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Mathematical Formulae 
 

1.  ALGEBRA 
 

Quadratic Equation 

 

For the equation 2 0ax bx c   , 
2 4

2

b b ac
x

a

  
  

 

Binomial Theorem 

 

  1 2 2 ... ...
1 2

n n n n n r r n
n n n

a b a a b a b a b b
r

       
            

     
, 

where n is a positive integer and 
 

   1 ........ 1!

! ! !

n n n rn n

r n r r r

   
    

 

 

 

2.  TRIGONOMETRY 
 

Identities 

2 2sin cos 1A A  . 
2 2sec 1 tanA A  . 

2 2cosec 1 cotA A  . 

sin ( ) sin cos cos sinA B A B A B    

cos( ) cos cos sin sinA B A B A B   

tan tan
tan( )

1 tan tan

A B
A B

A B


   

sin 2 2sin cosA A A  
2 2 2 2cos2 cos sin 2cos 1 1 2sinA A A A A       

2

2 tan
tan 2

1 tan

A
A

A



 

 

Formulae for ∆ABC 

sin sin sin

a b c

A B C
   

2 2 2 2 cosa b c bc A    

1
sin

2
bc A   
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1 Express  
3 2

3 2

3 2 4 1x x x

x x

  


 in partial fractions. [4] 

 

 

2 A cylinder has a radius of  (1 2 2)  cm and  its volume is   (84 21 2)  cm3. 

 Find, without using a calculator, the exact length of the height of the cylinder in the form  

( 2)a b  cm, where a and b are integers. [5] 

 

  

 

3 (i) Sketch the graph of 4 3sin 2y x  for 0 x   . [3] 

 (ii)  State the range of values of k  for which 4 3sin 2x k   has two roots for 0 x   . [2] 

 

 

4 Solutions to this question by accurate drawing will not be accepted. 

 PQRS is a parallelogram in which the coordinates of the points P and R are ( 5, 8) and

(6, 2)   respectively. Given that PQ is perpendicular to the line 
1

3
2

y x    and QR is parallel      

to the x axis, find 

 

 (i) the coordinates of Q and of S, [5] 

 

 (ii) the area of PQRS. [2] 

 

 

 

5 (i) Differentiate   
ln x

x
  with respect to x. [3] 

 (ii) Hence find  
2

2

ln
d

x
x

x . [4] 
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6 (i) Show that 
2

sin 2
tan cot


 




. [3] 

 (ii) Hence find the value of p, giving your answer in terms of , for which 

0

4 1
d

tan 2 cot 2 4

p

x
x x


 , where 0 <  p <

4


 .  [4] 

 

 

 

 

7 

 

 

 

 

 

 

 

 

 

 In the diagram XBY is a structure consisting of a beam XB of length 35 cm attached at B to another 

beam BY of length 80 cm so that angle 90XBY  . Small rings at X and Y enable X to move along 

the vertical wire AP and Y to move along the vertical wire CQ. There is another ring at B that 

allows B to move along the horizontal line AC. Angle ABX   and  can vary. 

 

 (i) Show that (35cos 80sin ) cmAC    . [2] 

 (ii) Express AC in the form of sin( )R   , where R > 0 and 0 90    . [4] 

 (iii) Tom claims that the length of AC is 89cm. Without measuring, Mary said that this was not 

possible. Explain how Mary came to this conclusion. [1] 

 

 

8 (a) Find the range of values of p for which  2 4 3px x p    for all real values of x. [5] 

 

 (b) Find the range of values of k for which the line  5y k x   does not intersect the curve  
25 5 4 0x xy   . [5] 

 

 

 

 
 

X 

A C 

Y 

Q 

 

35 cm 

80 cm 

P 
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9 The diagram shows part of the graph of  4 1y x    . 

 (i) Find the coordinates of the points A, B, C and D. [5] 

 

 (ii) Find the number of solutions of the equation   4 1 3x mx    when 

                 (a)     m =2                                    (b)  m =  1 [2] 

 

 (iii) State the range of values of m for which the equation 4 1 3x mx     has two solutions. [1]                                    

 

 

 

 

                                          

  

 

 

 

 

 

 

10 The diagram shows a cone of radius r cm and height h cm. It is given that the volume of the cone 

is 10 cm3. 

 

 

 

 (i) Show that the curved surface area, A cm2, of the cone, is 
6 900r

A
r

 
 . [3] 

 (ii) Given that r can vary, find the value of r for which A has a stationary value. [4] 

 (iii) Determine whether this value of A is a maximum or a minimum. [2] 

 

11 The equation of a curve is  3
2y x x  . 

 (i) Find the range of values of x for which y is an increasing function. [5]  

 (ii) Find the coordinates of the stationary points of the curve. [3] 

 (iii) Hence, sketch the graph of  3
2y x x  . [3] 

 

A 

B 

C 
x O 

D 

r 

h 
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St Nicholas Girls School Additional Mathematics Preliminary Examination  Paper I 2018 

Answers  

Paper 1  

1. 3 + 5𝑥 − 1𝑥2 − 6𝑥+1 

 

2. (12 − 3√2  ) cm 

 

3 (i) 

 

 

 

 

 

 

(ii)      1 4k   or 4 7k     

4      (i) ( 10,  2)Q   , S(11, 8)        (ii) 2160 units  

5        (i) 
2

1 ln x

x


                              (ii) 

1 ln
2

x
c

x x

    
 

 

6 (ii) 
12


                      

 7      (ii) 5 305 sin( 23.6 )   cm   or 87.3sin( 23.6 )   cm 

 

          (iii) The maximum value of AC=87.3cm <89 cm 

8 (a)    𝑝 > 4                 (b)    −8 < 𝑘 < 8 

9  (i)     A(5,0) ,   B(1,4),  C(3,0), D(0,3)      (ii) (a)   1   (b) infinite     (iii) 2 

10 (ii)   2.77     (iii) minimum 

11 (i)  
1

2
x      (ii)   1 27

2,0 ,
2 16

 
 
 

  (iii)    

        

 

𝜋2 
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Mathematical Formulae 
 

1.  ALGEBRA 
 

Quadratic Equation 

 

For the equation 2 0ax bx c   , 
2 4

2

b b ac
x

a

  
  

 

Binomial Theorem 

 

  1 2 2 ... ...
1 2

n n n n n r r n
n n n

a b a a b a b a b b
r

       
            

     
, 

where n is a positive integer and 
 

   1 ........ 1!

! ! !

n n n rn n

r n r r r

   
    

 

 

 

2.  TRIGONOMETRY 
 

Identities 

2 2sin cos 1A A  . 
2 2sec 1 tanA A  . 

2 2cosec 1 cotA A  . 

sin ( ) sin cos cos sinA B A B A B    

cos( ) cos cos sin sinA B A B A B   

tan tan
tan( )

1 tan tan

A B
A B

A B


   

sin 2 2sin cosA A A  

2 2 2 2cos 2 cos sin 2cos 1 1 2sinA A A A A       

2

2 tan
tan 2

1 tan

A
A

A



 

 

Formulae for ∆ABC 

sin sin sin

a b c

A B C
   

2 2 2 2 cosa b c bc A    

1
sin

2
bc A   

 

   



3 

CHIJ SNGS Preliminary Examinations 2018 - Additional Mathematics 4047/01 

[Turn over 

1 Express  
3 2

3 2

3 2 4 1x x x

x x

  


 in partial fractions. [4] 

1 

3 𝑥3 + 𝑥2 3𝑥3 + 2𝑥2 + 4𝑥 − 13𝑥3  + 3𝑥2−𝑥2 + 4𝑥 − 1
3 2

2 3

3 2 4 1x x x

x x

  


=3 + −𝑥2+4𝑥−1𝑥2(𝑥+1)−𝑥2 + 4𝑥 − 1𝑥2(𝑥 + 1) = 𝐴𝑥 + 𝐵𝑥2 + 𝑐𝑥 + 1 M1 −𝑥2 + 4𝑥 − 1 = 𝐴𝑥(𝑥 + 1) + 𝐵(𝑥 + 1) + 𝑐𝑥2 M1 

Let x=  1 −1 − 4 − 1 = 𝑐 M1 𝑐 = −6
Let x=0 B= 1 −𝑥2 + 4𝑥 − 1 = 𝐴𝑥(𝑥 + 1) − 1(𝑥 + 1) − 6𝑥2
Let x = 1      −1 + 4 − 1 = 2𝐴 − 2 − 6𝐴 = 5

3 2

2 3

3 2 4 1x x x

x x

  


= 3 + 5𝑥 − 1𝑥2 − 6𝑥+1 [4] 
A1             

If 

 
3 2

2 3

3 2 4 1x x x

x x

  


= 
𝐴𝑥 + 𝐵𝑥2 + 𝑐𝑥+1

 
3 2

2 3

3 2 4 1x x x

x x

  


=3 + 𝐴𝑥+𝐵𝑥2 + 𝑐𝑥+1
 

3 2

2 3

3 2 4 1x x x

x x

  


= 𝐴𝑥+𝐵𝑥2 + 𝑐𝑥+1

Max 3m 

3m 

2m 
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2 A cylinder has a radius of  (1 2 2)  cm and  its volume is   (84 21 2)  cm3. 

Find, without using a calculator, the exact length of the height of the cylinder in the form 

( 2)a b  cm, where a and b are integers. [5] 

2. 𝜋(84 + 21√2 ) = 𝜋(1 + 2√2)2 × ℎ
ℎ = 84 + 21√2(1 + 2√2)2 B1 

ℎ = 84 + 21√21 + 4√2 + 8 M1 expansion 

ℎ = (84 + 21√2 )(4√2 − 9)(4√2 + 9)(4√2 − 9) M1 Conjugate 

surd 

ℎ = 756 − 336√2 + 189√2 − 16881 − 32 M1 For either 

expansion ℎ = 588 − 147√2 49ℎ = (12 − 3√2  ) cm [5] A1 No unit, 

overall -

1m   

3 (i) Sketch the graph of 4 3sin 2y x  for 0 x   . [3] 

(ii) State the range of values of k  for which 4 3sin 2x k   has two roots for 0 x   . [2] 

3 (a) 

 [3]       

B1 any 

one pt 

B1 

2nd pt 

The 2 

pts 

must be 

differer

nt 

nature 

B1 

perfect 

 sine

shape

 -ve sine

shape

 1 cycle

 Amplitud

e

 shift +4

up

ignoring 

no 

labelling 

of axes 

3 (b)          1 4k  or 4 7k  [2] 

Alternative         [5] 

1 7, 4k k  

B1 + 

B1    

B1 + 

B1 
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4 Solutions to this question by accurate drawing will not be accepted. 

PQRS is a parallelogram in which the coordinates of the points P and R are ( 5 , 8) and 

(6, 2)  respectively. Given that PQ is perpendicular to the line 
1

3
2

y x   and QR is parallel

to the x axis, find 

(i) the coordinates of Q and of S, [5] 

(ii) the area of PQRS. [2] 

1(i) Since QR parallel to the x axis, 2Qy   . B1 

Since PQ is perpendicular to the line 
1

3
2

y x   , 

 gradient of PQ = 2 B1  ( 

        gradient) 

( 2) (8)
2

( 5)Qx

 


 
M1 

10 2 10

10

Q

Q

x

x

  

 
( 10,  2)Q   A1 

Midpoint of PR = Midpoint of QS or by inspection 

         5 6 8 ( 2) 10 2
,  ,  

2 2 2 2

s sx y          
   

   
1 10 sx   6 2 sy  

11sx  8sy 

S(11, 8) [5] B1          

(ii) Area of PQRS

5 10 6 11 51

8 2 2 8 82

  


 
1

(10 20 48 88) ( 80 12 22 40)
2

                or       (5+11)(8+2) 
√M1

    
1

320
2

 [2] 

2160 units [7] A1   no unit       

         overall   

-1m
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5 (i) Differentiate
ln x

x
  with respect to x. [3] 

(ii) Hence find
2

2

ln
d

x
x

x . [4] 

(i) 

2

2

1
ln

d ln

d

1 ln

x x
x x

x x x

x

x

       
 




[3] 

B1 

+B1

A1

Either 𝑣 𝑑𝑢𝑑𝑥 𝑜𝑟𝑢 𝑑𝑣𝑑𝑥 with 

the use of quotient rule 

/product rule 

perfect 

(ii) 
2

2 2

2

2

1

2

2

2

2 2

1 ln ln
d

1 ln ln
d d

ln ln
d d

ln ln
d

1

ln 1 ln
d

ln ln
d 2 d

1 ln
2

x x
x

xx

x x
x x

xx x

x x
x x x

x x

x x x
x

x x

x x
x

x xx

x x
x x

x x

x
c

x x








 

 

 


  



     
 



 

 





 

[4] 

[7] 

M1 

M1 

B1 

A1                                           

Integration is the reverse 

process of differentiation 

Making 
2

ln
d

x
x

x the 

subject or split the 

expression 

Integration of 𝑥−2

With c 
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6 (i) Show that
2

sin 2
tan cot


 




. [3] 

(ii) Hence find the value of p, giving your answer in terms of , for which

0

4 1

tan 2 cot 2 4

p

dx
x x


 , where 0 <  p <

4


 . [4] 

(i) 

2 2

2 sin cos
2

tan cot cos sin

sin cos
2

cos sin

1
2

cos sin

2sin cos

sin 2

 
   

 
 

 
 


      
 

   
 
    
 




[3] 

B1 

M1 

M1 

change to sin and cos 

combine terms 

for identity …to the end. 
(must show “1”)     

(ii) 

0

0

0

0

4
dx

tan 2 cot 2

2 sin 4 dx

cos 4
2

4

1 1
cos 4 cos0

2 2

1 1
cos 4

2 2

4 1

tan 2 cot 2 4

1 1 1
cos 4

2 2 4

1 1
cos 4

2 4

1
cos 4

2

4
3

12

p

p

p

p

x x

x

x

p

p

dx
x x

p

p

p

p

p









    

         
   

  




  

  













[4] 

[7] 

B1 

M1 

M1 

A1 

integrate their sinkx 

for substitution in their 

integral 
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7 

In the diagram XBY is a structure consisting of a beam XB of length 35 cm attached at B to another 

beam BY of length 80 cm so that angle 90XBY  . Small rings at X and Y enable X to move along the 

vertical wire AP and Y to move along the vertical wire CQ. There is another ring at B that allows B to 

move along the horizontal line AC. Angle ABX   and  can vary. 

(i) Show that (35cos 80sin ) cmAC    . [2] 

(ii) Express AC in the form of sin( )R   , where R > 0 and 0 90    . [4] 

(iii) Tom claims that the length of AC is 89cm. Without measuring, Mary said that this was not

possible. Explain how Mary came to this conclusion. [1] 

X 

A C 

Y 

Q 

 

35 cm 

80 cm 

P 
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X 

A C 
B 

Y 

Q 

 

35 cm 

80 cm 

P 

7 (i) 35cosAB 
90YBC

BYC




  
 

80sinBC 
(35cos 80sin )AC    cm 

   [2] 

B1     either AB or BC 

B1 

-1m overall for no

unit

7 (ii) sin( ) sin cos cos sinR R R       
35cos 80sinAC   

sin 35R  
cos 80R  
2 2 2 2 2 2cos sin 80 35R R   

2 280 35R  
2 7625R 

87.3 5 305R or
sin 35

cos 80

R

R





35
tan

80
 

23.6 
35cos 80sinAC   

35cos 80sin 5 305 sin( 23.6 )     cm 

or 87.3sin( 23.6 )    cm     [4] 

B1 

M1  for  R 

M1      for 
35

tan
80

 

A1

7 (iii) The maximum value of AC=87.3cm 

Therefore it is not possible for the length to be more than 

that. 

Alternative 

5 305 sin( 23.6 ) 89  
89

sin( 23.6 )
5 305

  

No Solution 

Therefore it is not possible for the length to be more than 

that. [1] 

[7] 

DB1 

DB1
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8 (a) Find the range of values of p for which 2 4 3px x p    for all real values of x. [5] 

(b) Find the range of values of k for which the line  5y k x   does not intersect the curve
25 5 4 0x xy   . [5] 

(a) 2 4 3px x p   for all real values of x 
2 4 3 0px x p    for all real values of x,

D<0      24 4( )( 3) 0p p   M1 

M1 

D<0 with substitution  

For  𝑏2 − 4𝑎𝑐
216 4 12 0p p  

24 12 16 0p p  𝑝2 − 3𝑝 − 4 > 0
          (𝑝 − 4)(𝑝 + 1) > 0 M1 For factorisation 𝑝 < −1,   𝑝 > 4 

NA 

          As p >0 

DA1+DA1 Upon correct 

factorisation 

Ignore”and” and no 
p>0

 [5] 

(b) 5y k x 
25 5 4 0x xy  5𝑥2 + 5𝑥 (𝑘−𝑥5 ) +4 = 0 

5(𝑘 − 5𝑦)2 + 5(𝑘 − 5𝑦)𝑦 + 4= 0 

M1 For substitution 

5𝑥2 + 𝑘𝑥 − 𝑥2 + 4= 0 

5𝑘2 − 50𝑘𝑦 + 125𝑦2 + 5𝑘𝑦 − 25𝑦2 + 4 = 04𝑥2 + 𝑘𝑥 + 4 = 0 100𝑦2 − 45𝑘𝑦 + 5𝑘2 + 4 = 0𝑘2 − 4(4)(4) < 0 (−45𝑘)2 − 400(5𝑘2 + 4) < 0 M1 

+M1
D<0 with substitution 

For 𝑏2 − 4𝑎𝑐2025𝑘2 − 2000𝑘2 − 1600 < 0𝑘2 − 64 < 0(𝑘 − 8)(𝑘 + 8) < 0 M1 factorisation −8 < 𝑘 < 8
[5] 

[10] 

DA1 Upon correct 

factorisation 
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9 The diagram shows part of the graph of  4 1y x    . 

(i) Find the coordinates of the points A, B, C and D. [5] 

(ii) Find the number of solutions of the equation   4 1 3x mx    when        

(a) m =2 (b) m =  1 [2] 

(iii) State the range of values of m for which the equation  4 1 3x mx      has two solutions.

[1]

(i) B(1,4), D(0,3) A1+A1 

4 1 0x    |𝑥 + 1| = 4 𝑥 + 1 = ±4 B1 𝑥 + 1 = 4 or       𝑥 + 1 = −4 𝑥 = 3 or    𝑥 = −5 

A(5,0)      C(3,0) [5] A1 +A1 

(ii) 4 1 3x mx   
(a) When m =2, the number of solutions is 1 A1 

(b) When m= 1, the number of solutions is infinite 

[2] 

A1 

(iii) When −1 < 𝑚 < 1, the number of solutions is 2  

[1]                       

[8] 

A1 

A 

B 

C 
x O 

D 
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10 The diagram shows a cone of radius r cm and height h cm. It is given that the volume of the cone 

is 10 cm3. 

(i) Show that the curved surface area, A cm2, of the cone, is
6 900r

A
r

 
 . [3] 

(ii) Given that r can vary, find the value of r for which A has a stationary value. [4] 

(iii) Determine whether this value of A is a maximum or a minimum. [2] 

r

h 
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10(i) 2

2

2 2 2

2

2

2

2

4

2

4

1
Volume = 10

3

30

30

900

900

r h

h
r

l r h

r
r

l r
r

A rl r r
r

 

 





 

    
 

 

  

𝐴 = 𝜋𝑟√(𝑟6 + 900)𝑟4𝐴 = 𝜋𝑟√(𝑟6 + 900)𝑟2𝐴 = 𝜋√(𝑟6 + 900)𝑟
[3] 

B1 

M1 

A1

If put cm2 -1m 

over all 

(ii) 𝑢 = 𝜋√𝑟6 + 900 , 𝑣 = 𝑟 𝑑𝑢𝑑𝑟 = 12 × 𝜋 × (𝑟6 + 900)−12 × 6𝑟5 𝑑𝑣𝑑𝑟 = 1 𝑑𝑢𝑑𝑟 = 3𝜋𝑟5(𝑟6 + 900)−12
Either 𝑢 𝑑𝑣𝑑𝑥 𝑜𝑟 𝑣 𝑑𝑢𝑑𝑥
With the use of 

quotient rule or 

product rule 

Perfect 𝑑𝐴𝑑𝑟 = 0 with 

substitution 

𝑑𝐴𝑑𝑟 = 3𝜋𝑟6(𝑟6 + 900)−12 − 𝜋(𝑟6 + 900)12𝑟2
B1 

B1 

When 
𝑑𝐴𝑑𝑟 = 0 𝜋(𝑟6+900)−12[3𝑟6−𝑟6−900]𝑟2 = 0 

M1 

𝜋[3𝑟6 − 𝑟6 − 900]𝑟2 (𝑟6 + 900)12 = 0 2𝑟6 − 900 = 0𝑟6 = 450 With cm -1m 

overall 𝑟 = 2.77 [4] A1
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(iii) 

r r < 2.768 r = 2.768 r > 2.768 

d

d

A

r
- 0 + 

Sketch \  / 

A is a minimum       when r  = 2.77

[2] 

[9] 

M1 

DA1 

For subst with + r 

Upon correct
𝑑𝐴𝑑𝑟
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11 The equation of a curve is  3
2y x x  . 

(i) Find the range of values of x for which y is an increasing function. [5] 

(ii) Find the coordinates of the stationary points of the curve. [3] 

(iii) Hence, sketch the graph of  3
2y x x  . [3] 

 

     

   
   

3

3 2

2

2

2

d
2 1 3 2

d

2 2 3

2 2 4

d
when 0, 2 4 0

d

4 2

1

2

y x x

y
x x x

x

x x x

x x

y
x

x

x

x

 

   

   

  

  

  



[5]       

B1 

+B1

 A1 

M1 

A1                 

Either 𝑣 𝑑𝑢𝑑𝑥 𝑜𝑟 𝑢 𝑑𝑣𝑑𝑥 and 

the use of product 

rule  

Perfect  

for 
d

0
d

y

x
 with 

substitution 

   

 

 

2

3
3

d
when 0, 2 2 4 0

d

1
2,

2

1 1
2 2 2 2

2 2

27
0

16

1 27
Ans 2,0 ,

2 16

y
x x

x

x x

y y

   

 

     
 

 

 
 
 

 

[3] 

M1 

A1+A1         

𝑑𝑦𝑑𝑥 = 0 

with substitution 

If  (2 − 𝑥)(2 −4𝑥) = 0  
don’t penalise] 

[3] 

[11] 

B1 

B1 

B1 

 their max pt 

1 27
,

2 16

 
 
 
(2,0) their pt of 

inflexion 

(0,0) 

-1m for less than

perfect

Note: should not see this 

2 0

2

2

x

x

x

 
  



No [A1] 
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Mathematical Formulae 

1. ALGEBRA

Quadratic Equation 

For the equation 2 0ax bx c   , 

2 4

2

b b ac
x

a

  


Binomial Theorem 

  1 2 2 ... ...
1 2

n n n n n r r n
n n n

a b a a b a b a b b
r

       
            

     
, 

where n is a positive integer and 
 

   1 ........ 1!

! ! !

n n n rn n

r n r r r

   
    

2. TRIGONOMETRY

Identities 

2 2sin cos 1A A  . 

2 2sec 1 tanA A  . 

2 2cosec 1 cotA A  . 

sin ( ) sin cos cos sinA B A B A B  

cos( ) cos cos sin sinA B A B A B   

tan tan
tan( )

1 tan tan

A B
A B

A B


 

sin 2 2sin cosA A A
2 2 2 2cos2 cos sin 2cos 1 1 2sinA A A A A     

2

2 tan
tan 2

1 tan

A
A

A




Formulae for ∆ABC 

sin sin sin

a b c

A B C
   

2 2 2 2 cosa b c bc A  

1
sin

2
bc A 
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1 (i) On the same axes sketch the curves 2 64y x and 2
y x  .   [2] 

(ii) Find the equation of the line passing through the points of intersection of the two curves. [4]

2 The roots of the equation 2 2 0x x p   , where p is a constant, are  and . 

The roots of the equation 2 27 0x qx   , where q is a constant, are 3 and 3 .

Find the value of p and of q. [6] 

3 (a) Given that 2 2 2 13 5 27 5x x x x     , evaluate the exact value of 15x . [3] 

(b) Given that log 64log
x y

y x  , express y in terms of x. [4] 

4 (i) Write down, and simplify, the first three terms in the expansion of  
2

(1 )
2

nx
 ,in ascending

powers of x, where n is a positive integer greater than 2. [2] 

(ii) The first three terms in the expansion, in ascending powers of x, of   
2

2(2 3 )(1 )
2

nx
x  are

2 – px 2 + 2x4, where p is an integer. Find the value of n and of p. [5] 

5 

In the figure, XYZ is a straight line that is tangent to the circle at X.  

XQ bisects RXZ and  cuts the circle at S.  RS produced meets XZ at Y and ZR = XR. 

Prove that 

(a) SR = SX, [3] 

(b) a circle can be drawn passing through Z, Y, S and Q. [4] 

S 

Y 

Q 

R 

Z 
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6 The expression  3 23 4x ax bx    , where a and b are constants, has a factor of x  2 and leaves a 

remainder of  9 when divided by  x + 1. 

(i) Find the value of a and of b. [4] 

(ii) Using the values of a and b found in part (i), solve the equation  3 23 4 0x ax bx    ,

expressing non-integer roots in the form 
3

c d
, where c and d are integers. [4] 

7 (a) Prove that   
tan sin

sec 1
1 cos

 


 


. [4] 

(b) Hence or otherwise, solve
2tan sin 3

sec
1 cos 4

  





 for 0 2   . [4] 

8 The temperature, A °C, of an object decreases with time, t hours. It is known that A and t can be 

modelled by the equation 
0e

kt
A A

 , where 0A and k are constants. 

Measured values of A and t are given in the table below. 

t (hours) 2 4 6 8 

A (°C) 49.1 40.2 32.9 26.9 

(i) Plot ln A against t for the given data and draw a straight line graph. [2] 

(ii) Use your graph to estimate the value of 0A and of k. [4] 

(iii) Assuming that the model is still appropriate, estimate the number of hours for the temperature

of the object to be halved.   [2]

9 The curve y = f(x) passes through the point  0,3  and is such that f (x) =

2
1x

x
e

e

  
 

. 

(i) Find the equation of the curve. [4] 

(ii) Find the value of x for which f ʺ(x) = 3. [4]
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10 A circle has the equation  2 2 4 6 12 0x y x y     . 

(i) Find the coordinates of the centre of the circle and the radius of the circle. [3] 

The highest point of the circle is A. 

(ii) State the equation of the tangent to the circle at A. [1]  

(iii) Determine whether the point (0, 7 ) lies within the circle. [2] 

The equation of a chord of the circle is 7 14y x  . 

(iv) Find the length of the chord. [5] 

  11 

The diagram shows part of the curve of 2 7 12y x x   passing through the point B and meeting 

the x-axis at the point A.  

(i) Find the gradient of the curve at A. [4] 

The normal to the curve at A intersects the curve at B. 

(ii) Find the coordinates of B. [4] 

The line BC is perpendicular to the x-axis. 

(iii) Find the area of the shaded region. [4] 

12 A particle P moves in a straight line, so that, t seconds after passing through a fixed point O, its 

velocity, v m s-1, is given by cos sin 2v t t  , where 0
2

t


  . Find 

(i) in terms of , the values of t, when P is at instantaneous rest, [5] 

(ii) the distance travelled by P from t = 0 to t =
2


, [6] 

(iii) an expression for the acceleration of P in terms of t. [1] 

A 
x 

y 

C 

B 
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St Nicholas Girls School Additional Mathematics Preliminary Examination Paper II 2018 

Answers  

1  (i)         (ii)  𝑦 = −4𝑥 

2 𝑝 = 3, 𝑞 = −10 3 (a) 
59 (b) 𝑦 = 𝑥8 ,    𝑦 = 𝑥−8

4 (i) 1 − 𝑛 (𝑥22 ) + 𝑛(𝑛−1)8 𝑥4 + ⋯ (ii) 𝑛 = 8,    𝑝 = 5
6 (i) 𝑎 = −8, 𝑏 = 2 (ii) 𝑥 = 2 ,    𝑥 = 1±√7 3
7 (b) 

5
,

3 3

 

8 (ii)      0 59.7 A  ,  0.1k  (iii) 6.93

9 (i) 2 21 1
2 3

2 2

x x
y e x e

    (ii) 
1

ln 2
2

10 (i) Centre = ( 2,  3)  , Radius 5  units   (ii) 2y 

(iii)  The distance of the point from the centre of the cicle = 20 < 25 radius of  

the circle, so the point lies within the circle. 

(iv) 5 2 units

11 (i) 1 (ii)  5,2B (iii) 1sq unit . 

12 (i) ,
2 6

 
(ii) 

1
m

2
(iii) sin 2cos2t t  
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Formulae 

1. ALGEBRA

Quadratic Equation 

For the equation
2 0ax bx c   ,

2 4

2

b b ac
x

a

  


Binomial Theorem 

  1 2 2 ... ...
1 2

n n n n n r r n
n n n

a b a a b a b a b b
r

       
            

     
, 

where n is a positive integer and 
 

   1 ........ 1!

! ! !

n n n rn n

r n r r r

   
    

2. TRIGONOMETRY

Identities 

2 2sin cos 1A A  . 

2 2sec 1 tanA A  . 

2 2cosec 1 cotA A  . 

sin ( ) sin cos cos sinA B A B A B  

cos( ) cos cos sin sinA B A B A B   

tan tan
tan( )

1 tan tan

A B
A B

A B


 

sin 2 2sin cosA A A
2 2 2 2cos 2 cos sin 2cos 1 1 2sinA A A A A     

2

2 tan
tan 2

1 tan

A
A

A




Formulae for ∆ABC 

sin sin sin

a b c

A B C
 

2 2 2 2 cosa b c bc A  

1
sin

2
bc A 
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1 (i) On the same axes sketch the curves 2 64y x and 2y x  .   [2] 

(ii) Find the equation of the line passing through the points of intersection of the two curves. [4]

(i) 

[2] 

(ii) 2 64y x ------- (1) 
2y x  ------- (2) 

Sub (2) into (1), 
2 2( ) 64x x  M1 

Solving Simultaneous 

Equations 

4

4

64

64 0

x x

x x



 
3( 64) 0x x  

0x   or 
3 64 0x  

0y   
3 64x 

4x 
16y  

B1+B1 Either 1 pairs of x 

values or y values. [ or 

1m for each  pair of x 

and y values ] 

16 0

4 0
m

 



4 

4y x     [4] 

  [6] 

DA1                                 Must have (4,16) 

B1 +B1 

-1 mark if no label

x 

y 

0 
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2 The roots of the equation 2 2 0x x p   , where p is a constant, are  and . 

The roots of the equation 2 27 0x qx   , where q is a constant, are 
3  and 3 .  

Find the value of p and of q. [6] 

2 2 2 0x x p   2 27 0x qx  𝛼 + 𝛽 = −2 𝛼3 + 𝛽3 = −𝑞 B1 For both sum of 

roots or 

first pair of sum 

& product of 

roots. 𝛼𝛽 = 𝑝 𝛼3𝛽3 = 27 B1 For both 

product of roots 

or 2nd  pair of 

product and 

sum of roots 𝛼𝛽 = 3 𝑝 = 3 A1 (𝛼 + 𝛽)(𝛼2 − 𝛼𝛽 + 𝛽2) = −𝑞  or (𝛼 + 𝛽)3 − 3𝛼2𝛽 + 3𝛽2𝛼 = −𝑞 B1 For 𝛼3 + 𝛽3(𝛼 + 𝛽)[(𝛼 + 𝛽)2 − 2𝛼𝛽 − 𝛼𝛽] = −𝑞 or (𝛼 + 𝛽)3 − 3𝛼𝛽(𝛼 + 𝛽) = −𝑞(−2)[4 − 9] = −𝑞                                  or  (−2)3 − 3𝑝(−2) = −𝑞 M1 

   𝑞 = −10 [6]                   A1 
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3 (a) Given that 
2 2 2 13 5 27 5x x x x     , evaluate the exact value of 15x

. [3] 

(b) Given that log 64logx yy x  , express y in terms of x. [4] 

(a) 2 2 2 13 5 27 5x x x x    
Method (i) 32𝑥−2 × 5−2𝑥 = 33𝑥 × 5−1−𝑥32𝑥−233𝑥 = 5−1−𝑥5−2𝑥32𝑥−2−3𝑥 = 5−1−𝑥+2𝑥 M1  applying index Law 

correctly on either LHS 

or RHS  3−𝑥−2 = 5𝑥−13−𝑥 × 3−2 = 5𝑥 × 5−13𝑥 × 5𝑥 = 5−1 ÷ 3−2 M1  grouping and making 

power of x on one side 

Method (ii) 32𝑥 × 3−2 × 5−2𝑥 = 33𝑥 × 5−𝑥 × 5−1 M1 Applying index law 3𝑥 × 5𝑥 = 5−1 ÷ 3−2 M1  grouping and making 

power of x on one side 15𝑥 = 59 [3] A1 

(b) log 64logx yy xlogx𝑦 = 64𝑙𝑜𝑔𝑥𝑥𝑙𝑜𝑔𝑥𝑦 B1 change of base (𝑙𝑜𝑔𝑥𝑦)2 = 64 M1 𝑙𝑜𝑔𝑥𝑦 = ±8 𝑦 = 𝑥8 ,    𝑦 = 𝑥−8 [4] 

[7] 

A1+A1 
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4 (i) Write down, and simplify, the first three terms in the expansion of  
2

(1 )
2

nx
 ,in ascending 

powers of x, where n is a positive integer greater than 2. [2] 

(ii) The first three terms in the expansion, in ascending powers of x, of   
2

2(2 3 )(1 )
2

nx
x  are

 2 – px 2 + 2x4, where p is an integer. Find the value of n and of p. [5] 

(i) (1 − 𝑥22 )𝑛 = 1 − 𝑛 (𝑥22 ) + 𝐶2 (𝑥44 ) +⋯………𝑛  
M1 

(1 − 𝑥22 )𝑛 = 1 − 𝑛 (𝑥22 ) + 𝑛(𝑛 − 1)8 𝑥4 +⋯……… B1 Or any two 

terms 1m, 

perfect 2m          

[2] 

(ii) 2
2(2 3 )(1 )

2

nx
x  = (2 + 3𝑥2)(1 − 𝑛𝑥22 + 𝑛(𝑛−1)8 𝑥4 +⋯ . )= 2 − 𝑛𝑥2 + 𝑛(𝑛−1)4 𝑥4 + 3𝑥2 − 3𝑛2 𝑥4 +⋯…… ..

= 2 − (𝑛 − 3)𝑥2 + (𝑛2 − 7𝑛4 )𝑥4 +⋯….= 2 − 𝑝𝑥2 + 2𝑥4 +⋯….𝑛2 − 7𝑛4 = 2 
M1 𝑛2 − 7𝑛 − 8 = 0(𝑛 − 8)(𝑛 + 1) = 0 M1 factorisation 𝑛 = 8, 𝑛 = −1(NA) DA1 Upon correct 

factorisation −𝑛 + 3 = −𝑝 M1 −8 + 3 = −𝑝𝑝 = 5 A1             [5] 

[7]
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5 

In the figure, XYZ is a straight line that is tangent to the circle at X.  

XQ bisects RXZ and  cuts the circle at S.  RS produced meets XZ at Y and ZR = XR. 

Prove that 

(a) SR = SX, [3] 

(b) a circle can be drawn passing through Z, Y, S and Q. [4] 

(a) ZXQ SRX   (Alternate Segment Theorem)

ZXQ QXR         (XQ is the angle bisector of RXZ )         

B1 

B1 

QXR SRX  
By base angles of isosceles triangles, SR=SX    [3]      B1 

(b) Let QXR  be x 

180 2RSX x         (Isosceles Triangle)     

180 2YSQ x         (Vertically Opposite Angles)        

B1 

B1 

2RZX ZXR x      (Base angles of Isosceles Triangle)      B1 

180 2 2 180RZX YSQ x x       

Since opposite angles are supplementary in cyclic quadrilaterals, 

a circle that passes through Z, Y, S and Q can be drawn

Alternative          [4] 

Similar but use of tangent secant theorem.  [7] 

B1 

S 

Y 

Q 

R 

Z 
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6 The expression  
3 23 4x ax bx    , where a and b are constants, has a factor of x  2 and leaves 

a remainder of  9 when divided by  x + 1. 

(i) Find the value of a and of b. [4] 

(ii) Using the values of a and b found in part (i), solve the equation  
3 23 4 0x ax bx    , 

expressing non-integer roots in the form 
3

c d
 , where c and d are integers. [4] 

(i) 3 2f ( ) 3 4x x ax bx   
x-2 is a factor      f(2) = 0   3(8) + 4𝑎 + 2𝑏 + 4 = 0 M1 4𝑎 + 2𝑏 + 28 = 0 2𝑎 + 𝑏 + 14 = 0---------(1) 

f(−1) = −9 −3 + 𝑎 − 𝑏 + 4 = −9 M1 𝑎 − 𝑏 = −10---------(2)

(1)+(2)       3𝑎 = −24𝑎 = −8 A1 

Sub into (2)    −8 − 𝑏 = −10𝑏 = 2 [4] A1   

(ii) 3𝑥2 − 2𝑥 − 2 𝑥 − 2 3𝑥3 − 8𝑥2 + 2𝑥 + 43𝑥3 − 6𝑥2−2𝑥2 + 2𝑥−2𝑥2 + 4𝑥−2𝑥 + 4−2𝑥 + 43𝑥3 − 8𝑥2 + 2𝑥 + 4 = 0(𝑥 − 2)(3𝑥2 − 2𝑥 − 2) = 0 B1 𝑥 − 2 = 0 3𝑥2 − 2𝑥 − 2 = 0𝑥 = 2±√(−2)2−4×3×−2 2×3 M1 𝑥 = 2±√286 𝑥 = 2(1 ± √7 )6 𝑥 = 2 𝑥 = 1±√73 [4] 

[8] 

A1 +A1 



9 

CHIJ SNGS Preliminary Examinations 2018 - Additional Mathematics 4047/02 

[Turn over 

7 (a) Prove that   
tan sin

sec 1
1 cos

 


 


. [4] 

(b) Hence or otherwise, solve 2tan sin 3
sec

1 cos 4

  





 for 0 2   . [4] 

(a) tan sin

1 cos
RHS

 





sin
sin

cos

1 cos

 






2sin

cos

1 cos








21 cos

(1 cos )cos


 





(1 cos )(1 cos )

(1 cos )cos

 
 

 



1 cos

cos







1
1

cos
 

sec 1 
 [4] 

B1 

B1 

B1 

B1 

change tan 

change sin² 

to cos² 

identity 
2 2a b

split and 

bring to 

answer 

(b) 
2tan sin 3

sec
1 cos 4

  





23
1 sec sec

4
  

23sec 4sec 4 0   
(sec 2)(3sec 2) 0   

sec 2      or     
2

sec
3

  

1
cos

2
      or     

5
,

3 3

          
3

cos
2

   (No Solution)

    = 1.05, 5.24 

[4] 

[8]    

B1 

M1 

DA1+ 

DA1 

substitution 

factorization 

1st DA1 for 

change to 

cos & no 

soln 

Upon 

correct 

factorisation 
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8 The temperature, A °C, of an object decreases with time, t hours. It is known that A and t can be 

modelled by the equation  0e ktA A  , where 
0A and k are constants.

Measured values of A and t are given in the table below. 

t (hours) 2 4 6 8 

A (°C) 49.1 40.2 32.9 26.9 

(i) Plot ln A against t for the given data and draw a straight line graph. [2] 

(ii) Use your graph to estimate the value of
0A and of k. [4] 

(iii) Assuming that the model is still appropriate, estimate the number of hours for the temperature

of the object to be halved.   [2]

8 (i) B1 for correct points, values & correct axes.

B1 best fit line .   [2] 

(ii) 
0e ktA A 

0ln lnA kt A  

gradientk 

3.39 3.99

7 1
k


 


0.1k  0.02

M1 

A1 

gradient 

0ln 4.09A  M1 vertical 

intercept 
4.09

0A e

0 59.7 (3s.f.)A  4     [4] A1

(iii) 
0

1
29.865

2
A       Or      

12𝐴0 = 𝐴0𝑒−𝑘𝑡
ln 29.865 3.396 OR     

0.11
e

2

t
√M1

From the graph, t = 6.9     6.93t    (3s.f.)  

[2] 

[8] 

A1 0.5   

t 2 4 6 8 

ln A 3.89 3.69 3.49 3.29 
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0 

3.1

3.2 

2 4 6 8 t 

3.3 

ln A

3.4

(1, 3.99)

(7, 3.39)

3.0

3.5

3.6

3.7

3.8

3.9

4.0

4.09
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9 The curve y = f(x) passes through the point  0,3  and is such that f (x) =

2
1x

x
e

e

  
 

. 

(i) Find the equation of the curve. [4] 

(ii) Find the value of x for which f ʺ(x) = 3. [4] 

(i) 

   

2

2 2

2 2

0 0

2 2

1
d

2 d

2
2 2

1 1
at 0,3 , 3 2 0

2 2

3

1 1
2 3

2 2

x

x

x x

x x

x x

y e x
e

e e x

e e
x c

e e c

c

y e x e







   
 

  

   


   



   





  [4] 

M1 

B1 

M1 

A1

knowing 

 f dy x x 

ignore no + c 

for ubstitution 

(ii)      
      

 

  

2
2 2

2 2

2 2

2

2

2

2 2

f ' 2 f '

f '' 2 2 f '' 2

when f '' 3, 2 2 3

2
Let , 2 3

2 2 3

2 3 2 0

2 1 2 0

1
2

2

1
2

2

nosolution 2 ln 2

1
ln 2 ln 2 0.347

2

x x x x

x x x x x x

x x

x

x x

x e e x e e

x e e x e e e e

x e e

e a a
a

a a

a a

a a

a a

e e

x

x

 

  



    

    

  

  

 

  

  

  

  



  

[4] 

[8] 

B1 

M1 

+DA1

+DA1

factorisation 

Upon correct 

factorisation 
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10 A circle has the equation  2 2 4 6 12 0x y x y     . 

(i) Find the coordinates of the centre of the circle and the radius of the circle. [3] 

The highest point of the circle is A. 

(ii) State the equation of the tangent to the circle at A. [1] 

(iii) Determine whether the point (0, 7 ) lies within the circle. [2] 

The equation of a chord of the circle is 7 14y x  . 

(iv) Find the length of the chord. [5]
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(i) 2 2 4 6 12 0x y x y    
2 2 2 2 0x y gx fy c    

2 4

2

g

g




2 6

3

f

f




Centre = ( 2,  3)  A1 

2 2Radius = g f C 
2 2( 2) ( 3) ( 12)             2 22 2

2 2

2 (2) (2) 2 (3) (3)

12 (2) (3)

x x y y    

  

M1 

2 2( 2) ( 3) 25x y   

 Radius 5  units [3] A1  ignore no unit            

(ii) 2y  (  y= their y coord of centre +radius)            [1]           B1 
(iii)  The distance of the point from the centre of the cicle

   2 2= (0 2 ) ( 7 3 )     

= 20 < 25

Since it is lesser than the radius of the circle, it lies within the circle. [2]  

M1 their centre 

DA1

(iv) 7 14y x  ------- (1) 

2 2 4 6 12 0x y x y     ------- (2) 

Sub (1) into (2), 

2 2(7 14) 4 6(7 14) 12 0x x x x      
M1    Solving 

        simultaneous 

        equations 
2 2

2

2

49 196 196 4 42 84 12 0

50 150 100 0

3 2 0

x x x x x

x x

x x

       

  

  

( 1)( 2) 0x x   M1     Factorizing 

1x  or 2x  Sub into (1),

7y   or 0y   

B1      Either 1 

pair correct 

or both x 

solutions 

are 

correct 
2 2The length of the chord = (1 2) ( 7 0)    √M1

  50

  5 2 units   [5] 

[11] 

A1      accept 7.07           
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  11 

The diagram shows part of the curve of 2 7 12y x x    passing through the point B and meeting 

the x-axis at the point A.  

(i) Find the gradient of the curve at A. [4] 

The normal to the curve at A intersects the curve at B. 

(ii) Find the coordinates of B. [4] 

The line BC is perpendicular to the x-axis. 

(iii) Find the area of the shaded region. [4] 

A 
x 

y 

C 

B 
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(i) 

  

 

2 7 12

3 4

d
2 7

d

d
3, 2 3 7

d

1

y x x

x x

y
x

x

y
when x

x

  

  

 

  

 

  [4] 

M1 

B1 

M1 

A1                    

using smaller 

(positive) x 

value   

(ii) 

 
 

  

  

 

2

2

1

sub 1and 3,0 into

0 1 3

3

equation of normal: 3

7 12 3 or 3 4 3

8 15 0 4 1

3 5 0 5

3 5

2

5,2

m

m y mx c

c

c

y x

x x x x x x

x x x

x x x

x x

y

B

 

  

 

 
 

       

    

   

 


[4] 

M1 

M1 

M1 

 A1

sub m and 

their(3,0) 

curve and normal 

factorisation 

(iii) 

       

       

4 5
2 2

3 4

4 5
3 2 3 2

3 4

Area 7 12d 7 12d

7 7
12 12

3 2 3 2

7 16 7 964 27
12 4 12 3

3 2 3 2

7 25 7 16125 64
12 5 12 4

3 2 3 2

1 1 1 1
13 13 14 13

3 2 6 3

1 5

6 6

1sq unit

x x x x x x

x x x x
x x

     

   
        
   

   
        
   

   
        
   

   

  



 

[4] 

[12] 

M1 

B1 

M1 

A1                                                     

Area d

d

y x

y x








their limits from 

(i) and (ii)

for integration 

substitution 
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12 A particle P moves in a straight line, so that, t seconds after passing through a fixed point O, its 

velocity, v m s-1, is given by cos sin 2v t t  , where 0
2

t


  . Find

(i) in terms of , the values of t, when P is at instantaneous rest, [5] 

(ii) the distance travelled by P from t = 0 to t =
2


, [6] 

(iii) an expression for the acceleration of P in terms of t. [1]
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(i) 

 

cos sin 2

when 0, cos sin 2 0

cos 2sin cos 0

cos 1 2sin 0

1
cos 0 sin

2

2 6

v t t

v t t

t t t

t t

t t

t t
 

 
  

 

 

 

 

         

 [5] 

B1 

B1 

M1 

A1+A1          

For v=0 

for double angle 

factorisation 

(ii) cos sin 2 d

1
sin cos 2

2

1
when 0, 0 0 sin 0 cos0

2

1

2

1 1
sin cos 2

2 2

s t t t

t t c

t s c

c

s t t

 

  

    

 

  

 B1 

B1+B1 

M1 

For ds v t 
Integration ignore 

no +c 

 

1 1
when , sin cos

6 6 2 3 2

1 1 1 1

2 2 2 2

1

4

1 1
when , sin cos
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