

BEATTY SECONDARY SCHOOL PRELIMINARY EXAMINATION 2019

SUBJECT: Mathematics

LEVEL

: Sec 4E/5N

PAPER : 4048 / 01

DURATION: 2 hours

SETTER : Mr Leong S C

DATE

: 26 Aug 2019

CLASS: NAME: REGNO:

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 80.

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3} \pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1.	The first 4 terms $T_1 = 1^2 + 2^2 = 5$ $T_2 = 2^2 + 3^2 = 13$ $T_3 = 3^2 + 4^2 = 25$ $T_4 = 4^2 + 5^2 = 41$	of a sequence of numbers T	T_1 , T_2 , T_3 and T_4 are given	en below:	
	(a) Write down	an expression in terms of	n , for the n^{th} term T_n of	f the sequence.	
			Answer		[1]
	(b) Explain wh	ny T_n is always odd.			[.^.]
	(2)				
	Answer:				[1]

2.	Simplify $\frac{a^2b}{}$ × (2)	$(2a^0b^{-2})^3$, leaving your answ	ver in positive index for	orm.	
	2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
9					
			Answer		[2]
				[Turn Ov	-

3.	$x = \frac{2}{3}$	is a solution to the equation $18x^2 - kx - 20 = 0$, where k is a constant.
	(a)	Find the value of k .
		Answer $k = \dots$ [1
	(b)	Hence, find the other solution to the equation $18x^2 - kx - 20 = 0$.

4. Given that the size of an exterior angle of a regular polygon is one-fifth its interior angle, find the number of sides of the polygon.

Answer[2]

5. Water is poured at a constant rate into each of the containers shown below.

The graphs show the depth of water in the containers as they are being filled.

Match the graphs with the appropriate container and complete the table below.

Answer:

Container
94
, -

6. (a) The graph below can be represented by the equation, $y = ax^n + b$. State the value of b, of n and the range of a.

Answer $b = \dots n = \dots$ [1]

......[1]

[Turn Over

(b) On the axes in the answer space, sketch the graph of $y = ax^n$, where a < 0 and n = 2.

[1]

Answer

7. Find the largest prime number that satisfy the inequality $3 + y \le 15 - 2y < y + 10$.

2

Answer

.. [3

		7
8.	Solve the simultaneous equations	
		8x + 3y = 4
		4x = y + 4

Answer	<i>x</i> =	[3]
	y =	

- It is given that $\mathbf{p} = \begin{pmatrix} 6 \\ 5 \end{pmatrix}$, $\mathbf{q} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} 8 \\ -6 \end{pmatrix}$. 9.
 - (a) Find |q-2p|.

	Answer	•	 12	4
25	*			
(b)	Use vectors to explain whether r is parallel to q.			

Answer	[1]

10.	Simp	lify and express	$\frac{9m^2 - 12mn + 4n^2}{m^2 - n^2}$	$\frac{3m-2n}{m-n}$ as a single	ngle fraction.	
		æ				
					4	
				Answer		[3]
11.	The g	ground area of a	scale model is 1:10	00 of the actual gro	und area.	e v
	(a)	Given that the l	ength of the model	is 3 m, calculate th	e length of the house in metre.	
				Answer	m	[1]
	(b)		actual volume of a storeroom in the mo		use is 15 000 000 cm ³ , calculate the	
				i.		*

	12.	A. ba	g contains a total of 80 green, red and blue balls. There are 18 red balls in the bag.
		(a)	If a ball is picked randomly, the probability of picking a green ball is $\frac{3}{8}$. How many blue balls are there?
]			
			Answer[1]
		(b)	Two balls are picked randomly from the bag. Find the probability of
ĺ			(i) picking a green ball and a red ball,
}			
}			
1			
			(f)
I			<i>Answer</i>
)			(ii) picking at least one red ball.
Ì			
1			
			Answer

13. Find the equation of the straight	line
---------------------------------------	------

(a) passing through the point (-2, 5) and parallel to the y-axis,

Annuar		[1]
Answer	***************************************	111

(b) which passes through the point (2, -5) and its gradient is the same as the line y - 3x - 5 = 0.

A		LO.
Answer	***************************************	[2]

14. In the diagram triangle ACD is right-angled, and B is on AC such that $\sin \angle ABD = \frac{x}{y}$. Find in terms of x and y.

(a) $\tan \angle BDC$,

Inswer [2]

(b) $\cos \angle ABD$.

Answer[1]

		. 11	
15.	(a)	An insurance agent is paid a basic monthly salary of \$1200 and a commission of 8% on all the sales if the monthly sales made by the insurance agent exceed \$7500. The insurance agent's salary for a particular month was \$3694. Calculate the total sales made by the insurance agent.	
		Answer	[2]
	(b)	Two taps X and Y are turned on at the same time to fill up an empty tank. The rate at which Tap X fills up the tank per minute is twice as fast as that of Tap Y . When used together, both taps can fill the tank with 300 cm ³ of water in 5 minutes. Find the rate of flow of Tap Y in cm ³ /minute.	

16. The table below shows the frequency of visits to the library by some students in Betta School in a week.

Number of visits	0	1	2	3	4
Number of students	3	5	4	x	2

(a) If the mode is 3, write down the smallest possible value of x.

Answer
$$x = \dots$$
 [1]

(b) If the median is 2, write down the largest possible value of x.

Answer
$$x = \dots$$
 [1]

(c) Given that the mean is $2\frac{1}{22}$, calculate the value of x.

Answer
$$x = \dots$$
 [2]

17. The diagram shows a speed-time graph of a car. The total distance travelled in 35 s is 540 m.

(a) Calculate the maximum speed V m/s.

Answer
$$V = \dots m/s$$
 [2]

	(b)	Calculate the speed of the car at 28 seconds.	
	157 17	Answer	[2]
18.	The	base areas of two geometrically similar pyramids are 98 cm ² and 242 cm ² .	
	(a)	Find the ratio of the height of the larger pyramid to the height of the smaller pyramid.	
		*	
		Answer	[1]
	(b)	Given the total surface area of the smaller pyramid is 343 cm ² . Find the total surface area	
		of the larger pyramid.	
		Answercm ²	[1]
		[Turn Ov	er

(c)

Find the percentage difference in volumes of the two pyramids in terms of the larger pyramid.

		Answer	[2]
19.	(a)	s is directly proportional to the square of ν . It is known that $s = 36$ for a particular value of ν .	
		Find the value of s when this value of v is halved.	
	*		
		Answer $s = \dots$	[2]
	(b)	y is inversely proportional to x and $y = 4$ when $x = 6$. Find the value of y when $x = 9$.	
		Answer $v =$	[2]

2	20.	Writ	ten as a product of its prime factors, $p = 3^x \times 5^y \times 7^3$ and $q = 5 \times 7^2 \times 11$	
		(a)	Find the smallest value of x and of y for which p is a multiple of 35.	
			Answer $x = \dots y = \dots$	[2]
		(b)	Explain why $55q$ is a perfect square.	
			Answer:	[1]
		(c)	Show your workings and state, with reason (s), if the product of p and q is an odd or even number.	
			Answer:	[1]

Describe the shaded region in set notation. 21. (a)

Answer		Γ.	1	7
MISWEI	***************************************		1	1

Given that (b)

 $\xi = \{x \text{ is a positive integer and } 0 < x < 10\}$

 $A = \{x : x \text{ is a prime number}\}$

 $B = \{x : x \text{ is a factor of } 12\}$

$$C = \{x : \frac{50}{x} < 8\}$$

(i) Find $B \cap C$.

<i>Answer</i>	[1	7	
11131161	 11	-1	

(ii) List the elements of $(A \cup B)$ '.

<i>Answer</i>		[1]
1113 WEI	***************************************	111

Draw a Venn diagram to illustrate the given information.

[2]

Answer:

22. In triangle *PQR*, *X* is a point on *QR* such that *QX*: *XR* is 3:2 and *RS* is parallel to *XY*.

(a)	Show	that triangle	QXY is	similar to	triangle	QRS.
-----	------	---------------	--------	------------	----------	------

Answer:	[2]

- (b) Given that the area of triangles QXY and PXR are 27 cm² and 46 cm² respectively. Find the area of
 - (i) triangle QRS,

(ii) triangle PQR.

Answer cm^2 [2]

23.

The sector CEF with centre at C is inscribed in the square ABCD of side 4 cm. Given that AF = FB, DE = EA and angle ECF = 0.64 radian.

(a) Calculate the perimeter of the sector CEF.

Answer	 cm	[3]

(b) Find the area of the shaded region.

Answercm² [4]

BEATTY SECONDARY SCHOOL PRELIMINARY EXAMINATION 2019

SUBJECT

Mathematics LEVEL : Sec 4 Express

Sec 5 Normal (Academic)

PAPER

4048 / 02

DURATION: 2 hours 30 minutes

SETTER

: Mr Teo CK

DATE

: 29 August 2019

Miss Chong HY

CLASS: NAME: REG NO:

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

For Examiner's Use 100

Mathematical Formulae

Compound Interest

Total amount =
$$P(1 + \frac{r}{100})^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where is in radians

Sector area = $\frac{1}{2}r^2\theta$, where is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Answer all the questions.

1 (a) Simplify
$$\left(\frac{64v^9}{t^{12}}\right)^{-\frac{1}{3}}$$
.

[2]

(b) Express as a single fraction in its simplest form.

(i)
$$\frac{20x^2}{9} \div \frac{4xy^3}{15y}$$
.

[1]

(ii)
$$\frac{4}{3x-1} - \frac{5}{2+x}$$

(c) (i) Express $x^2 - 5x - 8$ in the form $(x+a)^2 + b$.

[1]

(ii) Hence, solve the equation $x^2 - 5x - 8 = 0$, giving your answers correct to two decimal places.

[3]

2 An ice-cream shop sells 4 different flavours of ice-cream. The table below shows the number of cups of ice-cream sold by the shop over 3 days.

	Chocolate	Vanilla	Strawberry	Durian
Friday	252	168	84	105
Saturday	305	158	115	152
Sunday	316	191	134	167

(a) Represent the above information using a 3×4 matrix A.

[1]

(b) The selling price of each cup of ice-cream is shown in the table below.

	Chocolate	Vanilla	Strawberry	Durian
Selling Price	\$2.10	\$1.80	\$2.05	\$2.55

Write down a matrix P such that the product AP represents the total sales of the ice-cream for each day respectively. Evaluate AP.

(c) Evaluate (1 1 1) A and state what the elements of the product represents.

[2]

(d) The cost price of each cup of ice-cream is shown in the table below.

	Chocolate	Vanilla	Strawberry	Durian
Cost Price	\$0.40	\$0.45	\$0.55	\$0.80

Write down two matrices such that the elements of their product represent the total profit received by the shop over the 3 days for the sale of each flavor of ice-cream respectively.

Evaluate this product.

3 (a) The diagram shows a toy which is made up of a cylindrical part and a hemispherical part.

The height of the cylindrical part is 4 cm and the radius of the hemispherical part is 6 cm.

(i) Find the radius of the cylindrical part, given that the volume of the cylindrical part is 150 cm³.

(ii) Calculate total surface area of the toy.

[3]

(b) In the diagram, A, B, C and D lie on a circle with centre O. Angle $AOC = 4x^{\circ}$.

(i) Find angle ADC, giving your answer in terms of x^0 .

[2]

State a reason for your answer.

(ii) Given further that angle $ABC = 5x^{\circ} + 12^{\circ}$, find the value of x.

4	(a)	Construct a triangle ABC such that $AB = 13$ cm, $AC = 12$ cm, angle $ABC = 55^{\circ}$,		
		and angle ACB is acute. The line AB has been drawn for you.	[2]	
	(b)	Construct the angle bisector of angle BAC such that it intersects the line BC , and label the point of intersection D .	[2]	
	(c)	Construct the perpendicular bisector of AD such that it intersects the line AC , and label the point of intersection E . Measure and write down the value of DE .		

A

B

5

In the diagram, $\overrightarrow{OA} = 2\mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$. BC is parallel to OA and $BC = \frac{3}{2}OA$. X is a point on OC such that $OX = \frac{2}{3}XC$. Y is the midpoint of BC.

(a) Express in terms of a and/or b, as simply as possible,

(i)
$$\overrightarrow{AB}$$
,

[1]

(ii)
$$\overrightarrow{OC}$$
,

[1]

(iii)
$$\overrightarrow{OX}$$
,

[1]

(iv)
$$\overrightarrow{AX}$$
.

[1]

(b) What can you deduce about the points A, X and B? Justify your answer.

(c) (i) AY produced meets OB produced at a point Z. Given that $\overline{AZ} = h\overline{AY}$, express \overline{AZ} in terms of a, b and h.

[3]

(ii) Given also that $\overrightarrow{OZ} = k\overrightarrow{OB}$, express \overrightarrow{AZ} in terms of a, b, and k.

[1]

(iii) Hence, show that h = 4 and k = 4.

[2]

- (d) Find the value of
 - (i) $\frac{\text{area of } \triangle OAX}{\text{area of } \triangle OAC}$,

[1]

(ii) $\frac{\text{area of } \triangle OBX}{\text{area of } \triangle ABC}$

[1]

In the diagram, P and Q are the bases of two lighthouses such that P is located 40 km due north of Q.

A is a boat 30 km from P and on a bearing of 055° from P.

(a) Find the distance AQ.

(b) Find the bearing of A from Q.

[2]

[3]

Light from P can be seen within 20 km radius of P, beyond which the light becomes too faint to be seen. When the boat moves from A to Q, X and Y are the positions on the boat's journey which are 20 km from P.

- (c) Calculate
 - (i) the shortest distance of the boat from P.

[2]

(ii) the smallest angle of elevation of the lighthouse P from the boat as it travels from X to Y, given that the height of lighthouse P is 600m. [2]

[Turn over

The diagram shows two roads XY and YZ meeting at point Y. The roads are perpendicular to each other. YX = 45 km and YZ = 25 km.

Cyclist A is travelling from point X towards point Y at a constant speed of 20 km/h. Cyclist B is travelling from point Z towards point Y at a constant speed of 10 km/h.

- (a) Write down an expression, in terms of t, for the distance in kilometres
 - (i) between cyclist A and point Y, after t hours, [1]
 - (ii) between cyclist B and point Y, after t hours. [1]
- (b) Form an expression, in terms of t, for the shortest distance, d, between the two cyclists and show that it reduces to $\sqrt{500t^2 2300t + 2650}$.

 Hence find the shortest distance between the two cyclists after 15 minutes. [4]

(c) The two cyclists are 10 km apart at a certain instant, t hours. Form a quadratic equation in terms of t and show that it reduces to $10t^2 - 46t + 51 = 0$.

[2]

(d) Given that t < 2, find the time, in minutes, when the two cyclists are 10 km apart. Correct your answer to 3 significant figures.

[3]

A scientist wanted to test the effect of different music on the growth of plants. 80 Rosa chinensis plants were exposed to Beethoven's Ninth Symphony, and their growth was observed over a period of 10 days.

The cumulative frequency curve below shows the increase in the height of the plants at the end of 10 days.

Increase in heights of plants

Increase in height (cm)

- (a) Find
 - (i) the median increase in the height of the plants,

[1]

(ii) the interquartile range,

[2]

(iii) the 90th percentile.

[2]

(b) Another group of 80 Rosa chinensis plants were exposed to Bach's Goldberg Variations, and their growth were also observed over a period of 10 days.

The box-and-whisker plot below shows the increase in the heights of the plants after 10 days.

Increase in height (cm)

(i) Describe how the cumulative frequency graph of the growth of the 80 plants exposed to Bach's Goldberg Variations will differ from that of those exposed to Beethoven's Ninth Symphony. [1]

(ii) Make two comparisons between the growths of the plants under the two conditions.

The variables x and y are connected by the equation $y = \frac{1}{2x^2} + 0.1x^2 - 3$. The table below shows some values of x and the corresponding values of y, correct to 2 decimal places.

x	0.5	1	1.5	2	3	4	5	6
y	-0.98	-2.40	-2.55	-2.48	-2.04	-1.37	p	0.61

(a) Find the value of p.

-0.48

(b) In the space provided on the next page, using a scale of 2 cm to represent 1 unit on the horizontal axis and 2 cm to represent 0.5 units on the vertical axis, draw the graph of

$$y = \frac{1}{2x^2} + 0.1x^2 - 3$$
 for $0.5 \le x \le 6$. [3]

[1]

[2]

- (c) Using your graph, write down the solution(s) to the equation $\frac{1}{2x^2} + 0.1x^2 1.5 = 0$. [2]
- (d) By drawing a tangent, find the gradient of the curve at x = 4.

(e) By drawing a suitable straight line on the same axes, solve the equation $\frac{1}{2x^2} + 0.1x^2 - 0.5x = 0.$ [3]

											1111			
														Щ
							-1-1-1							
			1111		1111				1444	1111				
						1111								
++++					+++	11111	++++							
		1 1 1 1 1	1 1 1 1	1 1 1 1 1			-4-1-1-1		1 4 1 1 1			100000000000000000000000000000000000000	1-1-1-	
													4 4 4-4-	
	1 1 1 1 1	1 1 1 1 1 E												
mind to be														

A right conical container of capacity 24π cm³ and vertical angle 60° is completely filled with water. The height of the container is h cm and the base radius is r cm.

(a) Find the value of r and of h.

[5]

The water in the container is poured into another identical container B so that the depth of water in container A is $\frac{1}{2}h$ cm.

(b) Find the volume of water in container B in terms of π .

[2]

A class of students plans to sell breakfast sets during the National Day carnival in order to raise funds for a charity.

Each breakfast set consists of 2 scrambled eggs, 2 slices of toast, 2 sausages, and a cup of coffee.

The students estimate that they will sell 250 breakfast sets.

Item	Description	Unit cost
Eggs	Pasar Fresh Eggs (10 per pack)	\$1.80
	Pasar Fresh Eggs (30 per pack)	\$4.35
Bread	Sunshine Enriched Soft White Bread (14 slices)	\$1.80
	FairPrice Wholemeal Bread (12 slices)	\$1.55
Sausages	Tierney's Chicken Hot Dog (10 per pack)	\$5.25
	FairPrice Sausages (6 per pack) (\$0.35 off per 2 packs)	\$3.20
Coffee	Nescafe 3 in 1 Instant Coffee (35 per pack) (Buy 5 get 1 free)	\$6.15
	Gold Roast 3 in 1 Coffeemix (25 per pack)	\$3.95

(a) Find the lowest possible total cost of the ingredients for the breakfast sets.

[5]

(b) The school provides \$200 in funding for the students, and up to 30% of the sales can be used to cover for their expenses, while the remaining goes to the charity. The students also wish to raise at least \$600 for charity, Find the minimum they must charge for each breakfast set (to the nearest ten cents). Justify your answer, showing all necessary workings clearly. State an assumption you have made in your calculations. [4]

Beatty Secondary School

4E5N Preliminary Examination 2019

la	$n^2 + (n+1)^2$ or $2n^2 + 2n + 1$	B1
16	For any two consecutive numbers, one would	B1
	be even and the other one odd. Since the square of	
	an even number is even and the square of	
	an odd number is odd, one of the squares of the two	
	consecutive numbers will be even, and the other will	
212-	be odd. Hence, their sum will be odd.	
2	$\left(\frac{a^2b}{2} \times (2a^0b^{-2})^3 = \frac{a^2b}{2} \times 8b^{-6}\right)$	M1
	2 (24 0) = 2 (30	
	$4a^2$	A1
	$=\frac{4a^2}{b^5}$	AI
3a	$(4)^2$ (4)	
	$18\left(\frac{4}{3}\right)^2 - k\left(\frac{4}{3}\right) - 20 = 0$	
	k = 9	rni)
3b	$18x^2 - 9x - 20 = 0$	[B1]
30		
	(3x-4)(6x+5) = 0	
	$x = \frac{4}{3}$ or $x = -\frac{5}{6}$ (the other solution)	[B1]
4	x + 5x = 180	MI
	x = 30	
	360	
	$\frac{360}{30} = 12$	
	30	
	Number of sides=12	\ai\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
5	Graph Container	Bl correct
*		B2 - All correct
	2 C	(0)//
	3 A	B1 1 correct B2 - All correct
ба	b = 2	B1 for both answers correct B1
	n=1	. 76
		1100
	Range of $a: a > 0$	BI WY
	\((3/10
	161	0.
	13	

6b	E †	B1
7	$3+y \le 15 - 2y$ and $15-2y < y+10$ $3y \le 12$ $5 < 3y$	M1 for each correct answer
	$y > \frac{5}{3}$	
	Largest prime number is 3.	A1
8	4x = y + 4 (2)	
	From (2), $y = 4x - 4(3)$ Sub (3) in (1), 8x + 3(4x - 4) = 4	M1
7	From (2), $y = 4x-4(3)$ Sub (3) in (1), 8x+3(4x-4)=4 20x=16	AI
V		
Sal	$y = 4 \times \frac{5}{5} - 4$	Al
P	$=-\frac{4}{5}$	
9a	$\begin{vmatrix} \mathbf{q} - 2\mathbf{p} \\ (-4) & (6) \end{vmatrix}$	
	$= \left \begin{pmatrix} -4 \\ 3 \end{pmatrix} - 2 \begin{pmatrix} 6 \\ 5 \end{pmatrix} \right $	
	$ = \begin{vmatrix} -4 \\ 3 \end{vmatrix} - \begin{pmatrix} 12 \\ 10 \end{vmatrix} $	HS
	$= \begin{vmatrix} -16 \\ -7 \end{vmatrix}$	M1
	$= \sqrt{(-16)^2 + (-7)^2}$	2.
	$= \sqrt{305} $	
	= 17.464 units (5 s.f.) = 17.5 units (3 s.f.)	A1

			1
9b	If r is parallel to q, r = kq Now, $\binom{8}{-6} = -2\binom{-4}{3}$, i.e. $r = -2q$ or $q = -\frac{1}{2}r$ Hence, r is parallel to q.	В1	
10	$\frac{9m^2 - 12mn + 4n^2}{m^2 - n^2} \div \frac{3m - 2n}{m - n}$ $= \frac{(3m - 2n)(3m - 2n)}{(m - n)(m + n)} \div \frac{3m - 2n}{m - n}$ $= \frac{(3m - 2n)(3m - 2n)}{(m - n)(m + n)} \times \frac{m - n}{3m - 2n}$ $= \frac{3m - 2n}{m + n}$	M1 – correct factorisation M1 – for changing divide to multiplication and interchange the numerator with the denominator of the second fraction. A1	
11a	Area Scale 1:100 Linear Scale 1:10 Length of the house = 3 x 10		
11b	$= 30 \text{ m}$ Volume of the model = $\left(\frac{1}{10}\right)^3 \times 15000000$ = 15000 cm^3	MI	03/
12a	$\frac{3}{8} = \frac{30}{80}$	MI	Whats
12bi	$ \frac{80 - 30 - 18 = 32}{\frac{30}{80} \times \frac{18}{79} + \frac{18}{80} \times \frac{30}{79}} $ $ = \frac{27}{158} $	A1 . de Deliver	3
12bii	P(at least 1 red ball) = 1 - P(no red ball) $1 - \left(\frac{62}{80}\right) \left(\frac{61}{79}\right)$ $= \frac{1269}{3160}$	A1 A	
	OR		

	P(at least 1 red ball)	
	=1-P(GG)-P(GB)-P(BG)-P(BB)	
	$ 1 - \left(\frac{30}{80}\right)\left(\frac{29}{79}\right) - \left(\frac{30}{80}\right)\left(\frac{32}{79}\right) - \left(\frac{32}{80}\right)\left(\frac{30}{79}\right) - \left(\frac{32}{80}\right)\left(\frac{31}{79}\right) $	
	$1 - (80 \sqrt{79}) - (80 \sqrt{79}) - (80 \sqrt{79}) - (80 \sqrt{79})$	
	[2]	
	$=\frac{1269}{3160}$	
	OR	
	P(at least 1 red ball)	
	=P(GR) + P(RG) + P(RR) + P(RB) + P(BR)	
1	$\left(\frac{30}{80}\right)\left(\frac{18}{79}\right) + \left(\frac{18}{80}\right)\left(\frac{30}{79}\right) + \left(\frac{18}{80}\right)\left(\frac{17}{79}\right) + \left(\frac{18}{80}\right)\left(\frac{32}{79}\right)$	
	(80)(79) (80)(79) (80)(79)	
1	(32)(18)	
	(80)(79)	
	1269	
	3 60	
13a	x = -2	B1
13b	x = -2 $y = 3x + c$ $Sub (2, -5),$ $-5 = 3(2) + c$ $c = -11$	341
	Sub (2, -5),	M1
	-5 = 3(2) + c	
	200	
	. 180	
	12-3-2N	A1
14a	2)22	M1
144	$BC = \sqrt{y^2 - x^2}$	1711
26	$\tan \angle BDC = \frac{\sqrt{y^2 - x^2}}{}$	
)	$\tan \angle BDC = \frac{1}{x}$	A1
14b	$\sqrt{v^2-x^2}$	B1
	$\cos \angle ABD = -\cos \angle DBC = -\frac{\sqrt{y^2 - x^2}}{y}$	
		M1
15a	Total sales = $(3694 - 1200) \times \frac{100}{8}$	1111
	=\$31175	A1
1.01		
15b	Tap X : $2r \text{ cm}^3/\text{min}$ Tap Y : $r \text{ cm}^3/\text{min}$	
	rap r: rem /mm	
	In 5 min,	M1
	5(2r) + 5r = 300	E
	r = 20	
1		
		A 1
	Rate of Tap $Y = 20 \text{ cm}^3/\text{min}$	A1
	Rate of Tap $Y = 20 \text{ cm}^3/\text{min}$ OR	A1

	$V_X: V_Y: 2: 1$		18c	$V_{\rm e} \left(7\right)^3$
	Volume of water in 5 min = $\frac{300}{3}$			$\frac{V_S}{V_L} = \left(\frac{7}{11}\right)^3$
	volume of water in 5 min = $\frac{1}{3}$			
	$= 100 \text{ cm}^3$			$\frac{V_S}{V_L} = \frac{343}{1331}$
	_ 100	To Care		$V_L = 1331$
	$Rate = \frac{100}{5}$	M1		% difference = $\frac{1331 - 343}{100\%} \times 100\%$
	$= 20 \text{ cm}^3/\text{min}$		- 1	% difference =
	20 Oil / IIIII	A1		= 74.229% (5 s.f)
16a	6	B1		
16b	3+5+4-1 = x+2			= 74.2% (3 s.f)
	x = 9	B1		
16c	$x = 9$ $\frac{3(0) + 5(1) + 4(2) + 3x + 2(4)}{14 + x} = 2\frac{1}{22}$	M1		
	$\frac{14+x}{22}$			
	$\frac{21+3x}{14+x} = \frac{45}{22}$			
	462 + 66x = 630 + 45x			
	$402 + 00\lambda = 030 + 43\lambda$			
	21x = 168			
	x = 8	AI \		
17a	1 1			01
DVEGUE I	$Total \ dist = \frac{1}{2} \nu (10 + 35)$	MI		0 .00
	540 = 22.5v			600
	540 = ZZ.5V			2600
	v = 24m / s	AT		250
17b	24	NII (1.10
	$a = \frac{24}{10}$		(021)	MA
	$= 2.4 m / s^2$			()/,,,
	Speed = 24 – 3(2.4)	A	(())	0
	= 16.8 m/s		119	70
18a	11 10.0 111/3		1.3/1 -4501	
104	$\frac{H_L}{H_S} = \sqrt{\frac{242}{98}}$		- Ina	
	$H_s \vee 98$	1//	' MI'	
	11	CO(1/1/2)	11.	
	$=\frac{11}{7}$	BI	a,	
18b	(7)2	102111	1)	
100	$\frac{A_S}{A_S} = \frac{1}{A_S}$	1000		
	$\frac{A_S}{A_L} = \left(\frac{7}{11}\right)^2$	Os.		
	$\frac{343}{A_L} = \frac{49}{121}$	10,0		
	$A_{i} = \frac{1}{121}$	1100		
	101	Mr.		
	$A_L = \frac{121}{49} \times 343$	10		
	49	0.		
	$A_L = 847 \text{ cm}^2$	B1		00031 00031

18c	$\frac{V_S}{V_L} = \left(\frac{7}{11}\right)^3$		
	$\frac{V_S}{V_L} = \frac{343}{1331}$		
-	% difference = $\frac{1331-343}{1331} \times 100\%$	M1	
	= 74.229% (5 s.f) $= 74.2% (3 s.f)$	AI	

19a	$s = kv^2$	M1	21biii	1.0	B1 – 5 out of 9 correct
	$36 = kv^2$	IVII		C A B	B2 – All correct
	$s = k(\frac{v}{2})^2$			8 5 2 1	
9b	s = 9	Al		7 (3) 4)	
90	$y = \frac{k}{x}$			3 6	
	k = 24	M1			
	$y = \frac{24}{9}$	A 1			
	$y = 2\frac{2}{x}$	A1			
0	3				
20a	$35 = 5 \times 7$		22a	LOXY LORS (corr. Zs. XY RS)	B1- Either 2 of these reason
	$3^x \times 5^y \times 7^3$ needs to have a factor of 5 and 7. Therefore, $x = 0$, $y = 1$	B1 - if 1 correct B2 - If 2 correct		$\angle QXX = \angle QSR (conv. \angle s, XY // RS)$ $\angle RQS = \angle XQY (conmon \angle s)$	
.0ь	$\begin{array}{c} 1 \text{ here fore, } x = 0, y = 1 \\ 55q \end{array}$	B2-112 contact	1 (()	ΔQXY is similar to ΔQRS . (478)	A1
	$=5\times11\times q$		22bi	Since $\triangle QXY$ is similar $\triangle QXS$,	
	$=5\times11\times5\times7^2\times11$		- M	Area of AQRS 25	
	$= 5^2 \times 7^2 \times 11^2$ Since the indices of the prime factors are multiples of 2,	BI		Area of $\triangle QXY = \frac{1}{9}$	M1, A1
	55q is a perfect square.			Area of $\triangle QRS = \frac{25}{9} \times 27 = 75 \text{ cm}^2$	WI, AI
20c	$p \times q = 3^x \times 5^y \times 7^3 \times 5 \times 7^2 \times 11$	1	22110	Consider $\triangle PQR$ and $\triangle PXR$:	
	$= 3^{x} \times 5^{y+1} \times 7^{5} \times 11$ Since $p \times q$ is a product of prime factors that are odd,		5 1 2 1 5 0 1	$\frac{1}{2} \times QR \times h$ OR 5	
	$p \times q$ is an odd number.		MAIO	$\frac{Area\ of\ \Delta PQR}{Area\ of\ \Delta PXR} = \frac{\frac{1}{2} \times QR \times h}{\frac{1}{2} \times XR \times h} = \frac{QR}{XR} = \frac{5}{2}$	
21a	$(P \cup Q)' \cup (P \cap Q)$ or	BI	1/,	$\frac{1}{2}$ \times \times \times	
	$(P' \cap Q') \cup (P \cap Q)$	Syll ine	,	Area of $\triangle PQR = \frac{5}{2} \times 46 = 115 \text{ cm}^2$	M1, A1
21bi	$B \cap C = \emptyset \text{ or } \{\}$	Dell'			
21bii	$(A \cup B)' = \{8,9\}$	B1 : 46]		
		BI BI BI BI CONTROL OF THE BIT OF			
	\2	110			
	1510				

23a	$EC = \sqrt{4^2 + 2^2}$	M1				
	$=\sqrt{20}$	1000				
	Perimeter of sector CEF					
	$=2\sqrt{20}+\sqrt{20}(0.64)$	M1				
	≈ 11.8 cm	A1				
23b	Area of sector CEF					
	$=\frac{1}{2}(\sqrt{20})^2(0.64)$	MI				
	$\begin{vmatrix} 2 \\ = 6.4 \text{ cm}^2 \end{vmatrix}$	A1				
	= 0.4 <i>cm</i>					
	Area of shaded region					Α.
	and the state of t				0 003	5 `
	$=4^2-2\left(\frac{1}{2}\times 4\times 2\right)-6.4$	IVII			6600	
	$=1.6 cm^2$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			2800	
	1				VIn-	
					0(,,,	
			V (6)	100		
			(0)	15/5 ats:01		
		11/2		Mha		
			7(///	1/1/4		
			10	10,		
		V) ~ (0,5)	~ eline			
			1000			
		Via:	70			
		JOHN.				
		18/21			Only 8866003	
		13				

Answer Key

1(a)	t^4
	$4v^3$
1(b)(i)	$\frac{25x}{3y^2}$
1(b)(ii)	<u>13-11x</u>
	(3x-1)(2+x)
1(c)(i)	$\left(x-\frac{5}{2}\right)^2-\frac{57}{4}$
1(c)(ii)	x = 6.27 or -1.27
2(a)	(252 168 84 105)
	A = 305 158 115 152
	316 191 134 167)
2(b)	(2.10)
	1.80
	$P = \begin{bmatrix} 1.00 \\ 2.05 \end{bmatrix}$
	(2.55)
	(1271.55)
	AP = 1548.25
	The elements represents the total number of cups of ice-cream sold over the 3 days of each flavor respectively.
2(c)	The elements represents the total number of cups of ice-cream sold over the 3 days of
	each flavor respectively.
2(d)	
3(a)(i)	n=3,45 cm Who
3(a)(ii)	426 cm ²
3(b)(i)	$2x^{\circ}$
3(b)(ii)	$x^{o} = 24^{\circ}$
4(c)	6.3 cm
5(a)(i)	$b-2a$ $\sqrt{5}$
5(a)(ii)	b+3a
5(a)(iii)	$\frac{2}{5}$ (b+3a)
5(a)(iv)	$-\frac{4}{5}\mathbf{a} + \frac{2}{5}\mathbf{b}$
5(b)	$\overrightarrow{AB} = \frac{5}{2} \overrightarrow{AX}$
	A, X, and B are collinear.
5(c)(i)	$\overline{AZ} = h\mathbf{b} - \frac{1}{2}h\mathbf{a}$
5(c)(ii)	$\overrightarrow{AZ} = -2\mathbf{a} + k\mathbf{b}$
	(AG)

5(d)(i)	2
. , . ,	$\left \frac{2}{5} \right $
5(d)(ii)	
-(-)(-)	$\frac{2}{5}$
6(a)	62.3 km
6(b)	023.2°
6(c)	15.8 km
6(d)	1.7°
7(a)(i)	(45-20t) km
7(a)(ii)	(25-10t)km
7(b)	45.9 km
7(c)	(AG)
7(d)	112 minutes
8(a)(i)	2.25 cm
8(a)(ii)	0.75 cm
8(a)(iii)	2.85 cm
8(b)(i)	The cumulative frequency graph of the growth of plants exposed to Bach will be less
()()	steep in the middle/steeper at the upper quartile/wider range/breader range
	compared to that of plants exposed to Beethoven
	OR
	The middle of the cumulative frequency graph of the growth of plants exposed to
	Bach is shifted to the right compared to that of plants exposed to Beethoven.
8(b)(ii)	The plants grow better when exposed to Bach on average compared to when
	exposed to Beethoven as the median increase in heights of the plants when
	exposed to Bach is higher than those exposed to Beethoven.
	The increase in heights of the plants are more spread when exposed to Bach than
	when exposed to Beethoven as the interquartile cange is larger when exposed to
	when exposed to Beethoven as the interquartile range is larger when exposed to Bach than when exposed to Beethoven.
9(a)	1-0,48 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
9(b)	(graph)
9(c)	0.6 dr 3.8 (050 celive
9(d)	0.792
9(e)	1.1 or 4.95" WICC
10(a)	$(graph)$ $0.6 \text{ or } 3.8$ 0.792 $1.1 \text{ or } 4.95$ $h = 6 \text{ cm}$ $r = 3.46 \text{ om}$ 21π
2005	r = 3.46 dm
10(b)	$ 21\pi $
11(a)	\$428.65
11(b)	Any value above \$3.3146
	Assume no cost incurred for cooking. (or any reasonable)

Compound Interest

Mensuration

BEATTY SECONDARY SCHOOL PRELIMINARY EXAMINATION 2019

SUBJECT: Mathematics

LEVEL

: Sec 4 Express

Sec 5 Normal (Academic)

PAPER

: 4048 / 02

DURATION: 2 hours 30 minutes

SETTER : Mr Teo CK Miss Chong HY DATE

: 29 August 2019

CLASS:

NAME:

REG NO:

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

At the end of the examination, fasten all your work sequely together.

The number of marks is given in brackets [] at the end of each question of part question.

The total number of marks for this paper is 100.

This paper consists of 23 printed pages (including this cover page)

Turn over

Total amount = $P(1 + \frac{r}{100})''$

Curved surface area of a cone = πl

Surface area of a sphere = 470-2

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

tume of a sphere

Arc length θ , where is in radians Sector area = $\frac{1}{2}r^2\theta$, where is in radians

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

 $x^2 - 5x - 8$

 $= \left(x - \frac{5}{2}\right)^2 - \left(-\frac{5}{2}\right)^2 - 8$

 $= \left(x - \frac{5}{2}\right)^2 - \frac{57}{4} - \dots - B1$

- 1 (a) Simplify $\left(\frac{64v^9}{t^{12}}\right)^{-\frac{1}{3}}$.
- $\left(\frac{64v^9}{t^{12}}\right)^{-\frac{1}{3}}$ $= \left(\frac{t^{12}}{64v^9}\right)^{\frac{1}{3}} - - - -M1$ $=\frac{t^4}{4v^3}----A1$

- [2]

(i) Hence, solve the equation $x^2 - 5x - 8 = 0$, giving your answers correct to two

decimal places [3]

(b) Express as a single fraction in its simplest form.

(i)
$$\frac{20x^2}{9} \div \frac{4xy^3}{15y}$$
.

(ii) $\frac{4}{3x-1} - \frac{5}{2+x}$.

- $\frac{1}{\sqrt{2}} = 0$ $\sqrt{2} = \frac{57}{4} = 0$ $\sqrt{3} = \frac{37}{4} = ---MI \text{ (ECF their their text)}$ $\sqrt{5} = \pm \sqrt{\frac{57}{4}}$ $\sqrt{5} = \pm \sqrt{5}$ $\sqrt{5} = \pm \sqrt{\frac{57}{4}}$ $\sqrt{5}$

[2]

	Chocolate	Vanilla	Strawberry	Durian
Friday	252	168	84	105
Saturday	305	158	115	152
Sunday	316	191	134	167

(a) Represent the above information using a 3×4 matrix A.

$$A = \begin{pmatrix} 252 & 168 & 84 & 105 \\ 305 & 158 & 115 & 152 \\ 316 & 191 & 134 & 167 \end{pmatrix} --- B1$$

(b) The selling price of each cup of ice-cream is shown in the table below.

	Chocolate	Vanilla	Strawberry	Durian
Selling Price	\$2.10	\$1.80	\$2.05	\$2.55

Write down a matrix P such that the product AP represents the total sales of all the ice-cream for each day respectively. Evaluate AP.

respectively. Evaluate AP.

$$R = \begin{pmatrix} 2.10 \\ 1/80 \\ 2.05 \\ 2.55 \end{pmatrix}$$
 $AP = \begin{pmatrix} 252 & 168 & 84 & 105 \\ 305 & 158 & 115 & 152 \\ 316 & 191 & 134 & 167 & 2.55 \\ 1548.25 \\ 1707.95 \end{pmatrix}$
 $= \begin{pmatrix} 1271.55 \\ 1548.25 \\ 1707.95 \end{pmatrix}$

$$= \begin{pmatrix} 1271.55 \\ 1548.25 \\ 1707.95 \end{pmatrix}$$

316

(for P given as row matrix, B0)

(c) Evaluate (1 1 1) A and state what the elements of the product represents.

$$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 252 & 168 & 84 & 105 \\ 305 & 158 & 115 & 152 \\ 316 & 191 & 134 & 167 \end{pmatrix} = \begin{pmatrix} 873 & 517 & 333 & 424 \end{pmatrix} \quad --- \; \text{B1}$$

The elements represents the total number of cups of ice-cream sold over the 3 days of each flavor respectively.

The cost price of each cup of ice-cream is shown in the table below.

	Chocolate	Vanilla	Strawberry	Durian
Cost Price	\$0.40		\$0.55	\$0.80

such that the elements of their product represent the total profit received by the shop over the 3 days for the sale of each flavor of ice-cream respectively. Evaluate this product.

$$\begin{pmatrix}
1.70 & 0 & 0 & 0 \\
0 & 1.35 & 0 & 0 \\
0 & 0 & 1.50 & 0 \\
0 & 0 & 0 & 1.75
\end{pmatrix}$$
 --- M1 for correct 4×4 matrix
$$= (1484.10 \ 697.95 \ 499.50 \ 742) \ --- A1$$

3 The diagram shows a toy which is made up of a cylindrical part and a hemispherical part.

> The height of the cylindrical part is 4 cm and the radius of the hemispherical part is 6 cm.

Find the radius of the cylindrical part, given that the volume of the cylindrical part is 150 cm³.

[2]

(ii) Calculate total surface area of the toy.

$$= 426.178... = 426 \text{ cm}^2 - - - - A1$$

$$TSA = 108\pi + 39.575\pi - \pi (3.4549)^2 = 426 \text{ cm}^2$$
 --- A1

(b) In the diagram, A, B, C and D lie on a circle with centre O. Angle $AOC = 4x^{\circ}$.

[2]

[2]

Short respect answer.

$$r = 3.45 \text{ cm} (3st) - ---Al$$

Calculate total surface area of the voy.

Short respect to the voy.

Short respect to the voy.

(a) Given further that angle $ABC = 5x^{o} + 12^{o}$, find the value of x .

Calculate total surface area of the voy.

Short respect to t

The line AB has been drawn for you.

[2]

Construct the angle bisector of angle BAC such that it intersects the line BC, and label the point of intersection D.

[2]

[2]

Construct the perpendicular bisector of AD such that it intersects the line AC, and label the point of intersection E. Measure and write down the value of DE.

5

 $\overrightarrow{OB} = \mathbf{b}$. BC is parallel to OA and BC = $\frac{3}{2}$ OA. X is a point

 $OX = \frac{2}{XC} \cdot Y$ is the midpoint of BC.

[1]

[1]

 $\overrightarrow{OC} = b + 3a - - - - - B1$

[1] $\overline{OX} = \frac{2}{5} (b+3a) oe ------B1$

[1]

 $=-\frac{4}{5}a + \frac{2}{5}b - - - - M1$

[2]

(b) Write down two facts about the points A, X and B.

$$\overrightarrow{AB} = \frac{5}{2} \left(\frac{2}{5} \mathbf{b} - \frac{4}{5} \mathbf{a} \right)$$
$$= \frac{5}{2} \overrightarrow{AX} - - - - - \mathbf{B1}$$

A, X, and B are collinear. --- B1

Islandwide Belivery Whatsapp (iii) or Whatsapp (

No question labels = minus 1 overall

(b) Correct bisector with arcs --- B1 Correct label --- B1

Correct bisector with arcs --- B1 Correct label and measurement --- B1

Correct triangle --- B1

Arcs seen --- B1

(c) (i) AY produced meets OB produced at a point Z. Given that $\overrightarrow{AZ} = h\overrightarrow{AY}$, express \overline{AZ} in terms of a, b and h. [3]

$$\overrightarrow{AZ} = h\overrightarrow{AY}$$

$$\overrightarrow{AY} = \overrightarrow{AB} + \overrightarrow{BY} - \dots - M1$$

$$= b - \frac{1}{2}a - \dots - M1$$

$$\overrightarrow{AZ} = hb - \frac{1}{2}ha - \dots - A1$$

(ii) Given also that $\overrightarrow{OZ} = k\overrightarrow{OB}$, express \overrightarrow{AZ} in terms of a, b, and k.

$$\overrightarrow{AZ} = -2\mathbf{a} + k\mathbf{b} - - - - \mathbf{B}\mathbf{1}$$

[1]

(iii) Hence, show that h = 4 and k = 4.

$$bh - \frac{1}{2}ha = 2a + kb$$

Comparing $h = 4, k = 4 - - - - - A1$, A1

area of ΔOAC

(d) Find the value of

area of $\triangle OBX$ (ii) area of $\triangle ABC$

In the diagram, P and Q are the bases of two lighthouses such that P is located 40 km due north of Q.

A is a boat 30 km from P and on a bearing of 055° from P.

$$AQ^{2} = 30^{2} + 40^{2} - 2(30)(40)\cos 125^{o} - - - M1M1$$

$$= 2500 - 2400\cos 125^{o}$$

$$AQ = 62.26221525...$$

$$AO = 62.3 \text{ km}(3 \text{ sf}) - - - - - A1$$

[3]

[2]

$$\frac{\sin \angle PQA}{30} = \frac{\sin \angle APQ}{62.26221525}$$
$$\sin \angle PQA = \frac{30 \times \sin 125^{\circ}}{62.26221525}$$
$$\angle PQA = 23.2469296^{\circ}$$
Bearing of A from $Q = 023.2^{\circ}$.

Light from P can be seen within 20 km radius of P, beyond which the light becomes too faint to be seen. When the boat moves from A to Q, X and Y are the positions on the boat's journey which are 20 km from P.

- (c) Calculate
 - the shortest distance of the boat from P.

[2]

$$\angle PQX = \angle PQA = 23.2469296^{o}$$

 $\sin \angle PQX = \frac{h}{40} - - - - M1$
 $h = 15.78778476 \text{ km}$
 $h = 15.8 \text{ km} - - - - A1$

(ii) the smallest angle of elevation of the lighthouse P from the boat as it travels from X to Y, given that the height of lighthouse P is 600m,

> smallest angle of elevation $= tan^{-1}$ =1.7183. $=1.7^{\circ}$

The diagram shows two roads XY and YZ meeting at point Y. The roads are perpendicular to each other. YX = 45 km and YZ = 25 km.

Cyclist A is travelling from point X towards point Y at a constant speed of 20 km/h. travelling from point Z towards point Y at a constant speed of 10 km/h.

own an expression, in terms of t, for the distance in kilometres

and point Y, after t hours,

[1]

(i) between cyclift A and point Y, after t hours, [1] on of the lighthouse P from the boat as it travels eight of lighthouse P is doorn. [2] Form an expression, in terms of t, for the shortest distance, d, between the two cyclists and show that it reduces to
$$\sqrt{10t^2 - 46t + 53}$$
. Hence find the shortest distance between the two cyclists after 15 minutes. [4]
$$d^2 = (45 - 20t)^2 + (25 - 10t)^2 - - - - M1$$

$$d = \sqrt{2025 - 1800t + 400t^2 + 625 - 500t + 100t^2}$$

$$= \sqrt{500t^2 - 2300t + 2650} - - - - - M1$$

$$At t = 0.25 \text{ hour},$$

$$d = \sqrt{500(0.25)^2 - 2300(0.25) + 2650} - - - - - M1$$

$$= 45.893...$$

$$= 45.9 \text{ km} - - - - - M1$$

- The two cyclists are 10 km apart at a certain instant, t hours. Form a quadratic equation in terms of t and show that it reduces to $10t^2 - 46t + 51 = 0$.
 - $10 = \sqrt{500t^2 2300t + 2650} - - M1$ $100 = 500t^2 - 2300t + 2650$ $500t^2 - 2300t + 2550 = 0$ $20t^2 - 92t + 102 = 0$ $10t^2 - 46t + 51 = 0 - - - - B1$

Given that t < 2, find the time, in minutes, when the two cyclists are 10 km apart. Correct your answer to 3 significant figures.

Hence t = 1.8641...≠ 1/12 minutes (3 sf

[2]

- A scientist wanted to test the effect of different music on the growth of plants. 80 Rosa chinensis plants were exposed to Beethoven's Ninth Symphony, and their growth were observed over a period of 10 days.
 - The cumulative frequency curve below shows the increase in the height of the plants at the end of 10 days.

Increase in heights of plants

Increase in height (cm)

- (a) Find
 - the median increase in the height of the plants,

2.25 cm --- B1

(ii) the interquartile range,

[2]

[1]

2.5-1.75=0.75 cm --- M1, A1

(iii) the 90th percentile.

[2]

[2]

 $90^{\text{th}} \text{ percent} = \frac{90}{100} \times 80 \quad --- \text{ M1}$

90th percentile = 2.85 cm --- A1

(all answers ±0.025)

(b) Another group of 80 Rosa chinensis plants were exposed to Bach's Goldberg Variations, and their growth were also observed over a period of 10 days. The box-and-whisker plot below shows the increase in the heights of the plants after 10 days.

Increase in height (cm)

Describe how the cumulative frequency graph of the growth of the 80 plants exposed to Bach's Goldberg Variations will differ from that of those exposed to Beethoven's Ninth Symphony.

The cumulative frequency graph of the growth of plants exposed to Bach will be less steep in the middle/steeper at the upper quartile/wider range/broader range compared to that of plants exposed to Beethoven.)-- Bi

The middle of the cumulative frequency graph of the growth of plants exposed to Bach is shifted to the right compared to that of plants exposed to Beethoven.- B1

Make two comparisons between the growths of the plants under the two

The plants grow better when exposed to Bach on average compared to when exposed to Beethoven as the median increase in heights of the plants when exposed to Bach is higher than those exposed to Beethoven. --- B1 The increase in heights of the plants are more spread when exposed to Bach than when exposed to Beethoven as the interquartile range is larger when exposed to Bach than when exposed to Beethoven. --- B1

The variables x and y are connected by the equation $y = \frac{1}{2x^2} + 0.1x^2 - 3$. The table below shows some values of x and the corresponding values of y, correct to 2 decimal places.

x	0.5	1	1.5	2	3	4	5	6
ν	-0.98	-2.40	-2.55	-2.48	-2.04	-1.37	p	0.61

Find the value of

p = -0.48 --- B1

provided on the next page, using a scale of 2 cm to represent 1 unit on the horizontal axis and 2 cm to represent 0.5 units on the vertical axis, draw the graph of

[3]

[1]

[2]

Refer to attached

minus 1 if the graph turns to the left or is vertical at x = 0.5)

down the solution(s) to the equation $\frac{1}{2x^2} + 0.1x^2 - 1.5 = 0$. [2]

$$x = 0.6 \text{ or } 3.80 \pm 0.1$$
 --- B2

Tangent drawn. --- M1

gradient = $\frac{-0.25 - (-2.15)}{5.4 - 3}$ gradient = $\frac{0.792 (0.7 - 0.00)}{1}$ By drawing a tangent, find the gradient of the curve at x = 4.

By drawing a tangent drawn. --- M1

gradient = $\frac{-0.25 - (-2.15)}{5.4 - 3}$ = 0.792 (0.7 - 0.00) = 0.792 (0.7 - 0.85) (actual = 0.784375) --- A1

(e) By drawing a suitable straight line on the same axes, solve the equation

$$\frac{1}{2x^2} + 0.1x^2 - 0.5x = 0$$
 [3]

$$\frac{1}{2x^2} + 0.1x^2 - 0.5x = 0$$

$$\frac{1}{2x^2} + 0.1x^2 - 3 = 0.5x - 3$$
∴ Draw $y = 0.5x - 3$ --- M1

Correctly drawn graph --- B1

 $x = 1.1 \text{ or } 4.95 \pm 0.1$ --- B1

A right conical container of capacity 24π cm³ and vertical angle 60° is completely filled with water. The height of the container is h cm and the base radius is r cm.

[5]

Find the value of r and of h.

Hence, $r^3 = 72 \tan 30^\circ -----M1$ $r = \sqrt[3]{72 \tan 30^\circ} = 3.4610... = 3.46 \text{ cm} - - - - A1$ $r^2 = \frac{h^2}{3} -- (1)$ $\frac{1}{3}\pi r^2 h = 24\pi \quad --- (2)$ h = 6 cm= 3.46 cm

The water in the container is poured into another identical container B so that the depth of water in container A is $\frac{1}{2}h$ cm.

(b) Find the volume of water in container B in terms of π .

[2]

$$\frac{V_A}{original\ volume} = \left(\frac{1}{2}\right)^3 = \frac{1}{8} - - - M1$$

Volume of water in container $B = \frac{7}{8} \times 24\pi = 21\pi$ cm³ ---- A1

volume remaining $=\frac{1}{3}\pi\left(\frac{\sqrt{12}}{2}\right)^2\left(\frac{6}{2}\right)=3\pi$

volume in $B = 24\pi - 3\pi = 21\pi \text{ cm}^3$

A class of students plan to sell breakfast sets during the National Day carnival in order to raise funds for Food Bank Singapore.

Each breakfast set consists of 2 scrambled eggs, 2 slices of toast, 2 sausages, and a cup of

The students estimate that they will sell 250 breakfast sets.

Item	Description	Unit cost
Eggs	Pasar Fresh Eggs (10 per pack)	\$1.80
255	Pasar Fresh Eggs (30 per pack)	\$4.35
Bread	Sunshine Enriched Soft White Bread (14 slices)	\$1.80
Dienu	FairPrice Wholemeal Bread (12 slices)	\$1.55
Sautages	110	\$5.25
	PairPrice Sausages (6 per pack) (\$0.35 off per 2 packs)	\$3.20
Coffee	Nescafe 3 in Instant Coffee (35 per pack) (Buy 5 get 1 free)	\$6.15
	Gold Roast 3 in 1 Coffeemix (25 per pack)	\$3.95

the lowest possible total cost of the ingredients for the breakfast sets.

[5]

$= 24\pi - 3\pi = 21\pi \text{ cm}^3$				
			Cos	
	Eggs	10 per pack (50)(1.80)	(17) (4.35) = 73.95	$\frac{\text{Mix}}{(16)(4.35) + (2)(1.80)} = 73.20$
	Bread	Sunshine (36)(1.80)	<u>FairPrice</u> (42)(1.55) = 65.10	$\frac{\text{Mix}}{(35)(1.80) + (1)(1.55)} = 64.55$ $(28)(1.80) + (9)(1.55) = 64.35$
	200) + 049.800		(34)(1.80)+(9)(1.55) = 64.30 $(10)(1.80)+(30)(1.55) = 64.50$
Whats	Sausages	Tierney's (50)(5.25)	FairPrice (84)(3.20)-(42)(0.35)	$\frac{\text{Mix}}{(82)(3.20)-(41)(0.35)+(1)(5.25)}$
Islandwide Delivery VV		= 262.50	= 254.10	= 253.30 $(80)(3.20) - (40)(0.35) + (2)(5.25)$ $= 252.5$
dwide De	Coffee	$\frac{\text{Nescafe}}{(7)(6.15)}$ = 43.05	$\frac{\text{Gold Roast}}{(10)(3.95)} = 39.50$	$\frac{\text{Mix}}{(5)(6.15) + (2)(3.95)} = 38.65$
Island		total cost = 73	for each correct choice for 62.20 + 64.30 + 252.50 + 38.65	5 = \$428.65 A1
		per item used: M ntities purchased:	1 for each correct item, no : M0)	AI)

(b) The school provides \$200 in funding for the students, and up to 30% of the sales can be used to cover for their expenses, while the remaining goes to the charity. The students also wish to raise at least \$600 for charity, Find the minimum they must charge for each breakfast set (to the nearest ten cents). Justify your answer, showing all necessary workings clearly. State an assumption you have made in your calculations. [4]

min charge to raise
$$\$600 = \frac{(428.65 - 200) + 600}{250} = \$3.3146$$
 --- M1 (ECF their (a))

$$\left(\frac{30}{100}\right)(3.3146)(250) = 248.595 > 431.60 - 200$$
 --- M1 (ECF their (a))

$$\therefore \text{ min charge} = \$3.40 \text{ --- A1}$$
Assume no cost incurred for cooking, (or any reasonable) --- B1

OR

min charge to raise
$$\$600 = \frac{(428.65 - 200) + 600}{250} = \$3.3146$$
 --- M1 (ECF their (a))
min charge to cover expenses $= \left[\frac{(428.65 - 200)}{30} \times 100\right] \div 250 = \3.048 --- M1 (ECF their (a))
 \therefore min charge = $\$3.40$ --- A1

Assume no cost incurred for cooking. (or any reasonable) --- B1

Alternative assumptions:

1) No accidents that result in wastage during the event

2) No free samples were given out

3) All 250 sets were sold

