Candidate Name	Class	Register Number

CHANGKAT CHANGI SECONDARY SCHOOL

Preliminary Examination 2019

Subject : Science (Chemistry)

Paper No : 5078/01

5076/01

Level : Secondary 4 Express/

Secondary 5 Normal Academic

Date : 04 September 2019

Duration: 1 hour

Setter : Ms Marie Lee

INSTRUCTIONS TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your name, class and register number in the spaces at the top of this page.

MULTIPLE CHOICE QUESTIONS [40 MARKS]

Answer all questions. For each question, there are four possible answers A, B, C and D. Choose **one** correct answer and shade the correct answer in soft pencil on the OTAS provided.

A copy of the Periodic Table can be found on page 9.

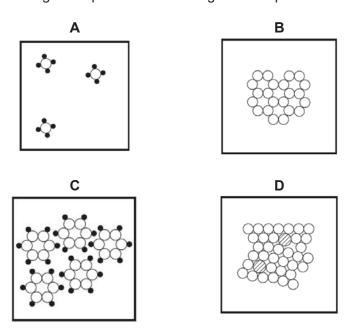
For Examiners' Use	Marks
Paper 1	/ 40
Personal Target	Actual Grade
Parent's / Guardian's signature	

[Turn over

This Question Paper consists of **9** printed pages.

MULTIPLE CHOICE QUESTIONS (40 marks)

1 A student measures 2.0 g of calcium carbonate and adds it to 20 cm³ of dilute hydrochloric acid at different temperatures. He measures the time taken for the reaction to stop.


Which of the following apparatus is needed for the experiment?

	electronic balance	stopwatch	filter funnel	measuring cylinder	thermometer
Α	V	V	V	V	×
В	V	V	×	V	V
С	V	×	V	V	V
D	×	V	V	×	V

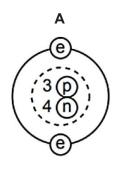
2 Which changes occur when a liquid at 50°C becomes a gas at 120°C?

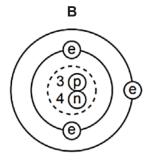
	attractive forces	separation of	energy of particles
	between particles	particles	
Α	decrease	decreases	increases
В	decreases	increases	increases
С	increases	decreases	decreases
D	increases	increases	decreases

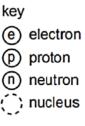
3 Which diagram represents the arrangement of particles in a gas?

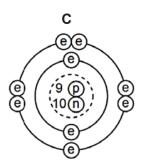
4 A beaker contains a mixture of ethanol and water. Which method could be used to separate the mixture of ethanol and water and the corresponding purity check for the separated ethanol?

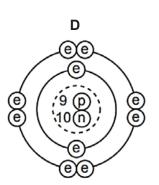
	method of separation	purity check
Α	filtration	observe the colour and scent
В	fractional distillation	observe the colour and scent
С	fractional distillation	measure the boiling point
D	simple distillation	measure the boiling point

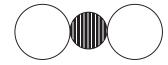

5 The diagram shows the result of a chromatogram obtained from two mixtures, X and Y.


	0					0
0					0	
0	0			0		0
			0			
0	0	0				
X	Y	P	Q	R	S	T


Which of the substance(s) is/are present in mixture X but not in mixture Y?


- A Q and S only
- **B** R and T only
- C S only
- **D** Tonly
- **6** Which statement(s) about isotopes of the same element is/are correct?
 - I They are atoms which have the same chemical properties because they have the same number of electrons in their outer shell.
 - If they are atoms which have the same number of electrons and neutrons but different number of protons.
 - III They are atoms which have the same number of electrons and protons but different number of neutrons.
 - A I and II
 - B I and III
 - C II only
 - **D** III only


7 Which diagram shows a positively-charged ion?



8 When substance X and substance Y are heated together, substance Z is produced. The chemical equation of the reaction is as follows:

$$X + Y \rightarrow 2Z$$

A molecule of Z has the following structure:

Which of the following statements is true about X, Y and Z?

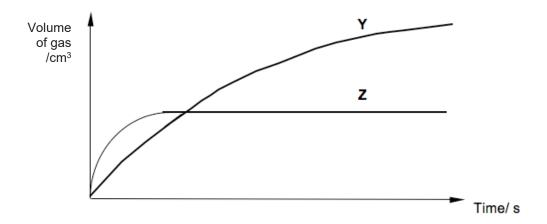
- **A** X can be either an element or compound.
- **B** Z is a mixture of X and Y.
- ${f C}$ Z is an ionic compound with chemical formula X_2Y_2 .
- **D** Z has similar chemical properties as compared to X and Y.
- When sodium is added to water, a gas is produced.
 Which of the following is true when potassium is added to water instead?
 - A No gas is produced.
 - B The reaction is slower.
 - **C** More energy is given out.
 - **D** A smaller volume of gas is produced compared to gas produced for sodium.

10 When copper (II) nitrate is heated, it decomposes to form copper (II) oxide, nitrogen dioxide gas and oxygen gas. The chemical equation of the decomposition of copper (II) nitrate is as follows:

$$2Cu(NO_3)_2(s) \rightarrow 2CuO(s) + 4NO_2(g) + O_2(g)$$

What is the mass of copper (II) nitrate that has decomposed if 4.0g of copper (II) oxide is produced?

- **A** 12.6 g
- **B** 9.4 g
- **C** 18.8 g
- **D** 6.3 g
- 11 Many countries have taken measures to ensure that the amount of sulfur in unleaded petrol and diesel fuels are kept low.


Which of the following could be the reason for such measures?

- A To reduce the amount of fuel used in motor vehicles.
- **B** To increase the acidity of the rain.
- **C** To reduce incomplete combustion.
- **D** To prevent the pH of soil from decreasing.
- 12 Fresh distilled water has a pH value of 7.0. However after it was left standing in the open for a short time, the pH was observed to drop below 7.0.

Which of the following ions caused the drop in pH value?

- **A** ammonium ion, NH₄⁺
- **B** chloride ion, Cl⁻
- C hydrogen ion, H⁺
- **D** hydroxide ion, OH⁻

- 13 Lead (II) carbonate reacts with both nitric acid and sulfuric acid. In what ways are the two reactions the same?
 - I Water is formed.
 - II A gas is produced.
 - III A white precipitate is obtained.
 - **A** II only
 - **B** II and III
 - C I and II
 - **D** I, II and III
- 14 Excess calcium carbonate was added into 100 cm³ of 1.0 mol/dm³ of hydrochloric acid. The curve **Y** represents the results obtained when the volume of gas collected was plotted against time.

The experiment was repeated using different volumes and concentrations of hydrochloric acid. Which change could produce curve **Z**?

- **A** 50 cm³ of 1.0 mol/dm³ hydrochloric acid
- **B** 25 cm³ of 1.0 mol/dm³ hydrochloric acid
- C 50 cm³ of 2.0 mol/dm³ hydrochloric acid
- D 25 cm³ of 2.0 mol/dm³ hydrochloric acid

15

Experiment	Х	Y	Z
Does the metal liberate hydrogen from dilute hydrochloric acid?	yes	no	yes
Is the metal oxide reduced by heating with carbon?	yes	yes	no

	most reactive —	-	least reactive
Α	X	Z	Y
В	Y	X	Z
С	Z	X	Υ
D	Z	Y	X

16 The chart below shows four iron plates under different conditions.

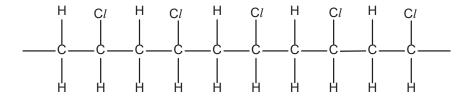
plate 1
Exposed to moisture only,
wrapped with a copper foil

plate 2
Exposed to air and moisture, kept
in a beaker with a drying agent.

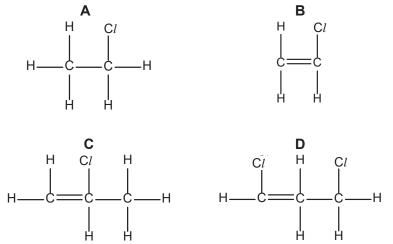
plate 3
Exposed to air and moisture
beside a solution of sodium
chloride.

plate 4
Exposed to moisture, kept in an
air-tight jar.

Which of these plates will corrode the fastest?


- A plate 1
- B plate 2
- C plate 3
- D plate 4

17 The table below shows information about the exhaust fumes produced from car engines that run on petrol and diesel respectively.


Type of engine	Concentration of carbon monoxide present	Concentration of nitrogen oxides present	Concentration of sulfur dioxide present
petrol engine	high	low	low
diesel engine	low	high	high

Which statement can be inferred using the data in the table?

- A Burning petrol contributes less towards the formation of acid rain.
- **B** Burning petrol generates more heat in the combustion engine.
- **C** Cars running on diesel produce fumes that are less sooty.
- **D** Cars running on diesel do not contribute to air pollution.
- 18 Which of the processes is different from the others in terms of energy changes?
 - A forming of bonds
 - **B** combustion
 - **C** neutralisation
 - **D** photosynthesis
- 19 The diagram shows the structure of a polymer.

Which monomer is used to manufacture the polymer?

- **20** Which of the following is true of the oxidation of ethanol?
 - **A** Carbon dioxide is produced.
 - **B** It can also be used in the detection of alcohol content in drivers.
 - **C** There is a decrease in the oxidation states of the elements in ethanol.
 - **D** The product has the functional group –C=O.

--End of Paper-

The Periodic Table of Elements

			E .		Ф.	50	J	. '		۶۵		_	ų,	4	4	9	8	-	9	_	6			-		-
	J	ΥĬ	helium 4	۲	Ź	, è	1	- *	∢	a 4	ř	_	g S	ò	رن 	×	×	2	·	<u>~</u>	ē		_	_		_
	5			6	u.	fluorine 10	47	: 7	3	35.5	35	ă	bromine	8	23	_	iodine	127	85	¥	astatine	1				
	>			80	0	oxygen 16	2 4	2 0	מ	32	æ	Se	selenium	6/	25	e L	tellurium	128	25	8	polonium	-	116	ے	livermorium	
1	>			7	z	nitrogen 14	, r	2 0	ı	31	33	As	arsenic	75	21	S	antimony	122	83	ā	bismuth	508	11 -			
	≥			9	O	carbon 12	14	ö	ī .	28	32	ලී	germanium	73	20	S	Ę	119	82	В	lead	202	114	7	flerovium	
	=			2	۵	poron 11	- 67	2 3	ĕ	aluminium 27	31	ga	mnilleg	70	49	Ę	mojpui	115	81	7	thallium	204				
							•				30	Z	zino	65	48	S	cadmium	112	80	ñ	mercury	201	112	ວົ	copernicium	
											$\overline{}$			_				_	_				111		_	7
3											28	z	nickel	69	46	В	palladium	106	78	ď	platinum	195	110	Ds	darmstadtium	
2000											27	ပိ	cobalt	69	45	몺	rhodium	103	77	L	iridium	192	109	ž	meitnerium	
		- I	hydrogen 1								56	P	iron	26	44	æ	ruthenium	101	92	SO	osmium	190	108	Ϋ́	hassium	-
			6.								25	ž	manganese	55	43	2	technetium		75	æ	rhenium	186	107	æ	pohrium	
				umber	0	90	0000				1	ပ်	5	52	42	ω	molybdenum	96	74	>	tungsten	184	106	Sg	seaborgium	
			Key	proton (atomic) number	atomic symbol	name relative atomic mase	200000				23	>	vanadium	21	41	å	niobium	93	73	ā	tantalum	181	. 105		dubnium	_
				proton	ato	viteler	- Cigil				22	ï	titanium	48	40	Ž	zirconium	91	72	Ť	hafnium	178	104	ž	Rutherfordium	_
							_				21	တိ	scandium	45	39	>			57 - 71	lanthanoids			89 - 103	actinoids		_
	=			4	Be	beryllium	5	7	Mg	magnesium 24	50		calcium			ഗ്	strontium	88	26	Ba	parium	137	88	1	radium	
	_			3	-	lithium	-			sodium 23		¥	potassium	39	37	8			1	ပိ	caesium	133	87	ŭ	francium	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Candidate Name	Class	Register Number

CHANGKAT CHANGI SECONDARY SCHOOL

Preliminary Examination 2019

Subject : Science (Chemistry)

Paper No : 5076/03, 5078/03

Level : Secondary 4 Express/ 5 Normal Academic

Date : 30 August 2019
Duration : 1 hour 15 mins
Setter : Ms Marie Lee

INSTRUCTIONS TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your name, class and register number in the spaces at the top of this page.

Section A [45 MARKS]

Answer all questions. Write your answers in the spaces provided on the question paper.

Section B [20 MARKS]

Answer any **two** questions. Write your answers in the spaces provided on the question paper.

A copy of the Periodic Table can be found on page 12.

For Examiners' Use	Marks				
Section A	/ 45				
Section B					
	/ 10				
	/ 10				
Total	/ 65				
Personal Target	Actual Grade				
Parent's / Guardian's signature					

This Question Paper consists of 12 printed pages.

Section A [45 marks]
Answer all the questions in this section in the spaces provided.

Table 1.1 shows some information about six particles.

Table 1.1

Particle	Number of protons in particle	Number of neutrons in particle	Number of electrons in particle
Α	37	48	37
В	53	74	54
С	92	143	92
D	92	143	89
E	92	146	92
F	94	150	92

	(a)	What is the nucleon number for particle A?	
			[1]
	(b)	Explain why particle B is a negative ion.	
			[1]
	(c)	Which two atoms are isotopes of the same element?	
			[1]
2	Magne	esium reacts with sulfur to form the compound, magnesium sulfide.	
	(a)	Suggest two physical properties of magnesium sulfide.	
			[2]
	(b)	Explain, in terms of electrons, how a magnesium atom reacts with a sulfur atom to make a magnesium ion and a sulfide ion.	
			[2]

3	When	solutions	are mixed.	precipitates	are sometimes	formed.

(a) Barium carbonate is an insoluble compound. It is formed as a precipitate when solutions of barium chloride and sodium carbonate are mixed.

When solutions of potassium chloride and sodium sulfate are mixed, no precipitate is formed.

Complete **Table 3.1** to show the colour and name of the precipitates formed from mixing solutions of some compounds, if any.

Table 3.1

	sodium carbonate solution	sodium sulfate solution
Barium chloride solution	white precipitate of barium carbonate	
Calcium chloride solution		white precipitate of calcium sulfate
Potassium chloride solution		no precipitate

[3]

(b) When solutions of lead (II) nitrate and potassium bromide are mixed, a precipitate of lead(II) bromide and a solution of potassium nitrate are produced.

The equation for the reaction is

......Pb
$$(NO_3)_2$$
 (.......) +KBr (.......) \rightarrow PbBr₂ (.......) +....KNO₃ (.......)

Complete the equation with the correct numbers and state symbols.

(c) In order to prepare a pure, dry sample of lead (II) bromide, a student carried out the following steps:

Steps:

- The mixture was filtered,
- The residue was washed with distilled water, and
- The solid was left in a warm place for several hours.

(i)	Explain why the student filtered the mixture.	
		[1]

	(ii)	Explain why the student washed the residue.	
			[′
		of 25.0 cm 3 of 0.500 mol/dm 3 of aqueous ammonium nitrite, NH $_4$ NO $_2$, is heated and as is produced as shown below.	
		$NH_4NO_2(aq) \rightarrow N_2(g) + 2H_2O(l)$	
(a)	Des	cribe how you could show that aqueous ammonium nitrite contains ammonium ions.	
			[2
(b)	(i)	Calculate the number of moles of ammonium nitrite in 25.0 $$ cm 3 of 0.500 $$ mol/ $$ dm 3 in its aqueous solution.	
		moles	[1
	(ii)	A sample of 25.0 cm³ of 0.500 mol/dm³ aqueous ammonium nitrite is heated and nitrogen gas is produced accordingly to the chemical equation given above. Calculate the volume of nitrogen gas formed, measured at room temperature and pressure.	
		volume of nitrogen gas =	. [2

(iii) Calculate the relative molecular mass of ammonium nitrite and hence calculate the concentration of $0.500 \text{ mol/ } dm^3$ ammonium nitrite solution in g/ dm³.

		Relative molecular mass of ammonium nitrite is	[1]
		Concentration of ammonium nitrite is g/ dm³	[1]
(c)	(i)	State two chemicals that can be used to produce aqueous ammonium nitrite.	
			[1]
	(ii)	State the preparation method that can be used to produce ammonium nitrite salt.	
			[1]
(d)	(i)	Ammonium nitrate, NH_4NO_3 , decomposes when heated, in a similar way to ammonium nitrite, with water as one of the two products. Write a balanced chemical equation for this reaction.	
			[1]
	(ii)	Describe a chemical test for nitrate ion and state the results with ammonium nitrate.	
		chemical test	
			[1]
		results with ammonium nitrate	
			[1]

(b) With reference to the atomic structure, describe and explain the trend in the reactivity of the elements in Group VII as it goes down the group. Fig 6.1 shows a sequence of reactions involving elements from Group VII. Solid			to the atomic struct II of the Periodic T	cture, explain why fluorine able.	, chlorine, bromine	e and iodine
of the elements in Group VII as it goes down the group. Fig 6.1 shows a sequence of reactions involving elements from Group VII. Acidified aqueous sodium hydroxide solution which turns blue litmus paper red Geomposes through yapour, iodine Fig 6.1 Acidified aqueous sodium hydroxide solution which turns blue litmus paper red Dubble chlorine gas through yapour, iodine Fig 6.1 Fig 6.1						
of the elements in Group VII as it goes down the group. Fig 6.1 shows a sequence of reactions involving elements from Group VII. Acidified aqueous sodium hydroxide solution which turns blue litmus paper red Geomposes through yapour, iodine Fig 6.1 Acidified aqueous sodium hydroxide solution which turns blue litmus paper red Dubble chlorine gas through yapour, iodine Fig 6.1 Fig 6.1	(b)	With reference	to the atomic stru	cture describe and explain	the trend in the r	reactivity
Yellow precipitate X	(2)					
Yellow precipitate X						
Yellow precipitate X						
Yellow precipitate X						
Yellow precipitate X decomposes grey purple vapour, iodine Fig 6.1 Colourless iodide solution which turns blue litmus paper red bubble chlorine gas through Y brown solution X Fig 6.1	Fig 6	.1 shows a sequ	ence of reactions i	nvolving elements from G	roup VII.	
Yellow precipitate X decomposes grey solid vapour, iodine Yellow precipitate Solution which turns blue litmus paper red bubble chlorine gas through yellow vapour, iodine Fig 6.1 (a) Identify the following:						
grey solid vapour, iodine Fig 6.1 bubble chlorine gas through Y brown solution Z		precipitate		solution which turns		salt solution Y
grey purple vapour, iodine brown solution Z Fig 6.1			_ poses	Side minus paper red		
solid vapour, iodine brown solution Z Fig 6.1 (a) Identify the following:					gas	s
Fig 6.1 (a) Identify the following:	S	olid var	oour,			ign
(a) Identify the following:						solution
					_	
W				Fig 6.1		
	(a)	Identify the follo	owing:	Fig 6.1		

[4]

Υ

Z

(b)	Write a chemical equation, including state symbols, for the reaction between salt solution
	Y and chlorine gas.

7 Haematite, a common ore used for the extraction of iron, contains the compound, iron(III) oxide. Iron is produced in the blast furnace by heating a mixture of iron(III) oxide, coke and limestone with air. Fig. 7.1 gives the outline of a blast furnace in which iron is extracted from its ore.

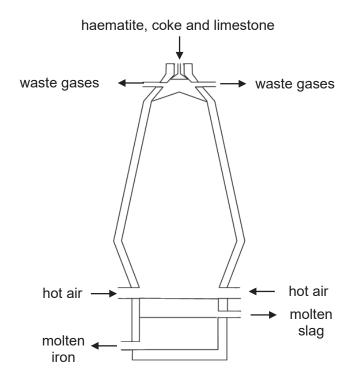


Fig 7.1

(a)	Des	scribe how carbon dioxide is produced under high heat in the blast furnace.	
			[2]
(b)	The	e chemical equation for the production of iron in the blast furnace is shown.	
		Fe_2O_3 (s) + 3CO (g) \rightarrow 2Fe (l) + 3CO ₂ (g)	
	(i)	State the oxidation state of iron in Fe ₂ O _{3.}	
			[1]

	(ii) Explain, in terms of oxidation state, whether iron (III) oxide is oxidised or reduced.	
		[2]
(c)	State a reason for the presence of nitrogen gas in the blast furnace.	
		[1]
Cinna The s	amic acid is found in plants called balsams. tructure of cinnamic acid is shown below.	
	C = C $C = C$ $C =$	
(a)	Cinnamic acid is an unsaturated compound.	
	What is meant by the term "unsaturated"?	
		[1]
(b)	Describe a chemical test to show that cinnamic acid is unsaturated.	
	chemical test	
		[1]
	result with cinnamic acid	
		[1]

Section B [20 marks]
Answer any two questions in this section.
Write your answers in the spaces provided.

9	(a)	Aqu	eous iron (II) sulfate can react with magnesium metal but not copper.	
		(i)	Explain why copper is unable to react with aqueous iron (II) sulfate.	
				[2]
		(ii)	Write the ionic equation for the reaction between aqueous iron (II) sulfate and magnesium.	
				[1]
		(iii)	Explain two observations that can be made when magnesium reacts with aqueous iron (II) sulfate.	
				[0]
	(b)		en acidified potassium manganate (VII) was added to aqueous iron (II) sulfate, eous iron (III) sulfate was formed.	[2]
		Stat	e the observation for this reaction.	F.4.1
	(c)		cribe how a student can confirm the presence of iron (II) and sulfate ions in the tion.	[1]
		iron	(II) ion:	
		sulfa	ate ion:	
				[2]
	(d)		nment on the electrical conductivity of aqueous iron (II) sulfate, giving a reason for answer.	
				[2]

Air is a mixture of gases which consists of nitrogen, oxygen, carbon dioxide and a 10 (a) small percentage of argon, water vapour and other gases.

chemical formulae of two

(b)

(i) Classify the gases in air by writing the chemical formula of any two elements and two compounds in Table 10.1 below.

Table 10.1

chemical formulae of two

		elements found in air	compounds found in air	
				[0]
(ii)	Describe	two differences between elemen	ts and compounds.	[2]
				[2]
/iii\	In anothe	r similar experiment, the total vol		
(111)		150 cm ³ . At the end of the expe		
	Use this in	nformation to calculate the perce	ntage of oxygen in this sample o	f air.
				[2]
Oth	er than cle	ear air, the atmosphere also conta	ains a large number of pollutants	
sulf	ur dioxide,	oxides of nitrogen, methane and e, methane and CFCs are green	l chlorofluorocarbons (CFCs).	moldaling
(i)	Explain or monoxide	ne effect of an increase in the atr	mospheric concentration of carbo	n
				[2]
(ii)		n the production of carbon mono this gas and explain why it is pro		te one

(a)			ogous series. al properties of a h	nomologous series.		
(b)	X is	s an alcohol c		bon atoms in its molecu		
	(i)		able 11.1 by nam	ing, drawing the full str		stating the
				Table 11.1		
			Name of X	Structural formula of X	Chemical formula of X	
	(ii)	State the ch	emical equation f	or the reaction betweer	x and atmospheric	oxygen.
	(iii)			by fermentation of gluco , using appropriate app		nis process
	(iv)	X is commo used for this	nly used in Brazil	as a fuel for vehicles. S		
	(iv)		nly used in Brazil s purpose.		Suggest a reason wh	y X can be

--End of Paper--

CCSS: 2019 Sec 4 and 5 Preliminary Examinations 2019

Paper 1

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
В	В	Α	С	С	В	Α	Α	С	В
Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Q19	Q20
D	С	С	D	С	С	Α	D	В	В

Paper 3

Section A

1	(a)	85			[1]			
	(b)	Particle B is in Grou	up VII which is a non-met	al, which takes in one el				
		to form negative ior	ns with noble gas structur	e.	[1]			
	(c)	C and E			[1]			
2	(a)	Magnesium sulfide	has a high melting and b	oiling point/ able to cond	luct			
		electricity in molten	and aqueous state/ solu	ole in water, insoluble in				
		organic solvents.			[2]			
		(Any of the 2 above						
	(b)		rill give out two electrons	to form a positive magne	esium			
		ion. [1]						
			e in two electrons to form	a negative sulfide ion to	[2]			
		obtain a noble gas	structure. [1]					
3			sodium carbonate	sodium sulfate				
		D 34 1 1 1 1 1	solution	solution				
		Barium chloride white precipitate of white precipitate						
		solution	barium carbonate	of barium sulfate				
		Calcium chloride	white precipitate of	white precipitate of				
		solution	calcium carbonate	calcium sulfate				
		Potassium	No precipitate	No preciptate				
		chloride\solution						
					[3]			
	(b)	1 Ph(NO ₂) ₂ (an) + '	$2 \text{ KBr (aq)} \rightarrow \text{PbBr}_2 \text{ (s)} +$	2KNO. (2a)	[2]			
	(5)	[1] For balanced ch		2111103 (44)	[2]			
		[1] For correct state						
		1.1. 5. 5511001 51410	2,					
	(c)	(i) To remove potassium nitrate solution from lead (II) bromide.						
	\-'	(ii) To wash away any potassium nitrate or impurities that may still						
		remain on lead(II) bromide.						
		'	• •		[1]			
4	(a)	Add sodium hydrox	ide and warm. If the gas	produced turns moist				
			monia gas is produced. T		ns are			
		present in ammoniu			[2]			

(b) (i) 25/1000 x 0.500 = 0.0125 moles [1] (b) (ii) NH₄NO₂ (aq) → N₂ (q) + 2H₂O (l) [1] 1 mole		T			
(b) (ii) NH₄NO₂ (aq) → N₂ (g) + 2H₂O (l) 1 mole 1		(b)	(i)	25/1000 x 0 500 = 0 0125 moles	[1]
1 mole 1 mol 1 mol 2 d dm³ 0.0125 mol x dm³ 2 volume of nitrogen = 0.300 dm³ (3 sf) (No units, no marks) (b) (iii) Relative molecular mass of NH₄NO₂ = 14 + 4 + 14 + 32 = 64 [1] Concentration = 64 x 0.500 = 32g/ dm³ [1] *Working must be shown for the marks to be awarded. (c) (i) Ammonium hydroxide and nitric acid [1] (ii) Titration method [1] (d) (i) NH₄NO₃ → N₂O + 2H₂O [1] (iii) Add sodium hydroxide, aluminium foil to the solution. Warm gently. Warm gently. [1] If gas produced turns moist red litmus paper blue, ammonia gas is produced. Nitrate ion is present. [1] [2] 5 (a) They have seven valence electrons. [1] As the elements goes down the group, the reactivity of the elements decreases. [1] As the elements goes down the group, the atomic size of the element becomes bigger. [1] Therefore, there is less tendency for the nucleus to gain or attract electrons to form negative ions. [1] 6 (a) W: Silver, Ag X: Silver iodide, Agl Y: Sodium iodide, Nal Z: Iodine, I₂ [4] (b) 2 Nal (aq) + Cl₂(g) → 2 NaCl(aq) + I₂ (aq) [1]: Balanced chemical equations [1]: Correct state symbols (b) (i) +3 (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]		(8)	(')	20/1000 X 0.000	1.1
$ \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $		(b)	(ii)	NH_4NO_2 (ag) $\rightarrow N_2$ (g) + $2H_2O$ (I)	[1]
0.0125 mol x dm³ x = 0.3 dm³ Volume of nitrogen = 0.300 dm³ (3 sf) (No units, no marks)					
X = 0.3 dm³ Volume of nitrogen = 0.300 dm³ (3 sf) (No units, no marks)					[1]
Volume of nitrogen = 0.300 dm³ (3 sf) (No units, no marks)					
(b) (iii) Relative molecular mass of NH₂NO₂ = 14 + 4 + 14 + 32 = 64 Concentration = 64 x 0.500 = 32g/ dm³ *Working must be shown for the marks to be awarded. (c) (i) Ammonium hydroxide and nitric acid (ii) Titration method (d) (i) NH₄NO₃ → N₂O + 2H₂O (ii) Add sodium hydroxide, aluminium foil to the solution. Warm gently. Warm gently. [1] If gas produced turns moist red litmus paper blue, ammonia gas is produced. Nitrate ion is present. [1] 5 (a) They have seven valence electrons. (b) As the elements goes down the group, the reactivity of the elements decreases. [1] As the elements goes down the group, the atomic size of the element becomes bigger. [1] Therefore, there is less tendency for the nucleus to gain or attract electrons to form negative ions. [1] 6 (a) W: Silver, Ag X: Silver iodide, Agl Y: Sodium iodide, Nal Z: Iodine, I₂ (b) 2 Nal (aq) + Cl₂(g) → 2 NaCl(aq) + I₂ (aq) [1] Balanced chemical equations [1]: Correct state symbols (b) (i) +3 (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]					
= 14 + 4 + 14 + 32 = 64				Volume of nitrogen = 0.300 dm³ (3 sf) (No units, no marks)	
= 14 + 4 + 14 + 32 = 64		(b)	(iii)	Relative molecular mass of NH ₄ NO ₂	
*Working must be shown for the marks to be awarded. (c) (i) Ammonium hydroxide and nitric acid (ii) Titration method [1] (d) (i) NH₄NO₃ → N₂O + 2H₂O (ii) Add sodium hydroxide, aluminium foil to the solution. Warm gently. Warm gently. [1] If gas produced turns moist red litmus paper blue, ammonia gas is produced. Nitrate ion is present. [1] 5 (a) They have seven valence electrons. (b) As the elements goes down the group, the reactivity of the elements decreases. [1] As the elements goes down the group, the atomic size of the element becomes bigger. [1] Therefore, there is less tendency for the nucleus to gain or attract electrons to form negative ions. [1] 6 (a) W: Silver, Ag X: Silver iodide, Agl Y: Sodium iodide, Nal Z: Iodine, I₂ (b) 2 Nal (aq) + Cl₂(g) → 2 NaCl(aq) + I₂ (aq) [1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]		()	()		[1]
*Working must be shown for the marks to be awarded. (c) (i) Ammonium hydroxide and nitric acid (ii) Titration method [1] (d) (i) NH₄NO₃ → N₂O + 2H₂O (ii) Add sodium hydroxide, aluminium foil to the solution. Warm gently. Warm gently. [1] If gas produced turns moist red litmus paper blue, ammonia gas is produced. Nitrate ion is present. [1] 5 (a) They have seven valence electrons. (b) As the elements goes down the group, the reactivity of the elements decreases. [1] As the elements goes down the group, the atomic size of the element becomes bigger. [1] Therefore, there is less tendency for the nucleus to gain or attract electrons to form negative ions. [1] 6 (a) W: Silver, Ag X: Silver iodide, Agl Y: Sodium iodide, Nal Z: Iodine, I₂ (b) 2 Nal (aq) + Cl₂(g) → 2 NaCl(aq) + I₂ (aq) [1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]					F 4 7
(c) (i) Ammonium hydroxide and nitric acid (ii) Titration method [1] (d) (i) NH₄NO₃ → N₂O + 2H₂O (ii) Add sodium hydroxide, aluminium foil to the solution. Warm gently. Warm gently. [1] If gas produced turns moist red litmus paper blue, ammonia gas is produced. Nitrate ion is present. [1] [2] [3] [4] [5] [6] [7] [8] [8] [8] [9] [9] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1					[1]
(ii) Titration method (iii) NH₄NO₃ → N₂O + 2H₂O (ii) Add sodium hydroxide, aluminium foil to the solution. Warm gently. Warm gently. [1] If gas produced turns moist red litmus paper blue, ammonia gas is produced. Nitrate ion is present. [1] 5 (a) They have seven valence electrons. (b) As the elements goes down the group, the reactivity of the elements decreases. [1] As the elements goes down the group, the atomic size of the element becomes bigger. [1] Therefore, there is less tendency for the nucleus to gain or attract electrons to form negative ions. [1] 6 (a) W: Silver, Ag X: Silver iodide, Agl Y: Sodium iodide, Nal Z: Iodine, I₂ (b) 2 Nal (aq) + CI₂(g) → 2 NaCl(aq) + I₂ (aq) [1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] Fe₂O₃ + 3CO → 2Fe + 3CO₂ (b) (i) +3 [1] The oxidation state of iron has decreased and thus, it is reduced. [1]				*Working must be shown for the marks to be awarded.	
(ii) Titration method (iii) NH₄NO₃ → N₂O + 2H₂O (ii) Add sodium hydroxide, aluminium foil to the solution. Warm gently. Warm gently. [1] If gas produced turns moist red litmus paper blue, ammonia gas is produced. Nitrate ion is present. [1] 5 (a) They have seven valence electrons. (b) As the elements goes down the group, the reactivity of the elements decreases. [1] As the elements goes down the group, the atomic size of the element becomes bigger. [1] Therefore, there is less tendency for the nucleus to gain or attract electrons to form negative ions. [1] 6 (a) W: Silver, Ag X: Silver iodide, Agl Y: Sodium iodide, Nal Z: Iodine, I₂ (b) 2 Nal (aq) + CI₂(g) → 2 NaCl(aq) + I₂ (aq) [1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] Fe₂O₃ + 3CO → 2Fe + 3CO₂ (b) (i) +3 [1] The oxidation state of iron has decreased and thus, it is reduced. [1]		(c)	(i)	Ammonium hydroxide and nitric acid	[1]
(ii) Add sodium hydroxide, aluminium foil to the solution. Warm gently. Warm gently. [1] If gas produced turns moist red litmus paper blue, ammonia gas is produced. Nitrate ion is present. [1] [2] 5 (a) They have seven valence electrons. (b) As the elements goes down the group, the reactivity of the elements decreases. [1] As the elements goes down the group, the atomic size of the element becomes bigger. [1] Therefore, there is less tendency for the nucleus to gain or attract electrons to form negative ions. [1] 6 (a) W: Silver, Ag X: Silver iodide, Agl Y: Sodium iodide, Nal Z: Iodine, I₂ [4] (b) 2 Nal (aq) + Cl₂(g) → 2 NaCl(aq) + I₂ (aq) [1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] Fe₂O₃ + 3CO → 2Fe + 3CO₂ (b) (i) +3 (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]			(ii)		
(ii) Add sodium hydroxide, aluminium foil to the solution. Warm gently. Warm gently. [1] If gas produced turns moist red litmus paper blue, ammonia gas is produced. Nitrate ion is present. [1] [2] 5 (a) They have seven valence electrons. (b) As the elements goes down the group, the reactivity of the elements decreases. [1] As the elements goes down the group, the atomic size of the element becomes bigger. [1] Therefore, there is less tendency for the nucleus to gain or attract electrons to form negative ions. [1] 6 (a) W: Silver, Ag X: Silver iodide, Agl Y: Sodium iodide, Nal Z: Iodine, I₂ [4] (b) 2 Nal (aq) + Cl₂(g) → 2 NaCl(aq) + I₂ (aq) [1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] Fe₂O₃ + 3CO → 2Fe + 3CO₂ (b) (i) +3 (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]		(4)	(:)	NILLNO X N. O. I. 2LL O.	[4]
Warm gently. [1] If gas produced turns moist red litmus paper blue, ammonia gas is produced. Nitrate ion is present. [1] [2]		(a)			[1]
If gas produced turns moist red litmus paper blue, ammonia gas is produced. Nitrate ion is present. [1] [2] 5 (a) They have seven valence electrons. [1] (b) As the elements goes down the group, the reactivity of the elements decreases. [1] As the elements goes down the group, the atomic size of the element becomes bigger. [1] Therefore, there is less tendency for the nucleus to gain or attract electrons to form negative ions. [1] [3] 6 (a) W: Silver, Ag X: Silver iodide, Agl Y: Sodium iodide, Nal Z: lodine, I₂ [4] (b) 2 Nal (aq) + Cl₂(g) → 2 NaCl(aq) + I₂ (aq) [2] [1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] [2] Fe₂O₃ + 3CO → 2Fe + 3CO₂ (b) (i) +3 [1] (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]			(11)		
produced. Nitrate ion is present. [1] [2] 5 (a) They have seven valence electrons. [1] (b) As the elements goes down the group, the reactivity of the elements decreases. [1] As the elements goes down the group, the atomic size of the element becomes bigger. [1] Therefore, there is less tendency for the nucleus to gain or attract electrons to form negative ions. [1] [3] 6 (a) W: Silver, Ag X: Silver iodide, Agl Y: Sodium iodide, Nal Z: lodine, I₂ [4] (b) 2 Nal (aq) + Cl₂(g) → 2 NaCl(aq) + I₂ (aq) [2] [1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] [2] Fe₂O₃ + 3CO → 2Fe + 3CO₂ (b) (i) +3 [1] (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]				0 / 1 1	
5 (a) They have seven valence electrons. [1] (b) As the elements goes down the group, the reactivity of the elements decreases. [1] As the elements goes down the group, the atomic size of the element becomes bigger. [1] Therefore, there is less tendency for the nucleus to gain or attract electrons to form negative ions. [1] [3] 6 (a) W: Silver, Ag X: Silver iodide, Agl Y: Sodium iodide, Nal Z: Iodine, I₂ [4] (b) 2 Nal (aq) + Cl₂(g) → 2 NaCl(aq) + I₂ (aq) [1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] [2] Fe₂O₃ + 3CO → 2Fe + 3CO₂ (b) (i) +3 [1] (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]					[2]
(b) As the elements goes down the group, the reactivity of the elements decreases. [1] As the elements goes down the group, the atomic size of the element becomes bigger. [1] Therefore, there is less tendency for the nucleus to gain or attract electrons to form negative ions. [1] [3] (a) W: Silver, Ag X: Silver iodide, AgI Y: Sodium iodide, NaI Z: Iodine, I₂ [4] (b) 2 NaI (aq) + CI₂(g) → 2 NaCI(aq) + I₂ (aq) [1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] [2] Fe₂O₃ + 3CO → 2Fe + 3CO₂ (b) (i) +3 [1] (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]				produced. With all forms present. [1]	[4]
(b) As the elements goes down the group, the reactivity of the elements decreases. [1] As the elements goes down the group, the atomic size of the element becomes bigger. [1] Therefore, there is less tendency for the nucleus to gain or attract electrons to form negative ions. [1] [3] (a) W: Silver, Ag X: Silver iodide, AgI Y: Sodium iodide, NaI Z: Iodine, I₂ [4] (b) 2 NaI (aq) + CI₂(g) → 2 NaCI(aq) + I₂ (aq) [1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] [2] Fe₂O₃ + 3CO → 2Fe + 3CO₂ (b) (i) +3 [1] (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]	5	(a)		They have seven valence electrons.	[1]
decreases. [1] As the elements goes down the group, the atomic size of the element becomes bigger. [1] Therefore, there is less tendency for the nucleus to gain or attract electrons to form negative ions. [1] [3] [4] [5] [6] (a) W: Silver, Ag X: Silver iodide, Agl Y: Sodium iodide, Nal Z: Iodine, I₂ [4] [5] [6] (b) 2 Nal (aq) + Cl₂(g) → 2 NaCl(aq) + I₂ (aq) [7] [8] [9] [1]: Balanced chemical equations [1]: Correct state symbols [1]: Correct state symbols [1]: Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] Fe₂O₃ + 3CO → 2Fe + 3CO₂ [8] [9] [10] [11] [12] [13]					
becomes bigger. [1] Therefore, there is less tendency for the nucleus to gain or attract electrons to form negative ions. [1] [3] [6] (a) W: Silver, Ag X: Silver iodide, Agl Y: Sodium iodide, Nal Z: Iodine, I₂ [4] (b) 2 Nal (aq) + Cl₂(g) → 2 NaCl(aq) + I₂ (aq) [1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] [2] Fe₂O₃ + 3CO → 2Fe + 3CO₂ (b) (i) +3 [1] (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]					
Therefore, there is less tendency for the nucleus to gain or attract electrons to form negative ions. [1] [3] [4] [6] [6] [7] [8] [8] [8] [8] [9] [9] [9] [9				As the elements goes down the group, the atomic size of the element	
electrons to form negative ions. [1] [3] 6 (a) W: Silver, Ag X: Silver iodide, AgI Y: Sodium iodide, NaI Z: Iodine, I₂ (b) 2 NaI (aq) + Cl₂(g) → 2 NaCl(aq) + I₂ (aq) [1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] [2] Fe₂O₃ + 3CO → 2Fe + 3CO₂ (b) (i) +3 [1] The oxidation state of iron has decreased and thus, it is reduced. [1]					
6 (a) W: Silver, Ag X: Silver iodide, Agl Y: Sodium iodide, Nal Z: Iodine, I₂ (b) 2 Nal (aq) + Cl₂(g) → 2 NaCl(aq) + I₂ (aq) [1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] [2] Fe₂O₃ + 3CO → 2Fe + 3CO₂ (b) (i) +3 [ii) The oxidation state of iron has decreased and thus, it is reduced. [1]					
 X: Silver iodide, AgI Y: Sodium iodide, NaI Z: Iodine, I₂ (b) 2 NaI (aq) + CI₂(g) → 2 NaCl(aq) + I₂ (aq) [2] [1]: Balanced chemical equations [1]: Correct state symbols (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] [2] Fe₂O₃ + 3CO → 2Fe + 3CO₂ (b) (i) +3 [1] [1] (ii) The oxidation state of iron has decreased and thus, it is reduced. [1] 				electrons to form negative ions. [1]	[3]
 X: Silver iodide, AgI Y: Sodium iodide, NaI Z: Iodine, I₂ (b) 2 NaI (aq) + CI₂(g) → 2 NaCl(aq) + I₂ (aq) [2] [1]: Balanced chemical equations [1]: Correct state symbols (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] [2] Fe₂O₃ + 3CO → 2Fe + 3CO₂ (b) (i) +3 [1] [1] (ii) The oxidation state of iron has decreased and thus, it is reduced. [1] 	6	(2)	\ / /·	Silver Ag	
Y: Sodium iodide, NaI Z: Iodine, I₂ (b) $2 \text{ NaI } (aq) + \text{CI}_2(g) \rightarrow 2 \text{ NaCI} (aq) + \text{I}_2 (aq)$ [1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] [2] Fe₂O₃ + 3CO → 2Fe + 3CO₂ (b) (i) +3 [1] The oxidation state of iron has decreased and thus, it is reduced. [1]	<u> </u>	(4)			
 Z: Iodine, I₂ (b) 2 NaI (aq) + CI₂(g) → 2 NaCI(aq) + I₂ (aq) [2] [1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] [2] Fe₂O₃ + 3CO → 2Fe + 3CO₂ (b) (i) +3 [1] [1] (ii) The oxidation state of iron has decreased and thus, it is reduced. [1] 		<u> </u>	γ.		
[1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] [2] Fe ₂ O ₃ + 3CO → 2Fe + 3CO ₂ (b) (i) +3 [1] (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]					[4]
[1]: Balanced chemical equations [1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] [2] Fe ₂ O ₃ + 3CO → 2Fe + 3CO ₂ (b) (i) +3 [1] (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]		(1.)	0.11		101
[1]: Correct state symbols 7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] [2] Fe ₂ O ₃ + 3CO → 2Fe + 3CO ₂ (b) (i) +3 (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]		(b)			[2]
7 (a) Carbon dioxide is formed when coke is burnt in hot air [1] and when limestone is decomposed at high temperature. [1] [2] Fe ₂ O ₃ + 3CO → 2Fe + 3CO ₂ (b) (i) +3 (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]		-		•	
and when limestone is decomposed at high temperature. [1] [2] Fe ₂ O ₃ + 3CO → 2Fe + 3CO ₂ (b) (i) +3 (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]		+	[1]:	Correct state symbols	
and when limestone is decomposed at high temperature. [1] [2] Fe ₂ O ₃ + 3CO → 2Fe + 3CO ₂ (b) (i) +3 (ii) The oxidation state of iron has decreased and thus, it is reduced. [1]	7	(a)	Carl	bon dioxide is formed when coke is burnt in hot air [1]	
					[2]
(ii) The oxidation state of iron has decreased and thus, it is reduced. [1]			Fe ₂	$O_3 + 3CO \rightarrow 2Fe + 3CO_2$	
(ii) The oxidation state of iron has decreased and thus, it is reduced. [1]		(h)	(i)	+3	[1]
		(0)	_ ` ′	-	ניו
		†	(")	The oxidation state of iron has decreased and thus, it is reduced. [1]	

		0 in iron. [1]	[2]
	(c)	Hot air contains 78% of nitrogen gas which remains unreacted in the blast	
		furnace when all the oxygen is reacted with coke.	[1]
8	(a)	The compound contains carbon carbon double bond.	[1]
	(b)	Bubble the compound through reddish-brown bromine solution. [1]	
		Reddish brown bromine solution is decolourised. [1]	[2]

Section B

9	(a)	(i)	Copper is less reactive than iron ar	nd loses electrons less readily [1]		
	(4)	(')	Therefore, copper is unable to reach			
			iron(II)	t and displace from from aqueeds		
			sulfate. [1]		[2]	
		(ii)	$Mg(s) + Fe^{2+}(aq) \rightarrow Mg^{2+}(aq) + Fe(aq)$	s)	[1]	
		(iii)	Green solution fades and might turn		L-3	
			Grey solid deposits formed. [1]			
			Magnesium dissolves and becomes	s smaller in size. [1]		
			(Any two)	• •	[2]	
	(b) Purple acidified potassium manganate (VII) solution turns colourless / decolourises.					
	(c)		aqueous sodium hydroxide to the so			
			en precipitate formed if Fe ²⁺ ions are			
			dilute nitric acid, followed by aqueou			
		Whit	e precipitate formed if SO ₄ 2- ions are	e present. [1]	[2]	
	(d)	Aqu	eous iron(II) sulfate can conduct elec	ctricity [1]		
			to the presence of free mobile ions (Fe ²⁺ and SO ₄ ²⁻) to carry	101	
		char	ges.[1]		[2]	
40	(-)	/:\		01 : 15 1 51		
10	(a)	(i)	Chemical formula of two	Chemical fomula of two		
			elements found in air	compounds found in air		
			N ₂ , O ₂ , Ar, Ne	CO ₂ , H ₂ O		
			(Any two)			
					[2]	
		()	A	1100		
		(ii)	A compound is made up of two or r		F43	
			combined but an element is made u	up of only one type of atoms.	[1]	
			A compound can only be broken do	own into simpler type of matter		
			by chemical means but elements ca			
			simpler matter by physical or chem		[1]	
		/:::\	450 405 -05 am ³ [4]			
		(iii)	150-125 =25cm³ [1]		[0]	
			(25/150)x 100=16.7% [1]		[2]	

	(b)	(i)	Carbon monoxide will bind more strongly with haemoglobin [1] than				
			oxygen preventing the oxygen from being absorb to the body which				
			causes death. [1]				
		(ii)	In the car engine when the fuel undergoes incomplete				
			combustion [1] because of insufficient supply of oxygen, [1]				
			carbon monoxide is produced.	[2]			
11	(a)	(i)	Members of the same homologous series have similar chemical				
	(4)	(')	properties [1]				
			The members display a gradual change in their physical				
			properties as the number of carbon atoms increases in their				
			molecules. [1]				
		(ii)	C _n H _{2n+1} OH				
		()		[1]			
	(b)	(i)					
	, ,		Name of X Structural formula of X Chemical				
			formula of X				
			H H C ₂ H ₅ OH				
			ethanol H-C-C-O-H				
			\\П)П	∐ [2]			
		/ii\		[2] [1]			
		(ii) (iii)	$CH_3CH_2OH(I) + 2[O] \rightarrow CH_3COOH(aq) + H_2O(I)$				
		(111)	Yeast is added to a solution of glucose in a conical flask. [1] Temperature of the mixture is kept at 37°C [1] The conical flask is connected through a delivery tube to a test tube				
	-						
			with limewater to prevent oxygen in air from entering the conical				
		(iv)	flask.[1] X can be burnt exothermically to produce heat to power the vehicles.				
		(4v)	X can be burnt exothermically to produce heat to power the vehicles. [1]				