NAME:	()	CLASS:

MATHEMATICS

4048/01

Paper 1

Date: 27 August 2019

Duration: 2 hours

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to 3 significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 80.

For Examine	er's Use
Paper 1	/80
Paper 2	/100
Total	%

Setter: Miss Shamsiah Zainalabidin

This question paper consists of 19 printed pages including the cover page.

N.1.		
Name:	(1
	1	1

Mathematical Formulae

Compound interest

$$Total\ amount = P \left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of a triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Name			_() Class:
		Answer all the	questions.
1	(a)	Express 3780 as a product of its prime	factors.
			Answer (a)[1]
	(b)	Hence, find the smallest integer by whisquare.	ich 3780 must be multiplied to obtain a perfect
			Answer (b)[1]
2	Giver	that $A = \begin{pmatrix} 2 \\ 7 \end{pmatrix}$, $B = \begin{pmatrix} -3 & 9 \end{pmatrix}$ and $C = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$	$\binom{2}{4}$, find
	(a)	$\frac{1}{2}$ BA,	
			Answer (a)[1]
			[1]
	(b)	\mathbb{C}^2 .	
			Answer (b)[1]
FMS(S	S) Sec 4	Exp / 5 N(A) Preliminary Examination 2019	3

Name:	/
ivallie.	(

3 The curve y = (x - 1)(x + k) has a minimum point Q as shown.

)

(a) Write down the equation of the line of symmetry of this curve.

Answer (a) [1]

(b) Write down the value of k.

Answer (b)
$$k =$$
 [1]

The volume, $V \, \text{cm}^3$, of a cylinder is directly proportional to $r^2 h$, where r is the radius and h is the height of the cylinder. Find the percentage change in the volume when the radius is increased by 50% and the height is decreased by 20%.

Name:

5 Charlene wanted to impress her parents by showing the rapid increase in her marks in 5 tests. Suggest, with reason, which graph she should use to impress her parents.

The estimated atomic mass of 12 billion nitrogen atoms is 2.80×10^{-9} grams.

(a) Express the mass of 1 nitrogen atom in picograms, leaving your answer in standard form. $[1 \text{ pico} = 10^{-12}]$

Answer (a) picograms[1]

(b) The atomic mass of a helium atom is 6.684×10^{-24} g. Express the ratio of the mass of a helium atom to a nitrogen atom in the form of n: 1, leaving your answer in standard form.

Answer (b) 1 [2]

Name:			()	Class:
7		eight of Mount Kiki is 4.2 km and the mperature decreases constantly at a			
	(a)	Calculate the temperature at the p	oeak of th	ne mountai	n.
		,		Answei	r (a)°C [
	(b)	Calculate the height from the foo	t of the n	nountain at	which the temperature is 7 °
		*			
				Answe	er (b) m [
	(c)	A man took 6 hours 43 minutes to Given that he reached the peak at			

Answer (c).....[1]

Nan	ne:			()	Class:
8		me, V , of the gas.			3	is inversely proportional to th
	(a)	Sketch the grap		V on the axis p	rovided.	[1
					,	
		ANDROGENOUS			Maria de la composición del composición de la co	\overrightarrow{V}
	(b)	When the press	sure of the gas	is 4 Nm ⁻² , the	volume is 8 r	n^3 . Find P when $V = 12 \text{ m}^3$.
					Answer	(b)

- - Calculate the actual distance, in km, represented by 6.3 cm on the map. (a)

Answer (a) km [1]

A lake has an actual area of 3.9 km². Find the area of the lake on the map, in square (b) centimetres.

Answer (b) cm² [2]

Name	:	() Class:
10	Cons	sider the number pattern:
		$1 + 3 = 4 = 2 \times 2$
		$1 + 3 + 5 = 9 = 3 \times 3$
		$1+3+5+7=16=4\times 4$
		$1+3+5+7+9=25=5\times 5$
	(a)	Write down the sixth line in the pattern.
		Answer (a)[1
	(b)	Using the above number pattern, find the sum $1 + 3 + 5 + 7 + 9 + + 81$

Answer	(b)	 	 	[1]

John deposited \$10 000 in a bank paying an interest of 10% per annum, compounded half yearly. 11 Calculate the amount of interest he would receive after 2 years.

Answer \$ [3]

Name:						1
radino.			 	 	 	 - 1

102020		
Class:		
U. (133)		

- 12 Match the correct graphs A to E, found below to represent each of the following statements.
 - (a) The cost, y, of taxi fare which consists of a fixed charge plus an amount proportional to the distance travelled, x.
 - (b) The volume, y, of a sphere is proportional to the cube of the radius x.
 - (c) The distance travelled by an object, y, varies directly with the time taken, x.

Answer	(01)															Г	1
Allower	(u)			• •				* *	*		٠						Ţ.
	1										7		•		~	L	

13 (a) On the Venn diagram in the answer space, shade the region which represents $(P \cup Q')'$.

Answer

[1]

(b) $\mathcal{E} = \{ x: x \text{ is an integer between 0 and 21} \}$

 $A = \{ x: x \text{ is a multiple of 5} \}$

 $B = \{ x: x \text{ is not a prime number} \}$

(i) List the elements contained in the set $(A \cup B)'$.

Answer(b)(i).....[1]

(ii) Find $n(A \cap B)$.

Answer(b)(ii).....[1]

Name:	1
Name.	- 1

Solve the inequality $4-3x \le \frac{2-x}{3} < \frac{4+x}{5}$. 14 (a)

Answer (a)[2]

Hence, represent the solution on the number line below. (b)

[1]

Answer

Express $x^2 - 9x + 45$ in the form $(x-p)^2 + q$. 15 (a)

Answer(a)[1]

Hence, solve the equation $x^2 - 9x + 45 = 50$, giving your answers correct to two decimal (b) places.

			32
Name:			(
Ivallic.			

In the diagram, $\sin A = \frac{5}{13}$ and angle A is an obtuse angle.

Leaving your answer, as a fraction, find the value of

(a) $\sin A - \cos A$,

(b) $\cos (180^{\circ} - A) + \tan (A - 90^{\circ}).$

Answer (b).....[2]

Name:	. () (Class:

17 (a) Factorise completely $4a^2 + 2ab - 14xb - 28ax$.

(b) Solve the equation $\frac{3x+1}{7} = -\frac{3-x}{4}$.

$$Answer(b) x = \dots [2]$$

18 The graph below shows the speed-time graph of a moving object.

(a) Describe the motion of the object for the first 4 seconds.

Answer(a)....

.....[1]

(b) Given that after 4 seconds, the object started to decelerate at a rate of 5 m/s², find the value of T.

Answer(b)[1]

(c) Sketch the distance time graph of the object for the first 16 seconds.

Answer(c)

Distance (m)

[2]

19	Con	instruct a quadrilateral PQRS such that $PQ = 10$ cm, $QS = QR = 9$ cm, $RS = 5$ cm	m
		$\angle PQR = 120^{\circ}$. PQ has already been drawn.	[2]
	(a)	Construct the perpendicular bisector of PQ.	[1]
	(b)	The perpendicular bisector meets PS at T. Hence, measure and write down	the length RT.

Q

 $Answer(b)RT = \dots cm[1]$

Name: ()		
Name	Managa	/ N
	Value	

~ 1			
Class:			
LICOD.			

The table below shows the drug testing results of 36 athletes for 2018 Olympic Games.

		Drug tes	st Results
		Positive	Negative
Suspected of drugs	Yes	11	1
consumption	No	3	21

(a) Present the results in the probability tree diagram below.

Answer(a)

[2]

- (b) Find the probability that an athlete
 - (i) is suspected of taking drugs and tested positive,

(ii) receives a negative test result.

Name:	/
Name.	

21 (a) Simplify $\left(\frac{a^4 - a^3}{a^3}\right) - 3(a)^0$.

Answer (a) [2]

(b) Given that $\frac{1}{9^{1-3x}} = 243^{\frac{x}{2}-1}$, find the value of x.

	\	,	Class
	numbers 4, 6, 7, 9, 2, 5, 9, 12, 2, x and	y have a mean of	7 and a mode of 9.
	the values of the two numbers x and v given	that $r < v$	
(4)	and various of the two manders x and y, given	$\max_{x \in \mathcal{Y}} x$	
		- 7 - 28	
725 E		$Answer(a) x = \dots$, $y = \dots [2]$
(b)	the median,		
		Answer (b)	[1]
(c)	the standard deviation of this set of eleven m	umbers.	
	5	Answer (c)	[2]
	Find (a) (b)	The numbers 4, 6, 7, 9, 2, 5, 9, 12, 2, x and Find (a) the values of the two numbers x and y, given (b) the median,	The numbers 4, 6, 7, 9, 2, 5, 9, 12, 2, x and y have a mean of Find (a) the values of the two numbers x and y , given that $x < y$, Answer (a) $x = \dots$ (b) the median, Answer (b)

Name:	- (
Maille.	- 1

23 The figure below consists of a pentagon and five identical equilateral triangles.

)

(a) Calculate angle EGH.

Answer(a)	0	[2		
-----------	---	----	--	--

(b) Explain why AI = AB.

Answer	
	•••••

_____[1]

(c) Calculate angle AEI.

	Name:		()	Class:
	24 (a)	Expand and simplify $y(y-2)+12$	$y^2 - 6y.$		
]					
					[2]
	(b)	Express $\frac{6}{3y+7} - \frac{1}{49-9y^2}$ as a signal of $\frac{1}{3y+7} - \frac{1}{49-9y^2} = \frac{1}{3y+7} - \frac{1}{3y+7} - \frac{1}{3y+7} = \frac{1}{3y+7} = \frac{1}{3y+7} - \frac{1}{3y+7} = \frac{1}{3y+7} - \frac{1}{3y+7} = \frac{1}{3y+7}$	ingle fracti	on in its simplest fo	rm.
	:5	4: -			
]	V G				
1					
		*			
		End	l of naner		[3]

	NAME:		()	CLASS:
--	-------	--	---	---	--------

FAIRFIELD METHODIST SCHOOL (SECONDARY)

PRELIMINARY EXAMINATION 2019 SECONDARY 4 EXPRESS/ 5 NORMAL (ACADEMIC)

MATHEMATICS

4048/02

Paper 2

Date: 28 August 2019

Duration: 2 hours 30 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

For Exan	niner's Use
Paper 2	/ 100

Setter: Miss Lee CP

This paper consists of 30 printed pages including 4 blank pages.

N.I	/	1
Name:	()
riditio.	1	/

Class: _____

Mathematical Formulae

Compound interest

$$Total\ amount = P \left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of a triangle $ABC = \frac{1}{2}ab \sin C$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Name:	() Class:
	· · · · · · · · · · · · · · · · · · ·

Answer all the questions.

1 (a) Express
$$\frac{3x}{x-3} + \frac{2}{x+4}$$
 as a single fraction.

(b) Using factorisation, simplify fully
$$(x^2 + 5)^2 - (x^2 - 3)^2$$
.

17		
Name:	()
Trainio.	_ \	,

Class: _____

1 (c) Solve $2x^3 - 13x^2 - 24x = 0$.

[3]

(d) n is an integer. Showing your working clearly, explain why the sum of $\frac{1}{2}n(n+1)$ and $\frac{1}{2}(n+1)(n+2)$ is always a square number. [2]

Name:	()	Class:	

BLANK PAGE

Name:	()	Class:	
				_

The diagram shows two circles with equal radii.
P, T and R are points on the circle with centre Q.
Q, T, S and U are points on the circle with centre R.
PQRS is a straight line.

(i) Show that the triangles PTR and UQT are congruent.

	Name	:		()	Class:	
	2	(ii)	Name another triangle that is congruent to P	TR.			[1]
		(iii)	Explain why TQ is parallel to SU .				[1]
l							
						\$	
1							
		(iv)	Stating the reasons clearly, find the value of	angle	UQR.		[1]

Name:() Class:	
--------	--	----------	--

3

AEC and BDC are straight lines. AE = 12 cm and BD = 4 cm.

$$CE = x$$
 cm and $CD = (2x - 5)$ cm. Angle $ACB = \theta^{\circ}$.

(a) Show that
$$\frac{Area\ of\ triangle\ CDE}{Area\ of\ triangle\ ABC} = \frac{CE \times CD}{AC \times BC}$$
. [2]

(b) It is given that
$$\frac{Area\ of\ triangle\ CDE}{Area\ of\ triangle\ ABC} = \frac{1}{3}$$
.

Using the result from part (a), form an equation in x and show that it simplifies to

$$2x^2 - 19x + 6 = 0. ag{3}$$

Name	:		() Glass:	_
3	(c)	(i)	Solve the equation $2x^2 - 19x + 6 = 0$, giving your answers correct to	

2 decimal places.

(ii) State, with a reason, which of these solutions does not apply to triangle CDE.

[1]

[3]

(d) Given that $\theta = 25$, calculate DE.

[3]

Name:()	Class:
----------	--------

The diagram below shows an open cylindrical container with a diameter of 12 cm and height of 4 cm.

Container

(a) Assuming the thickness of the container is negligible, calculate the area of material needed to make one container. Give your answer correct to the nearest square centimetre.

[3]

- (b) A hemispherical pan is completely filled with 13 litres of soup. As many containers as possible are completely filled with the soup from the pan.
 - (i) Calculate the number of containers which are filled.

Name:	()	Class:
Maillo.	1	1	01000.

4 (b) (ii) Calculate the volume of soup which is left in the pan, giving your answer in cubic centimetres. [2]

(iii) Calculate the radius of the hemispherical pan, giving your answer correct to the nearest millimetre. [2]

(c) Peter has two different containers, which are geometrically similar to each other. The heights of the containers are in the ratio of 2:3. Write down the ratio of the volumes of soup these containers hold when full. [1]

Name: _____() Class: _____

5

In the diagram, the rectangle PQRS represents a vertical cliff face.

The foot of the cliff, PQ, runs from East to West, and is at sea level.

A ship is in the sea at T.

Angle $QPT = 75^{\circ}$, angle $PTQ = 63^{\circ}$ and PQ = 45 m.

(a) Find the bearing of T from Q.

[2]

Name:	()	Class:	

5 (b) Show that QT = 48.8 m, correct to three significant figures.

[2]

(c) Calculate the shortest distance from the ship to the cliff.

Nam	e:	() Class:	
5	(d)	The angle of depression of the ship when viewed from R is 16°.	
		(i) Find the height of the cliff.	[2]

	Name:	()	Class:
	BL	ANK PAGE	
}			
1		ti .	
ì			
)			
)			
1			

Name:	

Class: _____

- When x copies of a book are printed, the cost \$C\$ of each copy is given by the formula $C = 10 + \frac{2400}{x}.$
 - (a) The table gives some values of x and the corresponding values of C.

x	100	200	300	400	600	800	1200
C	34	22	18	16	14	13	p

(i) Find the value of p.

[1]

(ii) On the grid, plot the points given in the table and join them with a smooth curve. [3]

Name:	()	Class:
rianic.	\	Oldoo.

6 (b) Use your graph to estimate the number of books to be printed if the cost of printing each book is \$15.

[1]

(c) (i) By drawing a tangent, find the gradient of the curve at the point where x = 300.

[2]

(ii) Describe briefly what this gradient represents.

[1]

- (d) In order to sell x books, the selling price of each book must be $\$\left(25 \frac{x}{60}\right)$.
 - (i) On the axes, used in part (a), draw the graph of $C = 25 \frac{x}{60}$ for the values of x from 0 to 1200. [2]

(ii) Use your graphs to find the range of the number of books that should be printed if no loss to be incurred.

Name:	_() Class:	

7 The diagram shows a tangent APQ to two circles with centre C and E. The points A, B, C, D, E and F lie on the same straight line. It is given that BF = 16 cm and DF = 12 cm.

(a) Show that the triangles APC and AQE are similar.

(ii) Hence, find the length of AB.

[2]

[2]

Name: _____() Class: _____

7 (b) Show that angle EAQ is $\frac{\pi}{6}$.

[1]

(c) Calculate the perimeter of the shaded region.

[4]

8 (a) In the diagram, \overrightarrow{WXYZ} is a parallelogram. \overrightarrow{M} is a point on \overrightarrow{XY} such that \overrightarrow{XM} : $\overrightarrow{MY} = 3$: 2, $\overrightarrow{WX} = 6p + 3q$ and $\overrightarrow{WZ} = 10p - 5q$.

)

- (i) Find, in terms of p and/or q,
 - (a) \overrightarrow{WM} ,

[1]

(b) \overrightarrow{ZM} .

Nan	ne:			() Class:	
8	(a)	(ii)	(a)	Find area of triangle WMX: area of WXYZ.	[1]
			(b)	The area of triangle <i>WMX</i> is 8 units ² . Hence, calculate the area of <i>WXYZ</i> .	[1]
		(iii)		In that N is on WX produced such that ZMN is a straight line. ess \overline{WN} in terms of p and q.	[1]

Name:()	Class:
----------	--------

- 8 (b) Coordinates of A and B are (-3, 3) and (7, -13) respectively.
 - (i) Write \overrightarrow{AB} as a column vector.

[1]

[2]

(ii) Find the acute angle formed by the line AB with the horizontal axis.

(iii) If the gradient of $AB = -\frac{2m}{n}$, express \overrightarrow{AB} in terms of m and n.

Another vector \overrightarrow{CD} is parallel to \overrightarrow{AB} and has the magnitude thrice that of \overrightarrow{AB} .

(iv) Write down the possible vectors of \overrightarrow{CD} .

[2]

Name:	()	Class:	
	BLANK PAGE			

9 The cumulative frequency curve below shows the travelling time of 120 working adults travelling to work daily by train.

- (a) Use the graph to estimate
 - (i) the median of travelling time,

[1]

(ii) the 20th percentile of travelling time,

Name:	()	Class:	

9 (a) (iii) the interquartile range of travelling time,

[2]

(iv) the percentage of the total number of adults who spend more than 45 minutes travelling to work every day.

[1]

(b) Another 120 working adults travelled to work by bus. The travelling time is illustrated in the box and whisker diagram below.

Find the median travelling time and the interquartile range. Hence, compare and comment on the travelling times by train and bus in two different ways. [3]

9	(c)	One working adult is chosen at random. Assume that the travelli train and bus are independent. The working adult makes the first train and the second trip on Tuesday by bus. Expressing each answer as a fraction in its lowest terms, calculate the working adult took	trip on Monday by
		(i) more than 55 minutes on both trips,	[1]
		(ii) more than 55 minutes on one trip, but not the other.	[2]

Name:	w		()	Class:	
		BLANK PAGE			

Name:()	Class:
----------	--------

The diagram below shows a race in the Olympic Games. For certain races, the athletes do not all start from the same part of the track. This is called "staggered start".

Figure 1

The grass field comprises two semi-circular ends of radius 36.5 m and two straight lengths of 84.39 m each. The field is surrounded by a running track of 8 lanes, each of width 1220 mm. The route along which the running distance is measured for each lane is as below:

Lane 1
300 mm from inner edge of the lane
Lanes 2 to 8
200 mm from inner edge of the lane

:		() Class:		
10 (a)		Show that the total distance that an athlete in Lane 1 would have to to complete one lap of the track is 400 m.	1 would have to run [2]	
	(ii)	Show that the staggered start line for Lane 8 is 53.03 m from the st	art line for	
		Lane 1 (distance of <i>l</i>) as seen in Figure 1.	[3]	
	27.00	1999 200	(a) (i) Show that the total distance that an athlete in Lane 1 would have to to complete one lap of the track is 400 m. (ii) Show that the staggered start line for Lane 8 is 53,03 m from the staggered start line for Lane 8 is 53,00 m from the staggered start line for Lane 8 is 53,00 m from the staggered start line for Lane 8 is 53,00 m from the staggered start line for Lane 8 is 53,00 m from the staggered start line for Lane 8 is 53,00 m from the staggered start line for Lane 8 is 53,00 m from the staggered start line for Lane 8 is 53,00 m from the staggered start line for Lane 8 is 53,00 m from the staggered start line for Lane 8 is 53,00 m from the staggered start line for Lane 8 is 53,00 m from the staggered start line for Lane 8 is 53,00 m from the staggered start line for Lane 8 is 53,00 m from the stagered start line for Lane 8 is 53,00 m from the stagered start line for Lane 8 is 53,00 m from the stagered start line for Lane 8 is 53	

(iii) Explain why a "staggered start" is needed for each runner in Lane 1 to

Lane 8 to complete one lap of the track. [1]

Nan	ne:	() Class:	 ()
10	(b)	An athlete wants to incorporate in his training a minimum of 150 minutes of b walking weekly, at the an average speed of 6.8 km/h. He claims that he needs briskly around the track in Lane 8 five rounds daily to hit his target.	
		Justify whether his claims is true or false. Show your working clearly.	[4]

Reference: http://www.mathisfun.com/activity-atheletics-track.html

Name:	() Class:
-------	---	----------

2019 Sec 4Exp/5NA Preliminary Examination Mathematics Paper 1 Answer Key

			Answer Key		
1a	$2^2 \times 3^3 \times 5 \times 7$	1b	105	2a	(28.5)
2b	$ \begin{pmatrix} 7 & 14 \\ -7 & -14 \end{pmatrix} $	3a	x = -4	3b	k = 0
4	80%	5a	Charlene should use Graph 2 as the scale for the vertical axis is bigger and does not start from zero, making the difference in marks between each test looks bigger.	6a	2.325×10 ⁻⁷ picograms
6b	2.86×10 ⁻⁵ : 1	7a	−17 °C	7b	2100 m
7e	05 42	8a	<u>v</u>	8b	$P = \frac{32}{12} = 2.67 Nm^{-2} or 2 \frac{2}{3} Nm^{-2}$
9a	7.56 km	9b	2.71 cm ² (3 s.f.)	10a	$ \begin{array}{c} 1 + 3 + 5 + 7 + 9 + 11 + 13 = 49 = \\ 7 \times 7 \end{array} $
10b	1+3+5+7+9++ 81=41 × 41=1681	11	\$2155.06 (2 d.p)	12a	
12b	D	12c		13a	11 886 60031 11 886 60031
13bi	{2,3,7,11,13,17,19}	13bii	3 Whatsal	14a	$x \ge 1\frac{1}{4}$
14b		152	$(x-4.5)^2$ 24.75	15b	25.28 or 15.23 (2 d.p.)
16a	$\frac{17}{13}$	7/V/	$(x-4.5)^2 + 24.75$	17a	2(a-7x)(2a+b)
17b	$\begin{array}{c c} 13 \\ x = -5 \end{array}$	(18a	constant speed of 5 ms ⁻¹ with zero acceleration for the first 4 sec	18b	7 sec
19c	10.0 ±0.1 cm	20bi	11 36	20bii	$\frac{7}{12}$
21a	a-4	21b	$x = \frac{6}{7}$	22a	y = 12
22b	7	22c	3.55	23a	168°
23c	36°	24a	$13y^2 - 8y$	24b	$\frac{41-18y}{(7+3y)(7-3y)}$

Name:	()	Class:
18c		

Name:	1 \	Class:
Name.	(Ciass.

Marking Scheme for Sec 4 Exp/ 5NA Mathematics P1 2019

Qn	Solution	Marking
		Scheme
1a	$3780 = 2^2 \times 3^3 \times 5 \times 7$	B1
16	$2^2 \times 3^3 \times 5 \times 7 \times (3 \times 5 \times 7) = \text{perfect sq.}$	
	Therefore, $3 \times 5 \times 7 = 105$	B1
2a	$\frac{1}{2}BA$	
	$=\frac{1}{2}(-3 9)\begin{pmatrix} 2\\7 \end{pmatrix}$	
	$=\frac{1}{2}(57)$	
	= (28.5)	В1
2b	C^2	
	$= \begin{pmatrix} 3 & 2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ -1 & 4 \end{pmatrix}$	
	$= \begin{pmatrix} 7 & 14 \\ -7 & -14 \end{pmatrix}$	B(
	(-7 -14)	
3a	x= -4	BI
3b	$\frac{1 + (-k)}{2} = -4$ $1 - k = -8$	
	-k = -8 - 1 $k = 9$	ві
4	$V = kr^2h$	7//
	new radius, $r_1 = 1.5r$, new height, $h_1 = 0.8h$ $V = kr^2h$	1/1/
	$V = Rr^{-h}$ $V_{now} = k(1.5r)^{2}(0.8h)$	D.
	new radius, $r_1 = 1.5r$, new height, $h_1 = 0.8h$ $V = kr^2h$ $V_{new} = k(1.5r)^2(0.8h)$ $V_{new} = \frac{V}{r^2h}(1.5r)^2(0.8h)$ $\therefore V_{new} = 1.8V$ % change in V $= \frac{1.8 - 1}{1} \times 100\%$ $= 80\%$ Charlene should use Graph 2 as the scale for the vertical axis is bigger	20
	$\frac{r_{new} - \frac{1}{r^2h}(1.3r)}{100}$	46
	ν _{new} = 1.8ν % change in ν	(M)
	$=\frac{1.8-1}{1} \times 100\%$	
	1 200%	D1 D2
	=80%	B1 OF B2
5		A1
	and does not start from zero, making the difference in marks between	
	each test looks bigger.	B1

Name:	()	Class:
6a	Mass of 12 billion nitrogen atoms	
	$= 2.80 \times 10^{-9} \text{ g} = 2.80 \times 10^{3} \text{ picograms}$	
	Mass of 1 nitrogen atom	
	$=\frac{2.80\times10^3}{12\times10^9}$	
	$=0.2325\times10^{-6}$	В1
	$=2.325\times10^{-7}\mathrm{picograms}$	
6b	Helium : nitrogen	
	6.684×10 ⁻³ : 2.80×10 ⁻³	M1
	12×10	
	6.34×10 0.2333×10 ⁻¹⁸	
	285×10 ⁻⁴ . 1 245×10 ⁻³ : 1	A1
	No of times temp will decrease	
-		
	= 4200 ÷700 = 6	
100	Ant. of decrease In temp = 8 × 6 = 48°C	
	Temp. at the peak of mountain	1 12211
	= 31 - 48 = - 17 °C	BI
Z þ	Ant, of decrease in temp. = 31 7 = 24 °C	
7	Height of mountain $24^{\circ}8 \times 700 \text{ m} = 2100 \text{ m}$	BI
70	Time he begins his climb	
7	= 12 25)	
	09 43 -	
20	05 42	BI
8a	100 12	BI
oa	y †\	(Negative
		0.74
		region of the
	$\longrightarrow x$	reciprocal
		graph should
		not be shown
		as its not
		applicable)
8b		
55-83	$P = \frac{k}{V}$	-
	k = PV	
	$= 4(8) = 32$ $\therefore P = \frac{32}{12} = 2.67 \text{Nm}^{-2} \text{or } 2\frac{2}{3} \text{Nm}^{-2}$	BI

lame:		iss:
a	1 cm ; 120 000 cm	
	1 cm : $\frac{120000}{1000 \times 100} = 1.2$ km	
	6.3 cm : 6.3 ×1.2 km = 7.56 km	
		B1
9Ь	(1 cm) ² : (1.2 km) ²	M1
	1 cm ² : 1.44 km ²	
	$\frac{3.9}{1.44} \times 1$: 3.9 km^2	
	$2.71 \text{ cm}^2 =$	Al
	(3 s.f.)	Ai
10a	1+3+5+7+9+11+13=49=7×7	B1
10b	1+3+5+7+9++81=41×41=1681	B1
11	$T = P\left(1 + \frac{r}{100}\right)^a$	
	100	
	$=10000(1+\frac{\frac{10}{2}}{100})^{2-2}$	M1
	=\$12155.0625	
	Interest = \$12155.0625 - \$10000	M1
	=\$2155.06(2d.p.)	AI
12a	В	B1
12b	D	BI
12c	c	BI
13a	Answer &	1
	9	BI \
		7/10-
		VIDA
	100	10
		06/
		Je V
13bi	Answer E {2,3,7,11,13,17,19} 3	BT
13bii	3	Bl
	15/21	

lame:	()	Class:
14a $4-3x \le \frac{2-x}{3} < \frac{4+x}{5}$ $4-3x \le \frac{2-x}{3}$ or $\frac{2}{3}$	$\frac{2-x}{4+x}$	
$-9x + x \le 2 - 12$	3 5 5x-3x<12-10 -8x<2	
		12-24
	$>-\frac{1}{4}$	M1
$\therefore x \ge 1\frac{1}{4}$)	Al
14b		BI
$\frac{15a}{x^2} = 9x + 45$		
$= x^2 - 9x + \left(\frac{9}{2}\right)^2 - \left(\frac{9}{2}\right)^2 +$	- 45	
=(x-4.5)+24.75		BI
15b $(x-4.5)^2 = \pm \sqrt{50-24.75}$ $x-20.25 = \pm 5.0249.38$	031	M1
x = 5.024938 + 20.25 or -	-5.024938+20.25	
= 25.28 (2 d.p.)		A1 for both
VICO		correct
16a Length of base of triangle		answers
116	3	
$=\sqrt{13^2-5^2}=12$ units		
$\sin \angle A - \cos \angle A$	(No.	
$= \sin \angle A - (-\cos(180^\circ -$	- ZA)	
$=\frac{5}{13}-\left(-\frac{12}{13}\right)$		M1
1 1 2 3 3 3 3 3		
$=\frac{17}{13}$		A1
16b cos (180° – ∠A) + tan (∠	∠A – 90°)	
$=\frac{12}{13} + \tan[180^{\circ} - (180^{\circ} - $		
	21, -10	
$=\frac{12}{13}+\frac{12}{5}$		M1
$=\frac{216}{75}$		A1

lame:	()	Class:
17a	$4a^2 + 2ab - 14xb - 28ax$	
	=2a(2a+b)-14x(b+2a)	M1
	=(2a-14x)(2a+b)	
	=2(a-7x)(2a+b)	A1
17b	$\frac{3x+1}{7} = -\frac{3-x}{4}$	
	Company of the property of the company of the compa	M1
	4(3x+1) = -7(3-x)	
	$ \begin{array}{r} 12x + 4 = -21 + 7x \\ 12x - 7x = -21 - 4 \end{array} $	
	5x = -25	1 1
	5x = -25 $x = -5$	A1
	ARCON ARCO	
18a	The object is moving at constant speed of 5 ms ⁻¹ with ze	ero acceleration B1
	for the first 4 sec	
18b	Gradient = 5	
	$\frac{15}{Time} = 5$	
	$Time = \frac{15}{5}$	
	= 3 sec	BI
	$T = 4 + 3 = 7 \sec$	
18c		
		AN 3 parts of
	Distance (m)	correct graph
	172.5	shape
		= B2
		1 wrong shape
	82.5	≠ deduct/BY
	00	2 or more
		wrong shape
	0 4 T 46	2 or more wrong shape = 0 marks
19a,b,	Refer to last page for the details	Time (s)
19c	10.0 ± 0.1 cm	NA BO
.,,	100 2 00 000	Odla
		12/10
		1510

lame:		()	Class:
20a	Suspec dru consum $\frac{12}{36} or \frac{1}{3}$	gs 11	ositive
	24 2	$\frac{12}{3}$	Positive Any 2 correct ans = B1 × 2 = B2
$=\frac{12}{36}$	ected of taking drugs and testo	ed positive)	egative B1
$= (\frac{12}{36})$ $= \frac{1}{36}$	ived negative results) $\frac{1}{12} + \frac{24}{36} \times \frac{21}{24}$ $\frac{7}{12}$	300°3	M1
$=\frac{21}{36}$	0(,,,		A1
$\left(\frac{a^4 - a^3}{a^3}\right)$	$\left(\frac{t^3}{a^3}\right) - 3(a)^0$		MI
$= a^{-1} $ $= (a - 4)^{-1}$ $= a - 4$	1)-3		AI

26

Name:	()	Class:	Name:
21b	$\frac{1}{(3^2)^{1-3x}} = (3^5)^{\frac{x}{2}-1}$		23c Angle GEI = A
	$(3^2)^{3x-1} = 3^{\frac{5x}{2}-5}$	MI	2 (0.050 all.)
	$6x - 2 = \frac{5x}{2} - 5$		$\therefore \angle AEI = 108^{\circ} - (36^{\circ})$
		M1	= 36°
	$6x - \frac{5x}{2} = -5 + 2$		24a $y(y-2)+12y^2-6y$
	3.5x = -3		$= y^2 - 2y + 12y^2 + 6y$
	$x = \frac{-3}{3.5}$		$=13y^2-8y$
	$x = \frac{6}{7}$	A1	20
22a	Let $x = 9$ as mode is 9	B1	24b $\frac{6}{3+7} \frac{1}{49-9v^2}$
224		ы	6 1
	mean = $\frac{5+6+7+9+2+4+9+12+2+9+y}{11}$		$(3y)^{7} (7^2 - (3y))^2$
	$7 = \frac{65 + y}{11}$		$\frac{1}{3y+7}$ $\frac{1}{(7+3y)(7+3$
	77 = 65 + y		6(7-3y)-1
	y = 77 - 65 $y = 12$	BI	$={(7+3y)(7-3y)}$
22b			$=\frac{42-18y-1}{(7-1)^{3/2}}$
220	Median position = $\frac{11+1}{2} = 6th$		(7+3y)(7-3y) $41=18y$
	Arranging the values in ascending order,		$=\frac{1}{(7+3\nu)(7-3\nu)}$
	2, 2, 4, 5, 6, 7, 9, 9, 9, 12, 12		Only
	Hence the median at 6 th position is 7	Bh	
22c	Standard deviation		1922
	= 3.55	B2 0	mais
23a	Int angle IGH		Mi.
	$=\frac{180^{\circ}}{3}$ (angle in equilateral triangle)	2////	1
	= 60°	Sylv - We.	,
	Angle in pentagon	Oel.	
	$=\frac{(5-2)\times180^{\circ}}{5}$. 46	
	=108°	ANIC	
	Angle EDH = 60° + 108°	MI	
	= 168°	B1 B2 B2 Consider Con	*
23b	Since the triangle is equilateral and all triangles are identical,		
	AB = BC = AC = AI. Hence $AI = AB$	B1	
FMS(S)	Sec 4 Exp / 5 N(A) Preliminary Examination 2019	28	FMS(S) Sec 4 Exp / 5 N(A) Prelin

Name:	()	Class:
23c	Angle GEI = Angle CEA $= \frac{180^{\circ} - 108}{2} \text{(base angles in isos.triangle)}$ $= 36^{\circ}$	MI
	$\therefore \angle AEI = 10\dot{8}^{\circ} - (36^{\circ} \times 2)$ $= 36^{\circ}$	A1
24a	$y(y-2)+12y^{2}-6y$ $=y^{2}-2y+12y^{2}-6y$ $=13y^{2}-8y$	M1 for correct expansion A1
24b	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\frac{6}{3y+7} \frac{1}{(7+3y)(7-3y)}$	M1
	$= \frac{6(7-3y)+1}{(7+3y)(7-3y)}$ $= \frac{42-18y-1}{(7+3y)(7-3y)}$ $= \frac{41-18y}{(7+3y)(7-3y)}$	MI
2	$=\frac{4 - (8y)}{(7 + 3y)(7 - 3y)}$	· A1

Name:() Class:
--------	----------

Fairfield Methodist School (Secondary) 2019 Sec 4Exp/5NA Preliminary Examination Answer Key for Mathematics Paper 1

(n+1),
(n+1),
mber. same factor, nber.
at triangle allel to SU .
1 10 50.
d.p.)
<u>\</u>
-0.03
5) and (1200,
t perpendicular perpendicular ngle AQE (common of equal, triangle e similar.
<u> </u>

:

Answer Ke	у		
8(a)(i)(b)	2p + 5q	8(a)(ii)(a)	3:10
8(a)(ii)(b)	$\frac{80}{3}$ units ² or $26\frac{2}{3}$ or 26.7 (3 s.f)	8(a)(iii)	$\frac{15}{2}(2p+q)$
8(b)(i)	$\overrightarrow{AB} = \begin{pmatrix} 10 \\ -16 \end{pmatrix}$	8(b)(ii)	58.0° (1 d.p.)
8(b)(iii)	$\overline{AB} = k \binom{n}{-2m}$ or $\overline{AB} = k \binom{-n}{2m}$	8(b)(iv)	$\binom{-30}{48}$
9(a)(i)	41 minutes	9(a)(ii)	25 minutes
9(a)(iii)	IQR = 48 - 29 = 19 mins	9(a)(iv)	$36\frac{2}{3}\%$ or $\frac{110}{3}\%$ or 36.7% (3 s.f.)
9(b)	The travelling time using train is much shorter (faster) than using a bus as the median time travelling with a train < median time travelling with a bus. The travelling time using train is less spread out (more consistent) than using travelling using a bus as the interquartile range of travelling time of a train < interquartile range of travelling time of a bus.	9(c)(i)	7/240
9(c)(ii)	$\frac{37}{120}$	10(a)(ii)	53.03 m (2 d.p.)
10(a)(iii)	Using staggered start, each runner runs exactly 400 meters or same distance.) 10(P)	His claim in false
	Islandwide Deliv	en/ Mus	53.03 m (2 d.p.) His claim in false of the state of the

Preliminary Examination 2019 Mathematics Paper 2 Marking Scheme

Description		Marks	Total
$\frac{x}{3} + \frac{2}{x+4}$ $\frac{2}{x(x+4) + 2(x-3)}$ $\frac{2}{(x-3)(x+4)}$ $\frac{2}{3}x^2 + 12x + 2x - 6$	M1	(4)	
$3x^{2} + 14x - 6$ $(x-3)(x+4)$ $(x-3)^{2} - (x^{2}-3)^{2}$	A1		2
8) $(2x^2 + 2)$ 6 $(x^2 + 1)$ or $16x^2 + 16$	M1 A1		2
$2x^2 - 13x - 24 = 0$ 2x + 3)(x - 8) = 0	M1 A1 (two correct), Al-	3
$\frac{1}{2}(n+1) + \frac{1}{2}(n+1)(n+2)$ $\frac{1}{2}(n+1)[n+n+2]$ $\frac{1}{2}(n+1)[2n+2]$ $\frac{1}{2}(n+1)[2(n+1)]$ $\frac{1}{2}(n+1)^2 = (n+1)(n+1)$ therefore, it is a square mater or $(n+1)^2$ has a repeated same factor, therefore it	BI		2 (8
R = QT = RT (radius of circles centred at Q and R) erefore, triangle QRT is an equilateral triangle. QRT is an equilateral triangle. QRT is an equilateral triangle. QRT is QRT is an equilateral triangle. QRT is QRT is QRT is an equilateral triangle. QRT is QRT is an equilateral triangle. QRT is QRT is an equilateral triangle QRT is an equilateral triangle QRT is an equilateral triangle. QRT is an equilateral triangle QRT is an equilateral triangle. QRT is an equilateral	B1 B1	mide	eliv
	$\frac{x}{(3)} + \frac{2}{x+4}$ $\frac{x(x+4) + 2(x-3)}{(x-3)(x+4)}$ $\frac{x^2 + 12x + 2x - 6}{(x-3)(x+4)}$ $\frac{x^2 + 14x - 6}{(x-3)(x+4)}$ $\frac{x^2 + 14x - 6}{(x^2 + 1)(x+4)}$ $\frac{x^2 + 5 - (x^2 - 3)}{(x^2 + 2)^2}$ $\frac{x^2 + 5 - (x^2 - 3)}{(x^2 + 2)^2}$ $\frac{x^2 + 5 - (x^2 - 3)}{(x^2 + 2)^2}$ $\frac{x^2 + 5 - (x^2 - 3)}{(x^2 + 2)^2}$ $\frac{x^2 + 5 - (x^2 - 3)}{(x^2 + 2)^2}$ $\frac{x^2 + 5 - (x^2 - 3)}{(x^2 + 2)^2}$ $\frac{x^2 + 5 - (x^2 - 3)}{(x^2 + 2)^2}$ $\frac{x^2 + 14x - 6}{(x^2 + 1)(x^2 + 2)}$ $x^2 + 15x - x^2 + $	$\frac{x}{(3)} + \frac{2}{x+4}$ $\frac{x(x+4) + 2(x-3)}{(x-3)(x+4)}$ $\frac{x^2 + 12x + 2x - 6}{(x-3)(x+4)}$ $\frac{x^2 + 14x - 6}{(x^2 + 1)(x+4)}$ A1 $\frac{x^2 + 5 - (x^2 - 3)}{x^2 + 5 - (x^2 - 3)}$ $\frac{x^2 + 5 - (x^2 - 3)}{x^2 + 5 - (x^2 - 3)}$ A1 $\frac{x^2 + 14x - 6}{(x^2 + 1)(x+4)}$ A1 $\frac{x^2 + 14x - 6}{(x^2 + 1)(x^2 + 3)}$ A2 $\frac{x^2 + 14x - 6}{(x^2 + 1)(x^2 + 3)}$ A1 $\frac{x^2 + 14x - 6}{(x^2 + 1)(x^2 + 3)}$ A2 $\frac{x^2 + 14x - 6}{(x^2 + 1)(x^2 + 3)}$ A2 $\frac{x^2 + 14x - 6}{(x^2 + 1)(x^2 + 3)}$ A2 $\frac{x^2 + 14x - 6}{(x^2 + 1)(x^2 + 3)}$ A2 $\frac{x^2 + 14x - 6}{(x^2 + 1)(x^2 + 3)}$ A2 $\frac{x^2 + 14x - 6}{(x^2 + 1)(x^2 + 3)}$ A2 $\frac{x^2 + 14x - 6}{(x^2 + 1)(x^2 + 3)}$ A2 $\frac{x^2 + 14x - 6}{(x^2 + 1)(x$	$\frac{x}{(x^2+4)+2(x-3)} = \frac{x}{(x^2+4)+2(x-3)} = \frac{x}{(x^2+4)+2(x-3)} = \frac{x}{(x^2+1)+x+2x-6} = \frac{x}{(x^2+1)+x+2x-2x-2x-2x-2x-2x-2x-2x-2x-2x-2x-2x-2x-2$

No	Description	Marks	Total
2(i)	Angle PTR = 90° (right angle in semi-circle) Angle UQT = 90° (right angle in semi-circle) Therefore, angle PTR = angle UQT PR = UT (as both are diameter of the circle centred at Q and R respectively)	ВІ	
	QR = QT = RT (radius of circles centred at Q and R) Therefore, by RHS congruency test, triangle PTR and UQT are congruent.	B1 B1	
	PR = UT (as both are diameter of the circle centred at Q and R respectively) $QR = QT - RT$ (radius of circles centred at Q and R)	В1	
	Therefore, triangle $Q \cap T$ is an equilateral triangle. Angle $Q = \text{Angle } R = \text{Angle } T = 60^{\circ}$	B1	
	therefore, by SAS congruency test, triangle <i>PTR</i> and <i>UQT</i> are congruent.	B1	
	Angle $PTR = 90^{\circ}$ (right angle in semi-circle) Angle $UQT = 90^{\circ}$ (right angle in semi-circle) Therefore, angle $PTR \approx$ angle UQT PR = UT (as both are diameter of the circle centred at Q and R respectively)	В1	
	and R espectively) $QR = QT = RT \text{ (radius of circles centred at Q and } R)$ Therefore, triangle QR' is an equilateral triangle. Angle $Q = \text{Angle } R = \text{Angle } T = 60$ Angle $PRT = 60^{\circ}$ (intangle of equilateral triangle) Angle $PTQ = 60^{\circ}$ (intangle of equilateral triangle)	BI	
	Therefore, by SAAY AAS congruency test, triangle PTR and POT are congruent.	B1	
2(ii)	Triangle OUS	B1	1
tsak	Angle TQS = Angle SUT (Angle in same segment) = 60° mentioned in (i) that triangle QTR is equilateral triangle) Angle QTR = 60° (triangle QTR is an equilateral triangle). Since angle QTR = Angle SUR , the form alternate angle, therefore TQ is parallel to SU . Since angle QTR = Angle SUR , by converse property of alternate angle, TO is parallel to SU .	ВІ	
	Angle TQU = Angle SUQ = 90° (right angle in a semi- circle) Since they are the same and they form interior angle, therefore, TQ is parallel to SU . Since angle TQU = Angle SUQ , by converse property of interior angle, TQ is parallel to SU .	ВІ	I
2(iv)	Angle $UQR = 30^{\circ}$ (angle at circumference = $\frac{1}{2}$ angle at centre) Or Angle $UQR = 30^{\circ}$ (complementary angle and angle in semicircle)	BI	1
			6

No	Description	Marks	Total
3(a)	Area of triangle CDE		
	Area of triangle ABC		
	$\frac{1}{2} \times CD \times CE \times sin\theta$		
	= 1	M1	
	$\frac{1}{2} \times AC \times BC \times \sin\theta$		
	$=\frac{\bar{C}D \times CE}{AC \times BC}$	AG1	2
3(b)	CD × CF 1		
	$\frac{\frac{BC \times BC}{AC \times BC} = \frac{1}{3}}{(2x - 5) \times x} = \frac{1}{3}$		
	$\frac{1}{(12+x)\times(4+2x-5)} = \frac{1}{3}$	M1	
	3x(2x-5) = (12+x)(2x-1)		
	$6x^2 - 15x = 24x - 12 + 2x^2 - x$	M1 (Expand and	
	$4x^2 - 15x - 24x + x + 12 = 0$ $4x^2 - 38x + 12 = 0$	simplify)	
	$2(2x^2 - 19x + 6) = 0$		
	$2x^2 - 19x + 6 = 0$	AG1	3
3(c)(i)	$2x^2 - 19x + 6 = 0$		1
	$x = \frac{19 \pm \sqrt{(-19)^2 - 4(2)(6)}}{2(2)}$		
	2(2)		
	$x = \frac{19 \pm \sqrt{313}}{4}$	MI (
	x = 9.1729 or $x = 0.3270484$		
	x = 9.17 or $x = 0.3270404$)
3(c)(ii)	When $x = 0.327$, $DC = 2x - 5 = -4.356 < 0$.	Al, Al	3)
	Therefore, x cannot be 0.33.	BI	1
3(d)	When $x = 9.1729$, $2x - 5 = 13.3458$		
	$DE = \sqrt{(13.3458)^2 + 9.1729^2 - 2(13.3458)(9.1729)\cos 25^{\circ}}$		_
	$=\sqrt{40.3526}$	M2	70
	=6.35237		D) (
	=6.35 (3 s.f.)	AL	3
4(a)	Total surface area of bowl		12
T(4)	$= \pi \times 6^2 + 2 \times \pi \times 6 \times 4$	MI MI	}
	= 263.893		1:110
	=264 cm ² (nearest cm ²)	410	0/3
4(b)(i)	Number of bowls completely filled		
	$=\frac{13l}{(\pi\times6^2\times4)cm^3}$	M1 : 46	
	(# × 0 × 4)cm	411/10	
	$= \frac{13 \times 1000 cm^3}{(\pi \times 6^2 \times 4) cm^3}$	MO	
	=28.7363		
	=28	MI MI OF C	2
(b)(ii)	Volume of soup left	AI	3
	$= 13l - 28 \times (\pi \times 6^2 \times 4)$	M1	
	= 333.0984	53	
		A1	

No	Description	Marks	Total
	= 333 cm ³ (nearest cm ³)		
Or 4(b)(ii)	Volume of soup left		
	$=0.7363\times(\pi\times6^2\times4)$	M1	
	= 333.094		
	$=333 \text{ cm}^3 \text{ (nearest cm}^3\text{)}$	A1	2
4(b)(iii)	Volume of hemisphere pan = 13litres		2.
1,11	$= 13000 \text{ cm}^3$		
	2 3 12000		
	$\frac{2}{3}\pi r^3 = 13000$		
	13000×3	(Allenson	
	$r = 3$ $2 \times \pi$	M1	
	= 18.377 cm		2.25
	= 184 mm (nearest mm) or 18.4 cm (nearest mm)	A1	2
4(c)			
1	$\binom{2}{2} = \frac{8}{27}$		
	The ratio is 8: 27.	B1	1
-	13.00.27		11
5(a)	Angle $PQT = 180^{\circ} - 63^{\circ} - 75^{\circ} = 42^{\circ}$	B1	- 11
	Bearing of S from $Q = 90^{\circ} + 42^{\circ} = 132^{\circ}$	BI	2
5(b)	QT 45		
	sin75° sin63°		
	$QT = \frac{45}{328} \times \sin 75^{\circ}$	M1	
_		AG1	2
9(0)	= 48.783775 = 48.8 m (3.8.f.)		
5(c)	Let shortest distance from ship to cliff be h .		
	$\frac{1}{2} \times h \times 46 = \frac{1}{2} \times 45 \times 48.783776 \times \sin 42^{\circ}$		
	$h = 48.783776 \times \sin 42^{\circ}$	M1	
.~(b = 32.642715	1911	
20	h = 32.6 m (3 s.f.)	A1	2
(c)	$\sin 42^\circ = \frac{h}{48.8}$		
-	$h = \sin 42^{\circ} \times 48.8$		
	= 32.654	M1	
	= 32.7 m (3 s.f.)		
5(4)(!)		Al	
5(d)(i)	Let the height of the cliff be H.	Note: if	
	$\tan 16^{\circ} = \frac{H}{49.783755}$	$H = \tan 16^{\circ} \times 48.8$ =13.993 = 14.0m	
	$H = \tan 16^{\circ} \times 48.783755$	=13.993 = 14.0m M1	
	= 13.9883	Al	2
5(4)(ii)	= 14.0 m (3 s.f.)	2.7	
5(d)(ii)	Angle of elevation = $\tan^{-1} \left(\frac{13.9883}{32.642715} \right) = 23.196^{\circ}$	M1 note can be ET1	
	A CONTRACT OF THE PROPERTY OF	M1 note can be FT1	2
	= 23.2°	VI.	2
5(a)(i)	n = 12	D1	12
5(a)(ii) 5(a)(ii)	p = 12 Plot the points	B1	1
J(a)(II)	Draw a smooth curve	P2 C1	2
5(b)	490 (accept answer: 460 – 500)	B1	3
(0)	120 (1000pt 1113Hot. 400 - 500)	DI .	

No	Description	Marks	Total
(()()	D (1)	B1	
6(c)(i)	Draw a tangent line	DI	
	Gradient of tangent = $-\frac{20.1}{800} = -0.025125$	B1 * answer must be	
	500	a decimal number	. 2
	= -0.0251 (3 s.f.)	a decimai number	-
	Accept answers: (-0.023 to -0.03) Actual answer: -0.02666 = -0.0267		
6(a)(ii)	The gradient represent the <u>rate of decrease</u> of the <u>cost of</u>	B1	1
6(c)(ii)	printing each book when number of books is 300.	D1	
	Or		
	The gradient represent the rate at which the cost of printing		
	each book is decreasing.		
6(d)(i)	Plot points (0, 25), (600, 15) and (1200, 5)	P1	
- ()(-)	Draw a line	Ll	2
6(d)(ii)	$210 \le x \le 700$ (accept $180 - 220$; $680 - 730$, with interval of	B1	1
	10)		
7(a)(i)	Angle APC = 90° (tangent perpendicular radius)		
	Angle $AQE = 90^{\circ}$ (tangent perpendicular radius)		
	Therefore, angle APC = angle AQE	B1	
	Angle PAC = Angle QAE (common angle)		
	Since there are two pairs of corresponding angles are equal,	D1	-2)
	triangle APC and triangle AQE are similar.	B1	*/
7(a)(ii)	AC = PC		
	$\overline{AE} = \overline{QE}$		
	$\frac{AB+2}{AB+4+6} = \frac{2}{6}$	MI	
		Will \	
	$\frac{AB+2}{AB+10} = \frac{1}{3}$		
	3(AB+2) = AB+10		
	3AB + 6 = AB + 10	111	
	2AB = 4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(2)
7/1.3	AB = 2 Angle $EAQ = Angle CAP$		1
7(b)	Angle EAQ = Angle CAP	1) ~	///
	$\sin \angle CAP = \frac{PC}{AC} = \frac{2}{4} = \frac{1}{2}$	()	IV
	\ \ \	1/1/1	
	$\angle CAP = \sin^{-1}\left(\frac{1}{2}\right) = 30^{\circ} = \frac{\pi}{6}$	AGI (for sin 1 3	1, 1,
m / \		1700	-0//
7(c)	Perimeter of the shaded region	(Deli
	$= \operatorname{Arc} PD + PQ + \operatorname{Arc} QD$	M1 (Arc PD=4)	~
	$= \frac{120}{360} \times 2 \times \pi \times 2 + \sqrt{12^2 - 6^2} - \sqrt{4^2 - 2^2} + \frac{60}{360} \times 2 \times \pi \times 6$		
	=4.18879+ 6.92820 + 6.28318	M1 ($PQ=4\sqrt{3}$) M1 (Aro $QD = 2\pi$)	
	=17.40017	$Mr(ArdQD = 2\pi)$	
	=17.4 cm (3 s.f.) or 17.5 cm (3 s.f.) (if rounded off to 5 s.f. for	Ai	4
	working)	Al	
8(a)(i)(a)	$\overline{WM} = \overline{WX} + \overline{XM} = 6p + 3q + \frac{3}{6}(10p - 5q)$		
	$\overline{WM} = 12p$		
		B1	11
8(a)(i)(b)	$\overrightarrow{ZM} = \overrightarrow{ZW} + \overrightarrow{WM}$	Note: If notation is wrong, minus 1 marks	
	$\overrightarrow{ZM} = -10p + 5q + 12p$	for overall (a)(i)	
		10. 0144411 (4)(1)	

No	Description	Marks	Total
8(a)(i)(b)	$\overline{ZM} = 2p + 5q$	B1	
OR	$\overline{ZM} = \overline{ZY} + \overline{YM} = 6p + 3q + \frac{2}{5}(-10p + 5q)$		
	$\overline{ZM} = 2p + 5q$	A.Z.	
		B1	1
8(a)(ii)(a)	Area of triangle WMX :area of WXYZ		
	= Area of triangle WMX Area of triangle WXY Area of triangle WXY Area of WXYZ		
	$=\frac{3}{5} \times \frac{1}{2} = \frac{3}{10}$		
	Area of triangle WMX: area of WXYZ	BI	1
	= 3:10		
8(a)(ii)(b)	Area of WXYZ = $8 \times \frac{10}{2} = \frac{80}{2}$ units ² or 26 $\frac{2}{3}$ or 26.7 (3 s.f)	B1	1
8(a)(iii)	$\overline{W} = \frac{3}{2} (6p + 3q) = \frac{15}{2} (2p + q)$	B1	1
8(b)(i)	3 1 (7) (10)	BI	I
	AB (-3) + (-13) - (-16)		
8(b)(ii)	Acute angle = tan^{-1} $\binom{16}{10}$ = 57.994 = 58.0° (1 d.p.)	M1 (tan ratio), A1	2
S(b)(iii)	10 10 10		100
	$-\frac{1}{2}$	BI	1
8(b)(iv)	$\overline{CL} = 3\overrightarrow{AB} = 3\begin{pmatrix} 10 \\ 1 \end{pmatrix} = \begin{pmatrix} 30 \\ 40 \end{pmatrix}$	Bl	
	10 (-20)		
	$\overline{CL} = -3\overline{AB} = -3 \begin{pmatrix} -36 \\ -16 \end{pmatrix} = \begin{pmatrix} -36 \\ 48 \end{pmatrix}$	B1	2
	GO		9
9(a)(i)	41 minutes	BI	1
2(a)(ii)	25 minutes	BI	11
>9(a)(iii)	$Q_1 = 29 \text{ mins}; Q_3 = 48 \text{ mins}$	144 A 1 700	
210	IQR = 48 + 29 = 19 mins	M1, A1 or B2	2
9(a)(iv)	Percentage of adults who spend more than 40 minutes		
0	travelling to work everyday		
*50	$\frac{120-76}{120} \times 100\% = \frac{44}{120} \times 100\%$		
atso	120		
,0	$= 36\frac{2}{3}\% \text{ or } \frac{110}{3}\% \text{ or } 36.7\% \text{ (3 s.f.)}$	BI	1
9(b)	Median for bus = 43 mins	B1 for both median	U
7(0)	IQR for bus = $55 - 27 = 28$ mins	and IQR of bus	
	The travelling time using train is much shorter (faster) than	B1	
	using a bus as the median time travelling with a train <		
	median time travelling with a bus.		
	The travelling time using train is less spread out (more	B1	
	consistent) than using travelling using a bus as the interquartile range of travelling time of a train <	DI	
	interquartile range of travelling time of a train interquartile range of travelling time of a bus.		3
9(c)(i)	P(more than 55 minutes)		an de la constante
7(0)(1)	120-106 1 14 1 7	B1	1
	$= \frac{120 - 106}{120} \times \frac{1}{4} = \frac{14}{120} \times \frac{1}{4} = \frac{7}{240}$		
9(c)(ii)	P(more than 55 minutes on one trip)		
- (0)(11)		M1	
	$=\frac{120-106}{120} \times \frac{3}{4} + \frac{106}{120} \times \frac{1}{4}$		
	$= \frac{14}{120} \times \frac{3}{4} + \frac{106}{120} \times \frac{1}{4} = \frac{37}{120}$		
		A1	2

No	Description	Marks	Total
			11
10(a)(i)	Total distance for Lane 1		
	$= 2 \times \pi \times (36.5 + 0.3) + (84.39 \times 2)$	M1 for $36.5 + 0.3$	
	= 400,001 m	4.01	2
	= 400 m (3 s.f.)	AG1	2
10(a)(ii)	Total distance for Lane 8		
	$= 2 \times \pi \times (36.5 + 0.2 + 1.22 \times 7) + (84.39 \times 2)$	M1 for 1.22 × 7	
	= 453.031	M1 for the formula	
7	Staggered start = 453.031 - 400	1.0.	
	= 53.03 m (2 d.p.)	AG1	3
10(a)(ii)	Total distance for Lane 8		
10(a)(iii)	Using staggered start, each runner runs exactly 400 meters	B1	1
* * * *	or run the same distance.	12.2	
10(b)	S1-6917-6.8×1000 , .		
1 = 42.52.52	Speed = 6.8 km/h = $\frac{6.8 \times 1000}{1 \times 60} m / \min$		
	- 112 ¹ m/min	B1 (convert speeds)	
	$=113\frac{1}{3}m/\min$		
	Time taken to complete one round in Lane 8		(
	$=\frac{453.031m}{453.031m}$	M1 (time for 1	\
	$= \frac{453.031m}{6.8km/h} = \frac{453.031m}{113\frac{1}{3}m/\min}$	round)	
		//	~
	=3.99733 mins		
	Time taken to complete five rounds in Lane 8 = 3.99733 × 5	MI (time taken for 1	
	= 3.99733×5 = 19.9866 mins	(week)	
	Time taken to complete five rounds in Lane 8 in 1 week		
	= 19.98666×7		
	=138.906 mins (< 150 minutes)		
	His claim in false.	All	4
Or 10b	Total distance for average speed of 6.8 km/h		
	$= 6.8 \text{ km/h} \times 150 \text{ mins}$		()
	$= 6.8 \text{ km/h} \times 2.5 \text{ hours}$		
	= 17 km = 17000 m	By	1
	Total distance covered for 5 round for 1 week	Y (()	(//)
	= 453.03 ×5× 7	M1 for x\5,(\\\	1
	=15856.05 m	MilforxX	
	Since 15056 05 4 17000 11 11 \	105	1110
Or 10b	Since 13830.05 m < 1/000 m, nis claim is lase	A	10,
OL 10p	= 6.8 km/h × 150 mins	10.1	
	= 6.8 km/h × 2.5 hours	1,00	
	= 17 km = 17000 m	BIAN	
	17000	100	
	No. of rounds covered in 1 week = $\frac{1}{453.03}$ = 37.525	OWI 1	
	rounds		
	No. of round covered in 1 week if he ran 5 rounds in one		
		I M I	
	week = $5 \times 7 = 35$ rounds.		
	Total distance covered for 5 round for 1 week = $453.03 \times 5 \times 7$ = 15856.05 m Since 15856.05 m < 17000 m, his claim is false. Total distance for average speed of 6.8 km/h = 6.8 km/h × 150 mins = 6.8 km/h × 2.5 hours = 17 km = 17000 m No. of rounds covered in 1 week = $\frac{17000}{453.03}$ = 37.525 rounds No. of round covered in 1 week if he ran 5 rounds in one week = $5 \times 7 = 35$ rounds. Since 35 rounds < 37.525 rounds, his claim is false.	A1	

