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Mathematical Formulae
1. ALGEBRA

Quadratic Equation
For the equation ax? +bx+c¢=0,

_ —b+b? —4dac

2a

X

Binomial expansion

(a+b)" =a" +(Tja”‘lb+(’21ja”_2b2 +...+(nJa”"br +...+b",

r

n] n n(n=1)..(1—r+1)

r

where 7 1s a positive integer and = =
rl(n—r)! r!

2. TRIGONOMETRY

Identities
sin® A+cos® A=1
sec’ A=1+tan’ 4
cosec’A=1+cot’ 4
sin( 4+ B) = sin Acos B * cos Asin B
cos(A=* B) =cos Acos B ¥sin Asin B
tan A +tan B
1¥tan Atan B
sin2A4 =2sin Acos 4
c0s2A4 =cos> A—sin® A=2cos> A—1=1-2sin’ 4
2tan A

1—tan® 4

tan(A £ B) =

tan24 =

Formulae for AABC
a b c

sin 4 B sin B B sinC
a’ =b> +¢% —2bccos A

Area of A = %ab sinC
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Answer ALL questions

1.  The product of the two positive numbers, x and y, where x > y, is 24. The difference

between their squares is 14. Form two equations, and hence, find the exact values of the

two numbers.

2 18 .
2. Show that (2 + \/7) ——— =¢+d~J7 where cand d are integers.

3-7

3. (a) (i) Sketch the two curves y=0.5 Yx and y= i on the same axes for x > 0.
X

(ii) Find the coordinates of the intersection point.

(b) Solve the equation2 = ‘e*x - 3‘ .

4 (1)  Given that the line y = 2 intersects the graph of y =log, x at the point P,
5
find the coordinates of P.

(ii)  Sketch the graph of y=log, x.

5

(iii)  State the range of values of x for which y <0.

5 ()  Sketch the graph of y* =169x .

(i) Express 4x* —181x = -9 in the form (px+ q)2 =169x, where p and g are

constants.

(iii) A suitable straight line can be drawn on the graph in (i) to solve the equation
4x* —181x=-9.

(a) State the equation of this straight line.

(b) On the same axes, sketch the straight line and state the number of
solutions of the equation4x® —181x = -9.

[5]

[4]

[3]

2]

[3]

[2]

[2]

[1]

[2]

[2]

[1]

[2]
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6.
y /—\ D
C
E
B F

The diagram shows a circle passing through points 4, B, C and D. The tangents from £

meets the circle at B and D. Given that AD = BF and triangle ABD is isosceles, where

AB = BD . Prove that

(i) ABFD is a parallelogram. [3]

(ii) triangle BCD is similar to triangle DFE. [3]

(iii) BD x EF = CD x DE. [1]
7. (a) Sketch the graph of y =2cos (%J —1 , for the interval 0<x <27 . [2]

(b) In the diagram, triangle ABC is a right-angle triangle, where Z4BC =90°.

D is a point of AB such that AD is 7 cm and BD is 2 cm.

C
4 7 cm D 2cm B
Given that cos ZADC = —% ,
(i) Find the exact length of BC. [1]

(ii) Find the value of tan ZACD in the form a/b , where a and b are integers.
[2]
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The minute hand of a clock is 50 cm, measured from the centre of the clock, O, to the
tip of the minute hand, M. The displacement, d cm, of M from the vertical line
through O is given by d = asin bt , where ¢ is the time in minutes past the hour.

(i) Find the exact value of a and of b. [3]
(ii) Find the duration, in each hour, where |d | >25. [3]

4, 4
9. (i) Prove that —>> 29 SH; 0 =4cot 260 cosec26 . [3]
sin” @ cos” @

(ii)  Hence, or otherwise, solve

cos* @ —sin* @

— ——— = 4cosec26 for 0°< 6 <180°. [3]
sin” @cos 0
) d’y ) ) .
10. A curve is such that P =6x—2 and P(2, - 8) is a point on the curve. The gradient of
X
the normal at P is —% . Find the equation of the curve. [7]

11. Find and simplify % for the following:
X

(i) y=Incosx

(ii) y= e xe* [4]

[Turn over
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12.  Inthe diagram, the curve x = (y — 1)> + 4 and the line y + x = 7 intersect at 4 and B.

(i) Find the coordinates of 4 and of B. [3]
(ii) Calculate the area of the shaded region. [4]
y

13. A particle moves in a straight line so that its acceleration, a ms?, is given by a =2¢—13,
where ¢ is the time in seconds after passing a fixed point O. The particle first comes to

instantaneous rest at ¢ = 5s. Find,

(i) the velocity when the particle passes through O. [2]
(i)  the total distance travelled by the particle when it next comes to rest. [5]
(iii)  the minimum velocity of the particle. [2]

*#* End of Paper ***
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Answer key
PN 2 [Ci6-51
3 | () (i) (8, 1) 4 | (i) (0.04,2) (iii) x >1
v
H _l I“\'\_ —_ »
................. A | |"\ x
| N
(b) x ==1.61o0or0 '
5 | (i) 7 | (a)
y=2x-3 S T :
' / l{ l
0 /7// 0251 05n g 1:h 1257 157 175m i:rn }
o [ !
e it et |
//n(\ 5 10 15 1 0 4 50 : :
" . | i
-50 \ E :
S ——_——————— e T
-_\_I_k
¥y =169x . 142
(i) (2x—3)" =169x (b) () 42 em (i) =
(ii1) () y=2x—-3 (b) 2 solutions
8 9 |(ii) =22.5°0r 112.5°
(i) a=50 b= % (ii) 40 mins (i1) of
10 | y=x" —2x* - 6x. 111 6) —tanx (i) 2x+1)e"
. " 1
12 ) A5, 2), B8, -1) (i) 4% units? Gy 40 ms? (i) 83§m (iii) —Z%ms_l
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1. The product of the two positive numbers, x and y, where x > y, is 24. The difference between
their squares is 14. Form two equations, and hence, find the exact values of the two numbers.

[5]

Solutions Marks
1 xy =24 M1
24
y=— ..
x
=y =14 ..(Q2) Ml

Sub. (1) into (2):

2
.ﬁ—(3£)=14
X

x2—g=14
X
x'=14x* =576 =0 M1

(x* =32)(x* +18)=0
x> =32 or x* =—18 (rejected)

x=+/32 (—\/3_2 is rejected) Al
=42
_ % 2
W AN Al
=32
> 18
2. Show that 2+\/7 — =c+d\/7 where ¢ and d are integers. 4
2+V7) -7 e [4]
2 > 18
2+47) -
(2447) 3-47
18(3++/7)
=4+47+7-
BTG+ MI. M1
5411847
=llead7 - =5 M
114447 — 2 (5411847
2 Al
=-16-5V7
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[2]
[3]

3. (a) (i)  Sketch the two curves y = 0.5%/; and y= § on the same axes for x > 0. [3]
X
(i1))  Find the coordinates of the intersection point.
(b) Solve the equation 2 = ‘efx -3.
3(a) 5
(i) ’ Bl
. B1
(for each curve)
. —~ ONLY forx >0
4 B1(label)
i 8
@ osyr=2
X
4
x3=16
3
x =(2%)* M1
=8
8
= — = 1
ar
Al
8, 1)
®) | 2=|e*= 3‘
e "-3=2 or e'-3=-2 M1
e’ = e =1
e =5" e =1
Al, Al
x=-In5 x=Inl ’
=-1.6094 x=0
~—1.61
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4 (1)  Given that the line y=2 intersects the graph of y =log, x at the [2]
5
point P, find the coordinates of P.
(i) Sketch the graph of y =log, x. [2]
(ii1)  State the range of values of x for which y < 0. [1]
[Solution]
(1) log, x=2
5 M1
x=0.2° Al
=0.04
Coordinates of P are (0.04, 2)
(i1) * Shape — 1 mark
;A * x-intercept — 1 mark
0 1
(i) |y<0 = log, x<0
5 B1
=>x>1
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5 ()  Sketch the graph of > =169x . [2]
(i) Express 4x” —181x =-9 in the form ( px+ q)2 =169x, where p and
g are constants. (2]

(i11)) A suitable straight line can be drawn on the graph in (i) to solve the
equation4x” —181x=-9.

(a) State the equation of this straight line. [1]
(b)  On the same axes, sketch the straight line and state the
number of solutions of the equation 4x” —181x=-9. [2]
Solution
5(i) y=2x-3 | * upper portion — 1 mark
1y * Jower portion — 1 mark
* graph of y =2x -3
2
vy =169x
(i1) 4x* —181x=-9
4x” —181x+169x =—9+169x M1
4x* —12x+9=169x Al
(2x—3)’ =169x
(ii1) (a)y=2x-3 B1
2 solutions Al
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E

B F
The diagram shows a circle passing through points 4, B, C and D. The tangents from £ meets the
circle at B and D. Given that AD = BF' and triangle ABD is isosceles, where AB = BD . Prove
that

1) ABFD is a parallelogram. (3]
i1) triangle BCD is similar to triangle DFE. [3]
iii) BDxEF =CDxDE . [1]
Solution
ZDBF = ZBAD (alt. seg. thm) M1
= ZADB (AABD is isosceles)

By alternate angles, 4D //BF Ml

Since AD = BF , ABFD is a parallelogram. M1

ZEDF = ZDBC (alt. seg. thm) Ml

ZDFFE =180°—- ZBFD (adj £ on a str. line)
=180°— ZBAD (opp. £ in parallelogram)
=180°—(180°— ZDCB) (£ in opp. seg) | Ml
=/DCB

Ml

iii) | By AA, ABCD is similar to ADFE . M1

BD _CD
DE EF
BDx EF =CDx DE
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7. (a) Sketch the graph of y = 2cos (gj —1, for the interval 0 < x <27, [2]

(b) In the diagram, triangle ABC is a right-angle triangle, where ZABC =90°.

D is a point of AB such that AD is 7 cm and BD is 2 cm.

A Hp

7 D 2

Given that cos ZADC = —% ,

(1) Find the exact length of BC.

C

[1]

(i1) Find the value of tan ZACD in the form a~/b , where a and b are

[2]

integers.
Solution
(a) G1: Correct shape.
E G1: Label all key points and
) 0257 0.5m I?'L 125n 1.57n 1.757m axes CIearly
|
- L @ ___
|
|
|
- !
|
i
-3 |
by b T
(bi)
c0s LBDC =—-cos LADC
BD __ (_ lj
CD 3
21
CcD 3
CD=6 cm Al
BC=16"-2°
=4/2cm
(bii)

Al




AM-2018-AHS-EOY-P1-Solution

tan ZACD = tan (AACB - ABCD)
tan ZACB —tan ZBCD

— 1
1+ (tan ZACB)(tan ZBCD) Ml
9 2
__ 42 4
(oo
42 \ a2
71
_42
25
16
142
25
8.
The minute hand of a clock is 50 cm, measured from the centre of the clock, O, to the tip of
the minute hand, M. The displacement, d cm, of M from the vertical line through O is given
by d = asin bt , where ¢ is the time in minutes past the hour.
1) Find the exact value of a and of b. [3]
i1) Find the duration, in each hour, where |d | >25. [3]
Solution
i) a=50 Bl --fora
Period = 60 M1 -- for period = 60
2
T 60
b
T
b= % Al —for b
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|d|> 25
| |When d=25

SOSin(itJ
30

=25

basic angle = sin”! (%) =30’

r, 7Sz 1r 1lx

30 66 66

t=5,25,35,55

For |d|> 25

Duration = (25 —2) + (55 - 35)
= 40 mins

Ml

Al

Al

Alternative Solution :

Observe that at the first instance when d = 25 at the point A4,

(:056’=£=l = 0= z.
50 2 6

This happened again at the point B.

Between points 4 and B,

T—=2

Time taken from 4 to B =
s

By symmetry, the time for |d | > 25 in the other half of the clock face would be 20

minutes as well.

Hence total time for |d | > 251s 20 + 20 = 40 minutes.

d|>25.

x30 = %x 30 = 20 minutes.
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4 . 4
) 0 - 0
9. 1) Prove that cos 5 SH; =4cot26cosec2l . [3]
sin” @ cos” @
i1) Hence, or otherwise, solve

cos*@—sin* @

— -— = 4cosec 26 for 0°< 6 <180°. [3]
sin” @cos- 6
Solution
i) 4, 4
LHS — cos 29 sn; o
sin“ @ cos” @
2 .2 2 -2
B (cos 6 —sin 9)(005 0 + sin 0) MI: factorise
(sin&cos 9)2
_ cos20
- ﬁ
(2sin 20} M1: double angle formulae
_ cos26
lsin2 20
4 M1: getting expression
_ 4[ cos 29}( 1
sin26 )\ sin260
=4cot20cosec2f (RHS)
i) 45 od
CO'S 29 SH; 4 =4cosec28
sin“ @cos” 0
4cot26cosec2 =4cosec2b M1
4cosec20(cot20-1)=0
cosecld =0 = = ( (no solution) OR
sin & ( ) M1
cot20 =1
tan20 =1
basic angle = tan"'1
=45°
0°<0<180° = 0°<20<360°
20 =45° or 180°+45° Al
0=225%°0r 112.5°
2
10. A curve is such that d )2; =6x — 2 and P(2, — 8) is a point on the curve. The gradient
X
1
of the normal at P is X Find the equation of the curve. [7]
Solution:
2
Given Y _6x_2

dx’
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dy _
gg—jmx—bdx

=3x’—2x+c
) 1
Gradient of normal at (2, — 8) = _E
Gradient of tangent at P = —;1
2
@ _,
dx
Subx=2, 3(2)-2(2)+c=2
c=-6
Q =3x"—2x-6

dx

y= I(3x2 —2x—6)dx

=x'—x"—6x+c
Sub (2,-8), —8=(2)~(2P-6(2)+c
c1=0
Hence,
the equation of the curve is y = x> — 2x* —
6x.

M[1] — no mk if there is no ‘¢’

B[1] —grad. of tangent at P

M[1] —substitution

A[1] - for 1* derivative

A[1]—no mk if there is no ‘c;’

M[1] —substitution

A[l]-eqgn
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11.  Find and simplify % for the following:

(1) y=Incosx
(i1) y= e xe' [4]
Solution:

(1) y=Incosx

dy _ —sinx M[1]
dx cosx All]
=—tanx

i | yoe’ e

y=e'h M[1] - Simplification
% =(2x+ 1)e"2+x All]
‘OR T oR
D 2re” W)+ e e
=(2x+1)xe e’

A[1] - Simplification

= (2x+1)e
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12. In the diagram, the curve x = (y — 1)2 + 4 and the line y +x = 7 intersect at 4 and B.

@) Find the coordinates of 4 and of B. [3]
(ii) Calculate the area of the shaded region. [4]
x=@y-1)"+4
A
0 "X
B
Solution:

(1) given y+x=7
y=—x+7 ... ©)
sub @ intox = (y — 1)* + 4
x=(-x+7-1)7 +4
=x* — 12x+36+4

X - 13x+40=0 M[1] any QE [x> — 13x+40=0
(x—5)(x—8)=0 or ¥ —y-2=0]
x=5 or x=8 A[1] for 1* set of ans [both x or both y]
sub x into @,
y==5+7 or y=—8+7
-2 -1

s A, 2), B8, -1)
A[1] ans in coordinates form

Area of shaded region

:%(2—(—1))(5+8)—f_21((y—1)2 +4) dy

3 2
3 (=) +4j
.

2 3
39 : (2 _ 1)3 (_1 3 1)3 M][2]—1mk for each integration
=——|| ——+4Q2) |-| ——+4(-1
2 3 (2) 3 (-1 M[1]
) Substitution
= 191—15
2

All]

= 4l units>
2
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A particle moves in a straight line so that its acceleration, @ ms™, is given by a =2¢—13,
where ¢ is the time in seconds after passing a fixed point O. The particle first comes to
instantaneous rest at  =5s . Find,

1) the velocity when the particle passes through O. [2]

i1) the total distance travelled by the particle when it next comes to rest. [5]

1i1) the minimum velocity of the particle. [2]

Solution

D

a=21-13
v=j2r—13dt

5 M1
=t“-13t+c

Whent=15, v=0.
0=5%-13(5)+c
c=40

Velocity when passes through O = 40 ms™! Al

2 -13t+40=0

(t1-5)(t-8)=0

t=5 or t=8 Ml

v=12—131+40

s=j(z2—13t+4o)dt

3 2
=t——£+40t+c M
3 2
When ¢t =0,c =0,
3 2
13t
§ =————+40¢ Al
302
When =35,
3 2
13(5
s:S——L+4o(5):79l
3 2 6 M1
When ¢ =8,
g 13(8)° 2
s=———2440(8)=74=
3 2 3
] > ] ]
t=0 =8 =5
5=0 2 Al
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Total distance = 79 % + (79% -74 2]

:83zm
3

3

iii)

a=2t-13
2t—-13=0
13

t=—
2

2
(5] (%
2 2

= —2lms_1
4

)+40

Ml

Al
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Mathematical Formulae
1. ALGEBRA

Quadratic Equation
For the equation ax? +bx +c¢ =0,

_ —bi\/b2 —4ac

2a

X

Binomial expansion

(a+b)" =a" +£ﬂa”‘lb+@}z”_zb2 +...+[nja”‘rbr +..+b",
r

n] n nn=1)..(1—r+1)

where 7 1s a positive integer and = =
r) rli(n—r)! r!

2. TRIGONOMETRY

Identities
sin? A+cos” A=1
sec?A=1+tan> 4
cosec?Ad=1+cot? 4
sin(A+ B) =sin AcosB £ cos Asin B
cos(A+ B) =cosAcos BFsin Asin B
tan 4 + tan B

1Ftan Atan B
sin 24 = 2sin Acos 4

cos2A=cos’ A—sin> A=2cos’> A—1=1-2sin’ 4

tan2A=%
1-tan” 4

tan(A £ B) =

Formulae for AABC
a b c

sin A - sin B B sin C
a? =b% +c? - 2bccos A

Area of A = %ab sin C

Anglican High School Sec 4 Prelim 2018 AM Paper 2
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Answer all questions.

1 (a) Given that the curve y = X+ (3k—1)x+(2k+10) has a minimum value
greater than 0, calculate the range of values of £. [4]

(b) Find the range of values of x for which (x +4)(x—-1)—-62>0. [2]

(¢) The equation 2x% —x+18=0 has roots ¢ and p . Find the quadratic equation

1 1

whose roots are (%)2 and (ﬁ)z (4]

o

257101
2 (a) Slmphfy W [3]

b) Given that 7 is a positive integer, show that 8” +8"*2 +8"**is always divisible
p g Y

by 24. (2]
(c) Solve 229 =2%%3 44+, [4]
2x> —3x -1
a Xpress il At as partial fractions. [5]
3 (@ E
(x+3)(x-1)

(b) The polynomial P(x)= 2x> — hx? —48x — 20 leaves a remainder of 11 when
divided by x + 1.

(i) Show that 4 = 15. [2]

(ii) Factorise P(x) completely. [3]

4 (@) (i) Write down, and simplify, the first 3 terms in the expansion of (2 —)c)8

in ascending powers of x. [1]

(ii) Hence, determine the coefficient of y2 in the expansion of 256 (1 - y)8 . [3]

(b) (i) Write down the general term in the expansion of (3x - 2%}11 . [1]
X

(ii) Hence, explain why the term in x> does not exist. [2]

Anglican High School Sec 4 Prelim 2018 AM Paper 2
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5 Solutions to this question by accurate drawing will not be accepted.

yA
B(p,6)

A(-1.4)

C(4.-1)

D

The diagram shows a parallelogram with vertices A(—1, 4), B(p, 6), C(4, —1) and D.

(i) Given that AC is perpendicular to BD, show that p = 6. [4]
(ii) Find the coordinates of D. [2]
(iii) Find the area of the parallelogram ABCD. [2]

6 A container in the shape of a pyramid has a volume of ¥ cm?, given by
V= %x(ax2 +b),

where x is the height of the container in cm, and (ax? + b) is the area of the rectangular
base, of which a and b are unknown constants.
Corresponding values of x and V" are shown in the table below.

x (cm) 5 10 15 20

V (cm?) 150 600 1650 3600
(i) Using suitable variables, draw on graph paper, a straight line graph. 4]
(ii) Use your graph to estimate the value of @ and of b. [4]

(iii) Explain how another straight line drawn on your graph can lead to an estimate
of the value of x when the base area of the pyramid is three times the square of its
height. Draw this line and find an estimate for the value of x. [3]

Anglican High School Sec 4 Prelim 2018 AM Paper 2
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7 A circle has a diameter AB. The point 4 has coordinates (1, — 6) and the equation of
the tangent to the circle at Bis 3x+4y =k.

(i) Show that the equation of the normal to the circle at the point 4 is 4x—-3y=22.  [3]

Given also that the line x = —1 touches the circle at the point (-1, -2).
(ii) Find the coordinates of the centre and the radius of the circle. [4]

(iii) Find the value of £. [3]

8 The diagram shows a lawn made up of two triangles, ABC and CDE. Triangle ABC is
an isosceles triangle where AB = AC =6 m. DE =7 m, AE = 3 m, and BA4 produced is
perpendicular to DE. Angle BAC is # and the area of the lawn is S m?.

D

7m

E
(i) Show that S =18sin& +31.5cosé. [3]
(ii) Hence, express S as a single trigonometric term. [4]

(iii) Given that @ can vary, find the maximum area of the lawn and the corresponding
value of 6 . (2]

9 A curve has the equation y = (1-x)v/1+2x.

(i) Find Z—yin its simplest form. [3]
X

Hence,

(ii) determine the interval where y is increasing, [3]

(iii) find the rate of change of x when x = 4, given that y is decreasing at a constant

rate of 2 units per second, [2]

dx. [2]

(iv) evaluate _[4 al
valu
I 1+ 2x
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10 A piece of wire of length 180 cm is bent into the shape PORST shown in the diagram.

P
Yy Yy
R 24x S

Show that the area, 4 cm?, enclosed by the wire is given by

A=2160—7540x2.

Find the value of x and of y for which A4 is a maximum. [8]

11 (a) Find the following indefinite integrals.

2x
W [

(i) j (i+ szdx [3]
X X

T

b) Evaluate [ 6 _ dx , leaving your answer in terms of 7. [5]
V4 2
s 2cosec”x

END OF PAPER.
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(ii) j(

j dx = 41nx—l+c
X

ANSWER KEY
I (a)—§<k<3 (b) x<-5o0r x>2 2 (a)%
n—1
© ¥ ~Lxt120 or 6x2—x+6=0 (b) 24x1387x8
6 Since n>1, 8" >1 , hence
3 3 ; 8" +8"*2 4 8" is divisible by 24.
(a) 2x—4+ - (©)a=-2ora=1
2(x+3) 2(x-1)
(b)(ii) (x+2)(2x+1)(x—10)
4 (a)(i) 256 — 1024x + 1792x*+ ... 5 (i) (-3, -3)
(i) coefficient of > = 7168 (iii) 45 units?
i (11 1-r (L) 7 (i1) centre is (4, —2) radius = 5 units
OX T ( )@ (553) (iii) k = 29
(i1)) == . Asris anot a whole number,
the term 1n x* does not exist. 8 (ii) 36.3sin (9 + 60.3°)
(iii) Max S ~36.3 m? 0 ~29.7°
9 (i) dy _ 3x 10 [ x=2cmandy =40 cm when 4 is a
dx  J1+2x maximum.
(i1) y in increasing when -0.5 <x <0.
(111) —= Eumts/sec
(iv) 3
11 e e 11 7 3 27-33
1 = + b ——— 0r
(@) (i) [Sdv="—c (b) - -

Anglican High School

Sec 4 Prelim 2018 AM Paper 2



AM-2018-AHS-EOY-P2-SOLUTION

Solutions

1(a)

x> +Ck=1)x+2k+10)>0
b*—4ac<0

(3k —1)> = 4(1)(2k +10) < 0 9%* — 6k +1— 8k —

9k* — 14k —39<0
(9% +13)(k —3) <0

+\ /+=k
_E \_/3

—E<k<3
9

40<0

(b)

(x+4)(x-1)-6>0
X +3x-4-6>0
x> +3x-10>0
(x+5)(x-2)=20

+\ )t
5

x<-5o0r x=2

(c)

2x° —x+18=0

1
a+pf=—
p 2

(22

Required equation is

xz—%erl:O or 6x>—x+6=0
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2(a) 25" x10"7 527 x(2x5)"7
2p71 ><52+3p - 2p71 « 52+3p

52p X2|+p % 51+p
= P15 52°3p

— 21+p—(p—1) % 52p+1+p—(2+3p)

=2?x5"

(b) 8" +8"7 48" =8" 18" x8” +8" x8*
= 8" (1+ 64+ 4096)
=8"(4161)
=8'x8""'x3x1387
=24x1387x8""

Since n>1,8"" >1and24x1387x8"" is divisible by 24.

0.C.

(C) 2_2a :2a+3 _4a+1

7 _9a =23(2a)_22(u+1)
2-24=8(2%)-2°(2*)
2-2°=8(2*)—-4(2“)
Let u be 2°.

2 —u=8u—4u’

4’ —9u+2=0
Au-1)(u-2)=0

u:l or u=2
4

29 =270r 2°=2

a=-2 or a=1

3(a) 2x°=3x—1 2x’-3x-1
(x+3)(x-1) x*+2x-3
2x—4

X +2x—3>2x3 —0x> —3x—1
—(2x° +4x7 — 6x)
—4x* +3x -1
—(—4x* —8x+12)
11x—-13

2x3—3x—1_2 4, Mx—13

- = = 2x S
(x+3)(x—-1) (x+3)(x—-1)
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lx-13 _ P 0
(x+3)(x-1) x+3 x-1
_P(x-1D)+Q0(x+3)
(31
= 1lx-13=Px—-P+0Ox+30
=(P+Q)x+(—P+30)
P+O=11 ..(1)
-P+30=-13 ..(2)

(D+Q2): 40=-2 =0= —%

" P—l=11 = P=2
2 2

2x*=3x—-1 _ 23 1

- —— =2 + —
(x+3)(x—1) 2Ax+3) 2(x-1)

(b)
(i)

P(x)=2x"—hx* —48x 20
P(-1)=11
2(=1) = h(=1)> —48(-1)-20=11
-2-h+48-20=11
h =15 (shown)

(i)

P(x)=2x"—15x> —48x 20
By trial and error, x + 2 is a factor.
2x —15x” —48x—20
= (x+2)(ax’> +bx +c)
=ax’ +bx” +cx +2ax” +2bx + 2c
=ax’ +(b+2a)x’ +(c+2b)x +2c
By comparing coefficients of
xia=2
x> bh+2(2)=-15
b=-19
constant: 2¢ =-20
c=-10
S P(x) = (x+2)(2x* =19x —10)
=(x+2)2x+1)(x—-10)

4(a)
(i)

8_ 98 8 7(_ 8 6(__ 2
(2-x) =2 +(1)2( x) + (2)2( x)% +...
=256 — 1024x + 1792x>+ ...

(i)

256(1—y)'=28(1 — y)®

=[2(1 - ]°

=(2-2y)°
Taking x = 2y,
(2 — 2y)8 = 256 — 1024(2y) + 1792(2y)% +...
Hence, coefficient of y* = 1792 x 22 = 7168.
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(b) _(11 1-r(_ 1Y)
Q) Tei= (1) G0 (= 55)
(i) Forterminx®, 11—-r —2r=3
Jr=8=r= g
As 7 is a not a whole number, the term in x° does not exist.  o.e.
f_) Grad AC="2 = —1
1 . : _ (~1+4 4-1\ _ (3 3
Mid-point of AC = ( > ’T) = (5,5)
As BD and AC share the same mid-point (property of parallelogram),
63
gradient of BD = —% = .
p—3 2p-3
9
-1)=-1
(Zp - 3) =1
2p—3=9=2p=12 = p =6 (shown)
(i1) Let D be (a, b).
(a+6 b+6>_<3 3)
2 "2 ) \272
Comparing coordinates, aT% = %
at6=3= a=-3. Similarly, b =-3.
Therefore, coordinates of D are (-3, —3).
(111) Area of the parallelogram ABCD
_1|-3 4 6-1-3
2l1-3-16 4 -3
1
=3 {{(=3)(=1D) +4(6) +6(4) + (=1)(-3)]
—[4(=3)+6(=1) + (=1)(6) + (=3)(4)]}
= 45 units®
7 The normal to the circle at point 4
(1) will pass through the centre of the
circle, and point B also, and is
perpendicular to the tangent to the
circle at B.
‘ 23x+4y=k:>y=—zx+§
4 Grad of tangent at B = — %
Grad of normal at 4 = %
Equation of normal at 4:
4
y=(-6) =2 -1
4 22
Y=3%73
= 4x — 3y = 22. (shown)
(11) Since the line x = —1 touches the circle at the point (—1, —2), so the equation of the

normal at (-1, -2) is y=-2.
Solving the equations 4x — 3y = 22 and
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(iii)

y=-2,

4x —3(-2)=22=4x=16=>x=4.

Thus the centre is (4, —2).

Radius = \/(4 —1)?2+[(—-2) — (—6)]?
=9+16

= 5 units

Let the coordinates of B be (p, q).
(5 5)=¢-2
p=24)-1=7andg=2(-2)+6=2
Therefore, B is (7, 2).

Sub. (7, 2) into 3x + 4y =k,
k=3(7)+4(2)=29

(i)

(if)

Area AABC = %(6)2 sin @
=18sind
Area ACDE = %(7 x9)sin (90°-6)

=31.5cosd
S =18sinf+31.5cos @ (shown)

S =18sinf@+31.5cos @

(iii)

R=+18%+31.5%

=36.28016

=60.2551187°
S =36.28016sin (0 +60.2551187°)
~36.3sin (6 +60.3°)

S= 36.28016sin(9+ 60.2551 187°)
Max S ~36.3 m?

sin(6 +60.2551187°) =1
0°<8<90°

60.2551187° < 0 +60.2551187° <150.2551187°
6 +60.2551187°=90°

6 =29.7448813°
~29.7°
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9‘ y=1-x)v1+2x
(1) dy 1 1 1
E:(1_36)(5](“2;6) L @)+ (142) (1)
1
=(1+2x)7 5(1—x—1—2x)
_ 3x
V1+2x
(i) For ﬂ> 0,
dx
B 3x 50
V1+2x
= 1+2x>0 and -3x>0
x>-0.5 x<0
", yin increasing when -0.5 <x <0.
(i) | dv_d
dt dx dt
When x =4, Q:—L
dt
34 dx
J1+2(4) dt
dx .
— = —units/sec
dt 2
(iv) 4 x
dx
‘[1 V1+2x
{ % 1- x)\/1+2x}
( % (1- (4))\/1+2(4)
( %1 1){/1+2(1) )
=3
10

13x + 13x + y + 24x +y =180

50x +2y =180
y=90-25x
P
y ‘ y
R

" 24x S
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Let 4 cm be the perpendicular distance from P to OT.

h2=<13x>2—<247x>2
=252
h=>5x

Area = y(24x) + % (24x)(5x)

A = (90 — 25x)(24x) + 60x>
=2160x — 600x + 60x>
= 2160x — 540x? (shown)

% =2160 — 1080x

dx
When il—;= 0, 2160—-1080x=0

x=2160 =+ 1080
=2
Sub x =2, into y = 90 — 25x
y=90-25(2)
=40

2

d 124 =—1080, .. 4 is a maximum.
dx

x =2 cm and y =40 cm when 4 is a maximum.

11(a)(1)

er

2x
I%dxz 4

+c

(i)
j(i+%j dx:4lnx—l+c

X
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(b)

z 1

- w
-5 2cosecx

_ %”Sinzxdx

,g 2

1 1

=16 —x—(l—cos2x) dx

2 2

s

= (’ﬂi(l—cos2x) dx

= lx—lsin2x ‘
4 8 _

_z B oz 3
24 16 24 16
_z_ﬁ o 272'—3\/§

= r
12 8 24




