Class	Register Number	Name

BARTLEY SECONDARY SCHOOL

O-LEVEL PRELIMINARY EXAMINATIONS

SCIENCE (CHEMISTRY/BIOLOGY)

5078/01

Sec 4 Express/ 5 Normal (Academic)

Paper 1 Multiple Choice 23 September 2019

1 hour

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, register number and class on the Answer Sheet in the spaces provided.

There are **forty** questions in paper. Answer **all** questions. For each question there are four possible answers, **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

The use of an approved scientific calculator is expected, where appropriate.

A copy of the Data Sheet is printed on page 17.

A copy of the Periodic Table is printed on page 18.

This document consists of 18 printed pages.

Set by: YBH, LMY [Turn over

1 A test-tube containing a white solid, Q, is heated to 100°C. A colourless liquid is seen during the process.

What can we conclude from this observation?

- A Q boils at 100°C.
- **B** Q is soluble in water.
- C Q sublimes at 100°C.
- **D** Q has a melting point below 100°C.
- 2 Which group consists of mixtures only?
 - A air, naphtha, steel
 - B crude oil, methane, vinegar
 - **C** francium, nickel, polyethene,
 - **D** glucose, limewater, limestone
- The table shows the melting and boiling points of four substances, A, B, C and D.

Which substance comprises particles that vibrate about their fixed points at room temperature?

	melting point / °C	boiling point / °C
Α	-110	-55
В	-10	62
С	-133	420
D	744	1214
С	-133	420

A man claims to have discovered a new element. He decides that the element is a halogen and is positioned below a tatine in the Periodic Table based on four observations made.

Which observation about the new element is incorrect?

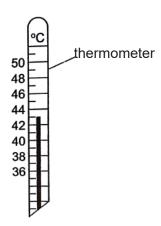
- A It displaces iodine from potassium iodide solution.
- **B** It has a higher melting and boiling point than astatine.
- **C** It is a black solid.
- **D** It is a poor electrical and heat conductor.

- 5 What ions are produced by iron(III) sulfate, $Fe_2(SO_4)_3$?
 - A Fe²⁺ and SO_4^{2-}
 - **B** Fe^{2+} and SO_4^{3-}
 - \mathbf{C} Fe³⁺ and SO₄²⁻
 - **D** Fe^{3+} and SO_4^{3-}
- The elements W, X and Y have consecutive, increasing atomic numbers. If element Y is a noble gas, what is the chemical nature and chemical formula of the compound formed between W and X?

	chemical nature	chemical formula
Α	covalent compound	WX
В	ionic compound	WX
С	covalent compound	WX_2
D	ionic compound	W_2X

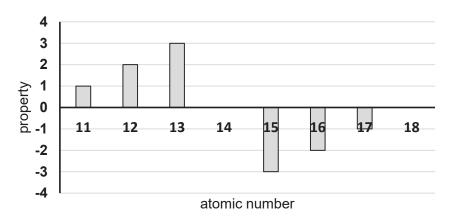
7 The table shows some properties of four elements.

Which element is an alkali metal?


element	melting point	density	hardness	electrical conductivity
Α	low	low	soft	poor
В	low	low	soft	good
С	high	low	soft	good
D	high	high	hard	good

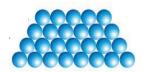
8 Sodium reacts with fluorine to form a white solid of sodium fluoride.

Which statement is true about sodium fluoride?


- A It cannot dissolve in water.
- **B** It conducts electricity when molten.
- **C** It has strong covalent bonds
- **D** It has weak ionic bonds throughout the solid.

A thermometer was placed in a mixture of substances at room temperature at the beginning of an experiment. The temperature is shown in the diagram below after a short while.

What conclusion can be drawn from the experiment?


- A Neutralisation has taken place.
- **B** The reaction is exothermic.
- **C** The mixture takes in heat from the surroundings.
- **D** The thermometer is a good heat conductor.
- The diagram shows the trend of a property of the elements in Period 3 of the Periodic Table.

Which is the property?

- A charge of their ions
- **B** number of valence electrons
- C proton number
- **D** relative atomic mass

11 The diagram shows the structure of pure copper.

Which statement explains why pure copper sheets are easily bent.

- A The atoms have spaces for them to move in between when a force is applied.
- **B** The atoms are soft and easily bent.
- **C** The layers of atoms can slide past one another.
- **D** The atoms have weak intermolecular forces.
- Sulfur dioxide is a pollutant that dissolves in rainwater to produce acid rain. In order to remove the sulfur dioxide from the waste gases produced from a power station, the waste gases are first passed through a scrubber which showers water down on them. The mixture produced then flows out of the scrubber and is then mixed with a powdered compound to neutralize it.

Which compound will **not** be able to neutralize the aqueous mixture of sulfur dioxide?

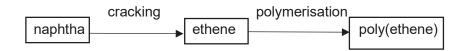
- A calcium carbonate
- B carbon dioxide
- C magnesium oxide
- **D** zinc oxide
- 13 What is true about the substance that has the chemical formula, C₂H₅NHCOOH?
 - **A** It consists of 8 elements.
 - **B** It has 12 atoms within a molecule.
 - **C** It is a mixture.
 - **D** It is a covalent compound.
- **14** A polymer has a structure as shown.

Which statement is true about the polymer?

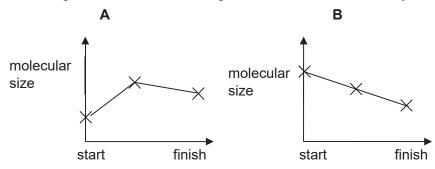
- $\textbf{A} \quad \text{It is formed from the polymerisation of C_2H_4 monomers.}$
- **B** It is likely a solid at room temperature and pressure.
- **C** It is soluble in water.
- **D** It turns bromine solution from brown to colourless.

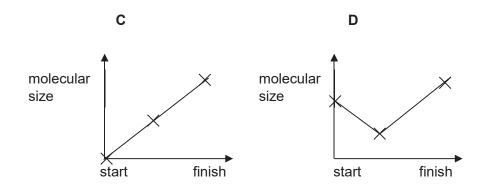
A mixture containing 2 moles of ethene and 7 moles of oxygen is ignited in a sealed container at 100 °C. The chemical equation representing the reaction is shown below.

$$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$$


What is the total number of moles of gases at the end of the reaction?

- A 4 moles
- **B** 8 moles
- C 9 moles
- **D** 13 moles
- Aqueous potassium iodide is a reducing agent. Potassium manganate(VII) solution is an oxidising agent.


If solution X shows no reaction with aqueous potassium iodide but turns acidified potassium manganate(VII) solution from purple to colourless, which statement is true of solution X?


- **A** X is a reducing agent.
- **B** X is an oxidising agent.
- **C** X is both an oxidising and a reducing agent.
- **D** X is neither an oxidising nor a reducing agent.
- 17 Which statement about organic compounds is true?
 - **A** Alkanes burn in air to form oxygen and water.
 - **B** All alcohols have the same structural formula.
 - **C** Methane is a gas at room temperature.
 - **D** Organic compounds consist of hydrogen and carbon atoms only.
- Which statement correctly describes the use of each fraction obtained from the fractional distillation of petroleum?
 - A Bitumen is used to make polishes.
 - **B** Diesel is used to surface roads.
 - **C** Kerosene is used as a fuel for aeroplanes
 - **D** Petroleum gas is used as a petrochemical feedstock to make other substances.

- 19 Olive oil is described as polyunsaturated and is healthy for consumption.
 - What makes the oil polyunsaturated?
 - **A** It contains many C-C bonds.
 - **B** It contains many C-H bonds.
 - C It contains many C=C bonds.
 - **D** It contains many C=O bonds.
- 20 Poly(ethene) can be manufactured by the processes shown below.

Which diagram illustrates the change in molecular sizes correctly?

Colours of Some Common Metal Hydroxides

calcium hydroxide	white					
copper(II) hydroxide	light blue					
iron(II) hydroxide	green					
iron(III) hydroxide	red-brown					
lead(II) hydroxide	white					
zinc hydroxide	white					

The Periodic Table of Elements

	0	2	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	호	krypton 84	54	×e	xenon 131	98	R	radon				
	IIN			6	ட	fluorine 19	17	C)	chlorine 35.5	32	亩	bromine 80	23	Н	iodine 127	82	Ą	astatine -				_
	N			8	0	oxygen 16	16	တ	sulfur 32	34	Se	selenium 79	52	<u>ө</u>	tellurium 128	84	Po	moloum -	116	^	vermorium	ı
	^			7	z	nitrogen 14	15	۵	shosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Bi	bismuth 209			_	
	2			9	ပ	carbon 12	14	Si	silicon p	32	Ge	germanium 73	20	Su	11 _€	82	Pb	lead 207	114	F/	flerovium	Į.
	=			2	В	boron 11	13	Υ	aluminium 27	31	Ga	gallium 70	49	п	115	81	11	thallium 204				
									2000	30	Zu	zinc 65	48	В	cadmium 112	80	Hg	mercury 201	112	5	copernicium	ı
										59	ರ	copper 64	47	Ag	silver 108	62	Au	197	111	Rg	oentgenium	Ĺ
dn										28	Z	nickel 59	46	Pd	palladium 106	78	五	platinum 195	110	S	darmstadtium	ı
Group										27	ර	cobalt 59	45	문	rhodium 103	77	1	iridium 192	109	¥	meitnerium	ı
		- 3	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	9/	SO	190	108	£	hassium	ı
	8									25	Mn	manganese 55	43	Tc	technetium -	75	Re	rhenium 186	107	뮵	pohrium	L
				umper	loqu	mass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium	ı
			Key	proton (atomic) n	mic symb	name relative atomic r				23	>	vanadium 51	41	q	niobium 93	73	Ta	tantalum 181	105	6	dubnium	1
				proton	ato	relativ				22	F	titanium 48	40	Z	zirconium 91	72	士	hafnium 178	104	¥	Rutherfordium	ı
										21	Sc	scandium 45	39	>	yttrium 89	57 - 71	lanthanoids		89 - 103	actinoids		
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Sa	calcium 40	38	જ	strontium 88	26	Ba	barium 137	88			
	_			8	:-	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	R	rubidium 85	55	S	caesium 133	87	占	francium	ı

71	=	mnite	75	93	ے	ancinm	1
Ľ	_	lute	_	_	_	lawre	_
20	Υp	ytterbium	173	102	2	nobelium	ı
69	Tm	thulium	169	101	Md	mendelevium	1
89	ш	erbinm	167	100	Fm	fermium	1
29	운	holmium	165	66	Es	einsteinium	1
99	O	dysprosium	163	86	ざ	californium	1
65	Tb	terbium	159	26	益	berkelium	1
64	PS	gadolinium	157	96	S S	curium	1
63	E	europium	152	92	Am	americium	1
62	Sm	samarium	150	94	Pu	plutonium	1
61	Pm	promethium	ı	93	_Q	neptunium	1
09	PN	neodymium	144	92	>	uranium	238
29	Ā	praseodymlum	141	91	Pa	protactinium	231
58	Ce	cerium	140	06	드	thorium	232
25	La	lanthanum	139	68	Ac	actinium	1
lanthanoids				actinoids			

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

Class	Register Number	Name

BARTLEY SECONDARY SCHOOL

O-LEVEL PRELIMINARY EXAMINATIONS

SCIENCE (PHYSICS/CHEMISTRY)

5076/01

Sec 4 Express/ 5 Normal (Academic)

Paper 1 Multiple Choice 23 September 2019

1 hour

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, register number and class on the Answer Sheet in the spaces provided.

There are **forty** questions in paper. Answer **all** questions. For each question there are four possible answers, **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

The use of an approved scientific calculator is expected, where appropriate.

A copy of the Data Sheet is printed on page 17.

A copy of the Periodic Table is printed on page 18.

This document consists of 18 printed pages.

Set by: OGK/ YBH

A test-tube containing a white solid, Q, is heated to 100°C. A colourless liquid is seen during the process.

What can we conclude from this observation?

- **A** Q boils at 100°C.
- **B** Q is soluble in water.
- **C** Q sublimes at 100°C.
- **D** Q has a melting point below 100°C.
- Which group consists of mixtures only?
 - A air, naphtha, steel
 - **B** crude oil, methane, vinegar
 - **C** francium, nickel, polyethene,
 - **D** glucose, limewater, limestone
- The table shows the melting and boiling points of four substances, A, B, C and D.

Which substance comprises particles that vibrate about their fixed points at room temperature?

melting point / °C	boiling point / °C
-110	-55
-10	62
-133	420
744	1214
	-110 -10 -133

A man claims to have discovered a new element. He decides that the element is a halogen and is positioned below a tatine in the Periodic Table based on four observations made.

Which observation about the new element is incorrect?

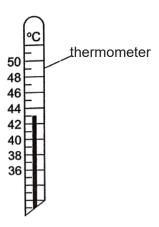
- **A** It displaces iodine from potassium iodide solution.
- **B** It has a higher melting and boiling point than astatine.
- C It is a black solid.
- **D** It is a poor electrical and heat conductor.

- 25 What ions are produced by iron(III) sulfate, Fe₂(SO₄)₃?
 - **A** Fe^{2+} and SO_4^{2-}
 - **B** Fe²⁺ and SO₄³⁻
 - \mathbf{C} Fe³⁺ and SO₄²⁻
 - **D** Fe³⁺ and SO₄³⁻
- The elements W, X and Y have consecutive, increasing atomic numbers. If element Y is a noble gas, what is the chemical nature and chemical formula of the compound formed between W and X?

	chemical nature	chemical formula
Α	covalent compound	WX
В	ionic compound	WX
С	covalent compound	WX ₂
D	ionic compound	W_2X

The table shows some properties of four elements.

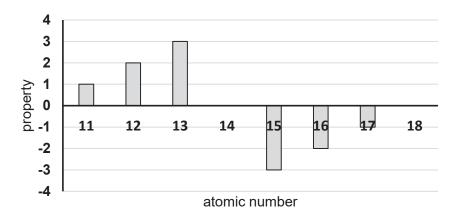
Which element is an alkali metal?


element	melting point	density	hardness	electrical conductivity
Α	low	low	soft	poor
В	low	low	soft	good
С	high	low	soft	good
D	high	high	hard	good

28 Sodium reacts with fluorine to form a white solid of sodium fluoride.

Which statement is true about sodium fluoride?

- A It cannot dissolve in water.
- **B** It conducts electricity when molten.
- **C** It has strong covalent bonds
- **D** It has weak ionic bonds throughout the solid.


A thermometer was placed in a mixture of substances at room temperature at the beginning of an experiment. The temperature is shown in the diagram below after a short while.

What conclusion can be drawn from the experiment?

- A Neutralisation has taken place.
- **B** The reaction is exothermic.
- **C** The mixture takes in heat from the surroundings.
- **D** The thermometer is a good heat conductor.

The diagram shows the trend of a property of the elements in Period 3 of the Periodic Table.

Which is the property?

- A charge of their ions
- **B** number of valence electrons
- **C** proton number
- D relative atomic mass

31 The diagram shows the structure of pure copper.

Which statement explains why pure copper sheets are easily bent.

- A The atoms have spaces for them to move in between when a force is applied.
- **B** The atoms are soft and easily bent.
- **C** The layers of atoms can slide past one another.
- **D** The atoms have weak intermolecular forces.
- Sulfur dioxide is a pollutant that dissolves in rainwater to produce acid rain. In order to remove the sulfur dioxide from the waste gases produced from a power station, the waste gases are first passed through a scrubber which showers water down on them. The mixture produced then flows out of the scrubber and is then mixed with a powdered compound to neutralize it.

Which compound will **not** be able to neutralize the aqueous mixture of sulfur dioxide?

- A calcium carbonate
- B carbon dioxide
- C magnesium oxide
- **D** zinc oxide
- 33 What is true about the substance that has the chemical formula, C₂H₅NHCOOH?
 - **A** It consists of 8 elements.
 - **B** It has 12 atoms within a molecule.
 - **C** It is a mixture.
 - **D** It is a covalent compound.
- 34 A polymer has a structure as shown.

Which statement is true about the polymer?

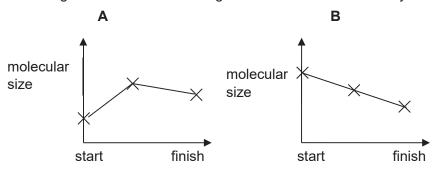
- $\boldsymbol{A}\quad It is formed from the polymerisation of <math display="inline">C_2H_4$ monomers.
- **B** It is likely a solid at room temperature and pressure.
- **C** It is soluble in water.
- **D** It turns bromine solution from brown to colourless.

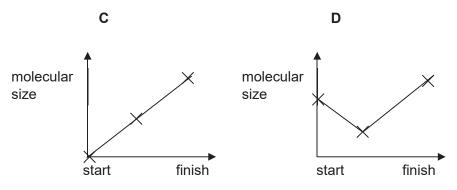
A mixture containing 2 moles of ethene and 7 moles of oxygen is ignited in a sealed container at 100 °C. The chemical equation representing the reaction is shown below.

$$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$$

What is the total number of moles of gases at the end of the reaction?

- A 4 moles
- **B** 8 moles
- C 9 moles
- **D** 13 moles
- Aqueous potassium iodide is a reducing agent. Potassium manganate(VII) solution is an oxidising agent.


If solution X shows no reaction with aqueous potassium iodide but turns acidified potassium manganate(VII) solution from purple to colourless, which statement is true of solution X?


- **A** X is a reducing agent.
- **B** X is an oxidising agent.
- **C** X is both an oxidising and a reducing agent.
- **D** X is neither an oxidising nor a reducing agent.
- Which statement about organic compounds is true?
 - **A** Alkanes burn in air to form oxygen and water.
 - **B** All alcohols have the same structural formula.
 - **C** Methane is a gas at room temperature.
 - **D** Organic compounds consist of hydrogen and carbon atoms only.
- Which statement correctly describes the use of each fraction obtained from the fractional distillation of petroleum?
 - A Bitumen is used to make polishes.
 - **B** Diesel is used to surface roads.
 - **C** Kerosene is used as a fuel for aeroplanes
 - **D** Petroleum gas is used as a petrochemical feedstock to make other substances.

- **39** Olive oil is described as polyunsaturated and is healthy for consumption.
 - What makes the oil polyunsaturated?
 - **A** It contains many C-C bonds.
 - **B** It contains many C-H bonds.
 - C It contains many C=C bonds.
 - **D** It contains many C=O bonds.
- 40 Poly(ethene) can be manufactured by the processes shown below.

Which diagram illustrates the change in molecular sizes correctly?

BLANK PAGE

Colours of Some Common Metal Hydroxides

calcium hydroxide	white					
copper(II) hydroxide	light blue					
iron(II) hydroxide	green					
iron(III) hydroxide	red-brown					
lead(II) hydroxide	white					
zinc hydroxide	white					

The Periodic Table of Elements

	0	2	무	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	눟	krypton 84	54	×	xenon	98	~	radon	ı				
					6	ட	fluorine 19	17	¹ O	chlorine 35,5	35	ä	bromine 80	53	П	iodine 127	85	¥	astatine	ı				
	<u></u>				8	0	ox/gen 16	16	တ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	8	Po	polonium	1	116	_	livermorium	ı
	^				7	z	nitrogen 14	15	Д	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Bi	bismuth	509				
	2				9	O	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	110 110	82	Pb	lead	207	114	FJ	flerovium	ı
	=				2	ω	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	딥	indium 115	81	Τl	thallium	204				
											30	Zu	zinc 65	48	B	cadmium 112	80	H	mercury	201	112	5	copernicium	ı
											59	ರ	copper 64	47	Ag	silver	79	Au	plog	197	111	Rg	roentgenium	i.
Group											28	Z	nickel 59	46	Pd	palladium	78	풉	platinum	195	110	Ds	darmstadtium	ı
Gro					20						27	රි	cobalt 59	45	뫈	rhodium 103	77	1	iridium	192	109	¥	meitnerium	ī
		-	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium	190	108	Ŧ	hassium	1
					3) 						25	Mn	manganese 55	43	Tc	technetium	75	Re	rhenium	186	107	뮵	pohrium	L
					number	pol	mass				24	ర	chromium 52	42	Mo	molybdenum	74	>	tungsten	184	106	Sg	seaborgium	L
				Key	(atomic) n	mic sym	name relative atomic r						vanadium 51										- 77	_
					proton	atc	relativ				22	F	titanium 48	40	Zr	zirconium 0.1	72	Ξ	hafnium	178	104	72	Rutherfordium	1
													scandium 45	1							89 - 103			
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Sa	calcium 40	38	ഗ്	strontium	26	Ba	barium	137	88	Ra	radium	1
	_						lithium 7																	

71	3	lutetium	175	103	ۓ	lawrencium	ı	
20	Ϋ́	ytterbium	173	102	ટ	nobelium	ı	
69	۳	thulium	169	101	Md	mendelevium	1	
89	ய்	erbium	167	100	Fn	fermium	1	
29	운	holmium	165	66	Es	einsteinium	1	
99	Dy	dysprosium	163	86	ざ	californium	1	
65	Tp	terbium	159	26	¥	berkelium	1	
64	P _S	gadolinium	157	96	E S	curium	1	
63	ш	europium	152	92	Am	americium	1	
62	Sm	samarium	150	94	Pu	plutonium	1	
61	Pm	promethium	-	93	ď	neptunium	1	
09	N	neodymium	144	92	>	uranium	238	
29	Ā	praseodymlum	141	91	Pa	protactinium	231	
28	Ce	cerium	140	06	드	thorium	232	
22	La	lanthanum	139	88	Ac	actinium	1	
lanthanoids				actinoids				

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

Class	Register Number	Name

BARTLEY SECONDARY SCHOOL

O-LEVEL PRELIMINARY EXAMINATIONS

SCIENCE 5076/03, 5078/03

Sec 4 Express / 5 Normal (Academic)

Paper 3 Chemistry 16 Sep 2019

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your class, register number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer any two questions.

Write your answers in the spaces provided on the question paper.

A copy of the Data Sheet is printed on page 15.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use					
Section A					
Section B					
Total					

This document consists of **15** printed pages and **1** blank page.

Set by: YBH [Turn over

Section A

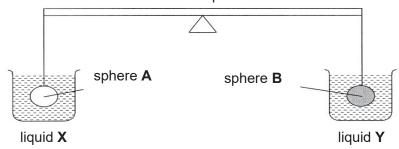
Answer all the questions in the spaces provided

1 The diagrams below show the particles present in three types of substances.

		••
substance A	substance B	substance C
Choose the substance, A , (a) breaks down chemicall	B or C , that shows the follow	ving properties.
(b) consists of molecules of	of a pure halogen	
(c) is a pure compound		

2 The table below shows the symbols of some isotopes of elements in the Periodic Table.

isotope name	carbon-13	fluorine-21	magnesium-25	neon-22	strontium-92	iodine-129
isotope symbol	¹³ ₆ C	²¹ ₉ F	²⁵ Mg	²² ₁₀ Ne	⁹² Sr	¹²⁹ I


[4]

(a)	What is a	ın <i>isotope</i> ?					
							[1]
(b)	Which tw	o isotopes sh	nown above h	nave the same nu	mber of neu	trons?	
				and			[1]

(d) shows variable boiling points

					[
(d)	Why	Why are magnesium and strontium placed in the same group in the Periodic Table?								
		[1]								
(e)	Whic	Which isotope belongs to a non-metal from Period 5? [1]								
(f)	Why	is neon-22 an	unreactive isotope?		l					
The	e table	e below shows	properties of two oxides	s, X ₂ O and Z O _{2.}						
_										
	form	ula of oxide	melting point / °C	boiling point / °C	solubility in water					
	form	ula of oxide X ₂ O	melting point / °C	boiling point / °C	•					
	form				water					
(a)		X ₂ O Z O ₂	722	1302 68	water soluble insoluble					
	Name	X ₂ O ZO ₂ e the type of characteristics are the type of the	722 -15 nemical bond within the pelieved to be carbon die	1302 68 substance X ₂ O.	water soluble insoluble					
	Name	X ₂ O ZO ₂ e the type of characteristics are the type of the	722 -15 nemical bond within the	1302 68 substance X ₂ O.	water soluble insoluble					
	Name	X ₂ O ZO ₂ e the type of characteristics are the type of the	722 -15 nemical bond within the pelieved to be carbon die	1302 68 substance X ₂ O.	water soluble insoluble					

Two spheres, **A** and **B**, of equal mass were hung on either side of a beam balance in a laboratory. Spheres **A** and **B** are made of either similar or different materials. Each sphere was immersed in two separate liquids **X** and **Y** in separate beakers at the same time for a fixed period. The spheres were then removed from both liquids and dripped dry while they were still hung on the beam balance. Observations about both spheres were made and recorded at the end of the experiment.

In the table below, circle the correct observation made at the end of each experiment.


metal A	metal B	liquid X	liquid Y	observation at end of experiment
iron	iron	water	water	sphere A heavier/ both have same mass / sphere B heavier
magnesium	magnesium	water	dilute hydrochloric acid	sphere A heavier/ both have same mass / sphere B heavier
iron	steel	dilute hydrochloric acid	dilute hydrochloric acid	sphere A heavier/ both have same mass / sphere B heavier
zinc	zinc	dilute hydrochloric acid	water	sphere A heavier/ both have same mass / sphere B heavier
copper	zinc	dilute hydrochloric acid	dilute hydrochloric acid	sphere A heavier/ both have same mass / sphere B heavier
carbon	carbon	dilute hydrochloric acid	water	sphere A heavier/ both have same mass / sphere B heavier

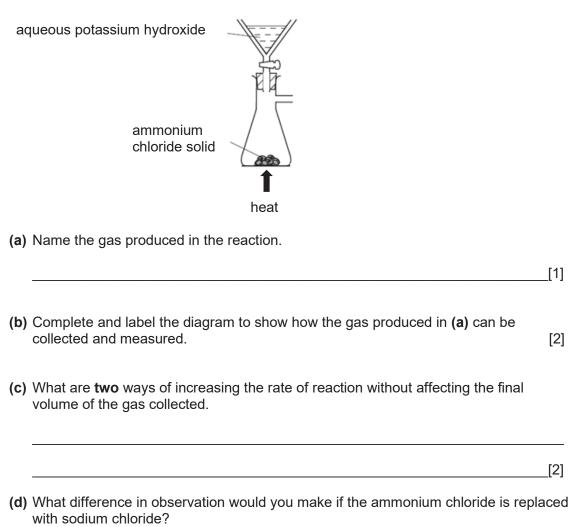
The table shows the number of protons, electrons and neutrons in seven particles, A, B,C. D, E, F and G.

	number							
particles	electrons	neutrons	protons					
Α	12	12	12					
В	15	16	15					
С	17	18	17					
D	17	20	17					
E	18	16	16					
F	18	22	18					
G	18	20	20					

(a)	(i)	Identify the two particles which have the same mass number.	
		and	_[1]
	(ii)	Do the particles named in (i) belong to the same element? Explain your answ	ver.
			_[1]
(b)	lde	entify the particle that belongs to a Group 0 element.	
			_[1]
(c)	Wh	nich particle has a charge of +2?	
			[1

6 The figure below describes reactions involving carbon dioxide and a black solid **Q**.

Q	
R	
S	
U	
v	


[6]

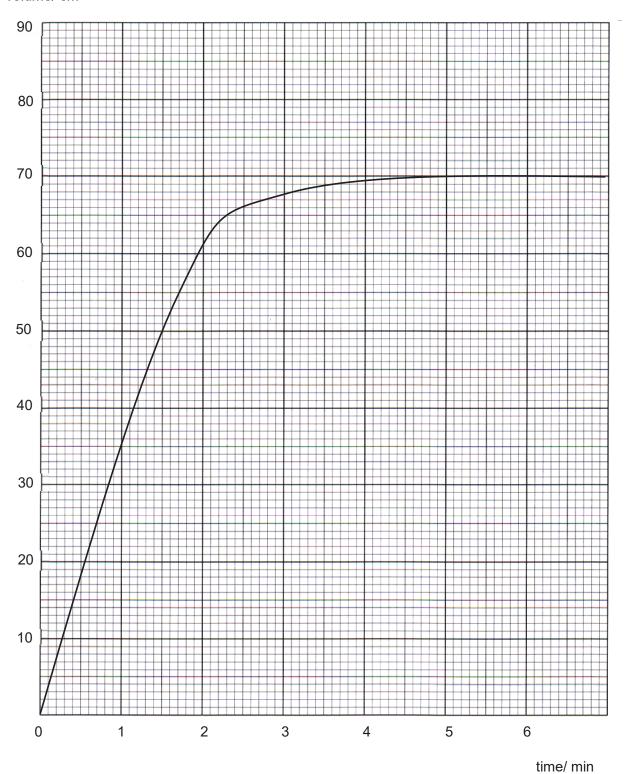
(b) Instead of using aqueous sodium hydroxide, name another chemical substance you can use to confirm the identity of the cation of salt ${\bf U}$.

_____[1]

		te the ionic equation representing the reaction between salt U and lium hydroxide solution to form the green precipitate, W .	
-			[
		cane juice is used for the manufacture of ethanol which can be consumed as the ethanol can also be concentrated to make fuel for use in vehicles.	
(a)	Wł	nat physical process is used to increase the concentration of ethanol?	
_			
(b) (i)	Name the process used to manufacture ethanol from cane sugar.	
((ii)	State two conditions required for the process named in (b)(i) .	
(c) [Ora	w the structural formula of ethanol.	
(d) ((i)	Explain why wine tastes sour if it is left uncovered for many days.	
			_
			_
((ii)	Describe a test to verify that the change in (d)(i) has taken place.	
			_

8 Excess aqueous potassium hydroxide is added dropwise to a lump of ammonium chloride solid in a conical flask as shown in the diagram below.

[1]


Section B

Answer any **two** questions in this section.

Write your answers in the spaces provided.

9	10 g of calcium carbonate was added to 1 mol/ dm³ hydrochloric acid in a conical flask. The carbon dioxide gas released was collected in a measuring cylinder using the downward displacement of water method.
	(a) Write a balanced chemical equation that represents the reaction between hydrochloric acid and calcium carbonate, including the state symbols.
	[2
	(b) (i) Calculate the number of moles in 10 g of calcium carbonate.
	number of moles of calcium carbonate = [1
	(ii) Calculate the number of moles of the hydrochloric acid that reacted completely with 10 g of calcium carbonate.
	number of moles of hydrochloric acid =[1
	(iii) Calculate the volume of the 1 mol/ dm³ hydrochloric acid that reacted completely with 10 g of calcium carbonate.
	volume of hydrochloric acid =[1]
	(c) The experiment was repeated using an excess of a different amount of calcium carbonate in the same 1 mol/dm³ hydrochloric acid. The volume of carbon dioxide gas produced was measured over a period of time.
	The graph on page 10 shows the volume of carbon dioxide gas produced at regular time intervals.
	Study the graph and answer the questions that follow.

	(i)	What volume of carbon dioxide measured at room temperature and pressure formed at the end of the reaction?	was
			_[1]
	(ii)	When did the reaction stop?	
			_[1]
	(iii))What was the average speed of reaction at the first 1.5 minutes?	
	(iv	Using your understanding of the Kinetic Particle Theory, explain why the read slowed down towards the end of the experiment.	_[1] ction
			_[2]
10		r reacts with dilue nitric acid to form the products as shown in the chemical on below.	
		$Cu(s) + 4HNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2NO_2(g) + 2H_2O(l)$	
	(a) (i)	State the oxidation number of copper before the reaction occurs.	
			_[1]
	(ii)	Calculate the oxidation number of copper in copper(II) nitrate, Cu(NO ₃) ₂ .	
	(iii	Is copper oxidised, reduced, or neither oxidised nor reduced? Explain your answer using oxidation numbers.	_[1]
			_[1]
	` '	scribe what is observed if a sample of copper(II) nitrate solution is added to cess aqueous ammonia.	
			_[1]

(c)	Copper(II) nitrate crystals,	$Cu(NO_3)_2$, ca	ın also be	e prepared	in the	laboratory	using
	an insoluble base mixed w	ith dilute nitric	acid.				

(i)	Name a suitable insoluble base that can be used for this reaction.	
		[1]
(ii)	Describe how a sample of dry pure copper(II) nitrate crystals can be	

11 Perfume is a mixture of essential oils dissolved in a solvent. One of the essential oils used in making perfume is called myrcene.

The structural formula of a molecule of myrcene is shown below.

(a) Explain why myrcene is a hydrocarbon.

		[4]
		[!]

- (b) An experiment is carried out using two samples of myrcene.
 - (i) The first sample is tested with a few drops of aqueous bromine.

What change if any, will be observed?

[1]

	(ii)	Hydrogen gas was passed through the second sample of myrcene in an addreaction before being tested with aqueous bromine.	dition
		What change if any, will be observed?	
			[1]
	(iii)	Explain the difference in observations between both samples.	
			[1]
(c)	Exp	plain why myrcene is a liquid and not a solid at room temperature.	
			[2]
(d)	Му	rcene can be cracked to form smaller molecules.	
	(i)	State the conditions for cracking.	
			[1]
	(ii)	Name an element that may be obtained from the cracking process.	
			[1]
	(iii)	The chemical equation below shows an example of a cracking process of myrcene.	
		$C_{10}H_{16} \rightarrow X + C_8H_{12}$	

(e) The structural formula of an addition polymer is shown below.

Draw the structure of its monomer.

Name substance X.

_[1]

BLANK PAGE

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

	0	2 He helium	₽;	Se	20	18	Ā	argon 40	36	궃	kryptor 84	24	×e	xenon	2 8	용	radon				
	IIN		σı	ш.	19	17	ľ	chlorine 35.5	35	ä	bromine 80	53	Н	iodine 427	121	3₹	astatine _				
	N		ω (0	oxygen 16	16	တ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium	07	P 8	polonium	116	^	livermorium	ı
	^		7	Z,	nitrogen 14	15	Д	phosphorus 31	33	As	arsenic 75	51	Sb	antimony	83	<u> </u>	bismuth 209				
	Ν		9	ပ -	carbon 12	14	S	silicon 28	32	ge	germanium 73	20	Sn	₽ Ç	82	Pb	lead 207	114	F/	flerovium	Į.
	=		S (മ	11	13	Al	aluminium 27			55000				\perp			┺			
									30	Zu	zinc 65	48	8	cadmium	80	유무	mercury 201	112	5	copernicium	E
									29	ರ	copper 64	47	Ag	silver	200	An	plog 197	111	Rg	roentgenium	Ĺ
Group									28	Z	nickel 59	46	Pd	palladium	78	2 2	platinum 195	110	Ds	darmstadtium	1
Gre									27	ර	cobalt 59	45	뫈	rhodium	201	: <u>1</u>	midini 192	109	M	meitnerium	1
		1 H hydrogen							56	Fe	iron 56	44	R	ruthenium	76	SO	190	108	£	hassium	1
									25	Mn	manganese 55	43	T _C	technetium	75	Re	rhenium 186	107	뮵	pohrium	ı
			roton (atomic) number	po	mass				24	ပ်	chromium 52	42	Mo	molybdenum	200	! >	tungsten 184	106	Sg	seaborgium	1
		Key	proton (atomic) r	omic sym	name relative atomic mass				23	>	vanadium 51	41	qN	miopin	73 93	Ta	tantalum 181	105	Op	dubnium	1
			proton	atc	relati				22	F	titanium 48	40	Zr	zirconium	7.5	7 T	hafnium 178	104	¥	Rutherfordium	1.
9											scandium 45							89 - 103			
	=		4 (Be	6 6	12	Mg	magnesium 24	20	Ca	calcium 40	38	જ	strontium	26	Ba	barium 137	88	Ra	radium	1
	_							sodium 23	1						- 1			1			-1

_	3	26	09	61	62	63	64	65	99	29	89	69	0/	71
בם	Ce	P	PN	Pm	Sm	Ē	PS	Tp	ó	운	ŭ	۳	Υp	3
lanthanum	cerium	praseodymium r	mnimypoer	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	Intetium
139	140	141	144	ı	150	152	157	159	163	165	167	169	173	175
actinoids 89	06	91	92	93	94	92	96	26	86	66	100	101	102	103
Ac	Ħ	Pa	>	d	Pu	Am	CH	š	ರ	Es	F	Md	2	ۓ
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	perkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
1	232	231	238	1	1	1	1	1	1	1	1	1	1	ı

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Marking Scheme_v1

(Erratum: v1 used in Chem/Bio and Bio/Chem, not the final edition of P1)

BSS/ 2019 Preliminary Examination/ 4E/5N ScChem

Paper 1

1 D	2 A	3 D	4 A	5 C	6 C	7 B	8 B	9 B	10 A
11 C	12 B	13 D	14 B	15 C	16 A	17 C	18 C	19 C	20 D

Marking Scheme

BSS/ 2019 Preliminary Examination/ 4E/5N ScChem

Paper 3, Section A

- 1a B [1]
- b A [1]
- c B [1]
- d C [1]
- 2a It is an atom of an element with the same proton number but **different nu**mber of neutrons [1]
- b fluorine -21 and neon-22; both correct [1]
- c ${}^{12}_{6}$ C [1]
- d Both have two valence electrons [1]
- e iodine-129 [1] ; don't penalise if only 'iodine' written
- f neon has a <u>full</u> (or complete) structure on the <u>outer electron shell</u> that makes it <u>stable</u> [1]
- 3a ionic bond [1]
- bi pass the gas into limewater[1]; a white ppt will form [1]
- ii correct bonding between atoms of one carbon and two oxygen elements [1] correct electronic configurations for 2 oxygen and 1 carbon atoms [1]

4.

iron	steel	dilute hydrochloric acid	dilute hydrochloric acid	sphere A heavier/ both have same mass / sphere B heavier
zinc	zinc	dilute hydrochloric acid	water	sphere A heavier/ both have same mass / sphere B heavier
copper	zinc	dilute hydrochloric acid	dilute hydrochloric acid	sphere A heavier/ both have same mass / sphere B heavier
carbon	carbon	dilute hydrochloric acid	water	sphere A heavier/ both have same mass / sphere B heavier

[4]

5ai F and G [1]

ii no, because different proton number [1]

b F [1]

c G [1]

6a Q: carbon

R: carbon monoxide

S: iron

T: sulfuric acid

U: iron(II) sulfate

V: barium sulfate [1] each

b.` aqueous ammonia or ammonia solution [1]

c. Fe^{2+} (aq) + 2OH⁻ (aq) \rightarrow Fe(OH)₂ (s) [1] [zero if states not given]

7a fractional distillation [1]

bi fermentation [1]

ii 37°C; yeast [1]

- correct structural formula of ethanol [1] С di ethanol in wine changes to form ethanoic acid. [1] oxidation of ethanol occurs in the presence of air and bacteria [1] ii Put litmus paper (or Universal indicator) [1] Blue litmus turns red [1] (UI turns from green to yellow) 8a ammonia [1] b labelled diagram of gas syringe [1] Diagram showing tight-fitting plunger that could move within graduated vessel [1] raise temperature; reduce size of ammonium chloride solid; increase concentration of С potassium hydroxide [2] for 3 correct; [1] for 1 or 2 correct no reaction; or no gas is formed [1] d Section B \rightarrow CaC l_2 (aq) + CO₂ (g) + H₂O (l_1) 9a 2HC/(aq) + CaCO₃ (s) Correct symbols; balanced equation; states [2] for all 3 correct; [1] for 2 or less b (i) number of mole of CaCO₃ = 10g/100= 0.1 mol [1] (ii) number of mol of HC1 = 0.2 mol[1]; allow ecf from (i) (iii) volume of HC/ = 0.2 / 1= 0.2 dm³ [1]; -1m for no unit; allow ecf from (ii) [1]; -1m for no unit ci 70 cm³ between 4.6 and 4.8 min ii $50/1.5 = 33.33 \text{ cm}^3$ iii [1] $= 33.3 \text{ cm}^3/\text{ min } [3\text{sf}]$
- same volume [1] less effective collisions taking place per unit time [1] 10a oxidation number of copper was zero before reaction [1]

concentration of the acid decreases as the acid is used up/ less particles within the

- (i)
 - oxidation number of copper was +2 after reaction (ii) [1]
 - copper is oxidised as its oxidation number increases. (iii) [1]
- b a dark blue solution is seen [1]

İ۷

ci	copper (II) oxide; copper (II) hydroxide [1]						
ii	-add excess base to nitric acid -filter to remove excess base as residue -heat to saturation point -cool -decant/ filter / scoop up crystals with filter papers - dry between filter papers [5] for any 5 ans; give marks even if prior steps are skipped						
11a bi ii iii	It is a compound which consists of <u>carbon and hydrogen atoms only</u> brown aqueous bromine becomes colourless [1] bromine remains brown [1] sample one is an alkene but sample two is an alkane [1]						
С	myrcene comprises non-metals only and so it is a <u>covalent</u> compound. [1] presence of <u>weak intermolecular forces of attraction</u> [1] little energy required; low melting point and therefore a liquid at room temp [1]						
di ii iii iv	high temp; aluminium oxide or silicon dioxide as catalyst [1] hydrogen [1] ethene [1]						
	н сі						
	C = C						
	I I						
	CH₃ H						