1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Theorem

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{n(n-1)...(n-r+1)}{r!}$.

2. TRIGONOMETRY

Identities

$$sin^{2}A + cos^{2}A = 1$$
$$sec^{2}A = 1 + tan^{2}A$$
$$cosec^{2}A = 1 + cot^{2}A$$

 $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$

 $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = \cos^{2} A - \sin^{2} A = 2\cos^{2} A - 1 = 1 - 2\sin^{2} A$$
$$\tan 2A = \frac{2\tan A}{1 - \tan^{2} A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

1 (i) Sketch the of y = -|3x-5|, indicating the intercepts clearly.

(ii) Explain why the equation -2 = |3x - 5| has no real roots using a graphical approach. [1]

[2]

25

It is known that $\log_2 b = y$ and $\log_b y = 3$. (i) Find an expression for $\log_{\sqrt{2}} b - \log_2 2b$ in terms of y.

(ii)

-31

By considering a pair of simultaneous equations, show that $\lg b = b^3 \lg 2$.

.

3 (i) On the same diagram, sketch the graphs of
$$\frac{y^2}{25} = x$$
 and $y = -3x^{\frac{3}{2}}$. [3]

(ii) Find the coordinates of the points of intersection of the two curves.

[3]

4 (i) Factorise $8x^3 + 27$.

-9

10

(ii) Express
$$\frac{8x^3 + 27}{(2x^2 + 3x)(x-1)^2}$$
 in partial fractions.

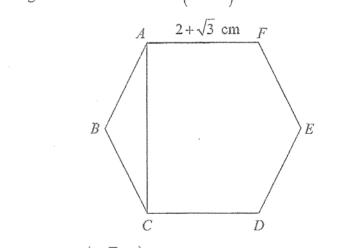
ſ

ĺ

5 (i) Given that
$$u = 2^{2y}$$
, solve the equation $8^y = 7(2^y) + \frac{8}{2^y}$. [4]

(ii) Hence, solve the equation $64^{-x} = 7(4^{-x}) + \frac{8}{4^{-x}}$.

[2]



(i) Show that $AC = (2\sqrt{3} + 3)$ cm.

(ii) If the line segment AC has length $(\sqrt{27} - \sqrt{3})r$ cm, find the value of r, expressing answer in the form $a + b\sqrt{3}$, where a and b are rational numbers.

The roots of $x^2 - 7x + 4 = 0$ are α^2 and β^2 . Given that α and β are opposite in sign, (i) Find two possible values of $\alpha + \beta$.

7

Find two non-equivalent quadratic equations whose roots are α and β . (ii)

[2]

. [4]

(i) Show that
$$\frac{d}{dx}(2x\sin^2 x) = 2\sin^2 x + 4x\sin x\cos x$$

(ii) Hence find $\int x \sin 2x \, dx$.

(i) Using $\tan 3x - \tan(2x + x)$, show that $\tan 3x$ may be expressed as $\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x}$.

9

(ii) Find all the values of x between 0 and π for which $\tan 3x = -5 \tan x$.

[5]

,

, [3]

740

**

10 (i) Show that the curve $y = \frac{1}{4}x^2 - hx + 4$ meets the line y = 2x - (2h - 1) for any real val

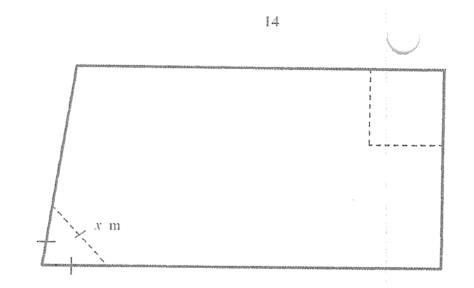
(ii) State the value of h if the line y = 2x - (2h - 1) is a tangent to the curve $y = \frac{1}{4}x^2 - hx$

(iii) Using your answer from part (ii), find the values of p and q if the line y = 2x-intersects the line y = px + q at an infinite number of points.

- 11 A semi-circle has radius r m, area A m² and perimeter P m. At the instant when its radius is a m, its area is increasing at a rate of 2π m²/s.
 - (i) Find an expression in terms of a, for the rate of increase of the radius at this instant. [3]

(ii) Find an expression in terms of a and π , for the rate of increase of the perimeter at the same instant. [2]

'.<u>:</u>



The diagram shows a room (crime scene) surrounded by solid walls. Two bodies are found at extreme corners of the room. To facilitate forensic work, a tape of total length p m is used to off these two extreme corners. The dotted lines represent the length of tape used. One corne room is an equilateral triangle of side x m and the other corner is a square.

(i) Show that the area of the triangle is $\frac{\sqrt{3}}{4}x^2$.

(ii) Show that the total area, 4 m^2 , of the two cordoned-off corners is given by

$$A = \frac{p^2}{4} - \frac{p}{2}x + \frac{\sqrt{3} + 1}{4}x^2 .$$

(iii) Given that x can vary depending on how taut the tape is, find an expression for x in terms of p for which the area A is stationary. [2]

(iv) Write down, but do not simplify, an expression for the stationary value of A in terms of p and determine the nature of this stationary value [3]

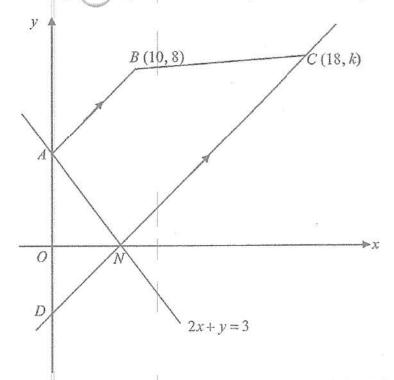
(v) In the case where $p = \sqrt{3} + 1$, sketch a graph of *A* against *x*, indicating the turning point and the *y*-intercept clearly. [3]

I

1

(ii) Given that f(x) - 5 = (2x-1)A(x) + b, where A(x) is a polynomial, state the value of b the degree of A(x).

(iii) A constant c is added to f(x) to make it divisible by 2x-1. State the value of c.



4

The diagram shows a trapezium *ABCD* in which *AB* is parallel to *DC*. The coordinates of the points *B* and *C* are (10, 8) and (18, k) respectively. The line with equation 2x + y = 3 intersects the x-axis and y-axis at *N* and *A* respectively. The line *CN* intersects the y-axis at *D*.

(i) Determine whether $\angle ANC = 90^{\circ}$.

[4]

(ii) Write down the equation of the line *CD*.

(iii) Find the value of k and hence, find the area of the trapezium ABCD.

÷,

 ϕ i,

i,

.

3 The curve y = f(x) is such that $f''(x) = x^2 - \frac{1}{2}$.

(i) Find the range of values of x for which f'(x) is a decreasing function. [3]

The point P(3, 10) lies on the curve. The gradient of the curve at P is $\frac{5}{2}$.

(ii) Find the equation of the curve.

[5]

(i) Given that the coefficient of the $\frac{1}{x^2}$ term in the binomial expansion of $\begin{pmatrix} 1 & y^2 \end{pmatrix}^9$: 1022 1 = 1 = 1

 $\left(\frac{1}{x^3} - kx^2\right)^9 \text{ is 4032, show that } k = -2.$

(ii) Find the constant term in the expansion of $(x^{12} + x^7) \left(\frac{1}{x^3} - kx^2\right)^9$.

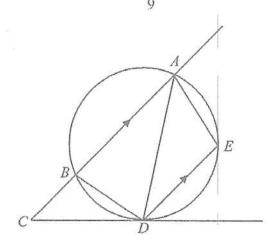
- 5 A curve C has equation $y = \ln(1-2x)$, $x < \frac{1}{2}$. The point P on C has coordinates $\left(\frac{1}{3}, \ln\frac{1}{3}\right)$. The tangent and normal to C at P meets the y-axis at Q and R respectively.
 - (i) Find the equations of the tangent and normal to the curve C at P. [4]

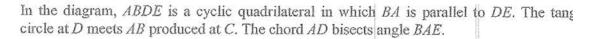
(ii) Find the coordinates of Q and of R

[2]

(ii) Find the area of triangle OPR.

[2]





(i) Prove that angle
$$BCD = \frac{1}{2}$$
 angle BAE .

(ii) If AD is the diameter of the circle, (a) prove that $\triangle ABD$ is similar to $\triangle DEA$,

(b) state the name of the geometric shape given to the quadrilateral ABDE.

7 A boy runs along $_$ coastline of a beach and passes a fixed point A. The velocity, v m/s, that he runs in t seconds after he passes A is given by

$$v = 20e^{-0.9t} - 3$$
.

(i) Find the distance that the boy ran 60 seconds after he passes A.

[5]

5

(ii) Find the boy's acceleration when he is instantaneously at rest.

[4]

(iii) Explain what the sign of the acceleration indicates.

2

(iv) Explain whether the boy will be running at his maximum velocity at any point of time of his run.
 [2]

[1]

The function $f(x) = 2x^3 + bx^2 - 14x - 20$ has a factor of a(x+5)(x+1), where a and b are positive constants.

[2]

(i) Find the value of b.

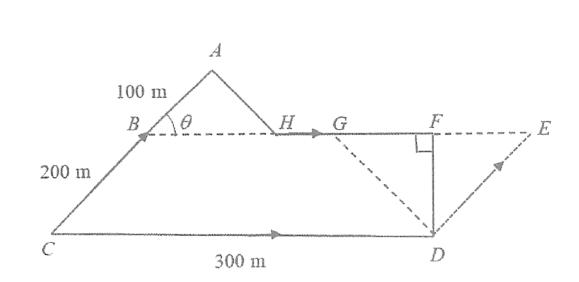
(ii) If
$$(x-2)$$
 is also a factor of $f(x)$, state the value of a. [1]

(iii) Hence, deduce another function g(x) whose coefficient of x^3 is 3 and values of the roots of g(x) = 0 are twice the values of the roots of f(x) = 0. [1]

- The function $f(x) = a \cos bx + 2$ has a period of 6π and a range of $-2 \le f(x) \le 6$. (i) State the value of a and of b. 9 State the value of a and of b. (i)
 - Sketch the graph of y = f(x) for $0 \le x \le 9\pi$. (ii)

On the same diagram, sketch g(x) where g(x) = -f(x) for $0 \le x \le 9\pi$. (iii)

State the equation of the line of symmetry between f(x) and g(x). (iv)



The diagram shows the running path $(A \rightarrow B \rightarrow C \rightarrow D \rightarrow F \rightarrow G \rightarrow H \rightarrow A)$ of Ali. $\triangle ABH$ and $\triangle DEG$ are isosceles triangles. *CA* is parallel to *DE* and *CD* is parallel to *HF*. *AB* = 100 m, *BC* = 200 m and *CD* = 300 m. It is also given that angle *GFD* = 90° and angle *ABH* = θ° , where $0^{\circ} < \theta < 90^{\circ}$.

(i) Given that Ali runs at a uniform speed of 10 m/s throughout, show that the time taken t s for the run can be expressed as $100 + 20\sin\theta - 40\cos\theta$. [5]

(ii) Express t in the form of $100 + R\sin(\theta - \alpha)$, where R > 0 and α is an acute angle.

[3]

(iii) Using your answer from part (ii), justify with working whether Ali can complete his run in the shortest possible time, assuming that Ali completes his 725. [2]

A circle, C_1 , has equation $x^2 + y^2 - 4x + 6y = 12$.

(i) Find the radius and coordinates of the centre of the circle C_1 . [3]

(ii) Determine whether (3,1) lies inside, outside or on the circle. [2]

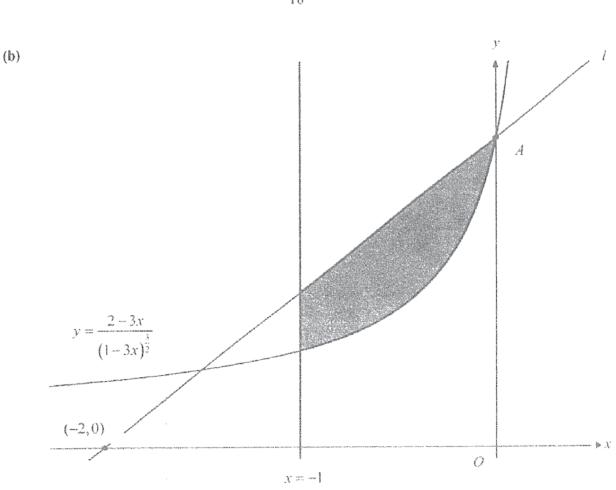
Another circle, C_2 , h_{as} centre (2, -8) and the same radius as C_1 .

(iii) State the equation of C_2 . [1]

The line which is parallel to the x-axis and passes through (2, -8) intersects C_2 at A and B. (iv) State the equations of the tangents to C_2 at A and B.

[2]

12 (a) Show that
$$\frac{d}{dx}\left(\frac{2x}{\sqrt{1-3x}}\right) = \frac{2-3x}{(1-3x)^{\frac{3}{2}}}$$
.



The diagram shows the line x = -1 and part of the curve $y = \frac{2-3x}{(1-3x)^{\frac{3}{2}}}$. The curve intersects the *y*-axis at point *A*. The line *l* through *A* intersects the *x*-axis at (-2, 0).

(i) Determine the area of the shaded region bounded by the curve, the line x = -1 and the line *l*. [4]

(ii) The area bounded by the x-axis, the curve, the line x = -1 and the line x = a is four times the area of the shaded region in part (i), where a > 0. Find the value of a. [3]

The population, P, in millions of a country on 1st January has been increasing every year from 1960 to 2000. The increase is exponential and so can be modelled by an equation of the form

$$P = P_0 \mathrm{e}^{kt} \; ,$$

where P_0 and k are constants and t is the time in years since 1st January 1960. The table below gives values of P and t for some of the years 1960 to 2000.

Year	1960	1970	1980	1990	2000
t years	0	10	20	30	40
P	5.75	9.97	17.3	30.0	51.9

(i) Plot a suitable straight line graph to show that the model is valid for years 1960 to 2000. [3]

(ii) Estimate the value of k.

3

 (iii) Assuming that the model is still appropriate, use your graph to estimate the population in 1st January 2005.

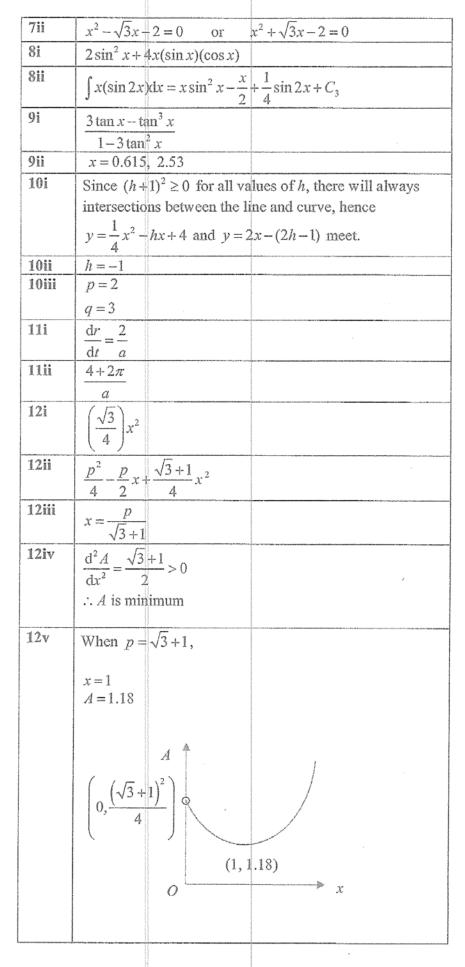
[2]

2019 41	E5N PRELIM AM P1 ANSWER KEY			
Q	Solution			
Υ.				
111	Since the line $y = 2$ does not intersect the graph, there are no real roots for the equation $-2 = 3x - 5 $.			
2i	y-1			
31				
311	$(0,0)$ and $(\frac{5}{3}, -6.45)$			
4i	$8x^3 + 27 = (2x+3)(4x^2 - 6x + 9)$			
411	$\frac{8x^3 + 27}{(2x^2 + 3x)(x-1)^2} = \frac{9}{x} - \frac{5}{x-1} + \frac{7}{(x-1)^2}$			
51	$y = \frac{3}{2}$			
511	$y = \frac{3}{2}$ $x = -\frac{3}{4}$ $AC = 2\sqrt{3} + 3$			
6i	$AC = 2\sqrt{3} + 3$			
611	$r = 1 + \frac{1}{2}\sqrt{3}$ $\alpha + \beta = \sqrt{3} \text{or} \alpha + \beta = -\sqrt{3}$			
71	$\alpha + \beta = \sqrt{3}$ or $\alpha + \beta = -\sqrt{3}$			

÷9

,

Ú



Answer Key				
3				
b = -2				
Degree = 2				
<i>c</i> =3				
5				
$m_{_{dN}} \times m_{_{CN}} = -2 \times \frac{1}{2} = -1$, therefore $\angle ANC = 90^\circ$				
Equation of line CD				
$v = \frac{1}{r} \frac{3}{3}$				
$y = \frac{1}{2}x - \frac{3}{4}$				
52.5 units ²				
$-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} $ (Accept: -0.707 < x < 0.707)				
$f(x) = \frac{x^4}{12} - \frac{1}{4}x^2 - 5x + 20.5$				
r = 5				
k == -2				
2688				
$y = \frac{1}{6}x - \frac{1}{18} + \ln\frac{1}{3}$ R(0, $\ln\frac{1}{3} - \frac{1}{18}$) [Accept: R (0, -1.15)				
$R(0, \ln \frac{1}{3} - \frac{1}{18})$ [Accept: R (0, -1.15)				
0.192 units ² (3 s.f)				
Rectangle				
Distance = 158m				
-2.70 m/s^2				
It means that his velocity is decreasing/ boy is slowing down				
$\frac{dv}{dt} = -18e^{-0.9t}$				
$\frac{1}{dt} = -18e^{-1}$				
For $t \ge 0$, $-18 < 0$ and $e^{-0.9t} > 0$, $\therefore \frac{dv}{dt} = -18e^{-0.9t} < 0$, $\therefore \frac{dv}{dt} \neq 0$.				
Hence, the boy will be NOT running at his maximum velocity at				
any point of time of his run.				
<i>b</i> = 8				
$f(x) = 2x^{2} + 3x^{2} - 14x - 20 = a(x+5)(x+1)(x-2)$				
a = 2				
g(x) = 3(x+10)(x+2)(x-4)				
$a = 4, \ b = \frac{1}{3}$				

