Name: (

ASSUMPTION ENGLISH SCHOOL PRELIMINARY EXAMINATION 2019

)

ASSUMPTION ENGLISH SCHOOL ASSUMPTION ENGLISH SCHOOL

LEVEL: Sec 4 Express

DATE: 3 September 2019

CLASS: Sec 4/2

DURATION: 1 hour

Additional materials provided: 1 sheet of OAS paper

INSTRUCTIONS TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your NAME and INDEX NUMBER at the top of this page and on the OAS paper. **Shade your index number on the OAS paper**.

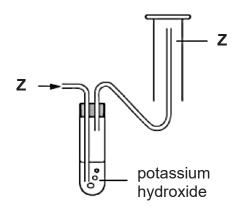
PAPER 1

MULTIPLE CHOICE QUESTIONS (40 marks) There are 40 questions in this section. Answer **all** questions. For each question, there are four possible answers A, B, C and D.

Choose the correct answer and record your choice in soft or 2B pencil on the OAS paper provided. DO NOT fold or bend the OAS paper. For Examiner's use:Paper 1/ 40

A copy of the Periodic Table is printed on page 19.

At the end of the examination, hand in your OAS paper and question booklet separately.

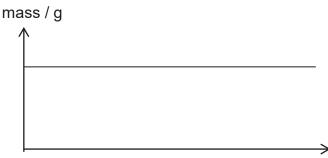

This Question Paper consists of <u>19</u> printed pages including this page. <u>Multiple Choice Questions (40 marks)</u>

There are **forty** questions in this section. Answer **ALL** questions. For each question, there are four possible answers, **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice on the OAS in soft pencil.

1 Hydrogen sulfide, H₂S, is a colourless and poisonous gas which has an odour similar to that of rotten eggs. The melting point of hydrogen sulfide is -82 °C and the boiling point is -60 °C.

Which statement **correctly** describes the particles of hydrogen sulfide at -75 °C?

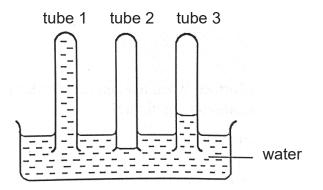
- A closely packed, moving freely
- B closely packed, vibrating slightly
- **C** far apart, moving freely
- **D** far apart, vibrating slightly
- 2 The following diagram shows a method to collect a sample of gas Z.



Which information can be deduced about gas Z?

- 1 **Z** is acidic.
- 2 **Z** is insoluble in water.
- 3 **Z** is less dense than air.
- **A** 1 and 2
- **B** 1, 2 and 3
- C 3 only
- **D** none of the above
- **3** Two solutions were mixed in a beaker and the mass of the beaker and contents was then

6092/01/4E/PRELIM/19


recorded at various times. The graph shows the results.

time / min

What could the two solutions be?

- **A** aqueous sodium hydroxide and warm aqueous ammonium chloride
- **B** aqueous silver carbonate and aqueous dilute hydrochloric acid
- **C** dilute hydrochloric acid and aqueous potassium hydroxide
- D dilute nitric acid and magnesium
- 4 Three dry test-tubes were filled with different gases of equal volume and placed in a trough of water. After a short time, the water had risen in two of the tubes as shown in the diagram.

Which gases could the tubes have contained?

	tube 1	tube 2	tube 3
A ammonia carbon dioxide		carbon dioxide	hydrogen
В	ammonia	hydrogen	carbon dioxide
C carbon dioxide h	hydrogen	ammonia	
D	hydrogen	ammonia	carbon dioxide

5 The table below shows the information of some pure substances.

Which of the underlined substances has been wrongly classified as an element, mixture or compound?

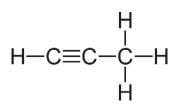
	Property	classification
Α	White solid melts over 56 – 58 °C.	mixture
В	<u>Green powder</u> on heating leaves black residue and a colourless gas is evolved.	compound
С	C <u>Black powder</u> burns in air forming a colourless gas as the element	
D	<u>Colourless substance</u> produces two colourless gases when an electric current is passed through it.	mixture

6 In an experiment, the boiling point of a substance P was found to be 83 °C, the same as cyclohexene. To check its identity, the experiment was repeated by using one part of the substance P mixed with two parts of pure cyclohexene. The boiling point of the mixture was found to be 90 °C.

What can be deduced from these experiments?

- **A** P is a mixture.
- **B** P is not cyclohexene.
- **C** P is pure cyclohexene.
- **D** P may contain cyclohexene.
- **7** An element X exists as 2 kinds of isotopes X-55 and X-65. Given that its relative atomic mass is 59, which is the correct relative abundance of X-55 and X-65?

	X-55	X-65
Α	25 %	75 %
В	75 %	25 %
С	40 %	60 %
D	60 %	40 %


8 Oxygen consists of two isotopes, oxygen-16 and oxygen-18.

Which statement correctly describes the two isotopes of oxygen?

- **B** Both oxygen-16 and oxygen-18 form ions with a charge of -2.
- **C** Oxygen-16 has different chemical properties from oxygen-18.
- **D** Oxygen-16 has electronic configuration of 2.8.6 while oxygen-18 has an electronic configuration of 2.8.8.
- 9 Element X is found in the Periodic Table with atomic number **p**. It forms an ionic oxide, X₂O. Element Y has an atomic number of **p+3**.

What is the formula of the oxide of Y?

- A YO
- **B** YO₂
- **C** Y₂O
- **D** Y₂O₃
- **10** The diagram below shows the structural formula of an organic molecule.

What is the total number of shared electrons and number of electrons not involved in bonding?

number of shared electrons		number of electrons not involved in bonding	
Α	12	2	
В	12	6	
С	16	2	
D	16	6	

11 Two isotopes of chlorine are ${}^{35}Cl$ and ${}^{37}Cl$.

Using these isotopes, how many different relative molecular masses are possible for the compound with molecular formula CH_3Cl_3 ?

- **A** 2
- **B** 3
- **C** 4
- **D** 5
- **12** The equation below shows the reaction between element X and dilute sulfuric acid.

 $X \text{ (s)} + H_2SO_4 \text{ (aq)} \rightarrow XSO_4 \text{ (aq)} + H_2 \text{ (g)}$

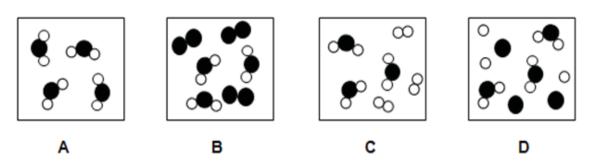
Which particles are responsible for conducting electricity in dilute sulfuric acid and compound XSO₄?

	H ₂ SO ₄	XSO4	
Α	electrons	positive ions and negative ions	
В	electrons	electrons	
С	positive ions and electrons	electrons	
D	positive ions and negative ions	positive ions and negative ions	

- **13** Which of the following has 7.2×10^{23} atoms?
 - **A** 0.2 mol of magnesium metal
 - **B** 0.3 mol of ammonia gas
 - **C** 3.0 mol of carbon dioxide gas
 - **D** 4.0 mol of hydrogen chloride

14 Bones contain a complex mixture of calcium salts, protein and other material. When a bone is strongly heated in air, the only residue is calcium oxide.

From a sample of 50 g of bone, 14 g of calcium oxide were obtained.


What is the percentage by mass of calcium in the bone?

- **A** 10.0 %
- **B** 14.0 %
- **C** 20.0 %
- **D** 23.3 %
- **15** 0.2 moles of XSO₄ combines with 21.6 g of water to form the hydrated salt of formula $XSO_4.nH_2O$.

What is the value of n?

- **A** 3
- **B** 6
- **C** 9
- **D** 12
- **16** 100 cm³ of hydrogen is mixed and burnt in 100 cm³ of oxygen.

Which diagram represents the particles that remain in the reaction vessel?

17 When 42.0 g of sodium hydrogen carbonate, NaHCO₃ ($M_r = 84$), was strongly heated, 3.00 dm³ of carbon dioxide gas was released.

 $2 \text{ NaHCO}_3 \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2$

What was the percentage yield of carbon dioxide?

6092/01/4E/PRELIM/19

[All volumes are measured at room temperature and pressure.]

- **A** 25 %
- **B** 50 %
- **C** 75 %
- **D** 80 %
- **18** The table gives information about three indicators.

indicator	colour at pH 1	pH at which colour changes	colour at pH 12
thymol blue	red	3	yellow
congo red	blue	5	red
phenolphthalein	colourless	10	red

Which colours would be obtained when each indicator was added separately to pure water?

	thymol blue	congo red	phenolphthalein
Α	red	blue	red
В	yellow	blue	colourless
С	yellow	blue	red
D	yellow	red	colourless

19 The dissociation constant for an acid indicates the extent to which it dissociates into ions. The higher the dissociation constant, the stronger the acid.

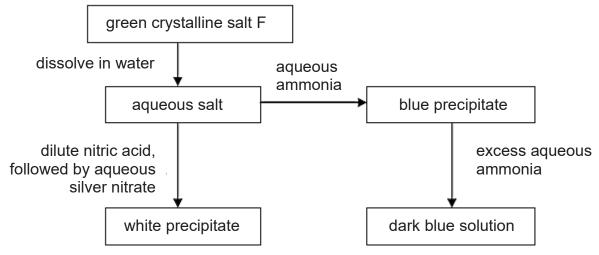
The dissociation constant for some acids are given below along with two possibly correct statements.

acid	dissociation constant	
methanoic acid	1.80 × 10 ⁻⁴	
ethanoic acid	1.75 × 10 ⁻⁵	
propanoic acid	1.34 × 10 ⁻⁵	
bromoethanoic acid	1.30 × 10 ⁻³	

Statement 1: Increasing the length of the carbon chain makes the acid stronger.

Statement 2: Replacing a hydrogen by a bromine in ethanoic acid makes the acid stronger.

Based on the data above, which statement(s) is / are correct?


- A both statements
- **B** neither statement
- **C** statement 1 only
- **D** statement 2 only
- **20** Three elements X, Y and Z belong to the same period in the Periodic Table. The properties of their oxides are given below.

oxide of X:	soluble in both nitric acid and aqueous sodium hydroxide
oxide of Y:	insoluble in water and aqueous sodium hydroxide but dissolves readily in nitric acid
oxide of Z:	changes acidified potassium manganate(VII) from purple to colourless

Based on the statements above, arrange X, Y and Z in order of <u>decreasing</u> atomic numbers in the Periodic Table.

- **A** Y, X, Z
- **B** X, Y, Z
- **C** Z, Y, X
- **D** Z, X, Y
- 21 Which solution contains the greatest concentration of hydrogen ions?
 - A 1 mol/dm³ phosphoric(V) acid, H₃PO₄
 - **B** 2 mol/dm³ sulfuric acid, H₂SO₄
 - **C** 3 mol/dm³ hydrochloric acid, HC*l*

- D 3 mol/dm³ ethanoic acid, CH₃COOH
- 22 The scheme below shows some reactions of salt F.

What is the identity of F?

- A copper(II) chloride
- B copper(II) iodide
- **C** iron(II) chloride
- **D** iron(II) iodide
- **23** A salt has the chemical formula $(NH_4)_2Fe(SO_4)_2.12H_2O$.

Excess aqueous sodium hydroxide was added slowly, with shaking to a hot solution of the salt in a boiling tube until there is no further reaction. The boiling tube was then left to stand for some time.

Which observation would **not** be made?

- **A** A green precipitate was produced.
- **B** A pungent gas which turned damp red litmus blue was produced.
- **C** On standing, the precipitate turned brown.
- **D** The precipitate dissolved in excess sodium hydroxide.
- 24 When testing for a sulfate ion using barium nitrate, the solution must be acidified with nitric acid.

What is the purpose of the nitric acid?

A to act as a catalyst

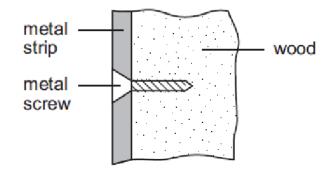
- **B** to adjust the pH such that it is suitable for the reaction to occur
- **C** to prevent precipitation of barium carbonate
- **D** to reduce the sulfate ion
- 25 In which equations are the underlined substances acting as a reducing agent?
 - I $\underline{ZnO}(s) + CO(g) \rightarrow Zn(s) + CO_2(g)$
 - II Cu (s) + $\underline{N_2O}(\underline{g}) \rightarrow CuO(s) + N_2(\underline{g})$
 - III 3 CuO (s) + $2 NH_3(g) \rightarrow 3 Cu (s) + N_2(g) + 3 H_2O(l)$
 - IV <u>H₂S (g)</u> + Cl₂ (g) \rightarrow 2 HCl (aq) + S (s)
 - A I and III
 - B I and IV
 - C II and III
 - D III and IV
- **26** Three mixtures are made.
 - 1 C + Fe₂O₃
 - 2 Cu + Fe₂O₃
 - 3 Mg + Fe₂O₃

The mixtures are heated strongly.

Which of the elements C, Cu and Mg are reactive enough to reduce the iron(III) oxide to iron?

- A C and Cu only
- B C and Mg only
- C C, Cu and Mg
- D Cu and Mg only

27 The table below refers to four metals and some of their compounds.


metal	action of dilute acid on metal	effect of hydrogen on heated oxide	action of metal on a solution of sulfate of J
G	hydrogen evolved	reduced	no reaction

н	no reaction	reduced	no reaction
I	hydrogen evolved	no reaction	J formed
J	hydrogen evolved	no reaction	no reaction

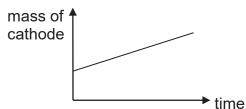
Which one of the following is the order of thermal stability of their carbonate towards heating?

	highest thermal stability		\rightarrow lowest thermal stal	
Α	Н	G	J	I
В	Н	J	G	I
С	I	J	G	Н
D	I	G	J	н

28 An old railway carriage is being restored. Metal strips are secured on to the outside of the wooden carriage by means of screws. After a few weeks exposed to the wind and rain, the screws are heavily corroded but the metal strips are not.

Which two metals would give this result?

	screws	strips
Α	aluminium	steel
В	copper	aluminium
С	copper	steel
D	steel	aluminium


29 An electric current was passed through molten calcium chloride, producing 2.00 g of calcium metal at the cathode.

What mass of chlorine was produced at the anode?

A 2.78 g

- **B** 3.55 g
- **C** 4.00 g
- **D** 8.50 g
- **30** An aqueous solution T is electrolysed. The current is constant and the cathode is weighed at regular intervals. The graph below is obtained when the mass of cathode is plotted against time.

13

Which of the following will **not** produce the graph above?

	cathode	anode	solution T
Α	graphite	graphite	dilute sulfuric acid
В	graphite	graphite	copper(II) nitrate solution
С	copper	copper	copper(II) nitrate solution
D	graphite	silver	silver nitrate solution

31 The formation of liquid water from hydrogen and oxygen occurs in three stages.

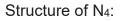

Which stage(s) is / are endothermic?

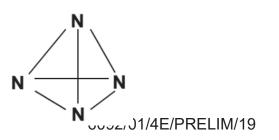
- A I only
- B II only
- C III only
- D I, II and III
- **32** The equation and energy profile diagram for the reaction between ammonia and dilute hydrochloric acid are shown.

[Turn Over

$$NH_{3}(g) + HCl(g) \implies NH_{4}Cl(s)$$
energy
/ kJ mol⁻¹

$$6092/01/4E/PRELIM/19$$

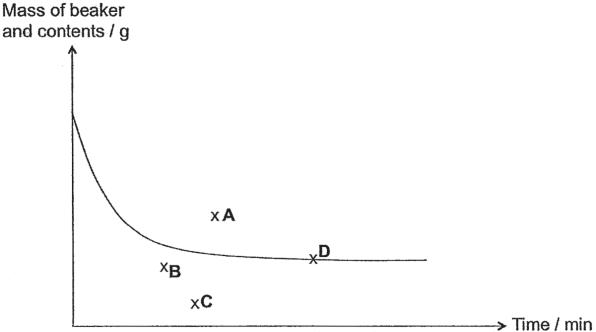

progression of reaction

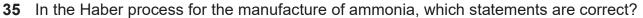

Which statement about the reaction is incorrect?

- **A** The activation energy for the reverse reaction is p q.
- **B** The activation energy for the forward reaction is p.
- **C** The enthalpy change for the reverse reaction is p q.
- **D** The enthalpy change for the forward reaction is positive.

33 Nitrogen exists as the molecule N=N. Nitrogen forms a molecule N₄ as shown below.

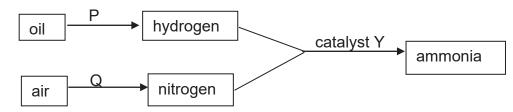
Chemical equation: $2 N_2 \rightarrow N_4$




By considering the bonds formed and the bonds broken, what would be the value for the energy change, for the above reaction?

[Bond energies: N−N, 160 kJ/mol; N≡N, 994 kJ/mol]

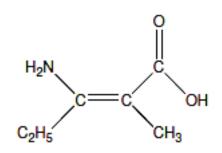
- **A** –1348 kJ
- **B** +1028 kJ
- **C** +1348 kJ
- **D** +2628 kJ
- **34** In experiment 1, excess zinc carbonate was added to 100 cm³ of 1.0 mol/dm³ sulfuric acid in a beaker. The mass of the beaker and its contents were recorded at regular time intervals, and a graph was plotted as shown below.


In experiment 2, excess zinc carbonate was added to 100 cm³ of 2.0 mol/dm³ nitric acid in a beaker. At which of the points on the graph shown will the mass in experiment 2 reach a constant?

- I The catalyst used is a transition metal.
- II Unreacted nitrogen and hydrogen are circulated back into the system.
- III Both reactants are obtained from the fractional distillation of liquefied air.
- IV The reaction is never complete and yield achieved is only about 10 15%.

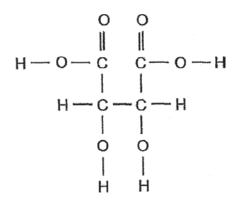
- A I, II and III
- **B** I, II and IV
- **C** II, III and IV
- **D** all of the above
- **36** The diagram shows the manufacture of ammonia using hydrogen and nitrogen in the presence of catalyst.

What are the processes P and Q and catalyst Y?


	process P	process Q	catalyst Y
Α	cracking	fractional distillation	iron
В	cracking	fractional distillation	nickel
С	fractional distillation	fractional distillation	iron
D	fractional distillation	cracking	nickel

37 A sample of air along the Pan Island Expressway (PIE), where there is fast moving traffic, is collected and its composition is examined.

Which gas is least likely to be one of the components in the sample of air?


- A carbon monoxide
- B nitrogen dioxide
- **C** nitrogen monoxide
- D sulfur dioxide

38 Which statements about the organic molecule below are true?

- 1 It will undergo complete combustion to form carbon dioxide and water only.
- 2 It forms an alcohol in the presence of steam under high pressure and with the use of a suitable catalyst.
- 3 It can undergo both addition and condensation polymerisation.
- A 1 and 2 only
- **B** 1 and 3 only
- C 2 and 3 only
- **D** 1, 2 and 3
- **39** How many moles of hydrogen chloride are formed when one mole of methane reacts with a large excess of chlorine in sunlight?
 - **A** 1
 - **B** 2
 - **C** 3
 - **D** 4

40 The diagram below shows the structural formula of tartaric acid (C₄H₆O₆).

Which salt(s) could be formed upon reacting tartaric acid with potassium hydroxide?

- 1 C₄H₅O₆K
- 2 C₄H₄O₆K₂
- 3 C₄H₃O₆K₃
- 4 C₄H₂O₆K₄
- A 1 and 2 only
- B 2 only
- C 2 and 3 only
- **D** 1, 2, 3 and 4

- END OF PAPER -

IV V VI n carbon nitrogen ft n carbon nitrogen oxygen ft 12 14 15 16 ft 12 14 15 16 ft n silicon phosphorus suffur cr and germantum arsenic selenium br cr n ft 75 75 79 br n ft 119 12201 128 in in n tin antimout strenuic selenium br o o ft 119 12201 2128 in o o n antimout tin antimout tin in in in in a 207 209 - 209 - - o flor 114 116 116 in in in <t< th=""><th></th><th></th><th>1 1</th><th></th><th></th><th></th><th></th><th></th><th>Gro</th><th>Group</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>			1 1						Gro	Group								
1 1 hydrogen 1 1 1 1 8 9 9 9 hydrogen 1 1 1 1 1 1 1 1 9 9 1	=												II	N	>	VI	VII	0
5 6 7 8 9 B C N O F 11 12 14 15 19 13 14 15 16 17 26 27 28 30 31 32 33 35.5 26 27 28 30 31 32 33 35.5 53.5 27 28 30 31 32 33 35.5 53.5 53.5 16 17 28 31 32 33.7 35.5 53.5 53.5 17 28 50 51 52 53 51.5 53.5 16 17 28 31 32 34 35 55.5 53 53 17 18 28 48 49 50 51 52 53 53 53 53 53 53 53 53 53 55 <	Key	Kev	Key	Key				1 hydrogen 1										2 He ^{helium}
B C N O F 11 12 14 16 19 11 12 14 15 16 19 11 12 14 15 16 17 13 14 15 16 17 17 14 15 14 15 16 17 15 26 27 28 30 31 32 33 34 35.5 15 59 59 59 30 31 32 33 34 35.5 10 Nth Cu Nt 75 79 80 11 101 Nth Cu Nt Nt 81% 75 79 80 12 102 103 103 112 115 113 116 1 17 10 110 111 112 113 113 114 122 133 <	proton (a		proton (atomic) number	(atomic) number	Inmber								5	9	2		6	10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			atomic symbol	mic symbol	pol								В	U	z		ш	Ne
13 14 15 16 17 26 27 28 31 32 35.5 26 27 28 31 32 35.5 27 28 27 28 31 32 35.5 26 27 28 29 30 31 32 35.5 56 59 59 64 65 70 73 34 35 44 45 46 47 48 49 50 73 35 53 56 57 5	beryllium name 9 relative atomic mass		name relative atomic mass	re atomic mass	mass								boron 11	carbon 12	nitrogen 14		fluorine 19	neon 20
AI Si P S CI 26 27 28 31 32 35.5 26 27 28 31 32 35.5 26 27 28 30 31 32 35.5 26 29 30 31 32 35.5 35.5 100 Ni Cu Zn Ga Ge As See Br 101 103 106 Ag 47 48 49 50 51 52 53 53 53 53 53 55 53						1							13	14	15		17	18
Z6 27 28 31 32 35.5 26 27 28 31 32 35.5 26 27 28 31 32 35.5 26 20 Ni Cu Zn 28 31 32 35.5 26 59 59 64 65 59 30 31 32 35.5 44 45 46 47 48 49 50 75 79 80 44 45 46 47 48 49 50 75 79 80 101 103 106 108 112 115 119 122 127 127 76 77 78 70 50 51 52 53 55 53 55 53 55 53 53 55 53 55 53 53 55 53 53 55 53 53	Mg												AI	Si	٩		CI	Ar
26 27 28 29 30 31 32 33 34 35 Fe Co Ni Cu Zn Ga Ge As Se Br 35 56 59 59 64 65 70 73 75 79 80 1 44 45 46 47 48 49 50 51 52 53 80 80 81 Ru Rh Pd Ag 49 50 51 52 53 53 Ru Rh Pd Ag 49 50 51 52 53 53 Ru Rh Pd Ag 110 110 110 122 128 12 12 Ruthenium frontium siter cadmium indium in antimony tellurium iodin 130 122 128 12 1 Ros 81	magnesium 24												aluminium 27	silicon 28	phosphorus 31		chlorine 35.5	argon 40
Fe Co Ni Cu Zn Ga Ge As Se Br iron cobat nickel copper zinc gallum germanium arsenic selenium bronnie 56 59 59 64 65 70 73 75 79 80 10 44 45 46 47 48 49 50 51 52 53 80 80 81 Ru Rh Pd Ag Cd In senic selenium bronnine 10 101 103 gilder attend 11 11 112 122 128 12 53 53 53 76 77 78 79 80 81 82 83 84 85 127 70 190 192 197 201 204 209 - - - - - - <td< td=""><td>21 22 23</td><td>22 23</td><td>23</td><td></td><td>24</td><td><u> </u></td><td>25</td><td>26</td><td>27</td><td>28</td><td>29</td><td>30</td><td>31</td><td>32</td><td>33</td><td>-</td><td>35</td><td>36</td></td<>	21 22 23	22 23	23		24	<u> </u>	25	26	27	28	29	30	31	32	33	-	35	36
icon cobat Inickel copper zinc gallum germanium arsenic selenium bronnine 1 56 59 59 54 65 70 73 75 79 80 1 44 45 46 47 48 49 50 51 52 53 80 80 10 10 103 Plodium Pd Ag Cd In S5 Te I 80 80 81 80 11 119 119 122 128 127 127 128 127 127 128 127 127 128 127 127 128 127 127 128 127 127 128 127 127 128 127 127 128 127 127 128 127 127 128 127 127 128 127 127 128 127 127 128 120	Sc Ti V	> 1	>	< Cr	5 C		Mn	Fe	S	ïZ	Cu	Zn	Ga	Ge	As		Br	Kr
44 45 46 47 48 49 50 51 52 53 Ru Rh Pd Ag Cd In Sn Sb Te I ruthenium rhodium palladium silver cadmium indium in antimony tellurium iodine 101 103 106 108 112 115 119 122 128 127 76 77 78 79 80 81 82 83 84 85 Os 112 115 119 122 128 127 76 77 78 79 80 81 82 83 84 85 0s 112 112 112 112 122 123 127 128 127 190 192 195 197 204 204 203 209 - - - - -	scandium tit 45	titanium vanadium 48 51	vanadium 51	vanadium chromium 51 52	chromium 52		manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75		bromine 80	krypton 84
Ru Rh Pd Ag Cd In Sn Sb Te I ruthenium hodium palladium silver cadmium indium tin antimony tellurium iodine 127 138 122 128 127 76 77 78 79 80 81 82 83 84 85 76 77 78 79 80 81 82 83 84 85 76 77 78 79 80 81 82 83 84 85 0s 192 192 197 201 204 201 209 -	39 40 41	40 41	41	41 42	42		43	44	45	46	47	48	49	50	51		53	54
ruthenium rhodium palladium silver cadmium indium antimony tellurium iodine 101 103 106 108 112 115 119 122 128 127 76 77 78 79 80 81 82 83 84 85 76 77 78 79 80 81 82 83 84 85 0s 11 Au Hg 71 Pb Bi Po At 190 192 197 201 204 207 209 - - - 108 109 110 111 112 114 116 -	Y Zr Nb Mo	Zr Nb Mo	Nb Mo	Mo			Tc	Ru	RЧ	Pd	Ag	PO	In	Sn	Sb		I	Xe
Tot Tot <td>ytrium zirconium niobium molybdenum 80 01 03 05</td> <td>zirconium niobium molybdenum</td> <td>niobium molybdenum</td> <td>molybdenum</td> <td></td> <td></td> <td>chnetium</td> <td>ruthenium</td> <td>rhodium 102</td> <td>palladium</td> <td>silver</td> <td>cadmium 110</td> <td>indium 115</td> <td>tin 110</td> <td>antimony</td> <td></td> <td>iodine 107</td> <td>xenon</td>	ytrium zirconium niobium molybdenum 80 01 03 05	zirconium niobium molybdenum	niobium molybdenum	molybdenum			chnetium	ruthenium	rhodium 102	palladium	silver	cadmium 110	indium 115	tin 110	antimony		iodine 107	xenon
Os Ir Pr Au Hg T Pb Bi Po Au osmium iridium platinum poid mercuy thallium platinut	57 71 70 73 7A	73 74	73 74	24			75	76	17	78	20	80	51	63	83		85	and and
osmium iridium platirum gold merury thallum lead bismuth polonium astatine 190 192 195 197 201 204 207 209 – – – – 108 109 110 111 112 114 116 – – – hassium meinerium darmstatium roentgenium copernicium flerovium livermorium	lanthanoids Hf Ta W	Hf Ta W	Ta eT	13			Re	S O	: -	2 4	Au	8 P	11	Ph	3 20		At	S N
190 192 195 197 201 204 207 209 -	hafnium tantalum tungsten	tantalum tungsten	tantalum tungsten	tungsten			nenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth		astatine	radon
108 109 110 111 112 114 Hs Mt Ds Rg Cn F/ F/ hassium meitherium darmstadtium foentgenium copennicium frovium fr	1/8 181 184	1/8 181 184	181 184	184	+		186	190	192	195	19/	201	204	207	209		E	<u>1</u>
Hs Mt Ds Rg Cn F/ hassium meitherium darmstadtium/coentgenium copernicium file	3 104 105 106	104 105 106	105 106	106	_		107	108	109	110	111	112		114		116		
	actinoids Rf Db Sg	Rf Db Sg	Db Sg	Sg		4	Bh	Hs	Mt	Ds	Rg	ວ		FI		2.		
						à												
	59	57 58 59	58 59	59	┢		60	61	62	63	64	65	66		68	69	70	71
61 62 63 64 65 66 67 68 69 70	La Ce Pr	La Ce Pr	Ce Pr	Pr			PN	Pm	Sm	Eu	Gd	Tb	D		ш	Tm	Υb	Lu
61 62 63 64 65 66 67 68 69 70 Pm Sm Eu Gd Tb Dy Ho Er Tm Yb	lanthanum cerium praseodymium ne 139 140 141	cerium praseodymium n 140 141	cerium praseodymium n 140 141	praseodymium n	č	ŭ	144	promethium -	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163		erbium 167	thulium 169	ytterbium 173	Iutetium 175
61 62 63 64 65 66 67 68 69 70 Pm Sm Eu Gd Tb Dy Ho Er Tm Yb n promethium samarium europium gadolinium terbium dyspresium holmium erbium yterbium - 150 157 159 163 167 169 173	06	06	06		91		92	<mark>63</mark>	94	95	96	97	98		100	101	102	103
61 62 63 64 65 66 67 68 69 70 Pm Sm Eu Gd Tb Dy Ho Er Tm Yb n promethium samarium europium gadolinium terbium dysprosium holmium erbium yterbium - 150 157 159 163 167 169 173 - 150 157 159 94 95 96 97 98 99 100 101 102	Ac Th	Ч	Ч		Pa		D	Np	Pu	Am	Cm	BK	Ç		Fm	Md	No	۲
61 62 63 64 65 66 67 68 69 70 Pm Sm Eu Gd Tb Dy Ho Er Tm Yb n promethium samarium europium gadolinium terbium dysprosium holmium erbium yterbium - 150 157 159 163 167 169 173 93 94 95 96 97 98 99 100 101 102 Np Pu Am Cm Bk Cf Es Fm Md No	actinium thorium protactinium	thorium	thorium		protactinium		uranium	neptunium	plutonium	americium	curium	berkelium	californium		fermium	mendelevium	nobelium	lawrencium
60 61 62 63 64 65 66 67 68 69 70 71 Ndd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu eodymium semarium europium gadolinium terbium Aysprosium holmium erbium ytterbium jterbium			1		231		238	I	1	1	1	1	T		1	I	1	I

The Periodic Table of Elements

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

6092/01/4E/PRELIM/19

Name: (

ASSUMPTION ENGLISH SCHOOL PRELIMINARY EXAMINATION 2019

)

DATE:

ASSUMPTION ENGLISH SCHOOL ASSUMPTION ENGLISH SCHOOL

LEVEL: Sec 4 Express

CLASS: Sec 4/2

DURATION: 1 hour 45 minutes

27 August 2019

Additional materials provided: Nil

INSTRUCTIONS TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your NAME and INDEX NUMBER at the top of this page.

This paper consists of 2 sections.

SECTION A

SHORT STRUCTURED QUESTIONS (50 marks)

Answer **all** questions in the spaces provided on the question paper.

SECTION B

FREE RESPONSE QUESTIONS (30 marks)

Answer all **three** questions, the last question is in the form of an either / or and only one of the alternatives should be attempted. Write your answers in the spaces provided on the question paper.

For Examine	er's use:
Paper 1	/ 40
Section A	/ 50
Section B	/ 30
Paper 2	/ 80
Paper 3	/ 40
Total	/ 160
100%	/ 100

A copy of the Periodic Table is printed on page 23.

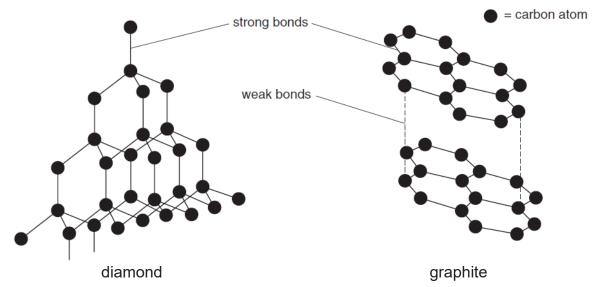
This Question Paper consists of <u>23</u> printed pages including this page. Section A – Short-Structured Questions (50 marks) Answer all questions in the spaces provided.

1 The data in the table below describes two properties of some substances. The letters are **not** the actual symbols of the elements in the Periodic Table.

substance	appearance at room temperature and pressure	products of burning in oxygen at 1 atm
A	black solid	carbon dioxide
В	colourless gas	water
С	colourless gas	(does not burn in oxygen)
D	yellow solid	sulfur dioxide
E	colourless liquid	carbon dioxide and water
F	silvery metal	F ₂ O

Use the letters **A**, **B**, **C**, **D**, **E** or **F** to answer the following questions. You may use the letters once, more than once or none at all.

(a) Which substance is most likely to be hydrogen?


(b)	Whic	h substance is most likely to be a compound?	[1]
			[1]
(c)	(i)	Name another oxide that may be produced when substance A burns in oxygen.	
			[1]
	(ii)	State the nature of the oxide from (c)(i).	
			[1]
(d)	(i)	Gas C is an element that does not burn in oxygen. Suggest the name of this substance C .	
			[1]
	(ii)	Explain your answer in (d)(i) .	
			[1]
(e)	Pred	ict the electrical conductivity of F_2O in the solid state.	

6092/02/4E/PRELIM/2019

With reference to its structure and bonding, explain why.

2 The structures of diamond and graphite are drawn below.

- (a) Diamond has a melting point of about 3700 °C and graphite has a melting point of about 3300 °C.
 - (i) In terms of structure and bonding, explain why diamond has a high melting point.

[2]

(ii) Suggest why the melting point of graphite is lower than that of 6092/02/4E/PRELIM/2019 [Turn Over

diamond.

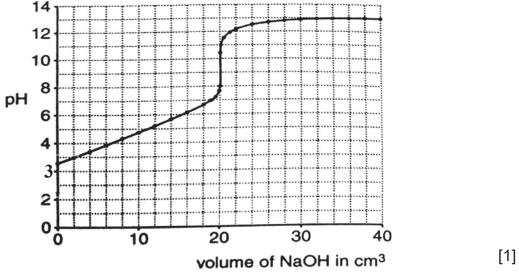
......[1]

(b When graphite is burnt in air, it produces carbon dioxide.

-)
- (i) Draw the electronic structure of carbon dioxide. Only the outer electrons are required.

[2]

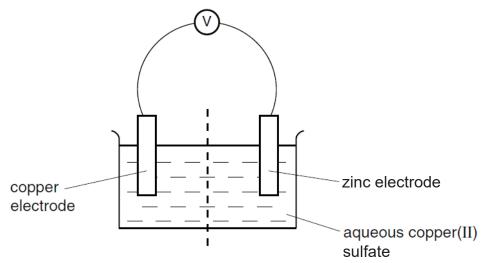
3 A pupil compared two solutions of monobasic acids, HX and HY, and obtained the following results.


	0.1 mol/dm ³ HX	0.1 mol/dm ³ HY
electrical conductivity/ mA	90	15
рН	1.0	3.5

What can you deduce regarding the strength of the acids? (a) Explain your answer.

..... [3]

(b A pH meter and a data logger are used to monitor the pH changes during a series of titrations. In each titration, the same concentration of sodium hydroxide solution is added from a burette into a solution of 20 cm³ of HX and HY acid solutions. During the titrations, the pH does not change smoothly. The data logger gives a graph for the titration with HY.

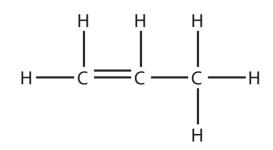

Sketch the graph on the same axes below to show the change in pH between sodium hydroxide and HX solutions until the reaction stops. Clearly label the graph with HX.

[Total: 4]

[Turn Over

4 This reaction can be used to generate electricity in a cell.

- (a) Draw an arrow on the diagram to show the direction of the flow of electrons in the wire. [1]
- (b Write the ionic equation for the reaction at the copper electrode.
 - [1]
- (c) The voltage of the cell was measured when the following metals replaced the zinc electrode.
 - copper iron silver zinc


Complete the table by entering the metals in the correct order.

meter reading / V	metal
+1.10	
+0.78	
0.00	
-0.46	

[2]

[Total: 4]

5 The diagrams below show the structure of propene.

(a) Calculate the mass of bromine liquid required to react with 1 g of propene.

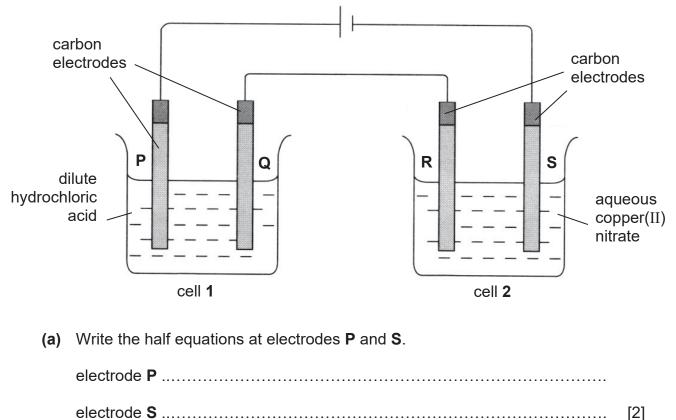
mass of bromine liquid = g [2]

- (b Propene can undergo addition polymerisation to form polymer X.
-) Draw the structure of the polymer X.

[1]

(c) A sample of polymer X was analysed and found to have an average relative molecular mass of 7350.

How many carbon atoms are present in an average chain?


number of carbon atoms = [2]

[Total: 5]

6092/02/4E/PRELIM/2019

[Turn Over

6 The following experiment was set up to study the electrolysis of dilute hydrochloric acid and aqueous copper(II) nitrate using carbon electrodes as shown in the diagram below.

(b With reference to the diagram, explain why there is a change in the pH of) the electrolyte in cell 2 after some time.

[2] [Total: 4] 7 Three methods for preparing salts are listed below:

method 1:	precipitation
method 2:	reacting excess metal with dilute acid
method 3:	titration

(a) Place a tick (\checkmark) in **one** box in each row to show the correct method to use to prepare each of the following salts.

salt	method 1	method 2	method 3
ammonium chloride			
lead(II) sulfate			
sodium sulfate			
zinc nitrate			

- Copper(II) chloride is a salt that cannot be prepared using any one of the (b three methods shown above.
-)
 - (i) Explain why copper(II) chloride cannot be prepared by any one of the three methods shown above.

..... [2]

(ii) Suggest an experimental procedure to prepare a dry sample of copper(II) chloride using suitable reagents commonly found in a laboratory.

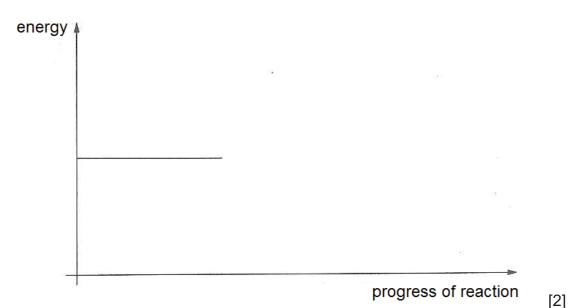
..... [3]

[Total: 7]

[2]

[Turn Over

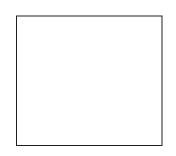
8 Sulfur dioxide is used to manufacture sulfuric acid, by a three-stage process called the Contact Process. The first stage is to convert sulfur dioxide to sulfur trioxide. During this process, sulfur dioxide gas and sulfur trioxide gas are released to the environment.


 $2 \text{ SO}_2(g) + O_2(g) \rightleftharpoons 2 \text{ SO}_3(g)$ $\Delta H = -197 \text{ kJ/mol}$

(a) The above reaction takes place at a moderate temperature of 450 °C. Suggest why this temperature is used in the Contact Process instead of a lower or higher temperature.

(b Complete the energy profile diagram for the forward reaction in the production of sulfur trioxide.

Your diagram should include


- the formulae of the reactants and products of the reaction,
- a label for the activation energy of reaction,
- a label for the enthalpy change of reaction.

(c) Using ideas about colliding particles, state and explain how the rate changes when the pressure is increased.

.....

- [2] The product of the Contact Process is concentrated sulfuric acid (98%) with (d only 2% of the mass being water.) Explain why it is possible to transport sulfuric acid of such high concentration using steel tanks but not for dilute sulfuric acid. [2] (e) Suggest a possible metal that can be used as a catalyst for this reaction, stating your reason clearly. [1]
- (f) Draw in the box below, the particulate diagram showing the particles of sulfur trioxide.

[1]

[Total: 10]

SECTION B: FREE-RESPONSE QUESTIONS [30 MARKS]

Answer **all** the questions in the spaces provided. The last question is in the form of an EITHER / OR and only one of the alternatives should be attempted.

9 The Drive for Cleaner Emissions by John Uhrich

The air pollutants emitted by a car come from undesirable chemical reactions that occur during fuel combustion inside the engine. In the most common type of combustion reaction, gasoline or diesel, reacts with oxygen to form water and carbon dioxide. During this reaction, the chemical energy of the fuel is released and harnessed to run the engine.

$$C_xH_y + (x + \frac{y}{4})O_2 \rightarrow x CO_2 + \frac{y}{2}H_2O$$

Petrol and diesel are both obtained by fractional distillation of crude oil. However, they differ in their composition. Diesel is a fraction of crude oil that is removed at a higher boiling point than petrol.

In petrol engines, oxygen (from the air) and fuel are designed to be almost exactly stoichiometrically balanced, so that, ideally, there is no excess of either reactant at the end of the reaction. Car manufacturers must ensure that the reactants are balanced as the reactants can have a large effect on the amount of pollution a car produces. For instance, the presence of too little oxygen can result in incomplete fuel combustion, which produces carbon monoxide and unburnt hydrocarbon, both of which are considered pollutants when present in the air at ground level. Also, nitrogen from the air is quite inert, but if too much oxygen is present (more than the stoichiometric amount) at high temperatures, the extra oxygen can react with the nitrogen to produce other pollutants, called nitrogen oxides.

To reduce the potentially harmful pollutants that are created as by-products of combustion, the exhaust passes through a catalytic converter, which converts carbon monoxide, unburnt hydrocarbons, and various nitrogen oxides into less-harmful chemical compounds before they are released into the air.

There are two kinds of catalytic converter – two-way catalytic converter and three-way catalytic converter.

A two-way catalytic converter has two simultaneous reactions:

a) Conversion of carbon monoxide to carbon dioxide

$$2 \text{ CO} + \text{O}_2 \rightarrow 2 \text{ CO}_2$$

b) Conversion of unburnt hydrocarbons to carbon dioxide and water

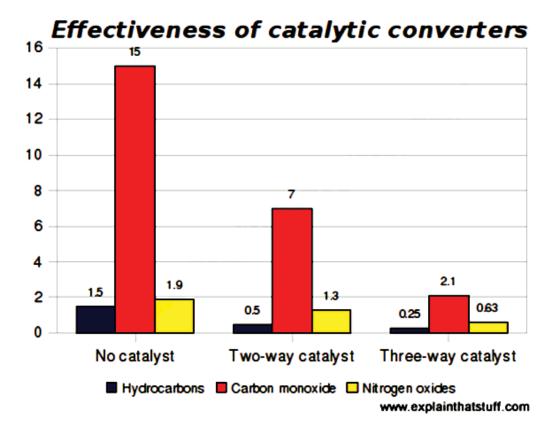
 $C_xH_y + (x + \frac{y}{4}) O_2 \rightarrow x CO_2 + \frac{y}{2} H_2O$

A three-way catalytic converter has three simultaneous reactions:

6092/02/4E/PRELIM/2019

a) Decomposition of nitrogen oxides to nitrogen and oxygen:

$$2 \text{ NO}_x \rightarrow x \text{ O}_2 + N_2$$


b) Conversion of carbon monoxide to carbon dioxide:

$$2 \text{ CO} + \text{O}_2 \rightarrow 2 \text{ CO}_2$$

c) Conversion of unburnt hydrocarbons to carbon dioxide and water:

$$C_xH_y + (x + \frac{y}{4})O_2 \rightarrow x CO_2 + \frac{y}{2}H_2O$$

The chart shows pollutants in grams per kilometre at 80,000 kilometres.

Sources: <u>https://www.catalyticconverters.com/types/</u>, <u>http://www.explainthatstuff.com/catalyticconverters.html</u>

- (a) Octane, C_8H_{18} , is a common hydrocarbon found in gasoline.
 - (i) Write a balanced chemical equation to show the complete combustion of octane.

(ii) Calculate the minimum volume of oxygen gas required to 6092/02/4E/PRELIM/2019 [Turn Over

completely react with 3 moles of octane at room temperature and pressure.

volume of oxygen gas = $\dots dm^3$ [2]

[2]

(iii) Using the chemical equation in (a)(i), show that the combustion of octane is a redox reaction.

(b) The article says "Petrol and diesel are both obtained by fractional distillation of crude oil. However, they differ in their composition. Diesel is a fraction of crude oil that is removed at a higher boiling point than petrol."

Based on the statement, what can you infer about the difference in the number of carbon atoms in petrol and diesel fraction?

How does the number of carbon atoms have effect on the boiling point?

Explain your reasoning.

[3]

(c) A car manufacturer has plans to install a catalytic converter in the

manufactured car. Which of the two catalytic converters would you recommend the manufacturer to install?

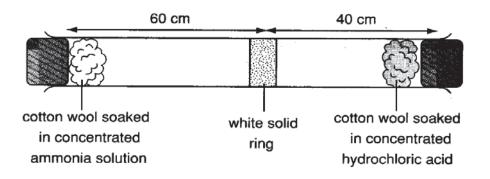
Explain your reasoning.

		[1]
(d)	What additional environmental problem does a two-way catalytic converter cause?	
		[1]
	[Total: 10]	

10 Nitrogenous fertilisers are soluble salts used to increase crop yield. Two commonly

[Turn Over

used nitrogenous fertilisers are ammonium chloride and ammonium phosphate.


(a) Ammonium chloride can react with sodium hydroxide. Write an ionic equation for this reaction.

......[1]

(b) Calculate the percentage mass of nitrogen in ammonium chloride.

percentage mass of nitrogen = % [1]

(c) A metre-long tube was set up with a plug of concentrated ammonia solution at the left end and a plug of concentrated hydrochloric acid at the right end. After a while, the two gases (ammonia and hydrogen chloride gas) met and a white solid of ammonium chloride was produced as shown.

(i) Explain why the white solid ring of ammonium chloride is formed at the specific location.

(ii) Explain the change in time taken for the white solid to appear when the above setup is carried out at a higher temperature.
 (d) Aqueous ammonium chloride was added to aqueous bromine. State the observation for this reaction, if any, and suggest a reason for the 6092/02/4E/PRELIM/2019

outcome.

(e) Suggest in steps, a method to separate a mixture of solid ammonium chloride and solid sodium chloride. You may draw a labelled diagram to support your answer.

		[2]
(f)	State a trend in physical properties of the halogens.	
		[1]
	[Total: 10]	

EITHER

11 Organic acids are commonly used in the preservation of food.

Organic acids can be made from the atmospheric oxidation of aldehydes in air. The names and structural formulae of the aldehydes are shown in the table below.

aldehyde	chemical formula	structural formula
methanal	CH ₂ O	н – с _ н
ethanal	C2H4O	H - C - C H
butanal	C4H8O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- (a) (i) Complete the table above to show the name, chemical formula and structural formula of the aldehyde that occurs between ethanal and butanal.
 - (ii) Using the data given, explain in two ways how you can tell that these compounds are from the same homologous series.

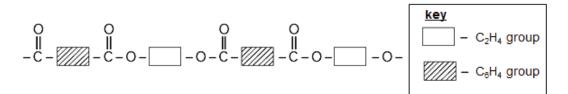
(b) Give the name of an oxidising agent that can oxidise methanal to methanoic acid. Explain what you would observe when the oxidation process is completed.

oxidising agent

(c) The organic acids made from aldehydes can then undergo condensation reactions with alcohols to make esters. One such example is butyl ethanoate,

6092/02/4E/PRELIM/2019

[1]

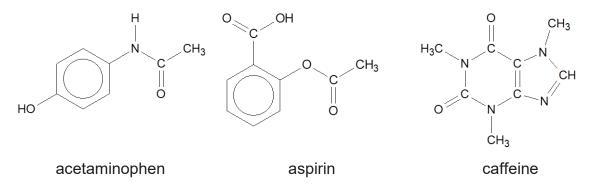

which gives an apple smell present in perfumes.

(i) Explain the term 'condensation reaction'.

(ii) Draw the full structural formula of butyl ethanoate.

(d) Terylene, a synthetic polyester, is also made from the condensation reaction of organic acids and alcohols. It contains the ester linkage which is strong and durable and is commonly used in the manufacture of sleeping bags and clothings. The structure of Terylene is shown below.

(i) Give **one** similarity and **one** difference between the condensation reaction of the formation of butyl ethanoate and the formation of Terylene.


6092/02/4E/PRELIM/2019

[Turn Over

OR

11 Chromatography is the general name applied to a series of separation methods that employ a system with two phases of matter; a mobile phase and a stationary phase. Analytes in a mixture to be separated interact with the stationary phase with different affinities. While moving through the system, carried along by the mobile phase (solvent), analytes with a low affinity for the stationary phase will tend to move along rapidly, while those with a high affinity will tend to lag behind. Thin Layer Chromatography (TLC) is a fast and inexpensive form of chromatography that has many uses in the organic laboratory. The retention factor (Rf) is simply the fractional distance the solute spot moves along the plate relative to the solvent front. The stationary phase in TLC is typically an adsorbant made of silica gel.

Analgesics are substances that relieve pain. The most common of these is aspirin. Other common analgesics include acetaminophen. In many cases these analgesics are used in combination to enhance or complement their individual affects; e.g., acetaminophen. Additionally, to counteract the acidic properties of aspirin, an inorganic buffering agent is added to some preparations. In some cases, caffeine is added to counteract the sedative effects of the analgesic.

TLC will be used to analyse a commercial analgesic tablet. The above-mentioned compounds will also be run on the same TLC for comparison. The retention factor value for each standard and each analyte spot produced by the commercial analgesic tablet will be determined. This will then allow the compounds used in the analgesic tablet to be identified.

Literature values of the compounds are listed as followed.

compound	melting point / °C	retention factor
acetaminophen	168.0	0.333
aspirin	136.0	0.639
caffeine	236.1	0.125

The retention factor values are obtained after each of the components, **X**, **Y** and **Z**, are isolated and were analysed using TLC.

compound	melting point / °C	retention factor
X	132.1 – 132.2	0.676
Y	166.2 – 168.2	0.378
Z	234.3 – 235.5	0.189

Source: https://infohost.nmt.edu/~jaltig/TLC.pdf

(a) Use the literature information provided to name the components, X, Y and Z.

(b) Based on the literature R_f values, which compound has the highest affinity to the stationary phase, silica gel?


Explain your reasoning.

......[2]

(c) What can you conclude about the literature melting points and the experimental melting points?

Explain your reasoning.

(d) A way to produce acetaminophen is to react two molecules to form an amide linkage. This process is similar to the process of esterification.

(i) Name the conditions required to produce acetaminophen.

HO

6092/02/4E/PRELIM/2019

[Turn Over

[2]

(ii) Draw the structure of the two molecules that can form acetaminophen.

[2]

(iii) In practice, when the two molecules react in (d)(ii), the yield of acetaminophen is never 100%.

Suggest a reason why.

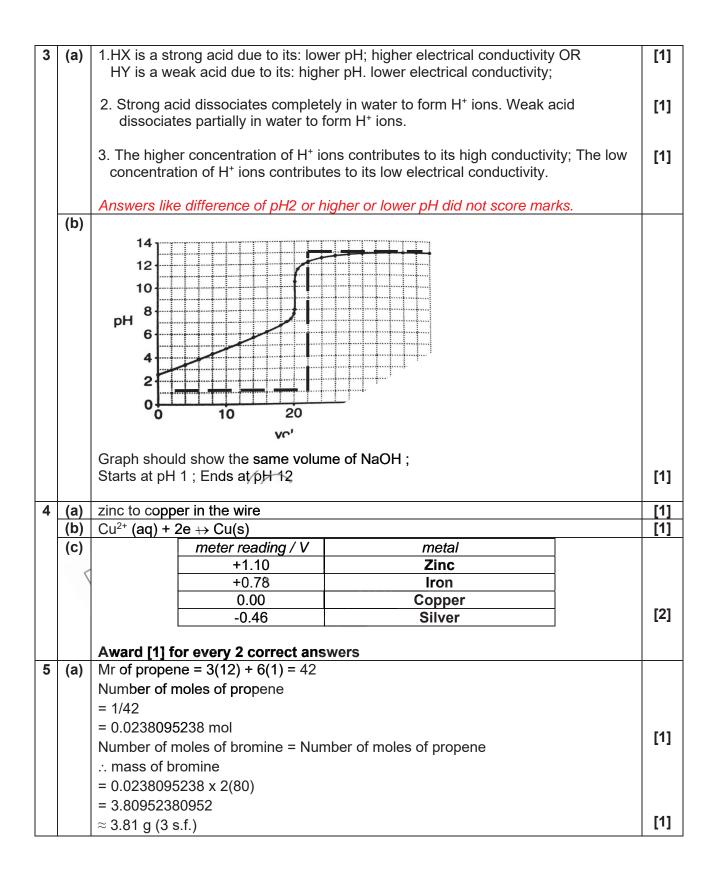
.....[1]

[Total: 10]

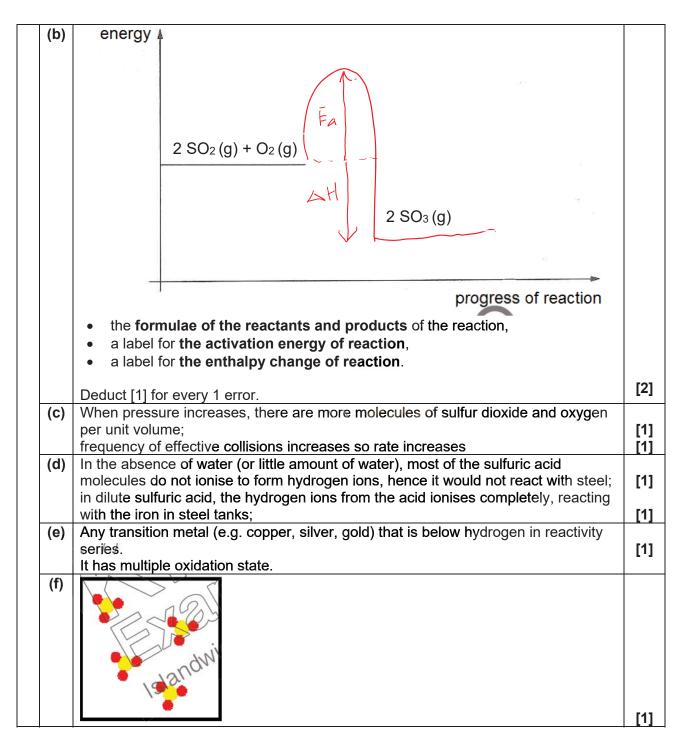
– END OF PAPER –

S
Ξ
e
Ξ
e
ш
¥_
0
Θ
q
a.
F
C
5
Ō
Ξ.
å
ц
e
F
_

				_			_												_			-	_			_		
	0	2 He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	Ł	krypton 84	54	Xe	131	86	R	radon -					71	Ξ	175	103	۲	lawrencium -
	VII			6	ш	fluorine 19	17	CI	chlorine 35.5	35	Br	bromine 80	53	I	iodine 127	85	At	astatine 					70	٩	ytterbium 173	102	No	nobelium -
	VI			8	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	8	P	polonium –	116	۲	livermorium –		69	Ē	thulium 169	101	PM	mendelevium no
	٧			7	z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	B	bismuth 209					1		erbium 167			
	N			9	o	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	PP	lead 207	114	F/	flerovium -		67	우	holmium 165	66	Es	einsteinium -
	=			5	B	boron 11	13	Al	aluminium 27	31	Ga	gallium 70	49	Ę	indium 115	81	Τl	thallium 204					99	6	dysprosium 163	98	້ວ	californium -
										30	Zn	zinc 65	48	පි	cadmium 112	80	Нg	mercury 201	112	ວົ	sopernicium -				terbium 159	-		
										29	C	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	oentgenium		64	В	gadolinium 157	96	с О	curium
dn										28	ī	nickel 59	46	Р	palladium 106	78	đ	platinum 195	110	Ds	Jarmstadtium		63	Ē	europium 152	95	Am	americium -
Group										27	ပိ	cobalt 59	45	R	rhodium 103	17	ľ	iridium 192	109	¥	meitnerium o		62	Sm	samarium 150	94	Ъ	plutonium -
		- I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	76	os	osmium 190	108	Hs	hassium -		61	Pa	promethium -	93	dN	neptunium -
				1						25	Mn	manganese 55	43	Ъс	technetium -		Re	rhenium 186	107	뚭	Pohrium		60		neodymium 144	92	⊃	uranium 238
				umber		nass				24	ບັ	chromium 52		Mo	molybdenum 96	74	8	tungsten 184	106	Sg	seaborgium -		59	ፈ	praseodymium 141	91	Ра	protactinium 231
			Key	proton (atomic) number	atomic symbol	name relative atomic mass				23	>	vanadium 51	41		E		Та	tantalum 181	I				58		cerium 140			thorium 232
				proton	ato	relativ				22	Ħ	titanium 48	40	Zr	zirconium 91	72	Ŧ	hafnium 178	104	¥	Rutherfordium -		57	La	lanthanum 139	89	Ac	actinium –
							_			21	Sc	scandium 45	39	≻	yttrium 89	57 - 71	lanthanoids		89 - 103	actinoids								
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ي ا	strontium 88	56	Ba	barium 137	88	Ra	radium -		lanthanoids			actinoids		
	_			3		lithium 7	11		_	19	¥	potassium 39	37	Вb	rubidium 85	55	S	caesium 133	87	Ŀ	francium -		<u>a</u>					


The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

1	2	3	4	5	6	7	8	9	10
A	С	С	В	D	В	D	В	В	D
11	12	13	14	15	16	17	18	19	20
С	D	В	С	В	В	В	D	D	D
21	22	23	24	25	26	27	28	29	30
В	А	D	С	D	В	С	A	В	A
31	32	33	34	35	36	37	38	39	40
A	С	В	D	В	A	А	С	D	В


Multiple-Choice Questions [40 M]

Section A: Short-Structured Questions [50 M]

1	(a)	В		[1]
· ·	(b)	E		[1]
	(c)	(i)	Carbon monoxide	[1]
	1-7	(ii)	neutral	[1]
	(d)	(i)	Any noble gas (e.g. helium, neon, argon, etc)	[1]
		(ii)	It has a complete valence shell / complete outermost shell / noble gas	
		. ,	configuration and does not need to gain / lose / share electrons.	[1]
	(e)	It is a	n ionic compound. Since its ions are held / fixed in an ionic lattice structure, no	[1]
			e ions are available to act as charge carriers. Hence F ₂ O does not conduct	[1]
			icity in the solid state.	
2	(a)	(i)	Each C atom is bonded to 4 other C atoms by strong covalent bonds in a	[1]
			tetrahedral structure; large amount of energy is needed to break these strong	[1]
		(11)	bonds, resulting in a high melting point	
		(ii)	The network of covalent bonds is less extensive than diamond / each carbon	
			atom is bonded to 3 carbon atoms in graphite while each carbon atom is bonded to 4 carbon atoms in diamond	F4 3
	(b)	(i)		[1]
	(b)	(i)	(Slall)	
			\sim \times \times \checkmark	
			[1]: Electrons involved in bonding are drawn correctly	
			[1]: No other valence electrons are drawn	[2]
		(ii)	Each C atom is bonded covalently to 3 other atoms in a hexagonal structure.	[1]
			Free moving electron from each C atom can act as charger carriers to move	[1]
			across layers to conduct electricity.	
		(iii)	test: measure the melting point / boiling point of carbon dioxide	
			observation: melting point / boiling point is fixed OR melting point / boiling	
			point matches the recorded melting point / boiling point in scientific data.	[1]
			Award [4] any if both toot and abaam ation are correct	
			Award [1] only if both test and observation are correct.	

	(b)	H	$ \begin{array}{c} H & H \\ -C - C \\ -C - C \\ -L \\ -L \\ -L \\ -L \\$	H H - C - C CH ₃ H	H H CH ₃		[1]			
	(c)	Numb = 735 = 175 Numb	Number of carbon atoms = 175 x 3							
6	(a)		ectrode P : $4OH^{-}(aq) \rightarrow 2H_{2}O(I) + O_{2}(g) + 4e$							
	(b)	Hydro Hence	ode S : Cu^{2+} (aq) + 2e \rightarrow Cu xide ions are discharged at c_{2} , with the decrease in conce lution becomes less alkaline	electrode R (a entration of hy			[1] ses as [1]			
7	(a)		salt	method 1	method 2	method 3				
			ammonium chloride			\checkmark				
			lead(II) sulfate	\checkmark						
			sodium sulfate			\checkmark				
			zinc nitrate		X		[2]			
	(1-)		a [1] for every 2 correct an							
	(b)	(i)	 Copper (II) chloride is so Copper cannot react with Copper oxide, hydroxide method/3 	th dilute acid, e and carbona	so cannot use	e method 2	not use [2]			
		 Deduct [1] for every 1 mistake (ii) Add <u>excess</u> copper(II) oxide/hydroxide/carbonate to dilute hydrochloric acid Filter the mixture Heat the filtrate until saturated Cool the hot filtrate to allow it to crystallize Collect crystals and wash with cold deionised water Award [1] for every 2 correct steps Award [3] for all correct steps 								
8	(a)	when too hig	the temperature is too low, the temperature is too high,	the speed of re the cost of ma	intaining the l	high temperat	[1] ure is [1]			

Section B: Long-Structured Questions [30M]

9	(a)	(i)	$2 \text{ C}_8\text{H}_{18} + 25 \text{ O}_2 \rightarrow 16 \text{ CO}_2 + 18 \text{ H}_2\text{O}$		[1]
		(ii)	Mole ratio of	[allow ecf for mole ratio]	
			2 C ₈ H ₁₈ : 25 O ₂		
			3 : 37.5		
			Number of moles of $O_2 = \frac{3}{2} \times 25$		
			= 37.5 mol	[1]	
			Volume of O ₂ = 37.5 x 24.0		[0]
			= 900 dm ³	[1]	[4]

		(iii) $2 C_8 H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2 O_2$	
		C_8H_{18} loses H atom / gains O atom to form CO ₂ , hence C_8H_{18} is reduced.	[1]
		O_2 gains H atom / loses O atom to form H ₂ O, hence O_2 is oxidised.	[1]
	(b)	Diesel contains a higher number of carbon atoms than petrol [1].	
	(~)	2.000. 00.000.00 0. <u>g</u>	
		As the <u>number of carbon atoms increases</u> , the <u>molecular size of the</u>	
		hydrocarbons increases. The intermolecular forces of attraction between	
		the hydrocarbons increases. [1]	
		, I ,	
		Hence more energy is needed to overcome the intermolecular forces of	
		attraction between the hydrocarbons. Hence diesel is a fraction of crude oil	
		that is removed at a higher boiling point than petrol. [1]	[3]
	(C)	Three-way catalytic converter.	
	. ,		
		Based on the chart, the three-way catalytic converter produces the lowest	
		mass of hydrocarbons, carbon monoxide and nitrogen oxides as compared to	
		two-way catalytic converter. Hence the three-way catalytic converter is a more	
		effective catalytic converter. [1]	
		OR	
		Three-way catalytic converter can remove hydrocarbons, carbon monoxide	
		and nitrogen oxides while two-way catalytic converter can only remove	
		hydrocarbons and carbon monoxide. Hence the three-way catalytic converter	
		is a more effective catalytic converter.	
			[1]
	(d)	Nitrogen oxides are not converted in a two-way catalytic converter.	
		As a result, the nitrogen oxides react with oxygen and dissolve in rainwater to	
		form acid rain, which corrodes limestone buildings, destroys aquatic life and	
		pla/its.	[1]
10	(a)	NH_4^+ (aq) + OH ⁻ (aq) $\longrightarrow NH_3$ (g)+ H_2Q (l)	[1]
	(b)	Percentage mass of nitrogen in ammonium chloride	
		= 14 / (14 + 4 + 35.5) x 100	
		= 26.2% (3 s.f.)	[1]
	(c)	(i) Ammonia has a relative molecular mass of 17, and is less dense than	
		hydrogen chloride gas, with a relative molecular mass of 36.5.	[1]
		Hence ammonia gas diffuse faster than hydrogen chloride gas, forming	
		the white solid ring closer to concentrated hydrochloric acid.	[1]
	(1)	(ii) The white solid would appear faster as the rate of diffusion is faster;	[1]
	(d)	No visible change will be observed.	[1]
		Bromine is less reactive than chlorine and is unable to displace chloride from	F41
	(-)	ammonium chloride.	[1]
	(e)	Step 1: In an evaporating dish, heat gently to sublime ammonium chloride.	[1]
		Step 2: Place an inverted filter funnel over the evaporating dish to cool down	F43
		and condense the gaseous ammonium chloride to form white solid.	[1]
		Diagram drawn must be labelled properly to be owerded [1]. Student will	
		Diagram drawn must be labelled properly to be awarded [1]. Student will need to state step 2 to get full credit	
	(f)	need to state step 2 to get full credit.	
	(f)	need to state step 2 to get full credit. As we go down the group, the boiling point or melting point increases /	[4]
	(f)	need to state step 2 to get full credit.	[1]

11	Eith	er							
	(a)	(i)	aldehyde	chemical formula	structural formula	[1]			
			propanal	C ₃ H ₆ O					
			Award [1] only whe	n all answers are c					
		(ii)	These molecules have the same functional group of CHO./						
			These molecules h	nese molecules have the same general formula, C _n H _{2n} O./					
			Each member's mo	ach member's molecular formula differs from the next member by					
			CH ₂ .	H ₂ .					
			Award [1] for each	vard [1] for each correct answer.					
	(b)	Oxid	ising agent: acidified		nate	[1]			
			ervation: Violet potas			[1]			
	(c)	(i)	<u>Condensation</u> reaction occurs when the molecules join with one another <u>covalently</u> to form a <u>new product</u> , with the <u>elimination</u> of <u>small</u>						
		(ii)		water.		[1]			
					н -С — Н	[1]			
	(d)	(i)	esther bond format		oduce water molecules / involve				
				-	but Terylene is a macromolecule kage but ethyl pentanoate has	[2]			
		(ii)			I <u>remain</u> on Earth for a long time. andfill sites, causing <u>land pollution</u> .	[1]			
11	Or	1							
	(a)	Y: ac Z: ca Awa Awa	aspirin acetaminophen caffeine ard [1] for 1 or 2 correct answer ard [2] for all correct answers						
	(b)				hest affinity for the silica gel. [1] ed to aspirin and acetaminophen,				
		this s	shows that the <u>distan</u>	ice moved by caffeir	he on the TLC plate is <u>the shortest</u> high affinity for silica gel. [1]	[2]			

(c)		<u>experimental melting points</u> for all three compounds are <u>lower</u> than the ature values. [1]					
	А ро	ssible reason is that <u>compounds X, Y and Z are <u>not 100% pure [1]</u></u>	[2]				
	Or						
	the compounds may contain <u>impurities</u> .						
(d)	(i)	Concentrated sulfuric acid, warm/heat (under reflux)	[1]				
	(ii)	Award [1] for each correct answer	[2]				
	(iii)	The process is similar to esterification, which is a <u>reversible</u> process. Hence some of the product, acetaminophen, formed is <u>converted back</u> to reactant particles.	[1]				