

ST. MARGARET'S SECONDARY SCHOOL Preliminary Examinations 2019

CANDIDATE NAME			
CLASS		REGISTER NUMBER	
ADDITIONAL MAT	HEMATICS		4047/01
Paper 1		26 Au	gust 2019
Secondary 4 Express / 5	Normal (Academic)		2 hours
Candidates answer on th	e Question Paper.		
No Additional Materials a	are required.		
READ THESE INSTRUCT	TIONS FIRST		
Write your name, registe Write in dark blue or black You may use an HB pend Do not use staples, paper	cpen. il for any diagrams or		age.
case of angles in degrees	l answers correct to 3 s, unless a different lev scientific calculator is e	significant figures, or 1 decimal place yel of accuracy is specified in the quexpected, where appropriate. ation in your answers.	e in the estion.
At the end of the examina The number of marks is g The total number of mark	given in brackets [] at	ork securely together. the end of each question or part qu	estion.
This doc	nument consists of 17	orinted pages and a blank page.	

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation
$$ax^2 + bx + c = 0$$
, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{r} a^{n-r} b^r + \dots + b^n,$$

where
$$n$$
 is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$sin(A \pm B) = sin A cos B \pm cos A sin B$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for AABC,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$\Delta = \frac{1}{2}ab\sin C$$

1 The equation of a curve is $y = \frac{2x+5}{x+6}$, for $x \neq -6$.

Explain, with working, whether the curve has turning points.

[3]

Find the values of the integers a and b for which $a + \sqrt{b}$ is a solution to the equation $x\sqrt{27} - 2x\sqrt{2} = x\sqrt{75} - \sqrt{8}.$ [4]

SMSS 2019

[Turn over

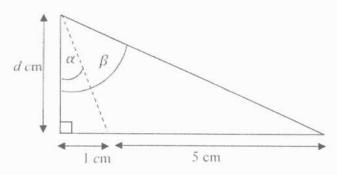
3 (i) Sketch the graph of $y^2 = \frac{1}{4}x$, for $x \le 16$. [1]

(ii) Find the coordinates of the points of intersection of the curve $y^2 = \frac{1}{4}x$ and the line 6y - 4x + 10 = 0. [4]

A particle is travelling in a straight line with a velocity of $v = 8t - \frac{t^2}{4}$ cm/s where t is the time in seconds after leaving a fixed point O.

Calculate,

(i) its acceleration when the particle is at instantaneous rest. [3]


(ii) the value of t when the particle returns to O.

[2]

The curve y = f(x) has a gradient of -1 at the point (2, 8). If f''(x) = 6 - 6x, find the equation of the curve. [4]

SMSS 2019

6

Find, in terms of d, an expression for

[1]

(ii)
$$\tan \beta$$
,

[1]

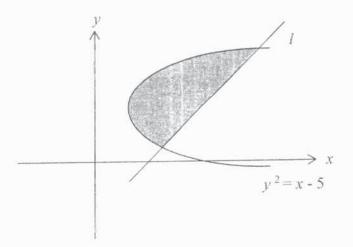
where α , β and d are shown in the diagram.

Hence obtain, in terms of d, an expression for

(iii)
$$tan(\beta - \alpha)$$
.

[2]

Given that
$$\beta - \alpha = 45^{\circ}$$
, find the values of d.

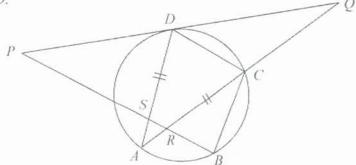

[2]

7 The quadratic equation $4x^2 - 44x + 1 = 0$ has roots $\alpha^2 - 1$ and $\beta^2 - 1$. Find the quadratic equation whose roots are α and β , where α and β are positive. [6]

8 (i) By using long division, divide $2x^3 - 11x^2 + 12x + 9$ by 2x + 1. [2]

(ii) Express
$$\frac{13x^2 - 52x + 32}{2x^3 - 11x^2 + 12x + 9}$$
 in partial fractions. [5]

The diagram shows part of the curve $y^2 = x - 5$ and the line *l*. The equation of the line *l* is 4y + 2 = x. Calculate the area of the shaded region. [6]


10 (i) Prove
$$(\sin x + \cos x) \left(1 - \frac{1}{2}\sin 2x\right) = \sin^3 x + \cos^3 x$$
. [4]

(ii) Hence solve
$$(\sin x + \cos x) \left(1 - \frac{1}{2}\sin 2x\right) = 0 \text{ for } -2\pi \le x \le 2\pi.$$
 [3]

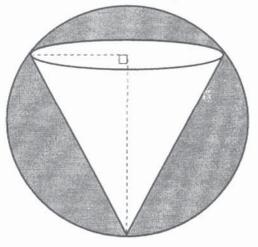
SMSS 2019

[Turn over

In the diagram below, A, B, C and D are points on the circle and QDP is a tangent to the circle at D.

Given that AD = AC, prove that

(i)
$$\triangle QCD$$
 is similar to $\triangle QDA$.


[2]

(ii)
$$QD^2 - QC^2 = QC \times DA$$
.

[4]

12 The diagram below shows a pendant in the shape of a sphere of radius 3 cm.

A right inverted circular cone of base radius r cm and height (x + 3) cm is being removed from the solid sphere. [Volume of sphere = $\frac{4}{3}\pi r^3$; Volume of cone = $\frac{1}{3}\pi r^2 h$]

(i) Show that $r = (9 - x^2)^{\frac{1}{2}}$.

[2]

(ii) Show that the volume of the cone is
$$V = \frac{1}{3}\pi (27 + 9x - 3x^2 - x^3)$$
. [2]

SMSS 2019

[Turn over

(iii) Given that x can vary, find the maximum value of V.

Hence, find the least amount of solid left in the pendant.

[6]

The points A(0, 2) and B(8, 2) lie on the circumference of a circle C_1 .

The line x = -1 is a tangent to C_1 .

(i) Find the radius and the coordinates of the centre of C₁, given that the centre of the circle lies below the x-axis.

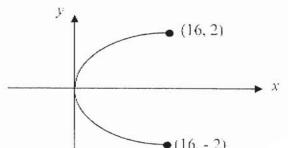
(ii) Express the equation of C_1 in the form $x^2 + y^2 + 2px + 2qy + r = 0$, where p, q, r are integers. [2]

[2]

(iii) Find the equations of the tangents to C_1 , which are parallel to x - axis.

(iv) Another circle C_2 has its centre at B . Given that the area of C_2 is on	e-quarter that of
C_1 , find the equation of C_2 .	[3]

St. Margaret's Secondary School

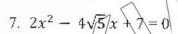

Sec 4E5N Preliminary Examinations

Additional Mathematics Paper 1

1. $\frac{dy}{dx} = \frac{7}{(x+2)^2}$, the curve has no turning point.

2.
$$x = -2 + \sqrt{6}$$
, $a = -2$, $b = 6$

3(i)



$$3(ii) (4, 1), \left(\frac{25}{16}, -\frac{5}{8}\right)$$

4(i) acceleration = -8 m/s^2 (ii) time = 48 s

5.
$$f(x) = 3x^2 - x^3 - x + 6$$

8(i)

wide Deliver 9

(ii)
$$\frac{5}{(2x+1)} + \frac{4}{(x+3)} A \frac{dN_1}{(x-3)^2}$$

9.
$$\frac{4}{2}$$
 units²

10 (ii)
$$x = \frac{3}{4}\pi \cdot \frac{7}{4}\pi \cdot -\frac{\pi}{4}, -\frac{5}{4}\pi$$

12(iii)
$$x = -3$$
 (rej) or 1; $x = 1, \frac{d^2 v}{dx^2} < 0, : max point;$

Volume of cone = 33.5 cm^3 ; least volume of solid left = 79.6 cm^3

13(i) radius = 5 units; Centre(4, -1) (ii)
$$x^2 + y^2 - 8x + 2y - 8 = 0$$

(iii)
$$y = 4 & y = -6$$
 (iv) $(x - 8)^2 + (y - 2)^2 = \frac{25}{4}$

SMSS 2019