

YISHUN SECONDARY SCHOOL

We Seek, We Strive, We Soar

PRELIMINARY EXAMINATION

Name:	Reg. No:	Class:
Secondary 4 Express		Date: 29 August 2019
CHEMISTRY (6092/02)		
PAPER 2		Duration: 1 hour 45 minutes
MAX MARKS: 80		
READ THESE INSTRUCTIONS FIRST Do not open this booklet until you are told to do	SO.	
Write in dark blue or black pen.		
You may use an HB pencil for any diagrams or g	graphs.	
Do not use staples, paper clips, glue or correction	n fluid.	

Section A

Answer all the questions in the spaces provided.

Section B

Answer all **three** questions in this section, the last question is in the form either/or.

Answer all the questions in the spaces provided.

At the end of the examination, fasten all your work securely together.

The number of marks is given in bracket [] at the end of each question or part question.

The use of an approved scientific calculator is expected, where appropriate.

The Periodic Table is on page 17.

For Examiner's Use Only					
PA	PER TWO				
A		50			
B8		10			
В9		10			
B10		10			
Total		80			

Section A: Structured Questions [50 marks] Answer ALL questions in the spaces provided.

A1 The figure below shows the reaction scheme of an orange metal oxide, **A**, which undergoes a series of reactions.

A2 Superglue is a very strong adhesive used to fasten materials, such as wood, together.

The active ingredient in superglue is methyl cyanopropenoate, commonly known as methyl cyanoacrylate. The structure of methyl cyanopropenoate is shown below.

$$CH_2 = C - C - O - CH_3$$

$$CN$$

methyl cyanopropenoate

Superglue polymerises when exposed to moisture in the air. This causes the glue to set.

(a) Draw the structural formulae of the two functional groups present in methyl cyanopropenoate. Name these two functional groups.

(b) What type of polymerisation does methyl cyanopropenoate undergo when it forms superglue?

[2]

(c) Draw the structural formula of the polymer formed, showing two repeat units.

		[1]
	(d) Ot	her than superglue, suggest another name for the polymer formed in (c) .
		[1]
	(e) (i)	A sample of methyl cyanopropenoate is shaken with bromine water. Describe what you would observe.
		[2]
	(ii)	What type of reaction has occurred in (e)(i)?
		[1]
		[total: 8]
Α3		e with kidney problems are advised against eating starfruit as it contains a significant amount lic acid.
	The co	oncentration of oxalic acid in starfruit is estimated to be at 0.020 mol/dm ³ .
		cid concentration in starfruit can be determined by performing an acid-base titration with n hydroxide solution.
	Assum	ne that the oxalic acid found in starfruit is dibasic and can be represented by H_2A .
		ite a balanced chemical equation, with state symbols, for the reaction between oxalic acid d sodium hydroxide.
		[2]
		student suggested that 25.0 cm³ of starfruit juice should be pipetted into a conical flask and ated against 0.050 mol/dm³ sodium hydroxide solution.
		sed on the information provided, calculate the maximum volume of sodium hydroxide solution quired for complete neutralisation.
		maximum volume of sodium hydroxide solution required = cm ³ [2]

nydrogen by ma	•	on, oxygen and hy	drogen and it co	ntains 26.7 % carbon a	nd 2.20 %
, , ,		rmula of oxalic aci	d.		
			emr	nirical formula:	[2]
(ii) The relative	molocular mas	es of ovalic acid is	-	omidal romidia.	····· [-]
. ,					
			mole	ecular formula:	[1]
					TIGITID OF
			maximum numb	er of servings =	[1]
		1	maximum numb	er of servings =	[1] [total: 8]
The table show	s some informa			-	
The table show	s some informa			of alcohol and ether.	
		ation about two ho	mologous series	-	
name of	formula of	ntion about two ho	mologous series	of alcohol and ether.	
name of alcohol	formula of alcohol	ntion about two ho number of C atoms	mologous series formula of ether	of alcohol and ether.	
name of alcohol ethanol	formula of alcohol C ₂ H ₅ OH	number of C atoms	mologous series formula of ether CH ₃ OCH ₃	name of ether methoxymethane	
name of alcohol ethanol propanol	formula of alcohol C ₂ H ₅ OH C ₃ H ₇ OH	number of C atoms 2	formula of ether CH ₃ OCH ₃ CH ₃ OC ₂ H ₅	name of ether methoxymethane methoxyethane	
name of alcohol ethanol propanol butanol pentanol	formula of alcohol C ₂ H ₅ OH C ₃ H ₇ OH C ₄ H ₉ OH C ₅ H ₁₁ OH	number of C atoms 2 3 4	formula of ether CH ₃ OCH ₃ CH ₃ OC ₂ H ₅ CH ₃ OC ₃ H ₇	name of ether methoxymethane methoxyethane methoxypropane	
name of alcohol ethanol propanol butanol pentanol	formula of alcohol C_2H_5OH C_3H_7OH C_4H_9OH $C_5H_{11}OH$ name and form	number of C atoms 2 3 4 5 nula of the ether the	formula of ether CH ₃ OCH ₃ CH ₃ OC ₂ H ₅ CH ₃ OC ₃ H ₇	name of ether methoxymethane methoxyethane methoxypropane	
name of alcohol ethanol propanol butanol pentanol (i) Deduce the name:	formula of alcohol C ₂ H ₅ OH C ₃ H ₇ OH C ₄ H ₉ OH C ₅ H ₁₁ OH	number of C atoms 2 3 4 5 nula of the ether the	formula of ether CH ₃ OCH ₃ CH ₃ OC ₂ H ₅ CH ₃ OC ₃ H ₇	name of ether methoxymethane methoxyethane methoxypropane arbon atoms.	[total: 8]
name of alcohol ethanol propanol butanol pentanol (i) Deduce the name:	formula of alcohol C ₂ H ₅ OH C ₃ H ₇ OH C ₄ H ₉ OH C ₅ H ₁₁ OH	number of C atoms 2 3 4 5 nula of the ether the	formula of ether CH ₃ OCH ₃ CH ₃ OC ₂ H ₅ CH ₃ OC ₃ H ₇	name of ether methoxymethane methoxyethane methoxypropane	[total: 8]
name of alcohol ethanol propanol butanol pentanol (i) Deduce the name: formula:	formula of alcohol C ₂ H ₅ OH C ₃ H ₇ OH C ₄ H ₉ OH C ₅ H ₁₁ OH	number of C atoms 2 3 4 5 nula of the ether the	formula of ether CH ₃ OCH ₃ CH ₃ OC ₂ H ₅ CH ₃ OC ₃ H ₇	name of ether methoxymethane methoxyethane methoxypropane arbon atoms.	[total: 8]
	(ii) The relative Determine t A patient was a	(ii) The relative molecular mas Determine the molecular fo A patient was advised by the o	(ii) The relative molecular mass of oxalic acid is Determine the molecular formula of oxalic acid is A patient was advised by the doctor to consume a typical serving of starfruit contains 0.00011 moof servings of starfruit the patient can eat in a da	Determine the molecular mass of oxalic acid is 90. Determine the molecular formula of oxalic acid. molecular formula of oxalic acid. molecular formula of oxalic acid. a patient was advised by the doctor to consume not more than 0 a typical serving of starfruit contains 0.00011 mol of oxalic acid, of servings of starfruit the patient can eat in a day.	empirical formula: (ii) The relative molecular mass of oxalic acid is 90. Determine the molecular formula of oxalic acid. molecular formula: A patient was advised by the doctor to consume not more than 0.05 g of oxalic acid pelatypical serving of starfruit contains 0.00011 mol of oxalic acid, calculate the maximum

.....[1]

(iii) Hence, calculate the relative molecular mass of the ether that contains 2	ns 20	u carbon :	atoms.
---	-------	------------	--------

M٠	of	ether	=			[1	l
IVIT	OI.	CHICL	_	 	 	 	

(b) The table below shows some information about another homologous series of organic compounds called aldehydes. The functional group of the aldehydes is:

name	molecular formula	boiling point /°C
methanal	НСНО	– 19
ethanal	CH₃CHO	20
propanal	C ₂ H ₅ CHO	49
pentanal	C ₄ H ₉ CHO	103

(i)	Use the information in the table to give two pieces of evidence that suggest that the aldehydes are a homologous series.
	[2]
(ii)	Deduce the name of the aldehyde that contains 4 carbon atoms and predict its boiling point.
	name:
	predicted boiling point:[2]
	[total: 8]

A5 The relative positions of the elements rubidium (Rb), beryllium (Be) and bismuth (Bi) in the reactivity series are shown in the table below.

Position in the reactivity series
(highest to lowest)
Rubidium
Sodium
Magnesium
Beryllium
Iron
Hydrogen
Bismuth
Copper
Silver

You may assume that these elements do not show variable valencies.

	(a)	An unknown photograph showing specks of silvery deposits with the caption
		"Pure rubidium found on a tiny island in the Pacific Ocean"
		was posted in the early morning of August 16, 2016, on social media. The post has since gone viral. Using the information above and your knowledge, discuss the validity of this post.
		[2]
	(b)	Predict, with reasons, the reactions of beryllium with cold water and steam.
		[3]
	(c)	Suggest a suitable method to extract bismuth from its ore.
		[1]
		[total: 6]
A 6	whi	e important property of a rocket fuel mixture is the large volume of gaseous products formed ich provide thrust. Hydrazine, N_2H_4 , is often used as a rocket fuel. The combination of hydrazine h oxygen is represented by the equation:
		$N_2H_4(g) + O_2(g) \rightarrow N_2(g) + 2H_2O(g)$ $\Delta H = -585 \text{ kJ/mol}$
	(a)	Explain if the reaction is a redox reaction.
		[2]
		[2]
	(b)	Hydrazine can also react with fluorine to produce gaseous nitrogen and hydrogen fluoride. The amount of energy produced is 1179 kJ/mol. Write a balanced equation for this reaction, including the state symbols and the enthalpy change.
		[2]
	(c)	Suggest, giving two reasons based on the information given, whether a mixture of hydrazine and oxygen is a better rocket fuel than a mixture of hydrazine and fluorine.
		[2]

••••						
						[total
	es are variants ing isotopes.	of a particular	chemical element	and most element	s have several r	natura
	fine the term 'is	sotopes'.				
(,						
• • • •		•••••				
••••						•••••
			are isotopes of one	another.		
Us	ing this informa	ition, complete t	he table below.			
	name	formula	number of protons	number of neutrons	number of electrons	
h	ydrogen atom	1 _H	1	neutions	1	
(deuterium ion	2 _H +			0	
	tritium ion			2	2	
			1			_
	e table below g rmanium, Ge.	ives the relative	abundance of eac	ch isotope in a ma	ss spectrum of s	ample
	ma	ISS	70	72	74	
	relative abu	indance (%)	24.4	32.4	43.2	
l lo	a the data in th	a table to coloule	ata the relative etc.	mia mass (A) of th	nia comple of gor	mani
US	e the data in th	e table to calcula	ate the relative ato	THE MASS (A _r) of the	iis sample of ger	Шапп
				A _r of germani	um =	
	. 4	nted. "Isotopes	of an element shoเ		me chemical pro	pertie
			Sive a reason for y	our anewer		

Section B: Essay Questions [30 marks] Question B8 and B9 are compulsory. Question B10 is an Either/Or.

B8 Changing of variables in reversible reactions

Most chemical reactions only proceed in one direction. But some reactions can be reversed. They are known as reversible reactions.

In reversible reactions, the forward and backward reactions take place at the same time. At the end of the reaction, a mixture of reactants and products is present.

When the forward and backward reactions become equal in speed, the mixture is said to be in equilibrium. At equilibrium, the forward and backward reactions do not stop.

To alter the yield of products in a reversible reaction, we can change the experimental conditions such as temperature and pressure. The change in the yield of products in a reversible reaction follows the *Le Chatelier's Principle*.

According to *Le Chatelier's Principle*, the reaction will shift either to the left towards the backward reaction or to the right towards the forward reaction to reduce the effect of the new condition.

Changing temperature

When hydrogen iodide, HI, is heated in a closed tube, the following equilibrium is established.

Reaction 1
$$2HI(g) \rightleftharpoons H_2(g) + I_2(g) \qquad \Delta H = +9.6 \text{ kJ/mol}$$

The equation shows the forward reaction producing hydrogen and iodine is endothermic. An increase in temperature shifts the reaction to the right to reduce the temperature. This increase the yield of hydrogen and iodine.

The table shows the concentrations of HI(g) and $I_2(g)$ in the equilibrium mixture at 2 different temperatures when the same concentration of HI(g) was injected into the tube at the start of the experiment.

substance concentration in mol/dm ³		concentration in mol/dm ³
	at 25 °C	at 450 °C
HI(g)	0.94	0.79
H ₂ (g)	0.033	0.11
$I_2(a)$	0.033	0.11

Changing pressure

Changing pressure affects reactions involving gases. However, there must be different number of gas molecules on either side of the equation.

The greater the number of gas molecules in the same volume, the greater the pressure the gas exerts.

Reaction 2
$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -197 \text{ kJ/mol}$

The equation shows a reaction used to change sulfur dioxide into sulfur trioxide. An increase in pressure shifts the reaction to the right. As there are more molecules on the left side of the equation, the reaction shifts to the right side with lesser number of molecules to reduce the pressure.

The conditions for reaction 2 are:

Pressure: atmospheric pressure Catalyst: vanadium(V) oxide

Temperature: 450 °C

The conditions chosen are a compromise between speed of reaction and yield of SO_3 . Using these conditions, the yield of SO_3 is 95%.

(a) A change in temperature or pressure does not affect the yield for the reaction between sodiur hydroxide and hydrochloric acid to form sodium chloride. Suggest why.	n
	1]
(b) Explain the differences in the concentrations of reactant and products at 25 °C and 450 °C i reaction 1.	n
[
(c) With reference to the table, state the concentration of HI(g) injected into the tube at the start of the experiment, giving your answer to 3 significant figures.	_
[1]
(d) Suggest why reaction 2 is carried out at 450 °C, and not at a higher or lower temperature.	
[2]
(e) Explain why reaction 2 is carried out at atmospheric pressure even though an increase in pressure shifts the position of the equilibrium further to the right.	n
[1]

(f) The following graphs show how the percentage of products of a reversible reaction at equilibrium could vary with pressure.

Match reaction 1 and reaction 2 to a graph each. Give a reason for your choice.

.....[3]

[total: 10]

	Sition Cicincia. It is i		process from nickel($ m II$) sulfide	Nis									
Stage 3 – impı	el(II) oxide is heated ure nickel is reacted	ed in air to form nickel(II) oxided with carbon to give impure nickel with carbon monoxide to make ecomposed to give pure nickel	e and sulfur dioxide ickel e nickel tetracarbonyl, Ni(CC										
•	•	uation for the reaction in stage											
		_		_									
				[
(ii) Calcula in air.	ate the mass of sulfu	dioxide that is formed when 1	82 kg of nickel(II) sulfide is h	eate									
		mass of sulfu	ır dioxide =	kg [
h) Nickel tetrs	acarbonyl is a liquid y	with a boiling point of 43 °C.											
		• .	raintal tatus and navel										
Suggest, w	ith a reason, the typ	e of structure and bonding in	nickei tetracarbonyi.										
		nts of three metals were adde											
	eriment, small amou The results are show												
•	The results are show aqueous zinc	wn in the table. aqueous nickel(II)	ed to three aqueous metal r aqueous copper(II)										
	The results are show	aqueous nickel(II) nitrate	ed to three aqueous metal r aqueous copper(II) nitrate										
solutions.	The results are show aqueous zinc nitrate	aqueous nickel(II) nitrate green solution turn	aqueous copper(II) nitrate blue solution turn										
	The results are show aqueous zinc	aqueous nickel(II) nitrate	ed to three aqueous metal r aqueous copper(II) nitrate										
solutions.	The results are show aqueous zinc nitrate	aqueous nickel(II) nitrate green solution turn colourless and zinc	aqueous copper(II) nitrate blue solution turn colourless and zinc										
zinc	The results are show aqueous zinc nitrate	aqueous nickel(II) nitrate green solution turn colourless and zinc coated with a grey solid	aqueous copper(II) nitrate blue solution turn colourless and zinc										
zinc nickel copper	aqueous zinc nitrate no reaction no reaction	aqueous nickel(II) nitrate green solution turn colourless and zinc coated with a grey solid no reaction	aqueous copper(II) nitrate blue solution turn colourless and zinc coated with a pink solid no reaction	nitra									
zinc nickel copper Predict the nitrate.	aqueous zinc nitrate no reaction no reaction observations when reactions	aqueous nickel(II) nitrate green solution turn colourless and zinc coated with a grey solid no reaction no reaction	aqueous copper(II) nitrate blue solution turn colourless and zinc coated with a pink solid no reaction utions of zinc nitrate and copp	nitra									
zinc nickel copper Predict the nitrate.	aqueous zinc nitrate no reaction no reaction observations when reactions	aqueous nickel(II) nitrate green solution turn colourless and zinc coated with a grey solid no reaction no reaction	aqueous copper(II) nitrate blue solution turn colourless and zinc coated with a pink solid no reaction utions of zinc nitrate and copp	nitra									
zinc nickel copper Predict the nitrate.	aqueous zinc nitrate no reaction no reaction observations when reactions	aqueous nickel(II) nitrate green solution turn colourless and zinc coated with a grey solid no reaction no reaction	aqueous copper(II) nitrate blue solution turn colourless and zinc coated with a pink solid no reaction utions of zinc nitrate and copp	nitra									
zinc nickel copper Predict the nitrate.	aqueous zinc nitrate no reaction no reaction observations when reactions	aqueous nickel(II) nitrate green solution turn colourless and zinc coated with a grey solid no reaction no reaction	aqueous copper(II) nitrate blue solution turn colourless and zinc coated with a pink solid no reaction utions of zinc nitrate and copp	nitra									

(d)	Explain why this 4-stage process cannot be used to manufacture magnesium.	
		[2]
	[total:	10]

Either

B10

A student carried out two separate reactions between 0.488 g of zinc and two acids, hydrochloric acid and sulfuric acid. The volume and concentration of the acids used were both 20.0 cm³ and 2.00 mol/dm³. The curves **A** and **B** shown in the graph below show the results of the reactions.

He carried out a third reaction with **C** with 20.0 cm³ of a 2.00 mol/dm³ acid, but forgot to weigh the mass of zinc as well as take note of which acid, hydrochloric acid or sulfuric acid, was used.

(a)	Explain, with relevant calculations, why the same volume of gas was produced for both curves ${\bf A}$ and ${\bf B}$.
	[3]
(b)	Between curves ${\bf A}$ and ${\bf B}$, identify the curve for the reaction that used sulfuric acid. Explain your choice.
(0)	In experiment C identify the said used and calculate the mass of zing the student had used
(0)	In experiment C , identify the acid used and calculate the mass of zinc the student had used.
	ici

(d)	cor	e student repeated experiment ${\bf C}$ using the same mass of zinc and the same volume necentration of the acid, but this time, he added in a small amount of copper(II) sulfate crysthe reaction mixture.	
		noted that the effervescence was more vigourous and a brown deposit was formed. ume of hydrogen collected was slightly less than in experiment C .	The
	(i)	Explain why less hydrogen was collected.	
			.[2]
	(ii)	The student concluded that copper(II) sulfate acted as a catalyst.	
		Comment, with a reason, whether the student's conclusion was right or wrong.	
			.[1]

[total: 10]

Or

B10

Graph 1 shows the changes in pH level when 20.0 cm³ of ethanoic acid (CH₃COOH) is titrated with 0.1 mol/dm³ of sodium hydroxide.

The endpoint of a titration is reached when a 'step' occurs. At this point, all the acid has been fully neutralised.

(a) What is the name and formula of the salt formed in the titratio	n?
---	----

.....[1]

(b) Using information from **Graph 1**, calculate the concentration of the ethanoic acid used in the reaction.

concentration of ethanoic acid =[2]

(c) An indicator changes colour when the endpoint of a titration is reached. The table below shows the colours of some indicators at different pH values. The best indicator for a titration gives a distinct colour change when a 'step' occurs.

indicator	low pH	pH range where indicator changes colour	high pH
methyl orange	red	3.1 to 4.4	yellow
thymolphthalein	colourless	9.3 to 10.5	blue
phenolphthalein	colourless	8.3 to 10.0	pink

Using information from Graph 1	and the table,	explain which	indicator will	not be	suitable for
use when titrating ethanoic acid	with sodium hy	droxide.			

	[2]

(d) The titration was repeated using the same concentration and volume of hydrochloric acid instead of ethanoic acid, with all other variables remaining constant. **Graph 2** shows the changes in pH level for this reaction.

(i)	Explain how and why the time taken for the endpoint to be reached is different from that in the experiment using ethanoic acid.

(ii) Sketch on **Graph 2**, the graph you would obtain if dilute sulfuric acid of the same concentration and volume is used instead.

[1]

[total: 10]

End of Section B

DATA SHEET
The Periodic Table of the Elements

	0	₽ ₽	Helium	20	Ne	Neon	10	40	Ar	Argon	18	84	궃	Krypton	36	131	Xe	Xenon	54		Ru	Radon	98				
	IIA			19	ш	Fluorine	6	35.5	7	Chlorine	17	80	ģ	Bromine	35	127	Ι	lodine	53	-	At	_		4			
	I			_	0						_	\vdash				_	Te		_		Ъ			1			
	>				z				_	Phosphorus	15	75	As	Arsenic	33	122	Sb	Antimony	51	-			_	1			
	Ν			12	O	Carbon																					
	=			\vdash	Δ		\neg	-		_		\vdash		_	_	_		_	_	_		_					
												\vdash			_	-	ပ္ပ		_	_		_					
								*,				64	_S	Copper	29	108	Ag	Silver	47	197	Au	Gold	79				
dn												$\overline{}$				_	Pd		_	_				1			
Group												29	ပိ	Cobalt	27	103	R	Rhodium	45	192	ľ	Iridium	77				
		- I	Hydrogen									99	Fe	Iron	26	101	Ru	Ruthenium	44	190	SO	Osmium	92				
				_								55	M	Manganese	25		ည	Technetium	43	186	Re	Rhenium	75				
												52	င်	Chromium	24	96	Mo	Molybdenum	42	184	>	Tungsten	74				
												51	>	Vanadium	23	93	Q Z	Niobium	41	181	٦a	Tantalum	73				
												48	F	Titanium	22	91	Zr	Zirconium	40	178	Ŧ	Hafnium	72			,	
												45	သွင	Scandium	21	68	>	Yttrium	39	139	Ľ	Lanthanium	57	227	Ac	Actinium	+ 68
	=			6	Be	Beryllium	4	24	Mg	Magnesium	12	40	Sa	Calcium	20	88	Ş	Strontium	38	137	Ba	Barium	56	226	Ra	Radium	88
	_			7	=	-	3	23	Na	Sodium	11	39	¥	Potassium	19	85	Rb	Rubidium	37	133	S	Caesium	55		ŗ	Francium	87

Lr 175 **Lu** Lutetium 103 173 **Yb** Ytterbium Nobelium 102 169 Tm Thulium Mendelevium 101 Fm Fermium 167 **Er** Erbium Einsteinium 165 **Ho** Holmium 162 Dy Dysprosium 66 Californium **Bk** Berkelium 159 **Tor** Terbium **Gd**Gadolinium Curium 152 **Eu** Europium Am Americium 95 Putonium Samarium Pm 144 Neodymium Uranium Pa Pr Praseodymium Cerium 58 232 **Th** Thorium a = relative atomic mass

X = atomic symbol

b = proton (atomic) number

*58-71 Lanthanoid series +90-103 Actinoid series

 $\alpha \times$

Key

q

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

YISHUN SECONDARY SCHOOL

We Seek, We Strive, We Soar

PRELIMINARY EXAMINATION

Name:	Reg. No:	Class:
Secondary 4 Express	Date	e: 20 September 2019
CHEMISTRY (6092/01)		
PAPER 1		Duration: 1 hour
MAX MARKS: 40		
Additional Materials: OTAS	S Sheet	
READ THESE INSTRUCTIONS Write in soft pencil.	S FIRST	
Do not use staples, paper clips, glue o	or correction fluid.	
Write your name and register number	on the OTAS Sheet provided.	
There are forty questions in this paper answers A , B , C and D .	r. Answer all questions. For eac	ch question there are four possible
Choose the one you consider correct a	and record your choice in soft pe	encil on the separate OTAS Sheet.
Read the instructions on the OTAS	Sheet very carefully.	
Each correct answer will score one ma	ark. A mark will not be deducte	ed for a wrong answer.
Any rough working should be done in	this booklet.	
A copy of the Periodic Table is printe	d on page 15.	

The use of an approved scientific calculator is expected, where appropriate.

Paper 1 [40 marks] Shade your answers in the OTAS sheet provided.

1 Two experimental set-ups used to demonstrate diffusion of gases are shown in the diagrams below. Each porous pot contains a mixture of nitrogen and oxygen.

In the first experiment, the gas introduced into the beaker is carbon dioxide while in the second experiment, it is hydrogen.

What changes, if any, to the water levels ${\bf P}$ and ${\bf Q}$, would you expect to see in both experiments?

	Experiment 1	Experiment 2
Α	P and Q remain the same	P and Q remain the same
В	P and Q remain the same	Q is higher than P
С	P is higher than Q	Q is higher than P
D	Q is higher than P	Q is higher than P

2 A substance dissolves in water to form a colourless solution. This solution reacts with aqueous silver nitrate in the presence of dilute nitric acid to give a yellow precipitate.

What is the possible identity of the substance?

- A calcium iodide
- **B** copper(II) chloride
- **C** iron(II) iodide
- **D** sodium chloride

3 A sample of air is passed through the apparatus shown below.

What would be the composition of gas **A** after passing air through aqueous sodium hydroxide and then concentrated sulfuric acid?

- A noble gases only
- B oxygen, carbon dioxide, nitrogen
- **C** oxygen, nitrogen, water vapour
- **D** noble gases, oxygen, nitrogen
- 4 Chromatogram 1 below shows the separation of coloured inks in mixture X, using solvent A. Chromatogram 2 shows the separation using the same piece of paper after it has been rotated anti-clockwise 90 ° in another solvent, B.

How many different types of ink are present in mixture **X**?

- **A** 3
- **B** 4
- **C** 5
- **D** 7
- 5 A new substance was discovered and a series of experiments were conducted on it.

Which observation suggests that the substance cannot be an element?

- **A** It has a fixed boiling point.
- **B** It dissolves in water to form a yellow-green solution.
- **C** When heated strongly, a brown solid and a yellow gas are produced.
- **D** When heated in air, it can form oxides with two different chemical formulae.

6 Which substance is wrongly matched with the type of particles it contains?

	substance	type of particles
Α	HCl (g)	ions
В	I_2 (s)	molecules
С	LiBr (s)	ions
D	graphite	atoms

7 A student is given the nucleon number of an atom as well as its position in the Periodic Table

What can be deduced about the structure of the atom?

- A number of protons only
- B number of neutrons only
- **C** number of neutrons and protons
- **D** number of neutrons, protons and electrons
- **8** Two elements, **P** and **Q**, have the electronic configuration 2,8,1 and 2,6 respectively. A student describes the compound formed by **P** and **Q** using the following statements.
 - 1 It is insoluble in water.
 - 2 It has a high melting and boiling point.
 - 3 It has a crystal lattice structure similar to that of sodium sulfide.
 - 4 The elements in it can be separated by electrolysis.

Which of the above statements correctly describe the compound formed by P and Q?

- **A** 1 and 3
- **B** 1, 3 and 4
- C 1, 2 and 4
- **D** 2, 3 and 4
- **9** Titanium tetrachloride has a structure similar to tetrachloromethane. What is the property of titanium tetrachloride?
 - A Titanium tetrachloride conducts electricity in all states.
 - **B** Titanium tetrachloride is insoluble in organic solvent.
 - **C** Titanium tetrachloride has a high melting point.
 - **D** Titanium tetrachloride has a high volatility.

10 The diagram shows an electrolysis set-up involving two electrolytes.

Which substance contains both positive ions and mobile electrons?

- A aqueous sodium chloride
- **B** copper wire
- C graphite electrodes
- D molten sodium chloride
- **11** At room temperature and pressure, two identical flasks which have been filled up with gas X and Y were put on a balance. The result is shown below.

Which statement is correct?

- A The number of gas particles in bottle A is greater than the number of gas particles in bottle B.
- **B** The number of moles of gas particles in bottle **A** is greater than the number of moles of gas particles in bottle **B**.
- **C** The molar mass of gas particles in bottle **A** is greater than the molar mass of gas particles in bottle **B**.
- **D** The molar volume of gas particles in bottle **A** is greater than the molar volume of gas particles in bottle **B**.

12 To identify an oxide of nitrogen, 0.1 mol of the oxide is mixed with an excess of hydrogen and passed over a catalyst at a suitable temperature.

$$N_xO_y$$
 $\xrightarrow{H_2(g)}$ xNH_3 + yH_2O

The water produced weighs 7.20 g. The ammonia produced is neutralised by 200 cm 3 of 1.0 mol/dm 3 HCl.

What is the formula of the oxide of nitrogen?

- A NO
- B NO₂
- \mathbf{C} N_2O
- $D N_2O_4$
- **13** A 10 cm³ sample of a gaseous hydrocarbon is completely burnt in oxygen. The total volume of the products is 70 cm³.

All gas volumes are measured at room temperature and pressure.

Which equation represents the combustion of the hydrocarbon?

- **A** $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$
- **B** $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$
- **C** $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$
- **D** $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$
- **14** Elements X, Y and Z are in the same period of the Periodic Table.

Oxides of X reacts with both alkali and acid.

Oxides of Y dissolves in water to form solution with pH < 7.

Solid Z conducts electricity.

In which order do the elements appear in the Periodic Table.

- $A X \rightarrow Y \rightarrow Z$
- $\mathbf{B} \ \ Y \ \rightarrow \ X \ \rightarrow \ Z$
- $\textbf{C} \quad Z \,\rightarrow\, X \,\rightarrow\, Y$
- $D Z \rightarrow Y \rightarrow X$
- **15** Excess bromine is bubbled through three different solutions.

What are the observations in the respective solutions when the reactions are completed?

	potassium iodide solution	potassium chloride solution	acidified potassium manganate(VII)
Α	brown	colourless	purple
В	colourless	colourless	colourless
С	brown	greenish yellow	colourless
D	colourless	greenish yellow	purple

- **16** Which of the following, when added to water, makes a solution that is a good conductor of electricity?
 - A calcium sulfate
 - **B** copper
 - **C** ethanol
 - **D** sodium hydroxide
- **17** A black powder is burned in air.

The gas produced dissolves in water to form solution **R**. The pH of **R** is close to 7.

The gas is readily absorbed in aqueous sodium hydroxide.

What type of substance is present in solution **R**?

- A strong acid
- **B** strong base
- C weak acid
- **D** weak base
- 18 Which test is best used to distinguish between calcium chloride and calcium carbonate?
 - A adding aqueous sodium hydroxide
 - B adding dilute hydrochloric acid
 - **C** using damp litmus paper
 - **D** using silver nitrate solution
- **19** In a qualitative analysis, reagent **P** is added gradually to solution **Q**, followed by the addition of a dilute acid **R**.

The graph shows how the mass of the precipitate changes as the reagents are added. Which of the following entries is correct?

	Р	Anions in Q	R
Α	aqueous silver nitrate	C <i>l</i> ⁻ and CO ₃ ²⁻	dilute nitric acid
В	aqueous silver nitrate	Cl-	dilute nitric acid
С	aqueous barium chloride	$\mathrm{C}\mathit{l}^{\scriptscriptstyle{-}}$ and $\mathrm{CO_{3}}^{2\scriptscriptstyle{-}}$	dilute hydrochloric acid
D	aqueous barium chloride	CO ₃ ²⁻	dilute hydrochloric acid

20 In the apparatus shown, gas P is passed over solid Q.

No reaction occurs if P and Q are

	Р	Q
Α	hydrogen	copper(II) oxide
В	hydrogen	magnesium oxide
С	oxygen	carbon
D	oxygen	sulfur

21 Given the following reactivity series,

Which action would **not** result in a chemical reaction?

- A adding dilute hydrochloric acid to manganese
- **B** heating manganese(II) carbonate strongly
- **C** heating manganese(IV) oxide with carbon
- **D** mixing zinc sulfate solution with manganese powder
- **22** One of the raw materials used in the extraction of iron in the blast furnace is calcium carbonate. Which statement best explains the use of calcium carbonate?
 - **A** To produce slag as a by-product.
 - **B** To oxidise haematite to iron.
 - **C** To remove the basic impurities in the ore.
 - **D** To speed up the rate of reaction.

23 Metal strips are secured on the outside of the wooden box by means of screws. After a few weeks of being exposed to the wind and rain, the screws are heavily corroded but the metal strips are not.

Which statement best explains the observation?

- A The metal screw loses electrons less readily than the metal strip.
- **B** The metal screw stops oxygen in the air from getting to the metal strip.
- **C** The metal strip has a protective oxide layer but not the metal screw.
- **D** The metal screw is a pure metal and the metal strip is an alloy.
- 24 In an electrolysis experiment, the same amount of electrical charge deposited 65 g of zinc and 394 g of gold. What was the charge on the gold ion?
 - **A** 1+
 - **B** 2+
 - **C** 3+
 - D 4+
- 25 Consider the following chemical cell:

Which of the following changes would lead to an increase in the voltage of the cell?

- 1 The copper electrode is replaced with an iron electrode.
- 2 The sodium chloride solution is replaced with a sugar solution.
- 3 The zinc electrode is replaced with a magnesium electrode.
- **A** 1 and 2
- **B** 1 and 3
- C 2 only
- **D** 3 only
- **26** When one mole of ethanol (CH₃CH₂OH) undergoes complete combustion, 1370 kJ of energy are released. When one mole of dimethyl ether (CH₃OCH₃) undergoes complete combustion, 1460 kJ of energy are released.

What causes this difference in the amount of energy released?

- **A** The two compounds have different boiling points.
- **B** The two compounds have different relative molecular masses.
- **C** The two compounds have different bonds within the molecules.
- **D** The two compounds have different products of combustion.

27 The energy level diagram for the reaction between sodium hydroxide and hydrochloric acid is shown below.

What can be deduced from the diagram?

- **A** The reaction is rapid.
- **B** Heat is needed to start the reaction.
- **C** The OH⁻ ions have more energy than the H⁺ ions.
- **D** The products contain less energy than the reactants.

28 Excess zinc was added to 100 cm³ of 1.0 mol/dm³ hydrochloric acid and was represented by Graph I.

Which condition could Graph II be representing?

- A Excess zinc reacting with 100 cm³ of 2.0 mol/dm³ hydrochloric acid.
- **B** Excess zinc reacting with 100 cm³ of 1.0 mol.dm³ sulfuric acid.
- **C** Excess zinc reacting with 100 cm³ of 1.0 mol/dm³ ethanoic acid.
- **D** Excess magnesium reacting with 100 cm³ of 1.0 mo/dm³ hydrochloric acid.
- **29** Nitrogen and hydrogen react to form ammonia in the Haber process. Which statement is correct about this process?
 - **A** A high yield of ammonia is favoured by high temperature.
 - **B** Increasing the pressure speeds up the reaction.
 - **C** Nickel catalyst is used to increase the production of ammonia.
 - **D** The reaction between nitrogen and hydrogen is irreversible.

30 Sodium hypochlorite undergoes decomposition according to the following equation.

$$3NaClO \rightarrow 2NaCl + NaClO_3$$

Which option shows the correct oxidation states of chlorine respectively?

	NaC <i>l</i> O	NaC <i>l</i>	NaC <i>l</i> O₃
Α	-1	-1	+5
В	+1	-1	+5
С	+1	-1	+7
D	+2	+1	+7

31 Which of the following is **not** a product of the reaction sequence shown below?

- A copper
- B iron(III) oxide
- C oxygen
- **D** water vapour
- 32 Which two gases do not damage limestone buildings?
 - A nitrogen and carbon monoxide
 - B nitrogen dioxide and carbon monoxide
 - C nitrogen dioxide and carbon dioxide
 - **D** sulfur dioxide and carbon dioxide
- **33** Chlorine atoms are involved in the decomposition of ozone by reacting with ozone in a two-step reaction.

$$Cl + O_3 \rightarrow ClO + O_2$$
 step 1
 $ClO + O_3 \rightarrow Cl + 2O_2$ step 2

Which observation is true for the reaction?

- A The reaction is reversible.
- **B** Chlorine atoms are reduced in step 1.
- **C** Chlorine atoms act as catalysts in the reaction.
- **D** Each chlorine atom causes one ozone molecule to decompose.

34 The fractions obtained from the fractional distillation of petroleum mainly contain alkanes.

Which of the following molecules are most likely to be found in kerosene, naphtha and diesel oil respectively?

	kerosene	naphtha	diesel oil
Α	C ₈ H ₁₈	C ₁₃ H ₂₈	C ₂₀ H ₄₂
В	C ₈ H ₁₈	C ₂₀ H ₄₂	C ₁₃ H ₂₈
С	C ₁₃ H ₂₈	C ₈ H ₁₈	C ₂₀ H ₄₂
D	C ₂₀ H ₄₂	C ₈ H ₁₈	$C_{13}H_{28}$

35 The general formula of alkanes is C_nH_{2n+2} .

Which property decreases as n increases?

- A boiling point
- **B** flammability
- C melting point
- **D** viscosity
- 36 Linoleic acid is found in sunflower oil. The molecular formula of linoleic acid is C₁₈H₃₂O₂.

How many double bonds between carbon atoms are present in one molecule of linoleic acid?

- **A** 1
- **B** 2
- **C** 3
- **D** 4
- **37** In an artificial hip joint, bone cement is used to attach the poly(ethane) cup for the joint to the pelvic girdle. Bone cement is formed by the polymerisation of methyl 2-methylpropenoate and the process is highly exothermic.

$$CH_3$$

$$|$$

$$CH_2 = C$$

$$|$$

$$CO_2CH_3$$

methyl 2-methylpropenoate

Which statement is true about bone cement?

- **A** Aqueous bromine is decolourised by bone cement.
- **B** Less energy is released in the formation of C-C bond than the energy absorbed in the breaking of C=C bond.
- **C** The empirical formula of bone cement is $C_5H_8O_2$.
- **D** Water is formed in the polymerisation of methyl 2-methylpropenoate.

38 An ester is formed from a carboxylic acid and an alcohol.

How does the number of carbon, hydrogen and oxygen atoms in an ester differ from the total number of these atoms in the carboxylic acid and alcohol from which the ester is formed?

	carbon atoms	hydrogen atoms	oxygen atoms
Α	fewer	fewer	fewer
В	fewer	same	fewer
С	same	fewer	fewer
D	same	same	same

39 The structure below shows a section of a polymer.

Which monomer was used to make the polymer?

A B

H COOH

C=C

CH₃ H CH₃

C D

H COOH

H COOCH

H CH₃

H CH₃

40 The following are monomers of a few compounds. Which of them can be used to produce a polymer via condensation polymerisation?

- A I and III only
- **B** II and IV only
- **C** I, II and IV only
- **D** II, III and IV only

End of paper 1

DATA SHEET
The Periodic Table of the Elements

Т				_				_		_		_				_				_				1			
0	4	He	Helium	20	Ne	Neon	10	40	Ar	Argon	18	84	궃	Krypton	36	131	Xe	Xenon	54	_							
II/				_					7	Chlorine	17	80	Ŗ	Bromine	35	127	Ι	lodine	53		At	Astatine	85				
>				16	0	Oxygen	œ	32	ဟ	Sulfur	16	79	Se	Selenium	34	128	<u>e</u>	Tellurium	52					1			
>				14	z	Nitrogen	7	31	<u>Д</u>	Phosphorus	15	75	As	Arsenic	33	122	Sb	Antimony	51	209	ö	Bismuth	83				
2				12	O	Carbon	9	28	S	Silicon	. 41	73	Ge	Germanium	32	119	Sn	Tin	20	207	Pb	Lead	82				
=				11	Ω	Boron	2	27	A	Aluminium	13	20	Ga	Gallium	31	115	므	Indium	49	204	<u>/</u> _	Thallium	81				
																								1			
								*				64	Cn	Copper	29	108	Ag	Silver	47	197	Au	Gold	79				
												29	Z	Nickel	28	106	Pd	Palladium	46	195	£	Platinum	78				
				_								59	ပိ	Cobalt	27	103	묎	Rhodium	45	192	ľ	Iridium	77				
	1	I	Hydrogen 1									99	Fe	Iron	26	101	Ru	Ruthenium	44	190	80	Osmium	9/				
												55	M	Manganese	25		ည	Technetium	43	186	Re	Rhenium	75				
												52	င်	Chromium	24	96	ø	Molybdenum	42	184	>	Tungsten	74				
												51	>	Vanadium	23	93	QN	Niobium	41	181	Та	Tantalum	73				
												48	F	Titanium	22	91	Zr	Zirconium	40	178	Ŧ	Hafnium	72		,	,	
												45	လွ	Scandium	21	88	>	Yttrinm	39	139	La	Lanthanium	22	227	Ac	Actinium	+ 68
=				6	Be	Beryllium	4	24	M	Magnesium	12	40	Sa	Calcium	20	88	Ş	Strontium	38	137	Ba	Barium	56	226	Ra	Radium	88
_				7	Ξ	Lithium	8	23	Na	Sodium	1	39	¥	Potassium	19	85	Rb	Rubidium	37	133	S	Caesium	55		Ļ	Francium	87
	IIV V VI	IIV IV V VI III				II	II	II	II	II	II	III	III IV VI VII VIII Hydrogen	II	II	II	III IV VI VII VII	II	II	II	II	1	Holymorphase Holymorphase	III IV V VI VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIII	1 1 1 1 1 1 1 1 1 1	III IV V VI VIII III I	

	140	111	111		450	450	457	450	460	405	467	007	710	175
	140	141	144		ngi	761	12/	661	162	165	16/	169	1/3	1/5
	ဝီ	P	ž	Pm	Sm	Ш	gg	Tp	Dy	운	ш	T	Υb	Ľ
	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
	58	59	09	61	62	63	64	65	99	29	89	69	20	71
= relative atomic mass	232		238											
X = atomic symbol b = proton (atomic) number	드	Ра	>	ď	Pu	Am	S	쓢	స	Es	Fm	Md	å	בֿ
	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
	90	91	92	93	94	95	96	97	98	66	100	101	102	103
The	The volume of one mole	of one	mole of	an	y gas is 24 d	m³ at ı	room temperat	=	are and	pressure (r.t.p	e (r.t.p.)			

*58-71 Lanthanoid series +90-103 Actinoid series

∞ ×

Key

Yishun Secondary School Preliminary Examination 2019 Secondary 4 Express Chemistry (6092) Mark Scheme

Pa	per	1
----	-----	---

1	С	11	С	21	С	31	С
2	Α	12	D	22	Α	32	Α
3	D	13	С	23	С	33	С
4	В	14	С	24	Α	34	С
5	С	15	Α	25	D	35	В
6	Α	16	D	26	С	36	В
7	D	17	С	27	D	37	С
8	D	18	В	28	D	38	С
9	D	19	Α	29	В	39	В
10	В	20	В	30	В	40	D

Paper 2

Qn no.	Key marking points	Remarks		
A1a	iron(III) oxide;			
b	nitric acid;			
С	iron(III) nitrate;			
d	iron(III) hydroxide;			
е	ammonia:			
A2a	C = C - C - C - C - C - C - C - C - C -			
	carbon-carbon double bond; ester;			
b/ 5	Addition polymerisation,			
	Addition polymerisation; H COOCH3 H COOCH3 C C C C			
d	Poly(methyl cyanopropenoate);			
ei	Red brown; aqueous bromine turns colourless;			
ii	Addition reaction / addition of aqueous bromine / bromination;			
A3a	H ₂ A (aq) + 2 NaOH (aq) → Na ₂ A (aq) + 2 H ₂ O (<i>l</i>) Correct equation; Correct state symbols;			
b	$\frac{(25/1000) \times 0.02}{V \times 0.05} = \frac{1}{2};$ $V = 20 \text{ cm}^3;$			

ci		carbon	hydrogen	oxygen		
	mass (in 100g)	26.7	2.2	71.1		
	no of moles	2.225	2.2/1 = 2.2	4.44		
	lowest ratio	1	1	2		
	working;		·	_		
	•	of oxalic acid =	: CHO2 ·			
ii	Empirical formula of oxalic acid = CHO ₂ ; n (12 + 1 + 32) = 90					
		n = 2				
	molecular formula		= C ₂ H ₂ O ₄ :			
d			uit = 0.00011 X 90 =	: 0.0099 a		
			05 g/0.0099 g = 5;	3		
A4ai	methoxybutane;					
	CH ₃ OC ₄ H ₉ ;					
ii	isomers				no marks given	
					without	
			both the alcohol an	d eth er has the sa	me comparison	
	molecular formula	a;				
iii	<mark>298;</mark>					
bi	same general form		$/ C_nH_{2n+1}CHO;$		must make ref to	
	same functional g	roup of –CHO;			the table	
ii	butanal ;					
	any temp betwee	n 70 – 80°C (m i	dpoint of 49°C & 10	3°C);		
A =		13 1 4 1		1	1 20 (
A5a	the photograph is	unlikely to show	w deposits of pure re	ubidium / hoax	no mark without explanation	
	Dubidium is a big	Rubidium is a highly reactive metal /more reactive than sodium ;				
				an sodium ,		
b		so will react violently when exposed to air / water; Beryllium is less reactive than magnesium;				
D	no reaction with c					
	with water;					
	react with steam t					
С	reduction by carb			ni gao ,		
	Toddollon by darb					
A6a	Oxidation state(O	of or using any				
ЛОА				o o iii ivz, and o.o	definition of [O] or	
	O decreases from 0 in O ₂ to -2 in H ₂ O; N ₂ H ₄ is oxidised while O ₂ is reduced;				[R]	
b	$N_2H_4(g) + 2F_2(g) -$				ΔH must be	
D	$\Delta H = -1179 \text{ kJ/mg}$	negative				
С	hydrazine and flu		rocket fuel		no mark without	
J	Try drazino and na		TOOKOT TOO		reasons	
	any 2 of the follow	any 2 of the following reasons:				
	(produces <u>larger</u>)					
	compared to hydr)				
	amount of energy					
	more energy effic					
	does not use oxyg					
	more energy release					
d			e produces HF whic			
	to water which is					
	HF is likely to cause acid rain which is harmful to the environment and					
	aquatic life ;					
	<u> </u>					
	1					

A7a	atoms of the sa			umber of protor	ns but different	
	number of neut	rons / nucleor	number <u>;</u>			
b			No. 1	NI. I C	NI	
	Name	Formula	Number of	Number of	Number of	
			protons	neutrons	electrons	
	Hydrogen	1 1 1	1	0	1	
	atom	1				
	Deuterium	2 H+	1	1	0	
		1	-	-		
	ion					
	Tritium ion	3 _H -	1	2	2	
		1				
			ļ.			
	3m – all correct	t; 2m – 3 to 4 o	correct; 1m – 1-	2 correct;		
С	Ar of Ge = $((24.4/100) \times 70) + ((32.4/100) \times 72) + ((43.2/100) \times 74)$; = $\frac{72.4}{(3sf)}$;					
d	Agree			_		no mark if no
	all isotopes of t	he same elem	ent have same	number of vale	ence electrons ;	reason given
B8a	reaction is not r	ravarsibla :				
b	endothermic re		the temperatur	e to decrease :		
2	at a higher tem					
	increase the co					
	reactants; ;					
С	1.01 mol/dm ³ ;		16: 11 1 6			3 s.f.
d	higher tempera	accept: high cost				
	reactants, <u>lowe</u> at <u>lower temper</u>	to maintain high temperature				
е	high yield of su	tomporataro				
	increase in pre			•	eased yield) ;	
f	Reaction 1 – gr	aph B				both graphs must
	Vr = Vp;	I- A				be correct
	Reaction 2 – gr	apn A				accept: moles of
	ντ > ν ρ ;					gas / molecules
						of gas as an
						alternative to
						volume
DO	ONIC : OO	ONIO : OOO				
B9	$2NiS + 3O_2 \rightarrow$					
	no. of moles of NiS= $\frac{182000}{59+32}$ =2000 mol; 2000 x (32 +16x2) = $\frac{128}{59+32}$ kg;					
b	simple covalent		•	structure with		
	weak intermole		UA;			
С	low boiling poin with zinc nitrate					
	with copper(II)					
	nickel coated w			,,		
d	magnesium is r		than carbon ;			
	thus manufactu	re by <u>electroly</u>	vsis (of its ore);			
E:Ale	7	7-00 - 11				
Either	$Zn + H_2SO_4 \rightarrow$	$\angle nSO_4 + H_2$				

$ \begin{array}{lll} B10a & Zn + 2HCI \rightarrow ZnCI_2 + H_2 \\ Mol \ of \ zinc = 0.488/65 = 0.00751 \ ; \\ Mol \ of \ acid = 2.0 \ x \ 20.0/1000 = 0.04mol \ ; \\ \underline{Zinc \ is \ the \ limiting \ reagent} \ and \ will \ produce \ the \ same \ volume \ (180 \ cm^3) \\ hydrogen \ ; \\ \end{array} $	
Mol of acid = 2.0 x 20.0/1000 = 0.04mol; Zinc is the limiting reagent and will produce the same volume (180 cm³) hydrogen;	
Zinc is the limiting reagent and will produce the same volume (180 cm³) hydrogen;	
hydrogen ;	- e
	of
b A – sulfuric acid, dibasic \rightarrow due to twice the concentration of H^{\pm} and	
higher rate;	
B – hydrochloric acid, due to lower concentration of H ⁺ and lower rate;	
c C – sulfuric acid, as <u>same gradient as A</u> ;	no mark if no
	calculation
mol of hydrogen = 90/24000 = 0.00375	presented
mass of zinc = 0.00375 x 65 = 0.244 g;	
Or	
half the volume of hydrogen, therefore half the mass of zinc	
so 0.488/2 = 0.244 g;	
di zinc displaces copper from copper(II) sulfate to produce brown copper	
deposit;	
less zinc reacts with acid to produce less hydrogen;	
ii Wrong	no mark given
copper(II) sulfate forms copper, but a catalyst should remain chemical	•
unchanged after the reaction;	uny mareat reason
anonanged after the reaction;	
Or sodium ethanoate + CH ₃ COONa ;	
B10a	
b From graph, volume of NaOH used = 20 cm ³	
mole of NaOH = 20/1000 X 0.1 = 0.002mol;	
1 mole of CH ₃ COOH = 1 mole of NaOH	
conc of $CH_3COOH = mole / vol$	
= 0.002 / (20/1000) = 0.1 mol/dm ³ ;	+ OM/TTE
c Methyl orange;	accept OWTTE
'Step' occurs at <u>pH 9</u> , but methyl orange only changes colour between 3	3.1
to 4.4/ does not change colour at pH 9;	
di hydrochloric acid ionises/ dissociate completely while ethanoic acid	
ionises/ dissociate partially / hydrochloric acid is a strong / stronger acid	
while ethanoic acid is a weak / weaker acid ;	
so hydrochloric acid has a <u>higher concentration</u> / no of moles per unit	
volume of H [±] ions	
so <u>frequency of effective collision increases</u> ;	
thus time taken is shorter;	
ii Volume of NaOH = 10cm³ and same shape ;	