle CDQ + angle BAP. [4] 

6 (i) Differentiate y = 2e3x (1  2x) with respect to x. [3] 

(ii) Find the range of values of x for which y is decreasing. [1] 

(iii) Given that x is decreasing at a rate of 5 units per second, find the rate of change
of y at the instant when x = 1.5. [3] 

7 (i) By using an appropriate substitution, express 23a + 1  22a + 2 + 2a as a cubic function. [3] 

(ii) Solve the equation 23a + 1  22a + 2 + 2a = 0. [5] 

(iii) Find the range of values of k for which 23a + 1  22a + 2 + k(2a) = 0 has at least one
real solution. [3] 

 A 

 B 

 D

 P 
 O

 C

 Q 
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8 The diagram shows the graphs of y = f(x) and y = f '(x). 

The function f (x) = ax3 + bx2 + 24x + 16 has stationary points at x = p and x = 4. 

(i) Find an expression for f '(x), in terms of a and b. [1] 

(ii) Find the value of a and of b. [3] 

(iii) Find the value of p.
State the range of values of k, where k > 0 and y = f(x)  k has only one real root. [3] 

(iv) Find the minimum value of the gradient of f(x). [2] 

9 The diagram shows the graph of 
y =   (x  2)4 + 16. 

AB and AC are tangents to the 
curve at B and C respectively. 

B lies on the y-axis and AB = AC. 

(i) Find the gradient function of the curve. [1] 
(ii) Find the equation of the tangent at B.

Hence, state the coordinates of A. [3] 
(iii) Find the area of the shaded region. [6] 

 y

 x
 O 

 A

 B  C 

 y = f(x) 

 y = f '(x) 
 24 

 16 

 4  O   p x 

  y 
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10 A particle, P, travels along a straight line so that, t seconds after passing a fixed point O, 
its velocity, v m/s is given by  

v = (12e k t + 18), where k is a constant. 

(i) Find the initial velocity of the particle. [1] 

Two seconds later, its velocity is 40 m/s. 
(ii) Show that k = 0.3031, correct to 4 significant figures. [3] 

(iii) Sketch the graph of v = 12e k t + 18, for 0 ≤ t ≤ 4. [3] 

(iv) Explain why the distance travelled by P during the 4 seconds does not exceed
180 metres. [2] 

(v) Find the maximum acceleration of P during the interval 0 ≤ t ≤ 4. [2] 

11 A circle, C1, with centre A, has equation x2 + y2  8x  4y  5 = 0. 

(i) Find the coordinates of A and the radius of C1. [3] 

(ii) Show that (1, 6) lies on the circle. [1] 

(iii) Find the equation of the tangent to the circle at (1, 6). [3] 

The equation of the tangent to the circle at (1, 6) cuts the x-axis at B. 
(iv) Find the coordinates of B. [2] 

Another circle, C2, has centre at B and radius r.  
(v) Find the exact value of r given that circle C2 touches circle C1. [3] 

End of Paper 
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4047/2/Sec4Prelim2018 [Turn over 

Answers: 
1 (i) a = 11.7 to 11.9, b = 1.49 to 1.51 (iii) E = 2.0  1022 Erg

2 (i) 27  9x + 3x2  x3  (ii) 6 561 + 34 992x + 81 648x2 + 108 864x3 + . . .
(iii) 177 147 + 885 735x + 1 909 251x2 + . . .
(iv) 186 000
(v) For 23  58, need to use x = 1

Since 1 is large in comparison to 0.01, the value is inaccurate because a
significantly large value is removed after the 3rd term.

3 (ii) 104.5, 255.5, 180

4 (i)  +  = b,    = c (ii) x2 (b2  2c)x + c2 = 0 o.e
(iii) b2  4c > 0 (iv) b = 5, c = 2 o.e.

6 (i) ௗ௬ௗ௫  = 2e3x (1  6x) (ii) x >  భల (iii) 1.11 units/sec

7 (i) 2x3  4x2 + x (o.e.) (ii) a = 0.7771 or 1.77 (iii) k ≤ 2

8 (i) f '(x) = 3ax2 + 2bx + 24 (ii) a = 2, b = 15
(iii) p = 1, k > 27 (iv) 13.5

9 (i) ௗ௬ௗ௫ = 2(x  2)3  (ii) Eq AB: y = 16x + 8,   A is (2, 40)
(iii) 38.4 units2

10 (i) 30 m/s (iii) 

(iv) area of trapezium < 0.5(30 + 60)  4 = 180

 distance travelled < 180 m 

(v)  max a = 12.23 m/s2

11 (i) A is (4, 2), Radius = 5 units (iii) 4y  3x = 21  (o.e.) 

(iv) (7, 0) (v) r = 5√5  5

 (4, 58.3) 

30

t (s) 

 v (m/s) 

4

60
30
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Qn Key Steps Marks / Remarks 
1(i) 

M 1 2 3 4 5 
ln E 13.3 14.8 16.3 17.8 19.3 

B1 TOV 

B1 Line passes through pts 

7

(ii) lg E = a + bM 
a = vertical intercept = 11.8 
b = gradient (their rise/run) 

= 1.5 

B1 11.7 to 11.9 
M1 working for gradient 
A1 1.49 to 1.51 

(iii) lg E = 11.8 + 1.5(7) = 22.3 
    E = 2.0  1022 Erg 

M1 
A1 1.341022  to  2.95  1022 

2(i) (3  x)3 = 27  27x + 9x
2  x3  B1 

10

(ii) (3 + 2x)8 

= 38 + 
8
1
 
 
 

(3)7(2x) + 
8
2
 
 
 

(3)6(2x)2 + 
8
3
 
 
 

(3)5(2x)3 

= 6 561 + 34 992x + 81 648x
2 + 108 864x

3 + . . .  

B3 1m for each term (2nd to 4th) 
1m if 1st term missing 
B0 is all not evaluated 

(iii) (3  x)3 (3 + 2x)8 
= their (i)  their (ii) 
= 177 147 + 767 637x + 2 854 035x

2 + . . .  
M1 choosing correct pairs 
A1 

(iv) 2.993  3.028  
= 177 147 + 767 637(0.01) + 2 854 035(0.01)2 
= 185108.7735 
= 185 000 

B1 Subn must be seen 

B1 reject 184 956 

(v) For 23  58, need to use x = 1 

Since 1 is large in comparison to 0.01, the value is 
inaccurate because a significantly large value is 
removed after the 3rd term 

B1 x = 1 seen 

B1 o.e. "big" or "large" seen

ln E 

M
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Qn Key Steps Marks / Remarks 
3(i) sin (θ + 2θ) 

= sin θ cos 2θ + cos θ sin 2θ 
= sin θ (1  2 sin2 θ ) + cos θ (2 sin θ cos θ) 
= sin θ (1  2 sin2 θ ) + 2 sin θ cos2 θ 
= sin θ (1  2 sin2 θ ) + 2 sin θ (1  sin2 θ) 
= 3 sin θ  4 sin3 θ 

B1 Use compound angle 
B1 Any double angle seen 

B1 Use identity 
 AG 

8

(ii) sin (3θ) = 3 sin θ cos θ 
3 sin θ  4 sin3 θ = 3 sin θ cos θ 
sin θ(3  4 sin2 θ  3 cos θ) = 0 
sin θ = 0  θ = 180º 
or 
3  4 sin2 θ  3 cos θ = 0 
3  4(1  cos2 θ)  3 cos θ = 0 
4 cos2 θ  3 cos θ  1 = 0 
(4 cos θ + 1)(cos θ  1) = 0 

cos θ =  1
4

  or cos θ = 1 (NA) 

Hence, θ = 104.5º, 255.5º 

B1 θ = 180º seen 

M1 Solve a quadratic 
B1 Use identity 

B2 1m for extra answer 

4(i)  +  = b   = c  B1 Both correct 

7

(ii) 2 +  
2  = ( +  )2  2 

 = b2  2c 
 

2   
2 = c 

2  
Eqn:  x

2  (b2  2c)x + c2 = 0 

B1 Correct sum 
B1 Correct product 
B1 Equation seen 

(iii) For 2 distinct roots, 
(b2  2c)2  4c

2 > 0 
b

2(b2  4c) > 0 
Since b2 > 0, hence b2  4c > 0 

B1 Correct D 
ok if [(b2  2c)]2 or (b2  2c)2  

B1 o.e.

(iv) b = 5, c = 2 B1 o.e.
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Qn Key Steps Marks / Remarks 
5(i) Let CDQ = a 

ODQ = 90 (tan  rad) 
 ODC = 90º  a 
 COD = 180º  2(90º  a) (sum, COD) 

B1 with reason 
B1 
B1 with reason 

8

(ii) AOB = 2  BAP B1 

(iii) From (i) and (ii), 
2(CDQ + BAP) = COD + AOB 

CDQ + BAP  = 1
2  (COD + AOB) 

= AOP + DOQ    ( prop of chord) 

= 180  AOD 

= 2OAD 

B1 attempt to use (i) and (ii) 

B1B1 1m for reason 

B1 

6(i) y = 2e3x (1  2x) 
dy

dx
  = 2e3x (2) + 6e3x (1  2x) 

 = 2e3x (1  6x) 

B1 Product Rule 
B1 Diff exponential fn 
B1 Simplify, ok if not factorised 

7

(ii) 
For decreasing function, 

dy

dx
 < 0 

 1  6x < 0 

x > 
1
6 B1 

(iii) Given that dy

dx
 =  5 units/s 

dy

dt
= dy

dx
 dx

dt

 = 2e3x (1  6x)(5) 
 = 2e3(1.5) (1 + 6  1.5)(5) 
 = 1.11 units/sec 

B1 with negative seen 

B1 with subs seen 

B1 
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Qn Key Steps Marks / Remarks 
7(i) 23a + 1  22a + 2 + 2a  Let 2a = x  

= 2  23a   4  22a + 2a  
 = 2x3  4x2 + x  

B1 Use of: 2p + q = 2p   2q  
B1 Use of: (2p)q = 2pq  
B1 

11

(ii) 2x3  4x2 + x = 0 
x(2x2  4x + 1) = 0 
x = 0, 2a = 0 (rej) 

or 2x2  4x + 1 = 0 

x  = 4 16 4 2 1
4

    

= 1.707 or 0.2929 

2a = 1.707 or 0.2929 

a  = lg1.707
lg 2

or lg 0.2929
lg 2

= 0.7771 or 1.77 

B1 x = 0 seen 

M1 Solving quad with working seen 

A1 Both x 

M1 Using log (any base) 

A1 Both a 

(iii) 23a + 1  22a + 2 + (k)2a = 0 has at least one root 
 2x2  4x + k = 0 has at least one root 
 16  4  2  k ≥ 0 

k ≤ 2 

M1 Using quad part of eqn 
B1 Correct D with subs 
A1 

8(i) f (x) = ax3 + bx2 + 24x + 16  
f ' (x) = 3ax2 + 2bx + 24 B1 

9

(ii) Sub (4, 0) into f ' (x) = 0 
3a(16) + 2b(4) + 24 = 0 
 48a + 8b + 24 = 0 ……….….……….(1) 

Sub (4, 0) into f (x) 
a(64) + 16b + 24(4) + 16 = 0 
 64a + 16b + 96 + 16 = 0 …………….(2) 

a = 2, b = 15 

B1 Sub into their f ' (x) and f(x) 

M1 Solve simul eqn 

A1 Both 

(iii)  f ' (x)  = 6x2 30x + 24 
 = 6(x2 5x + 4) 
 = 6(x  1)(x  4) 
 p = 1 
At x = 1,  f(x) = 2(1)  15(1) + 24(1) + 16 = 27 
Hence, k > 27 

B1 
M1 Using their p 
A1 

(iv) Min value of f ' (x) = 6(2.5)2  30(2.5) + 24 
= 13.5 

M1 Use x = 2.5 
A1 
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Qn Key Steps Marks / Remarks 
9(i) 

y =   (x  2)4 + 16, 
dy

dx
 = 2(x  2)3  B1 o.e.

10

(ii) Grad of AB = 2(8) = 16 
At B,  x = 0,  y = 8 
Eqn AB:  y = 16x + 8 

 A is (2, 40) 

B1 Grad AB seen 

B1 Eqn AB seen 
B1 

(iii) Area OBACD  = (8 + 40)  2 
= 96 units2  

Area bounded by curve and axes 

=  44
1
20
( )   2  16 xx d  

=  41
10 0

5( ) 2  16x x  

= ( 1
10   32 + 64)  ( 1

10   32) 
= 57.6  

 shaded area – 96  57.6 = 38.4 units2  

M1 Using composite figures 
A1 

B1 Knowing to use integral for area 

B1 Correct integration 
B1 Subs seen 

B1 

10(i) v0 = 12e k (0) + 18 = 30 m/s B1 Sub need not be seen 

11

(ii) v2 = 40  40 = 12e k (2) + 18  
e 2 k = 11

6

2k = ln ( 11
6 ) 

k = 0.303 1 

B1 Sub into eqn 

B1 Using logarithm 
B1 

(iii) 

B1 Shape 

B1 Label y-intercept 

B1 Label (4, 58.3) 

(iv) Area under curve < Area of trapezium 
Area of trapezium = 0.5(30 + 60)  4 = 180 

 distance travelled < 180 m 

B1 Find relevant distance 
travelled using any suitable 
method 

B1 Making conclusion 
(v) Max accn occurs at t = 4 where the gradient is most steep 

Max accn  = 0.3031  12 e 0.3031 (4)  
= 12.23 m/s2  

M1 Knowing to differentiate 
A1 

 v (m/s) 

t (s) 

30

(4, 58.3) 

30 
60 

4 
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Qn Key Steps Marks / Remarks 
11(i) x2 + y2  8x  4y  5 = 0 

A is (4, 2) 
Radius = 2 24 2 5   = 5 (units) 

B1 
M1A1 

12

(ii) 12 + 62  8(1)  4(6)  5 = 0 
Hence, (1, 6) lies on the circle. B1 Subs seen and statement 

(iii) Gradient of line joining (4, 2) and (1, 6) 

 =  
4
3

Eqn of tangent at (1, 6) is 

y  6 =  
4
3

 (x  1) 

4y  3x = 21 

B1  grad seen 

B1 Find eqn 

B1 o.e.

(iv) At B, y = 0 
 x = 7 
 B is (7, 0) 

M1 Finding x 

A1 Ordered pair seen 

(v) Distance between centres 
= 2 211 2   
= 125   
 radius of C2  = 125   5 

= 5 5    5 

M1 Find dist between centres 

M1 Using sum radii = distance 
A1 


