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Mathematical Formulae
1. ALGEBRA

Quadratic Equation

For the equation ax” +bx+c=0,

—b+b*—4ac

2a

X =

Binomial expansion

(@+b) =a" +[nJa”"b+(n]a”‘zb2 +...+[nja”"br +...
1 2 r

n ! -D...(n—-r+1
where 7 is a positive integer and S = n(p=l)...(n=r+l)
r) rl(n—-r)! r!

2. TRIGONOMETRY

Identities
sin® A+cos* A=1

sec’ 4 =1+tan’ 4
cosec’A =1+ cot® 4
sin(4+ B) =sin Acos B+ cos Asin B
cos(Ax B) =cosAcosB Fsin AsinB

tan A +tan B
1¥tan Atan B

sin2A4 = 2sin Acos 4

tan(4x B) =

cos 24 =cos> A—sin> A =2cos’ A—1=1-2sin’> 4
2tan A

tan2 A4 =—
1—tan~ 4

Formulae for AABC

a b c

sin 4 - sin B B sinC
a’ =b*+c* —2bccos A

A :lbcsinA
2

+b",



3

A rectangle has a length of (6+/3 +3)cm and an area of 66 cm® Find the perimeter of the

rectangle in the form (a + b3 ) ¢cm, where a and b are integers. [3]
On the same axes sketch the curves y*=225x and y = 15x°. [3]
(i)  Find the exact value of 15*, given that 252 =36x9'"™*. [3]
(ii) Hence, find the value of x, giving your answer to 2 decimal places. [2]
(a) Given that log; y —log; x =1+log;(x + y), express y in terms of x. [3]
(b) Solve the equation log,(8 —x)+log, x =2log, 15. [4]

x—4

J2x+5

The equation of a curve is y =

(i) Show that % can be expressed in the form LbS where a and b are constants. [3]
(2x+5)?

(ii) Given that y is increasing at a rate of 0.4 units per second, find the rate of change of x

when x = 2. [2]

The roots of the quadratic equation 4x” +x—m =0, where m is a constant, are  and .

. . . 1
The roots of the quadratic equation 8x” +nx+1=0, where 7 is a constant, are % and F .
a
(i) Show that m = — 8 and hence find the value of . [5]
(ii) Find a quadratic equation whose roots are z+2and S+2. [4]
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2—2sec’
7. (i) Show that XX Jsecx. 3]
(1+cosx)(1—cos x)

(ii) Hence find, for —n <x < 7, the values of x in radians for which
2-2sec’ x
(14 cosx)(1—cosx)

=4tanx. (4]

8.  The temperature, 7 °C, of a container of liquid decreases with time, # minutes. Measured values
of T'and ¢ are given in the table below.

¢ (min) 10 20 30 40

7(°C) 58.5 41.6 34.7 31.9

It is known that 7 and ¢ are related by the equation 7 =30+ pe 7, where p and q are constants.

(i) On a graph paper, plot In(7 —30) against ¢ for the given data and draw a straight line

graph. [3]
(ii) Use you graph to estimate the value of p and of g. [4]
(iii) Explain why the temperature of the liquid can never drop to 30°C. [1]

9.  Given that y =2xe'™, find

. dy
i -, 2
@) & [2]
. dzy dy 1-
ii for which —=+2—+pe * =0, 4
@) p PR [4]
(iii) the range of values of x for which y is an increasing function. [3]

10. An open rectangular cake tin is made of thin sheets of steel which costs $2 per 1000 cm?.
The tin has a square base of length x cm, a height of # cm and a volume of 4000 cm®.

(i) Show that the cost of steel, C, in dollars, for making the cake tin is given by

2
_r 2 [2]
500 «x
Given that x can vary,
(ii) find the value of x for which C has a stationary value, [3]

(iii) explain why this value of x gives the minimum value of C. [3]



11.

12.

5

The diagram shows a kite EFGH with EF = EH and GF = GH. The point G lies on the y-axis

and the coordinates of F' and H are (2, 1) and (6, 9) respectively.
y

A

X H
G
E
F

)

The equation of EF'is y = % +% .

Find

(i) the equation of EG,

(ii) the coordinates of £ and G,
(iii) the area of the kite EFGH.

[4]
[3]
2]

A

B

The diagram shows a circle passing through points D, E, C and F, where FC = FD.

The point D lies on AP such that AD = DP.
DC and EF cut PB at T such that PT = TB.

(i) Show that AB is a tangent to the circle at point F.

[3]

(ii) By showing that triangle DFT and triangle EF'D are similar, show that

DF? —FT*=FTxET.

End of Paper 1

[4]
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Paper 1

66 22
63+3 o 2B+l
66  63-3 22 23-1

Breadth

T o343 6433 i+l 21
_ 66(6v/3-3) 22(2/3-1)
99 11
:4\/5—2 cm

Perimeter = 2(6\/5 +3+44/3 - 2)
=204/3+2 cm

F ¥

y=15x"
y? =225x

(i)

252 =36x9'™"

D, d 22 %92
(57)(57) = e
22x9?

257
22x92

252

15 >0, 15° :E
25

(593 =

(15%)* =

18
25

18
xlgl5=1g| —
g g(zsj

o )
825

~ 1gl5
=—0.12

15"

log, y—log; x =1+log;(x+y)
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log, P log; 3+log;(x+ )
X

L =3(x+y)
X

y=3x"+3xy

(b) | log,(8—x)+log,x=2log,15

log, [x(8—x)] = 208: 12
log, 9
2log, 15

log.[x(8—x)]=—=21"

g3[ ( )] 210g33

8x—x*=15

x*—8x+15=0

(x=3)(x-5)=0

x=3, 5

2x+ 5)% - ; (x—4)(2x+5) %(2)

O | dy
dx 2x+5
1
_(2x+5) 2(2x+5-x+4)
2x+5
x+9
- 3
(2x+5)?
(ii) | When x =2, d_y:d_yxg
dt dx dr
am 20
@+52 ¥
dx = .4><2
dt 11
54

=55 or 0.982 unit per second




(i)

(i)

a’+p=-n

Sum of roots = + S+ 4
15
T4
Product of roots = (a+2)(f+2)
=af+2(a+p)+4

=2+2(—lj+4
4

11

2
11

. 1
New equation: x2—§x+?:0 or 4x> —15x+22=0

[Turn over
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) 2—-2sec’ x —2(sec’ x 1)
(i) = )
(1+cos x)(1—cos x) sin” x
_ 2tan’x
sin’x
) sin’x
B cos’ x
B sin’® x
_ -2
cos’x
=—2sec’ x
2—2sec’
(ii) X Y _Atanx
(14 cosx)(1—cosx)
—2sec’ x=4tanx
B 1 2sinx
cos’Xx  CcoSx
—1=2sinxcosx
sin2x =-1
2x = _ﬁ’ 37
2 2
7T 37
X=——, —
4’ 4
(i ¢ (min) 10 20 30 40
: In(7 - 30) 3.35 2.45 1.55 0.64

(i)

(i)

T =30+ pe ?
In(7-30)=Inp—gqgt
In p=4.25
p=e**=70.1
—q = gradient
_0.65-4.25
40
=-0.09

Since e ¥ >0, T =30+70e""" >30
Hence, T > 30 for all values of 7.
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(1)

(i)

(iii)

Y_ 2" —2xel ™

2
jx_J; =2 —2e7F +2xe ™
= 4™ +2xe'™

dzy dy -
——4+2—=+pe "=0
& e ?
2
1-x — d_y +2 d_y
d®> dx
= —de' ™ +2xe' ™ + 22" —2xe ™)
= 4" 4 2xe' ™ +4e' ™ —dxe' ™
=-2xe™*
p=2x

—pe

When d_y >0, 27 —2xe' ™ >0
dx

2¢"(1-x)>0

Since ¢ >0 for all x, 1-x>0
x<1

10.

(1)

(i)

(iii)

x*h=4000= h= 4090
X

x (x* + 4hx)

1000

=L x” +4xx
1000
x> 32

7500 x

4000)

2
X

ic_ x 32

A 250
When £:0, L_¥:0
dx 250 x
x* =8000
x=20

d’C 1 o4

dx> 250 X°
d’c 3

When x = 20, =
dx= 250

2
Since, ? >0 when x =20, C has a minimum value.

[Turn over
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(i) | Gradient of FH = % )

Gradient of £EG = —%

. 2+6 1+9
(ii) | Midpointof FH =|——,——
2 2

=(4.5)

Equation of EG: y=5 z_%(x_4)

=——+7
Y T
i) | —Sxr7=%43
2 8 4
Sx_25 x=10
8 4
y=2

Coordinate of £ = (10, 2)

X
=——+7
YT

When x =0, y="17
Coordinate of G = (0, 7)

(iv) | Area of EFGH
10 2 10 6 o‘

2171 2 9 7

:%[(4+90+42)—(14+10+12)]

=50 unit?

Alternative Method
Area of EFGH = %xHF x GE

:%x\/42+82 /107 +5°

=50 units’
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12.

(i)

(i)

DT is parallel to AB. (Midpoint Theorem)
LAFD = LTDF (alt angles)
=/ FED

Since LZAFD and ZFED satisfies the alternate segment
theorem, 4B is a tangent at F.

/DFFE is common.

ZTDF = ZDCF  (base angles of an isos triangle)
/DCF = ZDEF (angles in the same segment)
-.DFT and EFD are similar triangles (AA)

DF FT

EF _ FD

DF?* =FTxEF
= FTx(ET +TF)
= FT? +FTxET

DF?* - FT? =FTxET
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Mathematical Formulae
1. ALGEBRA

Quadratic Equation
For the equation ax” +bx+c =0,

_—bE\b —4ac

2a

X

Binomial expansion

n n h n—1 n n-2772 h n—-ryr n
(a+b) =a" + A BN AR SO I R R

r

. o n ! -1...(n—r+1
where 7 is a positive integer and S = n(n=D)...(n=r+1)
r) rli(n—r)! r!

2. TRIGONOMETRY

Identities
sin? A+cos’> A=1

sec’ 4 =1+tan” 4
cosec’d =1+ cot* 4
sin(4£ B) =sin Acos Bxcos Asin B
cos(A* B) = cos Acos B ¥ sin Asin B

tan A+ tan B
1¥tan Atan B

sin2A4 =2sin Acos 4

tan(4x B) =

cos2A =cos> A—sin> A=2cos’ A—1=1-2sin*> 4
2tan 4

tanZAz—2
1—-tan” 4

Formulae for AABC
a b c

sind sinB sinC

a’ =b*+c* —2bccos A

A :lbcsinA
2



(@)

(b)

(@)

(b)

(@)

(b)

In the expansion of (3x —1)(1—kx)” where & is a non-zero constant, there is no term in x*.
Find the value of £. [4]

12

. . : 2 . . .

In the binomial expansion of (T—xzj , in ascending powers of x, find the term in
X

which the power of x first becomes positive. [4]

Explain why the curve y= px” +2x— p will always cut the line y=—1 at two distinct
points for all real values of p. [4]

Find the values of a such that the curve y =ax’ +x+a lies below the x-axis. [4]

The diagram shows two right-angled triangles with the same height x cm.
One triangle has a base of 4 cm and the other triangle has a base of 6 cm.
Angles 4 and B are such that 4 + B =135°.

l& 4 cm »lg 6 cm »l

[l L] »”|

A B

-T- x ¢m T Xx<cm

Find the value of x. [4]

The current y (in amperes), in an alternating current (A.C.) circuit, is given by

y =170sin(kt), where ¢ is the time in seconds.

. : |
The period of this function is 0 second.

(i) Find the amplitude of y. [1]
(ii) Find the exact value of k in radians per second. [1]
(iii) For how long in a period is y > 857 [3]

[Turn over



The function g(x)=2x"+x* +4x* + hx—k has a quadratic factor 2x* +3x+1.

(i) Find the value of / and of k. [5]
(ii) Determine, showing all necessary working, the number of real roots of the equation
g(x) =0. [4]

The function f is defined by f(x)=4+2x—3x>.
(i) Find the value of a, of b and of ¢ for which f(x)=a+b(x+c)’. [4]

(ii) State the maximum value of f(x) and the corresponding value of x. [2]
(iii) Sketch the curve of y = |f (x)| for —1<x <2, indicating on your graph the coordinates
of the maximum point. [3]

(iv) State the value(s) of k for which |f (x)| =k has

(a) 1 solution, [1]
(b) 3 solutions. [1]
() Find i[(m x)z} 2]
™ .
. . . 3x* —5Inx
(ii) Using the result from part (i), find I—dx and hence show that
X
e 3 _
J. 3x 51nxdx:e3_1. [4]
1 X 2
. d
(i) Show that % (secx)=secxtanx. [2]

X

(ii) Given that Zx<” , find the value of n for which y=e™" is a solution of the
2 2

equation

2
jx—);:(l+tanx)"%. [7]

A circle passes through the points 4(2, 6) and B(5, 5), with its centre lying on the line
3y=—x+5.

(i) Find the perpendicular bisector of AB. [3]
(ii) Find the equation of the circle. [4]

CD is a diameter of the circle and the point P has coordinates (-2, —1).
(iii) Determine whether the point P lies inside the circle. [2]
(iv) Isangle CPD a right angle? Explain. [1]



10.

11.

P —4x+1 B
(i) Given that xz—x+ =A+ + ¢ —, where 4, B and C are constants, find the
x —6x+9 x-3 (x-3)
value of 4, of B and of C. [4]
i . . . X' —4x+1
(ii) Hence, find the coordinates of the turning point on the curve, y = 7 6ra0
X" —6x+
and determine the nature of this turning point. [6]

A particle starts from rest at O and moves in a straight line with an acceleration of @ ms=, where
a =2t — 1 and ¢ is the time in seconds since leaving O.

(i) Find the value of 7 for which the particle is instantaneously at rest. [4]
(ii) Show that the particle returns to O after 1% seconds. (4]
(iii) Find the distance travelled in the first 4 seconds. [2]

1 1

The diagram below shows part of a curve y = f(x) . The curve is such that f'(x)=x?> —x ? and
it passes through the point O(4, 0). The tangent at Q meets the y-axis at the point P.

Y
-
|
0 0(4, 0)
P
(i) Find f(x). [3]
(ii) Show that the y-coordinate of P is —6. [3]
(iii) Find the area of the shaded region. [4]

[Turn over
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Solution

1L (a)

(b)

Bx—1)(1—kx)’
=GBx—D(1-Tke+21k°x* +...)

21k -21k*=0
21k(1+k)=0
k=0, k=-1

- {12}(33) ) (—x2)
r X
12 12— 5r-36
=( J(2 DX
.

5r=36>0
r>72
r=28&

_12 2\ (—1)® x4036
T, =l g 2D x

=7920x"

(b)

px*+2x—p=—1
pxX°+2x+1-p=0
D =4-4(p)1-p)

=4p° —4p+4
=4(p>—p+1) or 4p* —4p+1+3
1 3 ,
=4 -—— | += 2p—-1)"+3
Kp 2] 4} 2p-1)
1Y’ )
=4 p—E +3>0 2p-1)"+3>0

2
Since [p—%j >0 or 2p-1)*>0,

the discriminant > 0, the curve will always cut the
the line at two distinct points for all real values of p.

D=1-4a*<0

D=1-4a*<0 and a<0

(1+2a)(1-2a)<0 or 4a’-1>0
2a-1)2a+1)>0

1 1
a<-—ora>—
2 2

[Turn over



(a)

(b)
(i)

(i)

(iii)

tanA=£, tanB=%
tan(A4+ B) =tan135°
tan A+tan B

l—tan Atan B

6x+4x =24+
x*=10x-24=0

(x=12)(x+2)=0
x=12, —=2 (NA)

y = 170sin(kt)
Amplitude =170 or 170 A
k=2n +L
60
=120m

When y =85, 170sin(120x¢) = 85

sin(1207¢) = 8 =
170

1207t =%, 2%
6" 6

t=—) —

720 720

Duration = L—L
720 720

= L seconds
180

1

2




g(x)=2x"+x +4x + hx—k
2x° +3x+1=(2x+1)(x+1)

Alternative method
2xt X +AX +hx—k = (2x7 +3x+1)(x* +bx—k)
Comparing coefficient of x*, 1=2b+3

b=-1
Comparing coefficient of x>, 4=-2k+3b+1

k=-3
Comparing coefficient of x, h=b-3k

h=38

(i)

Let g(x)=(2x" +3x+1)(x* +bx +3)

Comparing coefficient of x, 8=9+b
b=-1

g(x)=2x" +3x+1)(x* —=x+3)

gx)=0
Qx+Dx+1)(x*—x+3)=0
xz—%, x=-lor X -x+3=0
b*—4ac =1-12<0
=—-11<0
No real roots.
Hence, g(x) =0 has only 2 real roots

[Turn over
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(i)

(i)

(iii)

(iv)(a)
(b)

f(x) =4+2x-3x"

Max value :E or 4l
3 3

1
at x=—
3
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(1)

(i)

i(1n x)’ = 21nx(lj
dx X

~ 2Inx
X
3
I3x 51nxdx ZJ'3x2dx_J‘51nxdx
X X
_ 3.5 2
=x —=(nx)"+C
2
e+3 _ e
J‘ 3x 51nxdx ={x3—§(lnx)2}
1 X 2 |
3 5 2
=e’ —=(lne)" -1
2( )

(i)

(i)

d d O
a (secx) = a[(cos x) ]

= (=1)(cos x) > (—sin x)

1 sin x
= X
COSX COSX
=secxtanx
b _d gy
dx dx
2
=sec” xe™*
d2
)2} =— (sec” xe™™)
dx dx

tan x

= ™" (2sec x)(sec x tan x) + sec” x(sec’ xe™™)

tan x

=sec” xe™ " (2tan x +sec’ x)

= (1+2tan x + tan’ x)d—y

:(1+tanx)2d—y
dx
sn=2

[Turn over
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(i)

(i)

(iii)

Midpoint of 4B = (ﬂ,gj
2 2
(71
2’2
Gradient of AB = -6
5-2
_ !
3

Gradient of perpendicular bisector = 3

Equation of perpendicular bisector, y —% =3 [x - Zj

2
y=3x-5
From (i) y=3x-5 ... (1)
The centre also lieson 3y=—x+5 ...... 2)
Substitute (1) into (2),
33x—-5)=—x+5
x=2
y=1

Centre of circle, (2, 1)

Radius of circle =+/(2—5)° +(1-5)’

=25

= 5 units

Equation of circle, (x—2)* +(y—1)> =25
Or x’+y*—4x-2y-20=0

Distance between the Centre and P
=J@+2 +(1+1)
= 2\/5 units < 5 units

.. P lies inside the circle.

If angle CPD = 90°, P should lie on the circle.
(Right angle in a semicircle)

Hence, angle CPD cannot be 90°
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(i)

X —4x+1
x> —6x+9

* —4x+1 2x—8
Using Long Division, xz—x =1 al >
X" —6x+9 (x-=3)
2x -8 B C

2 = + 2
(x=3) x-3 (x-3)
2x-8 B(x-3)+C
(x=3"  (x=3)’
2x-8=B(x-3)+C
Comparing coefficient of x,
Let x =3,

Let

2
8=C
2

B
6
C=-—
A=1

% =%[1+2(x—3)1—2(x—3)2]

= 2(x=3)7=2(-2)(x-3)"
=2(x-3)7(x-3-2)
__2x=5) 10-2x 2 4

= or — +
(x—3)’ (x-3)° (x-3)*  (x=3)’

When d—y=0, _2(x—53):0
dx (x-3)
x=5
3
When x =5, y=5

. : 3
Turning point, (5, Ej

Alternative Method

Whend—yzo, - 2 >+ 4 =0
dx (x-3) ((x-3)
4 2
(x=3)  (x-3)
2(x-3)* =(x=3)°
Since x # 3, 2=x-3
x=35
When x =5, y:%

. : 3
Turning point, (5, Ej

[Turn over
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Ay 2(x-3)' +203)(x - 5)(x-3)’

dx? (x-3)°
 —2(x—=3)+6(x-35)
o (x-3)
4x-24 4 12
T3 (-3 (x-3)
2
When x =5, %=—%<0

3). . .
5, 5 1s maximum point.

Alternative method

X 5~ 5 5"
dy
- + 0 —
dx

Slope / — \

( 3) o .
5, 5 1S maximum point.
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10.

(i)

(i)

(iii)

v :j(Zt—l)dt
= —t+C
Whent=0,v=0, C=0
v=t2—t
When v =0, P —t=0
1(t*-1)=0
1=0(NA), 1
s =J(t2—t)dt
3 2
=t——t—+D
3 2
Whent=0,s=0, D=0
£
§=———
3 2
3 2
When s =0, t——t—:0
3 2
268 -3 =0
2(2t-3)=0
=0,
2

. 1
Hence, the particle returns to O after 15 seconds.

Alternative method

When tzi,
2
=0

. 1
Hence, the particle returns to O after 15 seconds.

302

When ¢ =1, s 1
3 2 6
3042

When ¢t =4, s =4——4—=13l
3 2 3

Distance travelled

=13l+2(lj
3 6

:132 m
3

M1

Al
M1

Al

M1

Al

M1

Al

M1

Al

M1

Al

A0 (If no C)

A0 (If no C)

Answer with
conclusion

Answer with
conclusion

(10 marks)

[Turn over
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11.

(i)

(iii)

r 1
f'(x)=x*-x 2
1 1
f@g:j@2—x2mx
3 1
zgxz -2x*+C

1

At (4, 0), %m;—zmy+c:o

dy 1
AtQ, f'(x)=—= =42-4
@) (x) &

_3
2
Equation of PQ, y= %(x -4)
3
=—x-6
Y7
coat P =—6

Area of shaded region

4 3 1
:l><4x6+ 2x2—2x2 —i dx or
2 o\ 3 3

:lx4x6—
2

—12+|3

(4 5 43 47
=12+ —x? ——x? ——x}

EXTEEE
=124~ (@ -2 (&) 3(4)}

_p- 12
15

= 68 unit” or 4i unit® or 4.53 unit?
15 15

4
J‘ Lgxz —2x2 -
o\ 3

4

3

J

M1

Al

Al

Bl

M1

Al

M1

M1

M1

Al

Difference

Integral + limits

(10 marks)

End of Paper 2




