N	-	-	•	-	۰
N	a	П	1	u	٠

Register Number:

Class:

For Marker's Use

NAN CHIAU HIGH SCHOOL

MID-YEAR EXAMINATION 2019 SECONDARY FOUR EXPRESS

MATHEMATICS

4048/01

Paper 1

7 May 2019, Tuesday

2 hours

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen.
You may use a 2B pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total marks for this paper is 80.

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = mrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\Sigma fx}{\Sigma f}$$

Standard deviation =
$$\sqrt{\frac{\Sigma f x^2}{\Sigma f} - \left(\frac{\Sigma f x}{\Sigma f}\right)^2}$$

Answer all the questions.

1 Given that $64^k \times 16 = 1$, find the value of k.

Answer $k = \dots$ [1]

2 The stem-and-leaf diagram shows the Science quiz marks scored by a group of 15 students.

Key: 0 | 7 represents 7 marks

Given that the median mark is twice the interquartile range, find the value of X.

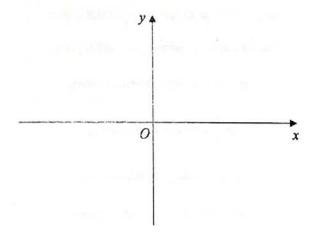
Answer $X = \dots$ [2]

3 The LCM and HCF of p and q are 60 and 6 respectively. Given that both p and q are between 6 and 60 and p < q, find the value of p and of q.

.

4 A, B and C are three non-empty sets satisfying the following conditions:

$$A \subset B$$
, $A \cap C \neq \emptyset$, $A \not\subset C$ and $C \not\subset B$.


Draw a clearly labelled Venn diagram to illustrate the above information.

Answer

[2]

Sketch the graph of y = (x + 2)(4 - x) on the axes below. Indicate clearly the x-intercepts, y-intercept and the coordinates of the turning point.

Answer

6 Tide detergent is having its monthly promotion at MAMA Supermarket.

TIDE Travel Size Turbo Clean Liquid Laundry - Free & Gentle Volume: 10 oz

TIDE Turbo Clean Liquid Laundry - Free & Gentle Volume: 50 oz

OFFER \$26.85

TIDE Turbo Clean Liquid Laundry - Free & Gentle Volume: 150 oz

Show that the cost of the detergent is directly proportional to its volume.

Answer

[2]

7 The employees of a company are offered a wage increment which is calculated according to one of the following schemes:

Scheme A: An increment of 5% of their present wages.

Scheme B: An increment of 3% of their present wages plus additional \$8 per week.

Employees earning x per week at present will receive higher increment if they have chosen *Scheme A*. Find the range of values of x.

8 Solve
$$\frac{1}{x} - \frac{3}{2x+1} = 1$$
.

Answer
$$x = \dots$$
 [3]

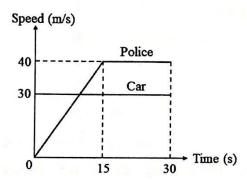
9 Rearrange $y = \sqrt{\frac{2x+y}{3x-5}}$ to express x in terms of y.

Answer
$$x = \dots$$
 [3

10	Mr Lim invested \$10 000 in a fund that pays a compound interest of 2.75% per
	annum, compounded quarterly. Find the interest earned, correct to the nearest dollar,
	at the end of 3 years.

4nswer	\$	[3]
answer	Э	Į

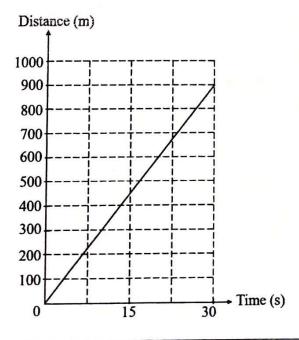
11 The diagram shows a container in the shape of a prism with a triangular cross-section. Water is poured into the container until the depth of water is $\frac{3}{5}$ the height of the container.


If the volume of the container is 200 ml, find the volume of water in the container.

Answer	 	 ml	[3]

12 (a) Convert 80 km/h to m/s.

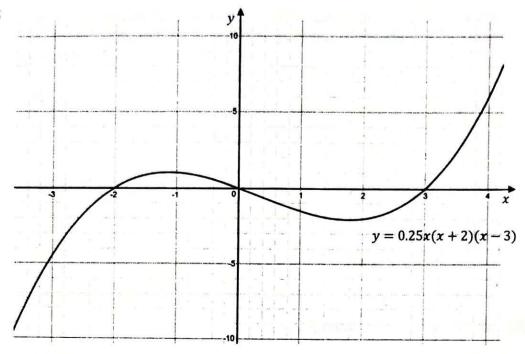
Answer																m	's	[1]	l
	 •	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•		•		


(b) In Marina Coastal Expressway (MCE), the speed limit of all vehicles is 80 km/h. A car is travelling at a constant speed of 30 m/s and passes a stationary traffic police motorcycle. The traffic police immediately gives chase, accelerating uniformly to reach a maximum speed of 40 m/s and continues with this speed until it overtakes the car.

(i) Calculate the acceleration of the police motorcycle.

(ii) In the axes below, draw the distance-time graph for the police motorcycle for the first 30 seconds. The distance-time graph for the car has been drawn for you.

Answer



13 \overrightarrow{PQRS} is a parallelogram. $\overrightarrow{PQ} = \begin{pmatrix} -3\\4 \end{pmatrix}, \overrightarrow{PS} = \begin{pmatrix} 12\\5 \end{pmatrix}$. Calculate $|\overrightarrow{PR}|$.

Answer units [3]

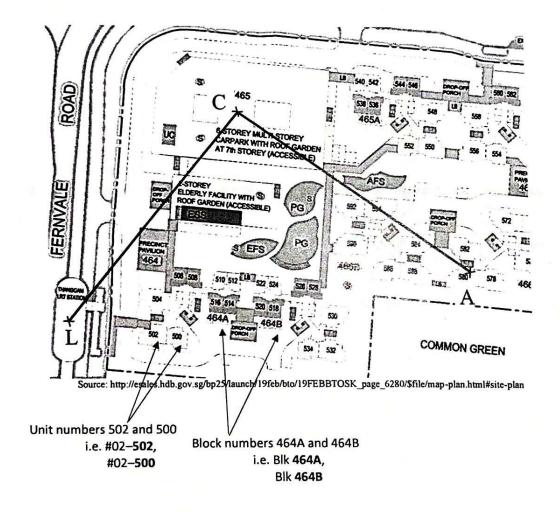
By observing the pattern in the last digit of 3^n and of 8^n , where n > 0, find the last digit in the subtraction $3^{31} - 8^{16}$.

15

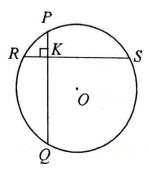
The graph of y = 0.25x(x + 2)(x - 3) was drawn.

By adding a suitable straight line on the graph above, solve the equation x(x+2)(x-3) = 6x.

Answer $x = \dots$ [3]


16 The diagram below shows part of a site map of the newly launched Build-To-Order (BTO) flats at Fernvale Road.

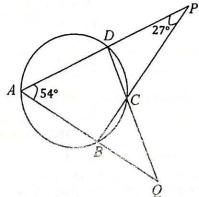
Andy and his parents applied for this BTO project under the Multi-Generation Priority Scheme which allows married children to make a joint application with their parents for two units in the same project.


Their application has gotten them a good queue number in the selection of units. Andy has chosen the unit 580, marked as A.

State the unit which Andy's parents should choose if they wish to satisfy the following criteria:

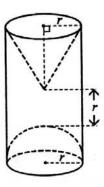
- equidistant from the multi storey carpark, C, and the LRT station, L, and
- equidistant from the line LC and AC.

17 In the diagram, O is the centre of the circle with radius 13 cm. PQ and RS are perpendicular equal chords of length 24 cm and intersecting at K.


Calculate the length of *OK*. Show your workings and give reasons.

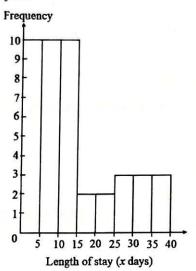
Answer	 4	cm	[3]
221101101	 • • • •	CIII	ری

18	For a n -sided polygon, the largest interior angle is 1 angle is 20°. Find the value(s) of n .	ngle is 100° and the smallest interior				
		ž.				
	X					
	3	Answer $n = \dots $ [4]				
		Answer [2]				
		711311311 [2]				
	(b) Hence, solve $2(y-1)^2 - 11y + 16 = 0$.	Į				
	(4)					
		Answer [2				
<u></u>						
1	POR TOTAL TO					


When x + 8 is divided by y, the result is 4. When x is divided by y, its quotient is 2 and the remainder is 6. By forming two equations in terms of x and of y, solve for x and y.

In the diagram, A, B, C and D lie on the circumference of the circle. ADP, ABQ, BCP and DCQ are straight lines. $\angle BAD = 54^{\circ}$ and $\angle CPD = 27^{\circ}$.

Find $\angle AQD$. Show your working and give reasons. A carpenter wants to create a wooden toy for his son.


He removed a right-angled cone and a hemisphere from a uniform cylindrical wood. The radius of the base of the cone and hemisphere are r cm. The distance between the top of the hemisphere and the vertex of the cone is also r cm.

Given that the curved surface area of the cone is equal to the curved surface area of the hemisphere, work out the volume of the toy, in terms of r.

Answer			$$ cm 3	[4]
--------	--	--	------------	-----

23 The histogram illustrates the length of stay (in days) in Australia for a group of Singaporean tourists last year.

(a) Complete the following table.

Answer

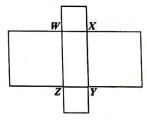
Length of stay (days)	Numbers of tourists
$0 < x \le 5$	
$5 < x \le 10$	
$10 < x \le 15$	
$15 < x \le 20$	
$20 < x \le 25$	
$25 < x \le 30$	
$30 < x \le 35$	
$35 < x \le 40$	

[1]

(b) Calculate the fraction of the Singaporean tourists who stayed in Australia longer than 15 days.

Answer [1]

(c) Calculate an estimate for the mean and standard deviation of the length of stay.


Answer

Mean = days

Standard deviation =days [2]

(4 ()	a)	when x is an integer.	
		Answer	
			[2]

(b) The figure is made up of 2 big squares, 2 small squares and a rectangle WXYZ. The perimeter of rectangle WXYZ is 20 cm. The total area of all the four squares is 140 cm².

Find the area of WXYZ.

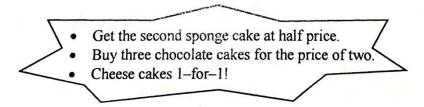
Answer cm	² [4]
-----------	------------------

25 Mrs Tan sells three different types of cakes. The table below shows the number of cakes bought by Childcare Centre A and B for Children's Day Celebration.

	Sponge	Chocolate	Cheese
Childcare Centre A	32	27	20
Childcare Centre B	44	45	38

(a) Represent this information in a 2×3 matrix, P.

Answer
$$\mathbf{P} = \begin{pmatrix} & & \\ & & \end{pmatrix}$$
 [1]


(b) The selling price for each sponge cake, chocolate cake and cheese cake is \$3.20, \$4.50 and \$4.80 respectively.

The information can be represented as
$$\mathbf{Q} = \begin{pmatrix} 3.2 \\ 4.5 \\ 4.8 \end{pmatrix}$$

Evaluate the matrix PQ.

Answer
$$PQ = \begin{pmatrix} \\ \\ \end{pmatrix}$$
 [1]

(c) Mrs Tan has a special promotion for cakes order for Children's Day celebration.

Write down a 3×3 matrix, **R**, such that **RQ** will give the discounted price for each type of cakes sold to Childcare Centre A and B.

Answer
$$\mathbf{R} = \begin{pmatrix} & & \\ & & \end{pmatrix}$$
 [2]

25 (d) Evaluate matrix S = PRQ.

		1	1	
Answer	S =) ,	.,
		(/ /	21

(e)	Describe what the elements in matrix S represents.	
	Answer	
•		
		[1]

-			
	-	-	
14	а	ш	e:

Register Number:

Class:

For N	Marker'	s Use

NAN CHIAU HIGH SCHOOL

MID-YEAR EXAMINATION 2019 SECONDARY FOUR EXPRESS

MATHEMATICS

4048/02

Paper 2

9 May 2019, Thursday

Candidates answer on the Question Paper.

2 hours 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen.
You may use a 2B pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total marks for this paper is 100.

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl Surface area of a sphere = $4\pi r^2$ Volume of a cone = $\frac{1}{3}\pi r^2 h$ Volume of a sphere = $\frac{4}{3}\pi r^3$ Area of triangle $ABC = \frac{1}{2}ab\sin C$ Arc length = $r\theta$, where θ is in radians Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

Mean =
$$\frac{\Sigma f x}{\Sigma f}$$

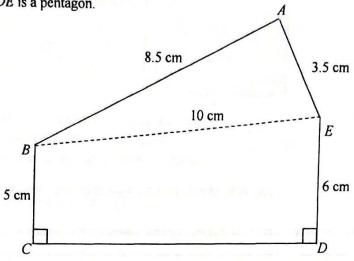
Standard deviation = $\sqrt{\frac{\Sigma f x^2}{\Sigma f} - \left(\frac{\Sigma f x}{\Sigma f}\right)^2}$

1. (a) Simplify
$$\frac{4b^3}{3a} \div \frac{(-4ab^3)^2}{2a^{-4}b^2}$$
. Give your answer in positive indices. [2]

(b) Factorise
$$14xb + 3ay - 2xy - 21ab$$
 completely. [2]

(c) Solve the inequality
$$\frac{x}{5} < \frac{x+2}{3} \le \frac{3-2x}{4}$$
. [3]

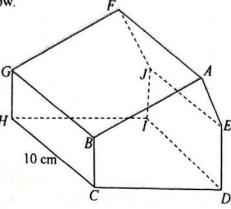
(d) Simplify
$$\frac{2x(1-6x)}{4x^2-1} - \frac{2}{2x+1}$$


[4]

[4]

(e) Express $2x^2 + 6x - 15$ in the form $a(x+b)^2 + c$, where a, b and c are constants.

Hence, solve the equation $2x^2 + 6x - 15 = 0$, giving your answers correct to four decimal places.


2. ABCDE is a pentagon.

(a) Calculate the area of the pentagon ABCDE.

[5]

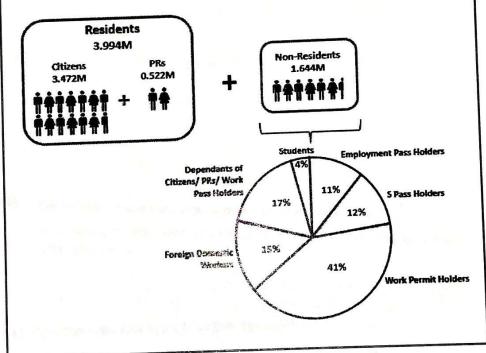
(b) The pentagon ABCDE is a cross-section of a prism which is a model of a house as shown below.

Calculate the total surface area of the model, including the base.

(ii) Calculate the angle of depression of H from E.

[3]

[2]

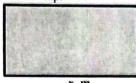

There was a newspaper article on Singapore's population published in 2018.

Singapore's population grows slightly to 5.638 million, with non-resident numbers stable.

Singapore's population rose 0.5 percent to 5.638 million from 2017 to 2018.

The slight increase over the past year was due to stable growth in citizen population, which rose 1 percent to 3.472 million citizens as of June 2018.

The 1 percent growth in citizens was due to citizen births and immigration.


Source: https://www.channelnewsasia.com/news/singapore/singapore-s-population-grows-slightly-to-5-64m-with-non-resident-10763132

(a) Calculate the Singapore's total population in 2017.

(b)	Express the number	of Foreign	Domestic	Workers	as	a	percentage	of	the
(0)	Singapore's total popu	ilation in 20	018.						

[2]

The diagram shows a rectangular table top.

The area of the table top is 5 square metres.

The length of the table top is x metres.

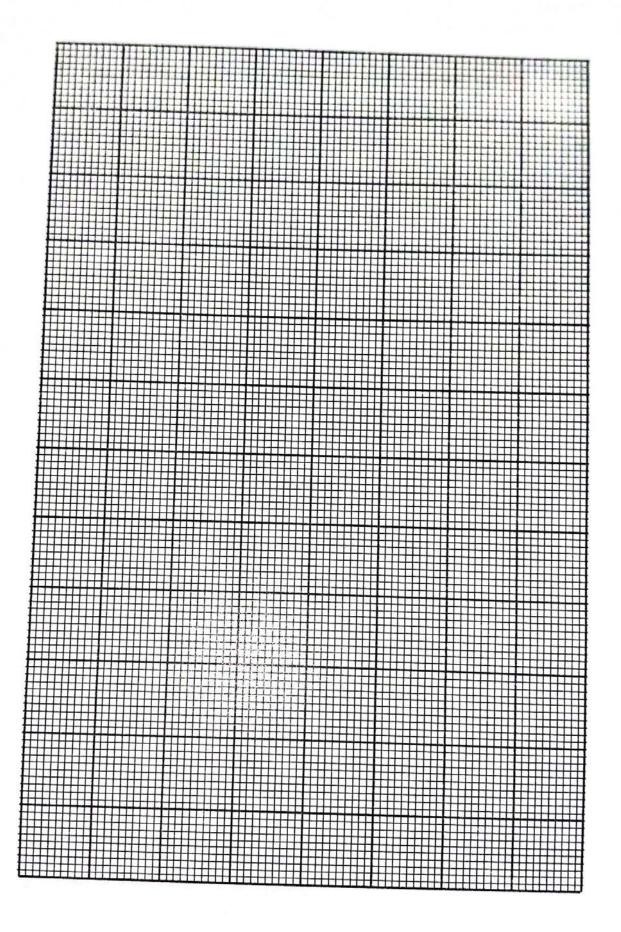
The perimeter of the table top is y metres.

(a) Show that
$$y = 2x + \frac{10}{x}$$
. [2]

(b) The variables x and y are connected by the equation $y = 2x + \frac{10}{x}$. Some corresponding values of x and y, correct to one decimal place, are given in the table below.

x	0.5	1	1.5	2	4	6	8
y	p	12	q	9	10.5	13.7	17.3

(i) Find the value of p and of q.


[1]

(ii) Using a scale of 1 cm to represent 1 m, draw a horizontal x-axis for $0 \le x \le 8$.

Using a scale of 1 cm to represent 1 m, draw a vertical y-axis for $0 \le y \le 22$.

On your axes, plot the points given in the table and join them with a smooth curve.

[3]

(iii) Use your graph to find the length of the table top if the perimeter of the table top is 16 m. [2]

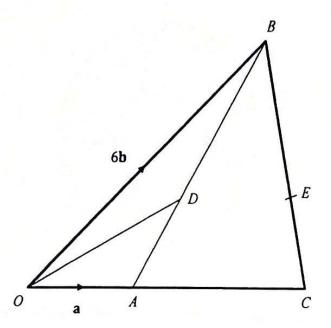
(iv) By drawing a suitable straight line, find the x coordinate of the point at which the gradient of the curve is $\frac{1}{3}$. [2]

- 5. Given equation of a line L is 3x 2y = 8.
 - (a) State the gradient of line L.

[1]

(b) If P(k, -2) is a point on the line L, find the value of k.

[1]


(c) Find the equation of another line that is parallel to the x-axis and passes through P.

[1]

(d) Calculate the perpendicular distance from the origin, O, to the line L.

[4]

6.

In the diagram, $\overrightarrow{OA} = \boldsymbol{a}$, $\overrightarrow{OB} = 6\boldsymbol{b}$ and $\overrightarrow{OA} = \frac{1}{3}\overrightarrow{OC}$.

D is a point on *AB* such that $3\overrightarrow{AD} = 2\overrightarrow{DB}$ and *E* is a point on *BC* such that $\overrightarrow{CE} : \overrightarrow{EB} = 4 : 5$.

(a) Express, as simply as possible, in terms of a and b,

(i)
$$\overrightarrow{BA}$$
,

[1]

(ii)
$$\overline{OD}$$
, [1]

[1]

(iv)
$$\overrightarrow{AE}$$
. [2]

(b) Write down the relationship between OD and AE. Explain your answer. [2]

- (c) Find the ratio of
 - (i) area of triangle CAE: area of triangle AOD,

[2]

(ii) area of triangle CAE: area of triangle AOB.

[2]

(a) There are two boxes of sweets containing toffees and chocolates.
 Box A contains 8 toffees and 4 chocolates, whereas box B contains 7 toffees and 3 chocolates.

Jolin loves chocolates.

One of the boxes is chosen at random and a sweet is taken out.

If she gets a chocolate, she will consume it.

If she did not get a chocolate from the first selection, she will place the sweet into the other box and she will select again from the other box.

Jolin limits herself to two selections.

Find, as a fraction in its simplest form, the probability that

(i) Jolin will have her favourite chocolate from the first selection, [3]

(ii) Jolin will have her favourite chocolate.

[3]

(b) Your friend, Kenton gives you a chance to win \$1000 by playing a game of "Guess the number". There are two options of the game that he allows you to choose.

Option A

He uses a random number generator to choose a number from 1 to 8.

If you guess it correctly, you win.

Option B

You flip a fair coin.

If the coin lands on head, Kenton will roll a fair 6-sided die. If you manage to guess what it rolled, you win.

If the coin lands on tail, Kenton will use a random number generator to choose a random number from 1 to 8. If you guess the number correctly, you win.

Which option will you choose? Explain your answer.

[3]

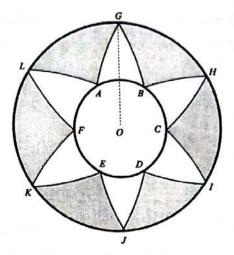


Figure 1

Figure 1 shows a dreamcatcher-inspired ornament which is made up of wire. The ornament consists of an inner circle *ABCDEF* and an outer circle *GHIJKL*, both with centre O, and 6 identical "petal" designs such as *AGB* and *BHC*.

Team Hō'ola will be making these ornaments to raise funds for their Voluntary Welfare Organisation.

To estimate the amount of wire to be purchased, Head of Fundraising team, Janice modelled the following:

• The arc AG is an arc of another circle with centre X, radius 18 cm and $\angle AXG = \frac{\pi}{6}$ radians.

This information is illustrated in Figure 2.

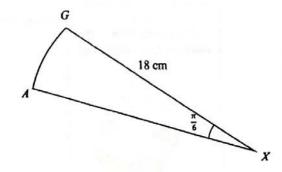


Figure 2

A regular hexagon forms within the inner circle ABCDEF with OB = 5 cm.
 This information is illustrated in Figure 3.

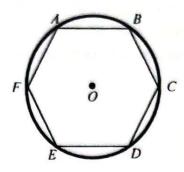
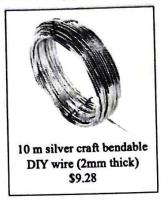
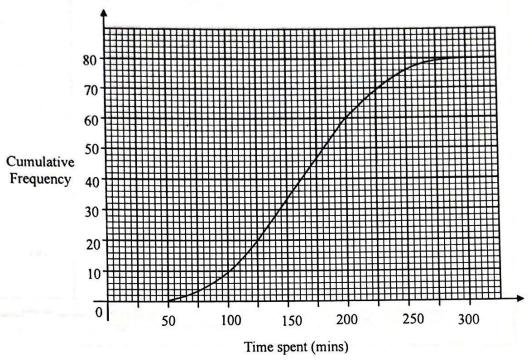



Figure 3

(a) Show that the radius of the outer circle is 13.31 cm, correct to 2 decimal places. [6]

(b) Team Hō'ola decided to make 50 dreamcatcher-inspired ornaments and Janice chanced upon the following promotion.

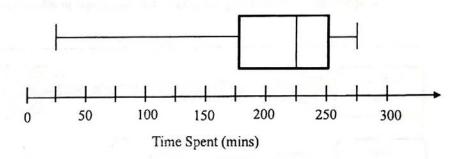

What is the estimated cost to make these ornaments?

[5]

(c) Find the area of the shaded region as shown in Figure 1.

[5]

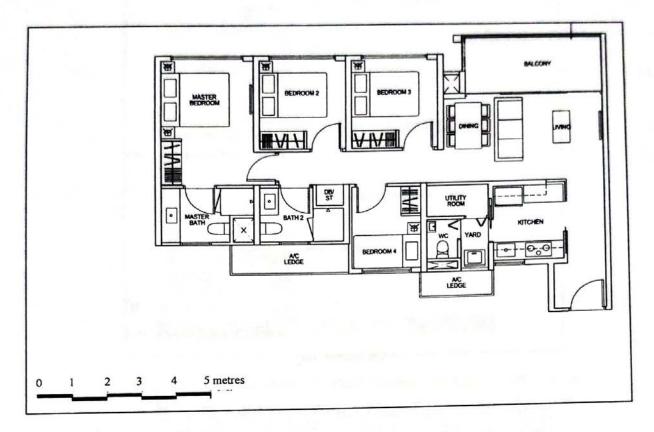
(a) The cumulative frequency curve below shows the time spent in minutes by a
group of 80 teenagers on Instagram (a social media platform) on a particular
day.


Use the curve to estimate

(i) the median, [1]

(ii) the interquartile range. [2]

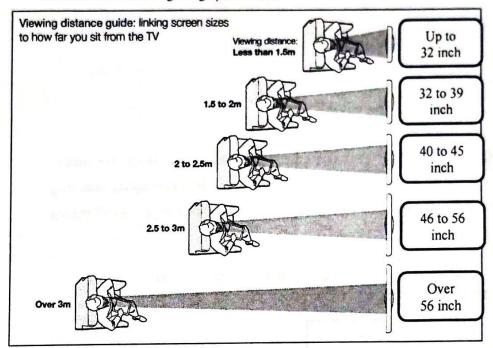
(b) Through a market research, it was found out that the time spent on Facebook (another social media platform) is less popular and less consistent among the same group of 80 teenagers. A second cumulative frequency curve for the same group of 80 teenagers spending their time on Facebook is drawn.
Describe how the second cumulative frequency curve may differ from the curve for Instagram.
[2]


(c) The box-and-whisker plot represents the distribution of the time spent for the same group of 80 teenagers on SnapChat (another social media platform).

For this group of 80 teenagers, which of the social media platforms Instagram, Facebook or Snapchat, is the most popular?
Support your answer with an appropriate statistical measure.

[2]

10. Ms Tan got her new home recently and the layout of her house is shown in the diagram below. The layout is drawn to scale.



(a) Express the scale of the map in the form of 1:n.

[1]

(b) Ms Tan decides to get a television set for her living room.

She found the following infographic online.

What is the range of television size which Ms Tan should get for her living room? [2]

(c) Ms Tan decided to shop for her television set online and she saw the following options:

Ms Tan pays a downpayment of \$2 000 for her television set as suggested in (b). She pays the remaining amount over 3 months, with a simple interest rate of 7 % per annum.

Calculate her monthly instalment.

[3]

Answers

1	$4^{3k} \times 4^2 = 4^0$ $3k + 2 = 0$	7	0.05x > 0.03x + 8 or $1.05x > 0.02x > 8$	1.03x + 8
	$k = -\frac{2}{3}$ exact only!		x > 400	
2	Median = 36 Interquartile Range = 18 $Q_1 = 46 - 18$ = 28	8	A(2A+1)	how quad a with values d in.
3	$X=8 \rightarrow \text{digit in the ones place.}$ HCF = 6 = 2 × 3		$x = \frac{-2 \pm \sqrt{(2)^2 - 4(2)(-1)}}{2(2)} = 0.36$	66 or - 1.37
	$LCM = 60 = 2^2 \times 3 \times 5$	9	$y^2 = \frac{2x+y}{3x-5}$	
	$p = 2^2 \times 3 = 12$ $q = 2 \times 3 \times 5 = 30$		$3xy^2 - 5y^2 = 2x + y$ $3xy^2 - 2x = 5y^2 + y$	
4	B		$x(3y^2 - 2) = 5y^2 + y$	
		10	$x = \frac{y(5y+1)}{3y^2-2}$ or $\frac{5y^2+y}{3y^2-2}$ or $-\frac{5y}{2}$	y ² +y 23y ²
		10	$ \begin{array}{c} 10000 \left(1 + \frac{2.73}{100}\right) & -1 \\ = 10856.92 - 10000 \text{G} \end{array} $	0 000
5	(1,9)		= \$856.92	artery is 4 times:
	8) (0)	1 13/10/025	nponent is constant!
	-2 0	12b	$\frac{80 \text{km}}{1 \text{h}} = \frac{80 \times 1000 \text{ m}}{3600 \text{ s}} = \frac{200}{9} = 2$	2 ² / ₉ Mixed number or 3sf only!!
	Islandylic	12c	$\frac{40}{15} = 2\frac{2}{3}$ Distance (m)	
3	$\frac{1.79}{10} = \frac{179}{1000} ,$ $17.9 _ 179$		1000	
	$\frac{2\times50}{150} = \frac{1}{1000}$, Must show for all three!		700	
	Since $\frac{\cos t}{\text{volume}} = \text{constant}$, the		500	
- 10	cost is directly proportional to its volume.		200 Smoot	th curve only!
			0 15 30	→ Time (s)

2019 MYE EM P1 Solutions

$ \overrightarrow{PR} = \sqrt{9^2 + 9^2} = \sqrt{162} = 12.7 \text{ units}$ Length PR \neq length PQ + length QR $ \overrightarrow{PR} = \sqrt{9^2 + 9^2} = \sqrt{162} = 12.7 \text{ units}$ Length PR \neq length PQ + length QR $ \overrightarrow{PR} = \sqrt{9^2 + 9^2} = \sqrt{162} = 12.7 \text{ units}$ $ \overrightarrow{A} = 3$ $ \overrightarrow{A} = 8$ $ \overrightarrow{A} = 8$ $ \overrightarrow{A} = 8$ $ \overrightarrow{A} = 8$ $ \overrightarrow{A} = 4$ $ \overrightarrow{A} = 4$ $ \overrightarrow{A} = 4$ Remainder = 3 \Rightarrow Last digit = 7 $ \overrightarrow{A} = 4$ $ \overrightarrow{A} = 4$ Remainder = 0 \Rightarrow Last digit = 6 Last digit of $3^{31} - 8^{16} = 7 - 6$ Last digit of $3^{31} - 8^{16} = 7 - 6$	13	$\overrightarrow{PR} = \overrightarrow{PQ} + \overrightarrow{QR} = \begin{pmatrix} -3\\4 \end{pmatrix} + \begin{pmatrix} 12\\5 \end{pmatrix} = \begin{pmatrix} 9\\9 \end{pmatrix}$ PQ is not perpendicular to PS!
14 $3^{1} = 3$ $8^{1} = 8$ $3^{2} = 9$ $8^{2} = 64$ $3^{3} = 27$ $8^{3} = 512$ $3^{4} = 81$ $8^{4} = 4096$ $3^{5} = 243$ $8^{5} = 32768$ Last digit for 8^{n} is $8, 4, 2, 6$ $\frac{31}{4} = 7\frac{3}{4} \Rightarrow \text{Remainder} = 3 \Rightarrow \text{Last digit} = 7$ $\frac{16}{4} = 4 \Rightarrow \text{Remainder} = 0 \Rightarrow \text{Last digit} = 6$ Last digit of $3^{31} - 8^{16} = 7 - 6 = 1$ 15 $\frac{1}{4}x(x+2)(x-3) = \frac{6}{4}x$ Plot $y = \frac{3}{2}x$ Equation of line must be seen in this page. Or elements a positive for elements of the second of		
$3^2 = 9$ $8^2 = 64$ $3^3 = 27$ $8^3 = 512$ $3^4 = 81$ $8^4 = 4096$ $3^5 = 243$ $8^5 = 32768$ Last digit for 3" is 3, 9, 7, 1 Last digit for 8" is 8, 4, 2, 6 $\frac{31}{4} = 7\frac{3}{4} \rightarrow \text{Remainder} = 3 \rightarrow \text{Last digit} = 7$ $\frac{16}{4} = 4 \rightarrow \text{Remainder} = 0 \rightarrow \text{Last digit} = 6$ Last digit of $3^{31} - 8^{16} = 7 - 6 = 1$ The second of the digit """ and "6" and "6" and "6" are we will take it as you use calculator mode 3, 4.		$ \overline{PR} = \sqrt{9^2 + 9^2} = \sqrt{162} = 12.7 \text{ units}$
$3^{3} = 27$ $3^{4} = 81$ $8^{4} = 4096$ $3^{5} = 243$ $8^{5} = 32768$ Last digit for 3^{n} is $3, 9, 7, 1$ Last digit for 8^{n} is $8, 4, 2, 6$ $\frac{31}{4} = 7\frac{3}{4} \Rightarrow \text{Remainder} = 3 \Rightarrow \text{Last digit} = 7$ $\frac{16}{4} = 4 \Rightarrow \text{Remainder} = 0 \Rightarrow \text{Last digit} = 6$ Last digit of $3^{31} - 8^{16} = 7 - 6 = 1$ 15 $\frac{1}{4}x(x+2)(x-3) = 6x$ Equation of line must be seen in this page. Or element of the contraction of the seen in this page. Or element of the contraction of the seen in this page. Or element of the contraction	4	$3^1 = 3$ $8^1 = 8$
$3^4 = 81 \qquad 8^4 = 4096$ $3^5 = 243 \qquad 8^5 = 32768$ Last digit for 3^n is 3 , 9 , 7 , 1 Last digit for 8^n is 8 , 4 , 2 , 6 $\frac{31}{4} = 7\frac{3}{4} \Rightarrow \text{Remainder} = 3 \Rightarrow \text{Last digit} = 7$ $\frac{16}{4} = 4 \Rightarrow \text{Remainder} = 0 \Rightarrow \text{Last digit} = 6$ Last digit of $3^{31} - 8^{16} = 7 - 6 = 1$ $\frac{1}{4}x(x+2)(x-3) = \frac{6}{4}x$ Equation of line must be seen in this page. Or elements of the entire formula of the second of the entire formula of the entire formul		$3^2 = 9$ $8^2 = 64$
Last digit for 3" is 3, 9, 7, 1 Last digit for 8" is 8, 4, 2, 6 $\frac{31}{4} = 7\frac{3}{4} \Rightarrow \text{Remainder} = 3 \Rightarrow \text{Last digit} = 7$ $\frac{16}{4} = 4 \Rightarrow \text{Remainder} = 0 \Rightarrow \text{Last digit} = 6$ Last digit of $3^{31} - 8^{16} = 7 - 6 = 1$ The proof of the must be seen in this page. Or each of t		0 - 512
Last digit for 3" is 3, 9, 7, 1 Last digit for 8" is 8, 4, 2, 6 $\frac{31}{4} = 7\frac{3}{4} \Rightarrow \text{Remainder} = 3 \Rightarrow \text{Last digit} = 7$ $\frac{16}{4} = 4 \Rightarrow \text{Remainder} = 0 \Rightarrow \text{Last digit} = 6$ Use must see that you had chosen the digit "7" and "6" Last digit of $3^{31} - 8^{16} = 7 - 6 = 1$ Equation of line must be seen in this page. Or entire we will take it as you use calculator mode 3, 4. $y = 1.$ G1		$3^4 = 81$ $8^4 = 4096$
Last digit for 8" is 8, 4, 2, 6 $\frac{31}{4} = 7\frac{3}{4} \Rightarrow \text{Remainder} = 3 \Rightarrow \text{Last digit} = 7$ $\frac{16}{4} = 4 \Rightarrow \text{Remainder} = 0 \Rightarrow \text{Last digit} = 6$ Last digit of $3^{31} - 8^{16} = 7 - 6 = 1$ $\frac{1}{4}x(x+2)(x-3) = \frac{6}{4}x$ Equation of line must be seen in this page. Or element of the second o		$3^5 = 243$ $8^5 = 32768$
Last digit for 8^n is $8, 4, 2, 6$ $\frac{31}{4} = 7\frac{3}{4} \Rightarrow \text{Remainder} = 3 \Rightarrow \text{Last digit} = 7$ $\frac{16}{4} = 4 \Rightarrow \text{Remainder} = 0 \Rightarrow \text{Last digit} = 6$ Last digit of $3^{31} - 8^{16} = 7 - 6 = 1$ Equation of line must be seen in this page. Or element of the property		Last digit for 3" is 3, 9, 7, 1
We must see that you had chosen the digit "7" and "6" Last digit of $3^{31} - 8^{16} = 7 - 6 = 1$ Last digit of $3^{31} - 8^{16} = 7 - 6 = 1$ Equation of line must be seen in this page. Or elements we will take it as you use calculator mode 3, 4. Ye 1. G1		
We must see that you had chosen the digit "7" and "6" Last digit of $3^{31} - 8^{16} = 7 - 6 = 1$ Last digit of $3^{31} - 8^{16} = 7 - 6 = 1$ Equation of line must be seen in this page. Or elements we will take it as you use calculator mode 3, 4. Ye 1. G1		$\frac{31}{2} = 7 \xrightarrow{3} \text{Remainder} = 3 \rightarrow \text{Last digit} = 7$
Last digit of $3^{31} - 8^{16} = 7 - 6 = 1$ Equation of line must be seen in this page. Or every line we will take it as you use calculator mode 3, 4. $y = 1.$ G1		
Last digit of $3^{31} - 8^{16} = 7 - 6 = 1$ Figure 15 Last digit of $3^{31} - 8^{16} = 7 - 6 = 1$ Equation of line must be seen in this page. Or elements we will take it as you use calculator mode 3, 4. Figure 25 G1 G1		
Plot $y = \frac{3}{2}x$ Equation of line must be seen in this page. Or elements we will take it as you use calculator mode 3, 4. $y = 1$ Gl Gl		$\frac{1}{4} = 4 \Rightarrow \text{Remainder} = 0 \Rightarrow \text{Last digit} = 6$
Plot $y = \frac{3}{2}x$ Equation of line must be seen in this page. Or elements we will take it as you use calculator mode 3, 4. $y = 1$ Gl Gl		T 11 to 0.021 alf. T
Plot $y = \frac{3}{2}x$ Equation of line must be seen in this page. Or elements we will take it as you use calculator mode 3, 4. $y = 1$ Gl Gl		Last digit of $3^{31} - 8^{10} = 7 - 6 = 1$
Plot $y = \frac{3}{2}x$ Equation of line must be seen in this page. Or elements we will take it as you use calculator mode 3, 4. $y = 1$ Gl Gl	15	1,4,1,2,4, 2,6
		Equation of line must be seen in this page. Or else.
		Plot $y = \frac{x}{2}$ we will take it as you use calculator mode 3, 4.
		150000000000000000000000000000000000000
		10 10 10
		V=1.5x
		Gl
		Mide
		12hov
		S. C.
y = 0.25x(x+2)(x-3)		2 3 4 x
-10		y = 0.25x(x+2)(x-3)
-10		y = 0.20x(x + 2)(x = 3)
-10		
-10,		
		-10
$x = -3$ or 0 or 4 \rightarrow only accept exact answers.		$r = 3$ or 0 or 4 \rightarrow orbitions

2019 MYE EM P1 Solutions

16	Draw perpendicular bisector of LC.	
	Draw angle bisector of AC. Unit 518.	
17	Let M be the midpoint of RS.	
	$OM = \sqrt{13^2 - 12^2} = 5$ (Perpendicular bisector of chord)	Leave answer in 3sf as
	$OK = \sqrt{5^2 + 5^2} = 7.07 \text{ (Equal chords)}$	you are finding length!
	$OR = VS + S^2 = 7.07$ (Equal chords)	
18	$20 \le \frac{(n-2) \times 180 - 100 - 20}{n-2} \le 100$	Guess & check
		allowed for this qn.
	$ 20(n-2) \le (n-2) \times 180 - 120 \le 100(n-2)$	
	$20n - 40 \le 180n - 360 - 120 \le 100n - 200$	
	$20n - 40 \le 180n - 480$ or $180n - 480 \le 100n - 20$	00
	$440 \le 160n$ or $80n \le 280$ 2.75 $\le n$ or $n \le 3.5$	
	$2.75 \le n$ or $n \le 3.5$ $2.75 \le n \le 3.5$	
	n = 3	
19a	$2x^2 - 4x - 7x + 14 - 9 = 2x^2 - 11x + 5 = (2x - 1)(x - 1)$	5) Factorise, not completing
		the square! Read carefully.
19b	1-0 1) 11(y-1)+3=0 \	03
	$x = y - 1$ \rightarrow must be seen! Read question. It says "I	Hence".
	$y-1=\frac{1}{2} \text{ or } 5$	380
	y = 1.5 or 6	OUB
		Hence". 8866003
20		
		ed number for algebra!!
	$x + 8 \neq 4y$ $x \neq 2y + 6$	
	Recall: dividend = (diviso	r)(quotient) + remainder
	2y + 6 + 8 = 4y	- Addocenty Fremander
	24=14	
	y=7 ydW	
	$x = 20^{2^{1/3}}$	
21	$\angle BCD = 180 - 54 = 126 \ (\angle s \text{ in opp segment})$ Easier m	esthod:
	$ ZDCP = 180 - 126 = 54$ (adj \angle on a straight line)	= $180 - 54 - 27 = 99 (\angle \text{ sum of } \Delta)$
	1 ADO	$= 180 - 99 = 81 (\angle s \text{ in opposite segment})$
	$\angle AQD = 180 - 54 - 81 = 45 (\angle sum \text{ of } \Delta)$ $\angle AQD$	= $180 - 54 - 81 = 45 (\angle \text{ sum of } \Delta)$
22	$\pi r l = 2\pi r^2$	
	l = 2r	
	$h = \sqrt{(2r)^2 - r^2} = \sqrt{3}r$ Vertical height and slanted ler	orth are different
	$n - \sqrt{(2r)^2 - r^2} = \sqrt{3r}$	igth are different!
	$V_{\text{aluma}} = \frac{2}{\sqrt{2}} \left(\frac{7}{2} + \frac{1}{2} \right)^{\frac{1}{2}} 2 \left(\frac{7}{2} \right)^{\frac{2}{2}} 2$	
	Volume = $\pi r^2 (\sqrt{3}r + 2r) - \frac{1}{3}\pi r^2 (\sqrt{3}r) - \frac{2}{3}\pi r^3$	
	$=\pi r^3 \left(\sqrt{3}+2-\frac{\sqrt{3}}{3}-\frac{2}{3}\right)$	
	7.023	
	Refer to cover page if you h	and left your answers in π .

23a	Length of stay (days) Numbers of tourists
	0 < x ≤ 5 10
	$5 < x \le 10 \qquad \qquad 10$
	$10 < x \le 15 \qquad \qquad 10$
	$15 < x \le 20$
	$20 < x \le 25$
	$25 < x \le 30$
	$30 < x \le 35$
	$35 < x \le 40$
23b	13
1	43
00-	
23c	Mean = $13\frac{77}{86}$ or 13.9
	3st only! Do not round to nearest integer!
	SD = 11.0
24a	$(x-2)^4(x^2-4x+4)=(x-2)^4(x-2)^2=(x-2)^6$ must be seen!
1 - 10	(x-2)(x-4x+4)-(x-2)(x-2)-(x-2) 7 must be seen:
	Since the power 6 is both a multiple of 2 and of 3, it is both a perfect cube and a
	perfect square.
24b	$2x + 2y = 20 x + y = 10 (x + y)^2 = x^2 + y^2 + 2xy 2xy = 100 - 70 xy = 15 $ Alternative method is to solve of x and y to get 8.16 or 1.84 and find xy = 15.0 cm ² .
240	2x + 2y - 20 $2x + 2y - 140$
1	$x+y=10$ $x^2+y^2=70$
	11 80
	$(x+y)^2 = x^2 + y^2 + 2xy$ Alternative method is to salve of y and y
	2xy = 100 - 70
	xy = 15 to get 8.16 or 1.84 and find $xy = 15.0$ cm ² .
	()/()/()/()/()/()/()/()/()/()/()/()/()/(
25a	P=(32 27 20)
	$P = \begin{pmatrix} 32 & 27 & 20 \\ 44 & 45 & 38 \end{pmatrix}$
	10.110
25b	$P = \begin{pmatrix} 32 & 27 & 20 \\ 44 & 45 & 38 \end{pmatrix}$ $PQ = \begin{pmatrix} 319.9 \\ 525.7 \end{pmatrix}$ Work with exact! This is percentage, not
	re = (525.7)
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
25c	$\frac{1}{2}$ 0 0 $\frac{1}{2}$
	14 (6)
	$R = \begin{bmatrix} 0 & \frac{2}{3} & \frac{2}{3} \end{bmatrix}$ money hence, it should not be 2dp!
	3
	\ 0 0 = \ Ordy accept exact or 3sf.
	4/
25d	/3 0 0
	$\left(\frac{1}{4}\right)$ $\left(\frac{3}{3}\right)$ $\left(\frac{3}{3}\right)$
	$s = (32 \ 27 \ 20) \left(\frac{2}{0.5} \right) = (24 \ 18 \ 10) \left(\frac{3.2}{4.5} \right) = (205.8)$
	$3 - \begin{pmatrix} 44 & 45 & 38 \end{pmatrix} = \begin{pmatrix} 38 & 38 & 45 & 38 \end{pmatrix} = \begin{pmatrix} 4.5 & 38 & 45 & 38 \end{pmatrix} = \begin{pmatrix} 4.5 & 38 & 45 & 38 \end{pmatrix} = \begin{pmatrix} 4.5 & 38 & 45 & 38 \end{pmatrix} = \begin{pmatrix} 4.5 & 38 & 45 & 38 & 45 & 38 \end{pmatrix} = \begin{pmatrix} 4.5 & 38 & 45 & 38 & 45 & 38 \end{pmatrix}$
	$\mathbf{S} = \begin{pmatrix} 32 & 27 & 20 \\ 44 & 45 & 38 \end{pmatrix} \begin{pmatrix} \frac{2}{4} & 0 & 0 \\ 0 & \frac{2}{3} & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 3.2 \\ 4.5 \\ 4.8 \end{pmatrix} = \begin{pmatrix} 24 & 18 & 10 \\ 33 & 30 & 19 \end{pmatrix} \begin{pmatrix} 3.2 \\ 4.5 \\ 4.8 \end{pmatrix} = \begin{pmatrix} 205.8 \\ 331.8 \end{pmatrix}$
	2/
25e	They represent the total money collected from Childcare Centre A and B
	respectively for the sales of cakes after discount.
	The second section of the second seco
	Money collected from sales is not money earned! The word "earned/earnings" relates to profit.
	woney conected from sales is not money earned! The word learnings relates to profit.

	-	-	
N	-	-	۰
1 1			

Register Number:

Class:

南份中學

For Marker's Use

NAN CHIAU HIGH SCHOOL

MID-YEAR EXAMINATION 2019 SECONDARY FOUR EXPRESS

MARKING S Shandwide Delivery Whatsapp Only 2 hours 30 minutes

MATHEMATICS

Paper 2

Candidates answer on the Question Paper.

2019 Sec 4 MYE EM P2 Solution

(a) Simplify $\frac{4b^2}{3a} \div \frac{(-4ab^2)^2}{2a^{-4}b^2}$. Give your answer in positive indices [2]

> $=\frac{b^3}{3a}\times\frac{b^2}{2a^6b^6}$ -----[A1]

(b) Factorise 14xb + 3ay - 2xy - 21ab completely

Solve the inequality $\frac{x}{s} < \frac{x+2}{3} < \frac{3-2x}{4}$ $3-2x \ge \frac{x+2}{4}$ $3(3-2x) \ge (4(x+2))$ $9-(6x) \ge 1$

2x > -10and $x \le \frac{1}{10}$ ----- [M1] and x > -5 ----- [M1]

 $-5 < x \le \frac{1}{10}$ ----- [A1]

(d) Simplify
$$\frac{2x(1-6x)}{4x^2-1} - \frac{2}{2x+1}$$
.

$$\frac{2x(1-6x)}{4x^2-1} - \frac{2}{2x+1}$$

$$= \frac{2x(1-6x)}{(2x+1)(2x-1)} - \frac{2(2x-1)}{(2x+1)(2x-1)} - \cdots - [M1] \text{ common denominator}$$

$$= \frac{2x-12x^2-4x+2}{(2x+1)(2x-1)}$$

$$= \frac{-12x^2-2x+2}{(2x+1)(2x-1)} - \cdots - [M1] \text{ simplify numerator}$$

$$= \frac{-2(6x^2+x-1)}{(2x+1)(2x-1)}$$

$$= \frac{-2(3x-1)(2x+1)}{(2x+1)(2x-1)} - \cdots - [M1] \text{ factorise numerator}$$

$$= \frac{-2(3x-1)}{2x-1} - \cdots - [A1]$$

where a, b and c are Express $2x^2 + 6x - 15$ in the form $a(x + b)^2$ constants.

My while to do completing the square Hence, solve the equation $2x^2 + 6x - 15 = 0$, giving your answers correct to four decimal places.

[4]

$$2x^{2} + 6x - 15$$

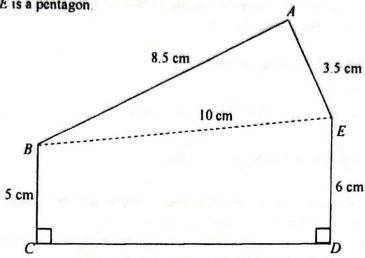
$$= 2(x^{2} + 3x - \frac{15}{2})$$

$$= 2[(x + \frac{3}{2})^{2} - \frac{9}{4} - \frac{15}{2}]$$

$$=2\left[\left(x+\frac{3}{2}\right)^2-\frac{39}{4}\right]$$

$$2(x+\frac{3}{2})^2-\frac{39}{A}$$

$$2x^2 + 6x^2 = 0$$


$$2\left(x+\frac{3}{2}\right)^2-\frac{39}{2}=0$$

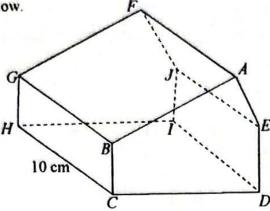
$$\left(x+\frac{3}{2}\right)^2=\frac{39}{4}$$
 ----- [M1] solving using completing the square

$$x + \frac{3}{2} = \pm \sqrt{\frac{39}{4}}$$

$$x = 1.6225$$
 or $x = -4.6225$ ----- [A1]

2. ABCDE is a pentagon.

(a) Calculate the area of the pentagon ABCDE.


 $10^2 = 8.5^2 + 3.5^2 - 2(8.5)(3.5)\cos B\hat{A}E$ ----- [M1] use of cosine rule $\cos B \hat{A}E = \frac{8.5^2 + 3.5^2 - 10^2}{2(8.5)(3.5)}$ $\cos B\hat{A}E = -0.260504$

[5]

 $\alpha = 74.90^{\circ}$

Area of $BCDE = \frac{1}{2}(5+6)(\sqrt{99})$ ------ [M1] finding area of trapezium = 54.72 cm^2 rea of ABCDE = 14.36 + 54.72 = 69.1 cm^2 ------- [A1]

(b) The pentagon ABCDE is a cross-section of a prism which is a model of a house as shown below.
E_n

(i) Calculate the total surface area of the model, including the base. [2]

total surface area = $2(69.08) + 10(5 + 8.5 + 3.5 + 6 + \sqrt{99})$

[M1] area of all surface area (excluding cross-sectional area)

= 468 cm² ----- [A1]

Whatsapp only 88660031

(ii) Calculate the angle of depression of H from E.

[3]

Let the angle of depression be θ

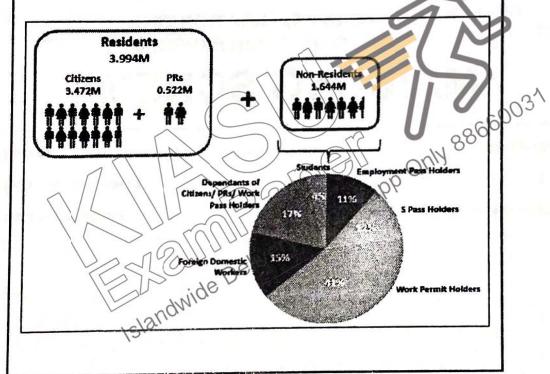
Student use

- (i) angle of depression = angle of elevation or
- (ii) angle of depression = $90^{\circ} 57.5^{\circ}$

 $HD = \sqrt{10^2 + 99}$ ----- [M1] finding length HD = $\sqrt{199}$ cm

 $tan\theta = \frac{6}{\sqrt{199}}$ ----- [M1] finding relevant angle (either angle EHD or HED)

$$\theta = 23.0^{\circ}$$
 ----- [A1]


3. There was a newspaper article on Singapore's population published in 2018.

Singapore's population grows slightly to 5.638 million, with non-resident numbers stable.

Singapore's population rose 0.5 percent to 5.638 million from 2017 to 2018.

The slight increase over the past year was due to stable growth in citizen population, which rose I percent to 3.472 million citizens as of June 2018.

The 1 percent growth in citizens was due to citizen births and immigration.

Source:

https://www.channeinewsasia.com/nvws/singasure/singasore-s-population-grows-slightly-to-5-64m-with-non-resident-10763.132

(a) Calculate the Singapore's total population in 2017.

[2]

$$100.5\% \rightarrow 5.638 \text{ million}$$

 $100\% \rightarrow \frac{100}{100.5} \times 5.638 \text{ million} ------- [M1] \text{ showing } \frac{100}{100.5} \times 5.638$
 $=5.61 \times 10^6 ------ [A1] \text{ or } 5.61 \text{ million}$

Express the number of Foreign Domestic Workers as a percentage of the [2] Singapore's total population in 2018.

Number of foreign domestic workers

$$=\frac{15}{100}\times 1.644\times 10^6$$

$$= 0.2466 \times 10^6$$
 ----- [M1] must in 10⁶ or million

$$\frac{0.2466 \times 10^6}{5.638 \times 10^6} \times 100\% = 4.37\%$$
 ------ [A1]

Based on the information shown in this article, do you agree that "Singapore's total population will reach 6.3 million by 2030?" Support your answer with appropriate workings and state an assumption that you have made in your calculation. [3]

2030 - 2018 = 12 years

Population of citizen by 2030

=
$$(1.01)^{12} \times 3.472 \times 10^6$$
 -----[M1] finding the increase of citizen only

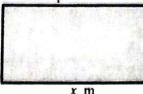
$$= 3.912 \times 10^6$$

$$= (3.912 + 0.522 + 1.644) \times 10^6$$

$$= 6.08 \times 10^{6}$$
 -----[A1]

Assumption:
There is no increase for PRs and Non-Residents or
There is a constant growth of citizens at 1% per

State one aspect of the Period (d) may lead to a misinterpretation.


Accept any logical answer

- (i) Pictogram used alternate of a male and female figure --- [B1] [Reason] misleading readers that there is an equal number of male and female population. --- [B1]
- (ii) Inaccurate use of 1/2 pictogram "figure" for "non-resident" & 3/4 in "citizen" --- [B1]

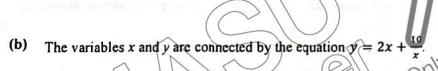
[Reason]

[2]

The diagram shows a rectangular table top

[2]

[3]

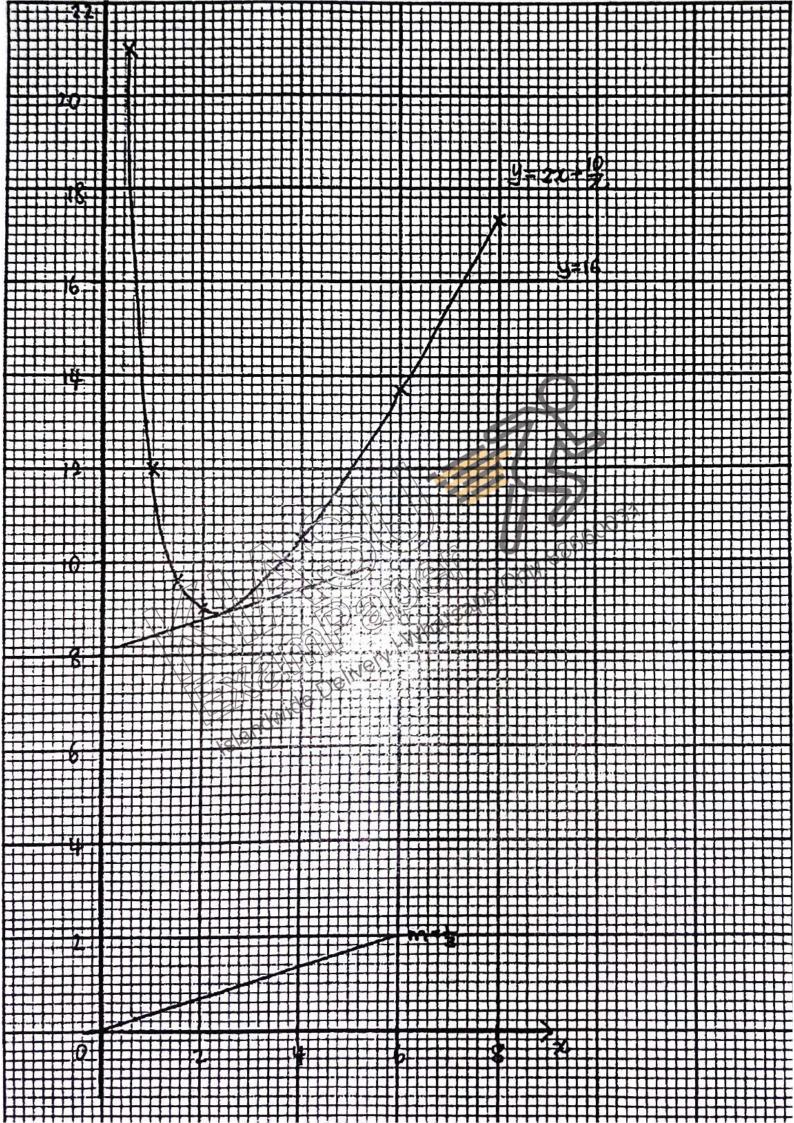

The area of the table top is 5 square metres.

The length of the table top is x metres.

The perimeter of the table top is y metres.

Show that $y = 2x + \frac{10}{x}$. (a)

Width of table top = $\frac{5}{x}$ Perimeter, $y = x + \frac{5}{x} + x + \frac{5}{x}$ ----- [M1] $y=2x+\frac{10}{x}$


2nly 88660031 0 0.5 8 13.7 17.3 [1]

Find the value of p and of q

p = 21 q = 9.7 (accept also 9.67)
Using a scale of 1 cm to represent 1 unit, draw a horizontal x-axis for 0 ≤ (c)

Using a scale of 1 cm to represent 1 unit, draw a vertical y-axis for 0 ≤ $y \leq 22$.

On your axes, plot the points given in the table and join them with a smooth curve.

Use your graph to find the possible width of the table top if the perimeter of the (d) [2] table top is 16 m.

When P = 16, $\chi=0.7~(\pm0.1)$ ----- [BI] answer must be rejected as length is longer ----- [B1] or $x = 7.3 (\pm 0.1)$

By drawing a suitable straight line, find the x-coordinate of the point at which (e) gradient of the curve is $\frac{1}{3}$.

Slandwide Delivery Whatsapp Only 88660031 Draw a line with grad = $\frac{1}{3}$ on the graph

x-coordinate = 2.3 ± 0.1

- Given equation of a line L is 3x 2y = 8. 5.
 - State the gradient of line L. (a)

[1]

$$2y = 3x - 8$$

 $y = \frac{3}{2}x - 4$
Gradient = $\frac{3}{2}$ ----- [B1]

If P(k, -2) is a point on the line L, find the value of k.

[1]

$$3k - 2(-2) = 8$$

 $k = \frac{4}{3}$ ----- [B1]

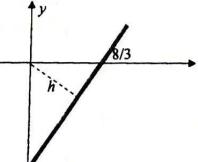
Find the equation of another line that is parallel to the x-axis and passes (c) through P.

[1]

$$y = -2$$
 ----- [B1]

[4]

Calculate the perpendicular distance from the origin,
$$O$$
, to the line L .

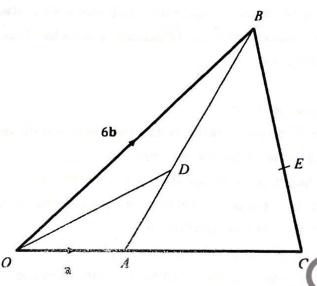

$$3x - 2y = 8$$
When $x = 0$, $y = -4$ (0, -4)
When $y = 0$, $x = \frac{8}{3}$ ($\frac{8}{3}$, 0)
When $y = 0$, $x = \frac{8}{3}$ ($\frac{8}{3}$, 0)

[M1] finding relevant coordinates

When
$$y = 0$$
, $x = \frac{8}{3}$ ($\frac{8}{3}$, 0)

Distance between 2 points

$$= \sqrt{\left(\frac{8}{3}\right)^2 + (4)^2} - ----- [M1]$$
= 4.8074 units



Let the perpendicular distance be h.

$$\frac{1}{2}(4)\left(\frac{8}{3}\right) = \frac{1}{2}(h)(4.8074)$$
 ----- [M1] suitable method to find h

h = 2.22 units ----- [A1] accept h = 2.21 units

6.

In the diagram, $\overrightarrow{OA} = a$, $\overrightarrow{OB} = 6b$ and $\overrightarrow{OA} = \frac{1}{3}\overrightarrow{OC}$.

D is a point on AB such that $3\overline{AB} = 2\overline{DB}$ and E is a point on BC such that

 $\overrightarrow{CE} : \overrightarrow{EB} = 4 : 5.$

Express, as simply as possible, in terms of a and b, (a)

(i)

oress, as simply as possible, in terms of a and b,
$$\overrightarrow{BA} = \overrightarrow{OA} - \overrightarrow{OB}$$

$$= a - 6b$$

$$\overrightarrow{BB} = \overrightarrow{OA} - \overrightarrow{OB}$$

$$= a - 6b$$

$$= \overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$$

$$= \overrightarrow{OA} - \frac{2}{5}\overrightarrow{BA}$$

$$= a - \frac{2}{5}(a - 6b)$$

$$= \frac{3}{5}(a + 4b)$$
B1

(iii) \overline{CB} ,

$$\overline{CB} = \overline{OB} - \overline{OC}
= 6b - 3a
= 3(2b - a)$$
B1

(iv) AE.

[2]

$$\overrightarrow{AE} = \overrightarrow{AC} + \overrightarrow{CE}$$

$$= 2a + \frac{4}{9}(6b - 3a)$$

$$= \frac{2}{3}(a + 4b)$$
B1
B1
B1
Explain your answer.

(b)

[2]

Write down the relationship between
$$OD$$
 and AE Explain your answer.

$$|\overrightarrow{OD}| = \frac{3}{5}(a+4b)|$$
Since $|\overrightarrow{OD}| = \frac{9}{10}|\overrightarrow{AE}|$, Mi – Relationship between OD and AE OD and AE are parallel lines. Al – Parallel lines

- (c) Find the ratio of
 - area of triangle CAE: area of triangle AOD,

[2]

area of triangle CAE	$\frac{1}{2}(CA)(AE)\sin\theta$	
area of triangle AOD	$\frac{1}{2}(OA)(OD)\sin\theta$	
	AE CA	
-	$= \overline{OD} \times \overline{OA}$	M1 - With correct
	$=\frac{10}{9}\times\frac{2}{1}$	ratio of
	20	corresponding sides
	9	
		3.05
20: 9		AI 7

area of triangle CAE; area of triangle AOB

area of triangle AOB
area of triangle AOB
area of triangle AOB
area of triangle AOB
area of triangle AOB
area of triangle AOB area of triangle CAE M1 - Common height relationship 8:9 AI

7. (a) There are two boxes of sweets containing toffees and chocolates. Box A contains 8 toffees and 4 chocolates, whereas box B contains 7 toffees and 3 chocolates.

Jolin loves chocolates.

One of the boxes is chosen at random and a sweet is taken out.

If she gets a chocolate, she will consume it.

If she did not get a chocolate from the first selection, she will place the sweet into the other box and she will select again from the other box.

Jolin limits herself to two selections.

Find, as a fraction in its simplest form, the probability that

Jolin will have her favourite chocolate from the first selection, [3]

P(first selection) = P(Box A) + P(Box B)
=
$$(\frac{1}{2})(\frac{4}{12}) + (\frac{1}{2})(\frac{3}{10})$$
M1 - with 4/
M1 - 4/12 + 3/10
(without 3)
A1

(ii)

[3]

Jolin will have her favourite chocolate

P(favourite)

P(at first) + P(at second)

M1 - from (i)

$$= \frac{19}{60} + P(\text{no A, yes B}) + P(\text{yes A, no B})$$

$$= \frac{19}{60} + \left(\frac{1}{2}\right)\left(\frac{8}{12}\right)\left(\frac{3}{11}\right) + \left(\frac{1}{2}\right)\left(\frac{7}{10}\right)\left(\frac{4}{13}\right)$$

MI - with ½ and 2 cases for P(at second)

$$= \frac{4421}{8580}$$

Al

(b) Your friend, Kenton gives you a chance to win \$1000 by playing a game of "Guess the number". There are two options of the game that he allows you to choose.

Option A

He uses a random number generator to choose a number from 1 to 8. If you guess it correctly, you win.

Option B

You flip a fair coin.

If the coin lands on head, Kenton will roll a fair 6-sided die. If you manage to guess what it rolled, you win.

If the coin lands on tail, Kenton will use a random number generator to choose a random number from 1 to 8. If you guess the number correctly, you win

Which option will you choose? Explain your answer.

Option B $P(\text{wirn}) = P(H, \text{die}) + P(T, No. Graphivery} \text{whatsapp}$ $= \binom{1}{2} \binom{1}{6} + \binom{1}{8} \binom{1}{8}$ $= \binom{7}{4} \binom{1}{6} + \binom{1}{8} \binom{1}{8} \binom{1}{8}$

$$= \left(\frac{1}{2}\right) \left(\frac{1}{6}\right) + \left(\frac{1}{2}\right) \left(\frac{1}{8}\right)$$

Since Option B has a higher probability, Option B should be chosen.

with options' probability correctly calculated.

A regular hexagon forms within the inner circle ABCDEF with OB = 5 cm. This information is illustrated in Figure 3.

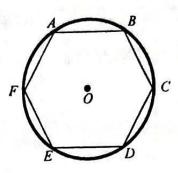


Figure 3

Show that the radius of the outer circle is 13.31 cm, correct to 2 decimal places. Only 88660031

Let M be the midpoint of AB.

Consider $\triangle AGX$,

Using Cosine Rule,

$$AG^2 = 18^2 + 18^2 - 2(18)(18)\cos\frac{\pi}{6}$$

AG = 9,31749 cm

M1 = finding line | Segment 402 $IM = 5 \sin 30^{\circ}$ $MO = 5 \cos 303 | 2 \text{ Mod of } Consider \text{ A}$

AOX or AOB = 60°

MI - AX

MI - finding angle

MI-XO

By Pythagoras theorem,

$$GM = \sqrt{AG^2 - AM^2}$$

$$= \sqrt{9.31749^2 - (5 \sin 30^\circ)^2}$$

$$= 8.9758 \text{ cm}$$

Radius = GM + MG

= 8 9758 + 5 cm 302

MI - GX + XO

Team H5'ola decided to make 50 dreamcatcher-inspired ornaments and **@**

10 m silver craft bendable DIY wire (2mm thick) \$9.28 Janice chanced upon the following promotion. = 13.31 cm

What is the estimated cost to make these ornaments?

[2]

Mind of Market M Circumference of big circle = $2\pi(13.30597)$ Circumference of small circle = $2\pi(5)$ Amount of wire for \$0 dreamcatchers $= (26.6119\pi + 10\pi + 36\%) \times 50$ Rolls of wire needed $\operatorname{arc} AG = (18) \left(\frac{\pi}{6} \right)$ = 12 (rounded up) Petals = $12 \times 3\pi$ $= 36\pi \text{ cm}$ $= 3\pi \text{ cm}$ $=3630.59\pi$ cm $=36.3059\pi$ m $=\frac{36.3059\pi}{10}$ = 11.4058

20

Cost = 12 × \$9.28

$$=\frac{1}{2}(18)^2\left(\frac{\pi}{6}\right)-\frac{1}{2}(18)(18)\sin\frac{\pi}{6}$$

MI

 $= 3.823 \text{ cm}^2$

area of
$$\triangle AGX = \frac{1}{2}(8.9758)(5 \sin 30^\circ)$$

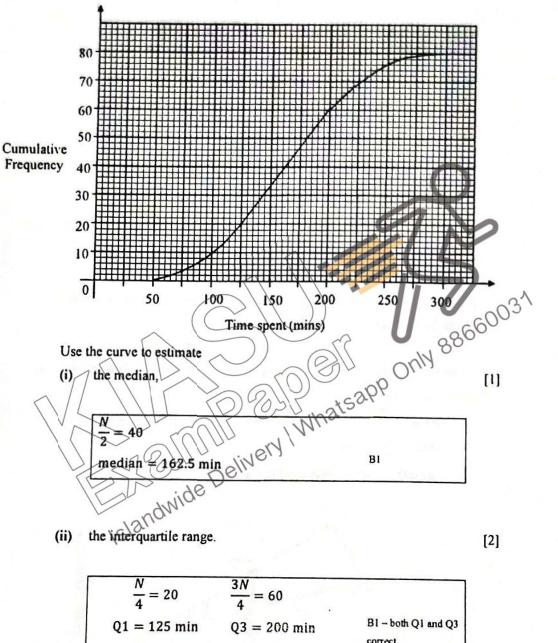
MI - area of right

 $= 11.21975 \text{ cm}^2$

angle triangle AOX.

area of $\Delta OXA = \frac{1}{2} (5 \cos 30^{\circ}) (5 \sin 30^{\circ})$

M1 - area of right gle triangle OXA.


 $= 5.41266 \text{ cm}^2$

area of shaded region

 $=\pi(13.30597)^2-5.41266\times 12$

Islandwide Delivery I Whatsapp Only 88660031

The cumulative frequency curve below shows the time spent in minutes by a group of 80 teenagers on Instagram (a social media platform) on a particular day.

$$\frac{N}{4} = 20$$

$$\frac{3N}{4} = 60$$

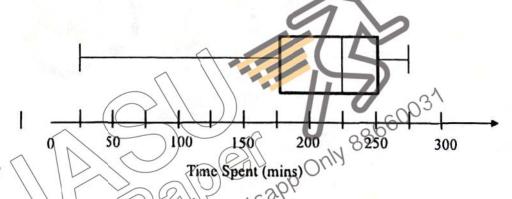
$$Q1 = 125 min$$

$$Q3 = 200 \text{ min}$$

Interquartile Range = Q3 - Q1

.41

(b) Through a market research, it was found out that the time spent on Facebook (another social media platform) is less popular and less consistent among the same group of 80 teenagers. A second cumulative frequency curve for the same group of 80 teenagers spending their time on Facebook is drawn.


Describe how the second cumulative frequency curve may differ from the curve for Instagram.

[2]

[2]

B1 - shift to left
B! - Gentler slope

(c) The box-and-whisker plot represents the distribution of the time spent for the same group of 80 teenagers on SnapChat (another social media platform).

For this group of 80 teenagers, which of the social media platforms - Instagram,

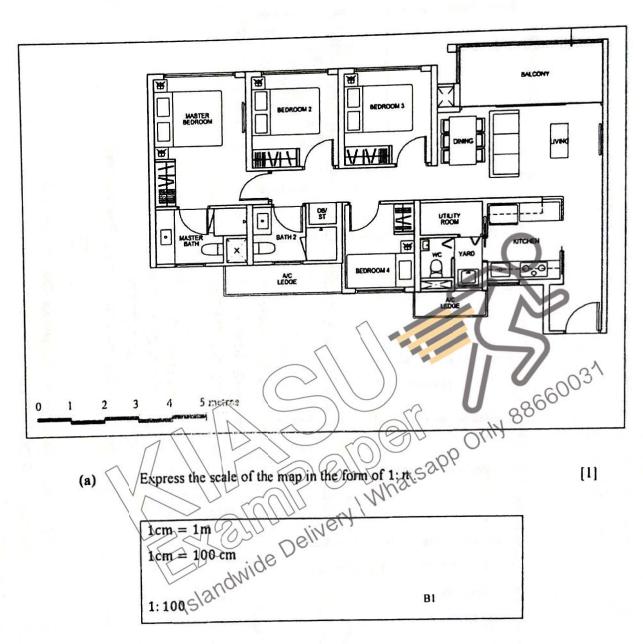
Facebook or Snapchat, is the most popular?

Support your answer with an appropriate statistical measure.

Median (Instagram) = 162.5 min

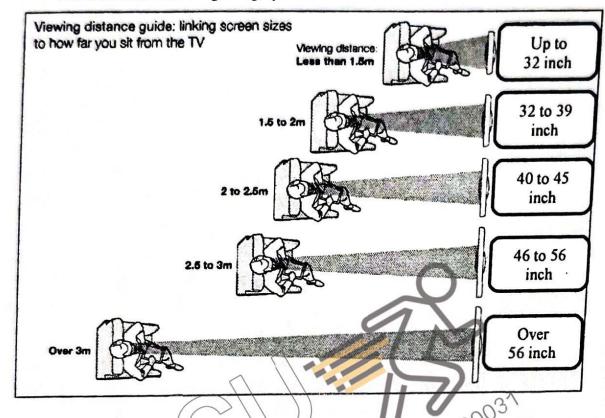
Median (Facebook) < 162.5 min

Median (SnapChat) = 225 min

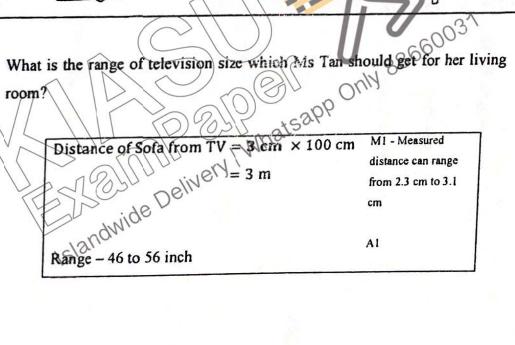

Since Snapchat has the highest median, it is the most popular.

*If students show no data evidence but mentioned about highest median, award 1 mark.

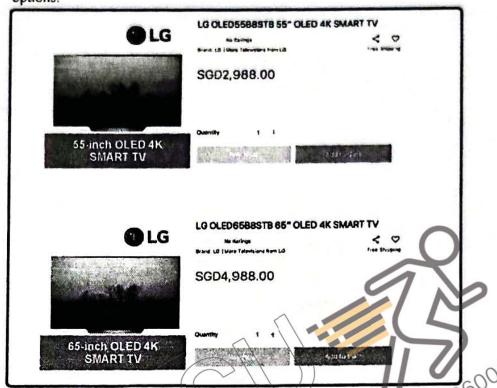
M1 - Evidence for median especially for SnapChat


A1 - Median as statistical comparison

10. Ms Tan got her new home recently and the layout of her house is shown in the diagram below. The layout is drawn to scale.



(b) Ms Tan decides to get a television set for her living room.


She found the following infographic online.

[2]

Ms Tan decided to shop for her television set online and she saw the following options:

Ms Tan pays a downpayment of \$2 000 for her television set as suggested in (b).

She pays the remaining amount over 3 months, with a simple intelligence of \$2 000 for her television set as suggested in (b). She pays the remaining amount over 3 months, with a simple interest rate of 7 % per annum.

Calculate her monthly instalment.

[Simple interest rate of Ms. Tan to purchase 55 inch TV.

[3]

Ms Tan to purchase 55 inch TV.

Remaining amount = \$2988 - \$2000 M1

= \$988

Interest =
$$\frac{988 \times 7 \times \frac{3}{12}}{100}$$
 M1 - with correct \$988 and 3/12

= \$17.29

Monthly instalment = $\frac{$988 + $17.29}{3}$ A1