

FUCHUN SECONDARY SCHOOL PRELIMINARY EXAMINATION 2019 SECONDARY FOUR EXPRESS AND FIVE NORMAL (ACADEMIC)

SCIENCE (CHEMISTRY/PHYSICS)

Paper 1 Multiple Choice

5076/01 5078/01 19 September 2019

Paper 1: 1 hour

Additional materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, index number and class on the Answer Sheet in the spaces provided.

There are **forty** questions on this paper. Answer **all** questions. For each question, there are four possible answers **A**, **B**, **C** or **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate answer sheet.

Read the instructions on the answer sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 10.

The use of an approved scientific calculator is expected, where appropriate.

Setter: Mdm Yogeswari

This document consists of 10 printed pages.

FCSS [Turn Over]

21 Bromine is a liquid at 20 °C.

What is the melting point and boiling point for bromine?

	melting point/ °C	boiling point/°C
Α	-22	-3
В	-8	-33
С	-7	59
D	25	103

22 A label is missing from a bottle of colourless solution Q.

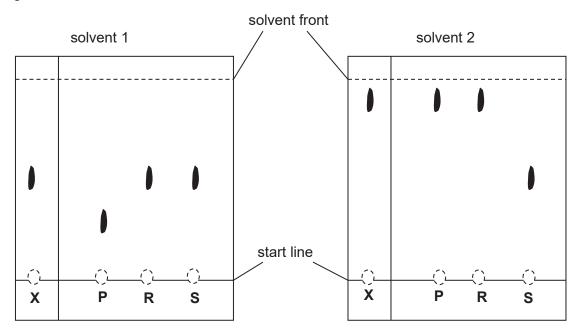
In order to identify the solution two chemical tests are carried out.

test 1: When magnesium is added to solution **Q**, bubbles of colourless gas is given off which extinguishes a lighted splint with a pop sound.

test 2: 1 cm³ of nitric acid is added to another sample of **Q**. The a few drops of silver nitrate solution is added. A white precipitate is formed.

What is **Q**?

- A calcium hydroxide
- **B** hydrochloric acid
- **C** iron(II) carbonate
- **D** zinc(II) hydroxide

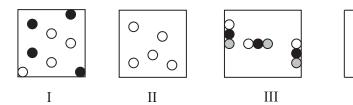

23 An element Y has two isotopes, ²³⁸Y and ²³⁵Y.

How does ²³⁸Y differ from ²³⁵Y?

- **A** It has 3 more neutrons and 3 more electrons.
- **B** It has 3 more neutrons.
- **C** It has 3 more protons and 3 more electrons.
- **D** It has 3 more protons.

24 Substance X contains one of the three substances P, R or S.

Two chromatograms of the four substances were obtained using different solvents. The diagram below shows the results obtained.


What does X contain?

- **A** P only
- B R only
- c either P or R
- D either R or S

Which of the following changes will result in the particles moving at a higher speed?

- **A** $\operatorname{Br}_2(g) \to \operatorname{Br}_2(l)$
- $\mathbf{B} \qquad \mathsf{I}_2 \; (\mathsf{g}) \to \mathsf{I}_2 \; (\mathsf{s})$
- **C** $H_2O(l) \rightarrow H_2O(s)$
- **D** $CO_2(s) \rightarrow CO_2(g)$

The diagrams below show atoms of different elements represented by ○, ○ and ●.

Which diagram shows a pure compound and a mixture of elements respectively?

IV

pure compound	mixture of elements
III	I
III	II
IV	I
IV	II
	III III IV

A newly discovered element, Xylonium (Xy), is placed in Group II of the Periodic Table. Which is the correct chemical formula for its sulfate?

- $A \quad Xy_2SO_4$
- \mathbf{B} Xy(SO₄)₂
- \mathbf{C} $Xy_2(SO_4)_2$
- D XySO₄

The table below shows the melting point and the electrical conductivity when in molten state and in solid state of substances **A**, **B**, **C** and **D**.

Which substance best represents a compound formed between a metal and non-metal?

	no altino a naint	conducts electricity					
	melting point	when in solid state	when in molten state				
Α	Low	Good	Good				
В	High	Poor	Good				
С	Low	Poor	Poor				
D	High	Poor	Poor				

29 Ethane burns completely in oxygen as shown in the equation.

$$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(l)$$

If 15 cm³ of ethane is burnt in excess oxygen, calculate the volume of the carbon dioxide obtained at the end of the reaction, measured at room temperature and pressure.

- **A** 20.0 cm³
- **B** 30.0 cm³
- **C** 40.0 cm³
- **D** 50.0 cm³

The reaction between hydrochloric acid and magnesium is shown.

$$2HCl + Mg \rightarrow MgCl_2 + H_2$$

Which volume of 1.0 mol/dm³ hydrochloric acid is needed to react completely with 2.4 g of magnesium?

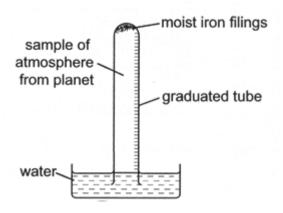
- **A** 10 cm³
- **B** 20 cm³
- **C** 100 cm³
- **D** 200 cm³

The following equation shows the reaction of zinc sulfide forming zinc and sulfur in the extraction of zinc from its ore.

$$ZnS \rightarrow Zn + S$$

Which statement about this reaction is correct?

- A Zinc gains electrons to form zinc ions.
- **B** Zinc loses electrons to form zinc ions.
- **C** Zinc ions gain electrons to form zinc atoms.
- **D** Zinc ions lose electrons to form zinc atoms.


	Α	carbon monoxide
	В	sulfur dioxide
	С	lead(II) oxide
	D	calcium oxide
33	Which	element can only be extracted by electrolysis?
	Α	lead
	В	silver
	С	sodium
	D	zinc
34	Which	process is exothermic?
	Α	burning petrol in a car engine
	В	cracking of petroleum fractions
	С	fractional distillation of petroleum
	D	melting bitumen for roads

Which oxide reacts with both acids and alkalis?

The air taken from a newly discovered planet contains the following gases.

gas	concentration (%)
carbon dioxide	20
hydrogen	40
ammonia	10
oxygen	30

The apparatus below was set up with a 100 cm³ sample of the air taken from the planet in the graduated tube. The volume of the sample was measured at regular time intervals until no further change in volume took place.

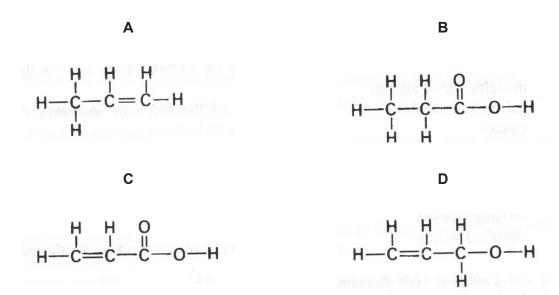
What is the volume of gas left in the tube?

- **A** 20 cm³
- **B** 30 cm³
- **C** 70 cm³
- **D** 80 cm³

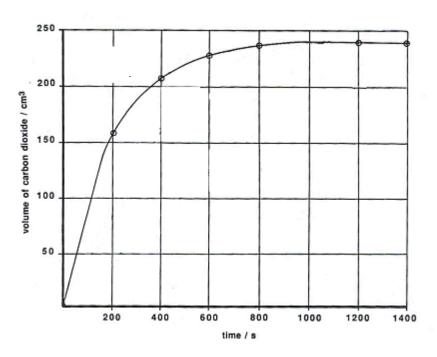
36 Substance Y turns a solution of acidified potassium manganate (VII) from purple to colourless.

What must solution Y contain?

- **A** an alkali
- **B** an ammonium salt
- **C** a reducing agent
- **D** an oxidising agent

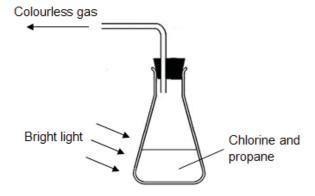

37 Some metals will react with the solutions of the salts of another metal. The following ionic equations illustrate the reactions of metals copper, iron, zinc and Y.

Cu + Y²⁺
$$\rightarrow$$
 no reaction
Fe + Cu²⁺ \rightarrow Fe²⁺ + Cu
Y + Zn²⁺ \rightarrow Y²⁺ + Zn
Zn + Cu²⁺ \rightarrow Zn²⁺ + Cu
Zn + Fe²⁺ \rightarrow Zn²⁺ + Fe
Zn + Y²⁺ \rightarrow no reaction


From the ionic equations, deduce the correct order of reactivity of the metals.

	most reactive		→	least reactive
Α	Cu	Fe	Zn	Υ
В	Υ	Fe	Zn	Cu
С	Υ	Zn	Fe	Cu
D	Zn	Υ	Cu	Fe

38 Which compound is unsaturated and reacts with sodium carbonate?


39 Calcium carbonate is placed in a flask on weighing balance and dilute hydrochloric acid is added. The total mass of the flask and its content is recorded every 200 seconds.

At which time is the reaction the fastest?

- **A** 100 s
- **B** 200 s
- **C** 400 s
- **D** 800 s

A mixture of chlorine and excess propane was exposed to bright light. When the light was switched on, the mixture in the flask began to bubble, giving off a colourless gas.

What is the colourless gas?

- A chlorine
- **B** hydrogen
- **C** hydrogen chloride
- D propane

The Periodic Table of Elements

				F			_				_								_				_							
	0	2	He	helium 4	10	Š	neor	3	18	Ā	argo	40	36	조	kryptc	84	54	×	xeno	131	98	쪼	rado	ı						
	IIA				6	щ	fluorine	20	17	CI	chlorine	35.5	35	Ŗ	bromine	80	53	Ι	iodine	127	85	Αt	astatine	ı						
	N				œ	0	oxygen	٥	16	တ	sulfur	32	34	Se	selenium	79	52	Te	tellurium	128	84	Ъо	polonium	ı	116	^	livermorium	ı		
	^				7	z	nitrogen	4	15	ட	phosphorus	31	33	As	arsenic	75	51	Sp	antimony	122	83	ä	bismuth	509						
	^				9	ပ	carbon	71	14	S	silicon	28	32	Ge	germanium	73	20	Sn	tịu	119	82	Ъ	lead	207	114	F/	flerovium	ı		
	=				2	Ф	poron	=	13	Αl	aluminium	27	31	Ga	gallium	70	49	П	mnipui	115	81	11 1	thallium	204						
													30	Zu	zinc	65	48	g	cadmium	112	80	Ê	mercury	201	112	5	copernicium	ı		
																									111					
dn													28	Z	nickel	29	46	Pq	palladium	106	78	₹	platinum	195	110	Ds	darmstadtium	ı		
Group													-								-			$\overline{}$	109					
		H hydrogen	hydrogen 1									56	Fe	iron	26	44	Rn	ruthenium	101	9/	SO	osmium	190	108	£	hassium	ı			
					,								25	M	manganese	22	43	٦ ک	technetium	ı	75	Re	rhenium	186	107	临	pohrium	ı		
							umber	loc		nass					24	రే	chromium	52	42	Mo Tc	molybdenum	96	74	>	tungsten	184	106	Sg	seaborgium	ı
				Key	proton (atomic) number	atomic symbo	name	relative atomic mass					23	>	vanadium	51	41	g	miopin	93	73	Та	tantalum	181	105		dubnium	ı		
				proton	ato	:#0	relan					22	i	titanium	48	40	ZL	zirconium	91	72	Ξ	hafnium		104		rutherfordium	ı			
													21	Sc	scandium	45	39	>	yttrium	68	57 – 71	lanthanoids			89 - 103	actinoids				
	=				4	Be	benyllium	מ	12	Mg	magnesium	24	20	Sa	calcium	40	38	Š	strontium	88	56	Ba	barium			Ra	radium	ı		
	_						lithium 7	╗					19				37	&	rubidium	82	55	S	caesium	133	87	占	francium	ı		

71	r	lutetium	175	103	۲	lawrencium	ı
202	γp	ytterbium	173	102	No	nobelium	1
69	٤	thulium	169	101	ΡW	mendelevium	ı
89	ш	erbinm	167	100	Fm	fermium	1
29	운	holmium	165	66	ES	einsteinium	1
99	Ω	dysprosium	163	86	ರ	californium	ı
65	q	terbium	159	26	番	berkelium	ı
64	gg	gadolinium	157	96	Cm	curium	1
63	En	europium	152	92	Am	americium	ı
62	Sm	samarium	150	94	Pu	plutonium	ı
61	F	promethium	ı	93	ď	neptunium	1
09	DZ Z	neodymium	144	92	>	uranium	238
59	ŗ.	praseodymium	141	91	Ьа	protactinium	231
28	č	cerium	140	06	H	thorium	232
22	Ea	lanthanum	139	88	Ac	actinium	ı
lanthanoids				actinoids			

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.)

NAME:					
CENTER NO:			INDEX NO:		
CLASS:					

SCIENCE (CHEMISTRY) Paper 3

5076/03 and 5078/03 17 September 2019 1 hr 15 min Max mark: 65

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. You may use an HB pencil for any diagrams, graphs, tables or rough working. Write in dark blue or black pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate. You may lose marks if you do not show your working or if you do not use appropriate units.

Section A

Answer all the questions in the spaces provided.

Write your answers in the spaces provided on the question paper.

Section B

Answer any **two** questions.

Write your answers in the spaces provided on the question paper.

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Data Sheet is printed on page **15**. A copy of the Periodic Table is printed on page **16**.

Marks Obtained	t
Paper 3 Sect A	
Paper 3 Sect B	
В	
Total	

Name of Setter: Mdm Yogeswari

Section A (45 marks)

Answer ALL the questions in the spaces provided in this section.

1 Table 1.1 lists the number of protons, neutrons and electrons in several different particles.

Table 1.1

particle	number of protons	number of neutrons	number of electrons
(not chemical symbols)			
С	1	0	1
D	3	3	2
E	7	7	7
F	8	9	8
G	8	10	8
Н	9	10	10

Which of the particles, ${\bf C}$, ${\bf D}$, ${\bf E}$, ${\bf F}$, ${\bf G}$ and ${\bf H}$ in Table 1.1, fit into each of the following descriptions

(a)	an atoms with mass number of 18	[1]
(b)	an atom with 5 electrons in its outer shell	[1]
(c)	an ion of a metal	[1	1]
(d)	atoms of isotopes of the same element	and [1]
(e)	a negatively charged ion	[1	

2 Table 2.1 gives the melting points and boiling points of Group I and Group VII elements.

Table 2.1

	element	melting point/ °C	boiling point/ °C
Group I	lithium	180	1330
	sodium	97.8	890
	potassium	64	774
Group VII	chlorine	-101	-35
	bromine	-7	59
	iodine	114	184

(a)	(i)	The trends in melting points and boiling points for elements in Group I differ from those in Group VII. Describe the trend down each group.
		[2]
	(ii)	Describe two other trends down Group VII.
		[2]
(b)	(i)	All of the elements in Group VII are diatomic.
		Explain the meaning of <i>diatomic</i> .
		[1]

		Show the outer electrons only.	
			[2]
(c)	(i)	Sodium and chlorine react together to form sodium chloride.	[2]
		Draw the "dot and cross" diagram to show the bonding in sodium chloride.	
			[2]
	(ii)	Explain why sodium chloride can conduct electricity in molten and aqueous state but not in solid state.	
		[Total:	11]

(ii) Draw a "dot and cross" diagram to show the bonding in a chlorine molecule.

3 The boxes in Fig 3.1 contain descriptions of five different substances K, L, M, N and O.

Fig 3.1

A solid, **K**, which melts on heating to a yellow liquid that cannot be made into a simpler substance.

A chemical reaction takes places and heat is liberated when this white solid, **L**, is formed.

When this blue liquid, **M**, is distilled, a colourless liquid is collected.

A white solid, **N**, that can be separated into two different substances by adding water and filtering.

A colourless substance, **O**, with a fixed melting point and a fixed boiling point.

Decide whether each substance should be classified as an element, compound, mixture or either an element or compound. Show your decision by putting a tick ($\sqrt{}$) in one box correct box for each substance in Table 3.1.

Table 3.1

substance	element	compound	mixture	either an element or a compound
K				
L				
М				
N				
0				

[5]

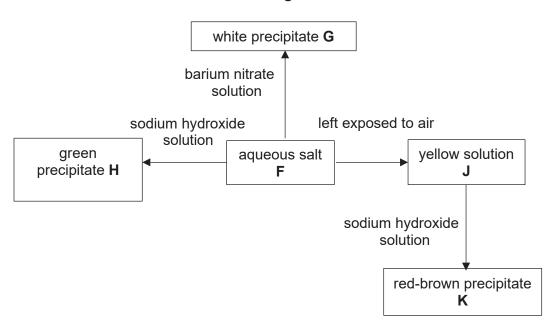
[Total: 5]

- 4 Salts can be prepared by using reactions of acids.
 - (a) The table shows some names and formulae of salts.

Complete the Table 4.1 by filling in the missing information.

Table 4.1

name of salt	formula of salt	name of acid used	name of the other
Hame of Sail	TOTTIUIA OI SAIL	Harrie of acid used	Harrie of the other
		to make the salt	compound used to
			make the salt
potassium sulfate	K ₂ SO ₄		
sodium chloride	NaC <i>l</i>	hydrochloric acid	
magnesium nitrate	Mg(NO ₃) ₂	nitric acid	
copper(II) sulfate		sulfuric acid	copper(II) oxide


[5]

(b)	Write a balanced chemical equation for the reaction between $copper(\mathrm{II})$ oxide and sulfuric acid.
	[2]
(c)	Describe how to obtain pure, dry crystals of copper(II) sulfate from the resulting solution in the reaction in (b).
	[2]

	(d)	Nam	ne two salts that are prepared by precipitation.	
				[2]
			Γ	Total:11]
5			s oxides of nitrogen and carbon monoxide are released from car exhausts jor pollution issues.	s and
	(a)	State	e one harmful effect of each pollutant on human health.	
		(i)	oxides of nitrogen	
		(ii)	carbon monoxide	
	(b)		harmful gases are converted to less harmful ones before they are releas exhausts as shown in the chemical equation below.	ed from
			CO + $NO \rightarrow \dots CO_2 + \dots N_2$	
		(i)	Balance the chemical equation above.	[1]
		(ii)	State which substance is reduced and give the reason for your answer.	
			substance reduced	
			reason	
				[2]
				[Total: 5]

6 Fig 6.1 below shows some reactions of an aqueous salt, **F**.

Fig 6.1

Name the substances F, G, H, J and K.

F:	 	 	 		-		 								
G:		 		 								 			
H:	 	 		 		 -		 	 	-					
J:	 		 	 		 		-				-		-	

K:

[5]

[Total: 5]

7 The properties of a substance make it suitable for particular tasks. Complete Table 7.1 by naming a suitable substance for each task.

Table 7.1

task	substance needed.
repairing road surfaces	
lowering the acidity of the soil	
making margarine from vegetable oils	

[3]

[Total: 3]

Section B (20 marks)

Answer any **two** questions in this section.

8	(a)	Explain, including relevant chemical equations, how iron is extracted from its ore in a blast furnace.
		[4]
	(b)	Iron from blast furnaces is usually mixed with other element to form alloys.
		Name one of these alloys and give a reason why this alloy is preferred to iron from
		blast furnaces.
		[2]
	(c)	Calculate the mass in grams, and the volume in dm³, measured in room temperature and pressure, of carbon dioxide formed in producing 10 000 g of iron.

[4]

[Total: 10]

9	(a)	Cruc	le oil is separated into several useful substances in a fractionating tower. Describe
		the s	separation process.
			[3]
	(b)		anic compounds are placed in an homologous series.
		(i)	Give two characteristics of an homologous series.
			[2]
		(ii)	Write the general formula for the homologous series of alkanes.
			[1]
		(iii)	Name and write the chemical formula of the first member of the homologous series of alkanes.
			[2]

(c)	The	alkenes	include	ethene,	C_2H_4 .	This	compound	undergoes	addition	
	polyr	merization	to form	addition p	olymers	5.				
	(i)	Draw the	e structur	al formula	a of ethe	ne.				
										[1]
	(ii)	Draw two	o repeatii	ng units o	f the ad	dition	oolymer forr	ned by ethen	e.	
										[1]
										[,]

[Total: 10]

10	(a)	(i)	Explain how coating iron with paint prevents iron from rusting.
			[2]
		(ii)	A student wants to investigate if salt water speeds up the rusting process Describe a laboratory investigation that can be used to decide if salt water speeds up rusting. You are provided with the two iron nails.
			1/1

(b)	Iron	reacts with steam to form the dark brown solid Fe ₃ O ₄ and a colour	less gas.
	(i)	Write a balanced chemical equation for this reaction	
			[2]
	(ii)	Describe a positive test to identify the colourless gas.	
			[2]
			[Total: 10]

END OF PAPER 3

DATA SHEET

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of the Elements

								Group	dn								
_	=											Ξ	^	^	I	IIN	0
							1 H hydrogen 1										He Helium 2
/ Li	စ မွ											# m	20	⊉ Z	\$ O	6 г	% S
3 lithium	benyllium 4											5	carbon	nitrogen 7		fluorine	neon 10
N 23	24 Mg											27 A!	8 is	⊬ ∪	S 83	35.5 Cl	9 ₹
sodium 11	m magnesium											aluminium 13	silicon 14	hosphorus 15	sulfur 16	chlorine 17	argon 18
99 98	40	45	48	51	52	55	l	l	29	64	65	20	73	75	79	88	84
エ		တိ	i=	>	ပ်	Mn	e E	ပိ	Z	J	Zu	В	g	As	Se	卤	호
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	anganese 5	iron 26		nickel 28	copper 29		gallium 31	um germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
88	88	88	91		96	ı	101	l	106	108		115	119	122	128	127	131
S.	Š	>	Zr	2	ω.	ပ	R.	돲	Pd	Ag	8	드:	S :		e E		e X
37	38	39 varian	40	41 41	m moybaenu re 4.	3 S	rumenium 44	45	paliadium 46	4	48	49		anumony 51	.ellumur 52	53	54
133	137	139		l	184	186	190	192	195	197	201	204	207	509	ı	,	ı
ő	Ba	La	Ĭ	H _a	≥	Se e	ő	Ţ	₫	Au	윈	Τ,	Ър	ā	Ъ	¥	윤
caesium 55	barium 56	m lanthanum 57 *	hafnium 72	tantalum 73	tungsten 7	rhenium 5	osmium 76	indium 77	platinum 78	plog 67	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	$\overline{\Omega}$
ı	_	ı															
ŭ		Ac															
francium 87	radium 88	actinium 89 +															
*58-71	*58-71 Lanthanoid series	d series	_														

*58-71 Lanthanoid series †90-103 Actinoid series

Key

2															
		140	141		ı	150	152	157	159	162	165	167	169	173	175
		o	ፚ፟	P	Pm	Sm	Ш	В	욘	۵	운	ш	щ	Υp	'n
		cerium	praseodymiu	Ξ	promethium	samarium	europium	gadolinium	terbinm	dysprosium	holmium	erbinm	thulium	ytterbinm	lutetium
		28	£ 26	09	छ	62	83	¥	65	99	29	98	69	20	71
	a = relative atomic mass	232	ı	Г	ı	1	1	П	,	,	,	1	,	ı	1
_	X = atomic symbol	드	D B		g	Pn	Am	ő	益	ರ	Es	Fm	Βd	S	ئ
	h = proton (atomic) number	thorium	.≣	uranium	neptunium	plutonium	americium	inum	berkelium	californium	einsteinium	minm	mendeleviu	nobelium	awrencium
_	and and and a	06	9		8	94	8	98	97	86	8	0	٤	102	103
													101		
			,												

The volume of one mole of any gas is 24 dm³ at room temperature and pressure.

Fuchun Secondary School Secondary 4 Express Science Chemistry (5076)

Prelim Examination 2019

Marking Scheme

Question	Answer	Question	Answer
1	С	11	С
2	В	12	С
3	В	13	С
4	В	14	Α
5	D	15	С
6	Α	16	С
7	D	17	С
8	В	18	С
9	В	19	Α
10	D	20	С

Section	Answer	marks	Markers report
Α			
A1a	G	1	
A1b	E	1	
A1c	D	1	
A1d	F,G	4	
A1e	Н	1	
A2ai	Down group I, melting point and boiling point decreases.	1	
	Down group VII, melting point and boiling point increases.	1	
A2aii	Down the group,	Any	
	The density increases,	Two	
	The color darkens	2m	
	The reactivity decreases		
A2bi	Two atoms chemically bonded together	1	Badly done
A2bii	Covalent bond sharing of two electrons Correct number of unshared electrons for chlorine atoms	1	
	CHIOTHE ALOHIS	1	
	Outer shells only –penalise 1m		
A2bii	Correct charge and electrons for Na ion	1	
	Correct charge and electrons for Cl ion All shells must be drawn –penalise 1m	1	

A2bii	In solid state, the ions are held together by strong electrostatic forces of attraction in a giant lattice structure. They cannot conduct electricity In aqueous and molten state, the ions are mobile and can conduct electricity	1	Wrong keywords such as electrons and atoms were used instead of ions
A3	K: element L: compound M: mixture N: Mixture O: Either an element or compound	1 x 5	
A4a	Potassium sulfate: sulfuric acid, potassium hydroxide, (do not accept potassium) Sodium chloride: Sodium hydroxide/sodium carbonate Magnesium nitrate: magnesium Copper(II) sulfate: CuSO ₄	1 🗷 5	Many students gave " potassium" and "sodium" as answers. They also gave examples of other salts instead of reagents
A4b	$CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O$	2	
A4c	Evaporate/heat the solution till saturation Leave it to cool and crystallise. Collect the crystals by filtration, rinse with little deionised water. Press dry between sheets of filter paper.	1	Badly done. Students need to know the steps of salt prep.
A4d	Any 2 insoluble salt, Lead chloride, silver chloride, Barium sulfate, lead sulfate, calcium sulfate Or any carbonate other than SPA carbonates. Must be name and not chemical formula	1 x 2	Badly done Many students forgot their insoluble salts and gave even hydroxides observed in QA as answers.
A5ai	Respiratory probelms /breathing difficulties	1	
A5aii	Combines with haemoglobin in blood and prevent oxygen from being transported around the body, leading to brain damage or death	1	For CO, improper answers such as "fuse with blood cells" or " reduce amount of haemoglobin" were unacceptable.

A5b	2CO + 2NO → 2CO ₂ + N ₂	1	
A5bii	Substance reduced: NO Reason: NO is reduced as it loses oxygen to form N_2 . Starting and ending species with reason must be given	1	They could recognise what species is reduced but cannot explain. Quoted wrong oxidation state for nitrogen in NO.
A6	F: Iron (II) sulfate G:Barium sulfate H:Iron(II) hydroxide J: Iron(III) sulfate K: Iron (III) hydroxide Must be names and not chemical formula	1 x 5	
A7	Bitumen Calcium oxide/ calcium hydroxide Hydrogen	1 x 3	Could not identify hydrogen.
	Section B		
B8a	$C + O_2 \rightarrow CO_2$ In the blast furnace, Carbon in coke burns in air to form carbon dixoide.	1eqri	Those who attempted managed to at least get the equations right.
	CO₂ + C → 2CO Carbon dioxide further reacts with coke to form carbon monoxide.	leqn	
	Fe ₂ O ₃ + 3CO → 2Fe + 3CO ₂ Carbon monoxide then reduces iron(III) oxide , haematite, to form molten iron and carbon dioxide.	1eqn 1m for all	
	carpoit dioxide.	the three proper descriptions	
B8b	Steel is an alloy of iron. It is stronger and harder than iron.	1 1	
B8c	No of moles of 10000g of iron = 10000/56 mol	1	
	No of moles of carbon dioxide = (10000/56) x 3/2 mol	1	
	Volume of CO ₂ = (10000/56) x 3/2 x 24 = 6428.57 dm ³	1	

		1	
	Mass of CO ₂ = (10000/56) x 3/2 x 44 = 11 785.71g All units not correct/ or not given- penalise 1m Allow ecf accordifng to eqn given by student in 8bi	1	
В9а	Crude oil is heated until it becomes vapor. The vapor cools and condenses in the fractionating tower and is collected into different fractions according to their different boiling points. The fraction with the lowest boiling point will condense and be collected at the top of the fractionating tower.	1	Many inappropriate keywords. Students ans were highlighted for teachers to refer to.
	The fraction with highest boiling point will condense and be collected at the bottom of the fractionating tower.	1	
B9bi	They have the same functional group; They have the same general formula; They differ by one –CH ₂ group; They have the similar chemical properties	Any two (2m)	Same vs Similar Example similar functional group or similar general formula is different from same functional group and same general formula.
B9bii	C _n H _{2n+2}	1	
B9biii	Methane, CH ₄	1	Students did not recall formula for methane
B9ci	Draw C ₂ H ₄	1	
B9cii		1	Badly done. Either drew three units or ended the

			chain by adding hydrogen atoms
B10ai	Paint acts as an protective layer ,	1	Many did not mention protective
	Prevents contact with oxygen and water	1	layer
B10aii	Measure the mass of each nail and record it as No and Mo. Place nail in a test tube labelled N filled with	1	Badly done. Students want to time the rusting
	distilled water. Place the second nail in a test tube M filled with saltwater. Leave the test tubes in the lab for a week.	1	process. Students were highlighted for teachers to take
	Measure the dry mass of each nail and label it as N1 and M1. Calculate the mass gain as N1-N0 and M1-Mo.	1	note of
	The one with the higher mass gain has rusted more.	1	
		1	
B10bi	3Fe + 4H ₂ 0 → Fe ₃ O ₄ + 4H ₂	2	
B10bii	Insert a lighted splint. If the gas extinguishes the flame with a pop sound, it is hydrogen.	1	