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Mathematical Formulae

1: ALGEBRA
Quadratic Equation
For the equation ax* +bx+c¢ =0,
e —b+N(b* —4ac)
2a

Binomial Expansion

(a+b)" =a" +(TJa""b+[;}a”'zb3 +---+[n]a""'b" +ee b,

¥

n ! —1)-(n—r+
where n is a positive integer and =" M=l Al
r;) (n=r)#! rl

2. TRIGONOMETRY
Identities
sin” 4+cos?4=1
sec’A=1+tan> 4
cosec *A=1+cot’ 4

sin(A4 + B) =sin Acos B £ cos Asin B
cos(4+ B) =cos Acos B ¥ sin 4sin B

tan 4 +tan B
lFtan Atan B

sin24 =2sinAcos A
cos2A=cos’ A—sin’ A=2cos? A-1=1-2sin’ 4

tan2A4 :_.2t£12‘4_
l-tan” 4

tan(4 + B) =



In the diagram below, PORST is a trapezium where angle QRS = angle TPR = 30°.
SQ is the height of the trapezium and the length of SQ is 4 cm. The length of 7S

J§+1

is 2\/5 cm. Find the area of the trapezium PQRST in the form (aﬁ -1 2) cm?, where
[5]

a 1s an integer.
r




2

Express

45> +x2 +6

(x—2)(.1:2 +2)

in partial fractions.

[5]



(2)

(b)

Factorise 8x° ~(x—1)3 completely. (3]

Without finding the solution, explain why the equation 8x° - (x— 1)3 =0 has
only one real root. (2]



4

The diagram shows part of the curve y = —-|a(x - h)2 +kl , where a > 0. The curve

touches the x-axis at (1, 0) and (3, 0) and has a minimum point at (4, k). The curve
also cuts the y-axis at —9.

y
1,0) (3.0) 5
-9
(i) Explain why A = 2. [1]
(ii)  Determine the value of @ and of k. [3]

(iii)  Find the set of values of m for which the line y =mx intefsects the curve at
four distinct points. [2]



5 In the diagram, the coordinates of P, Q and R are (3, -1), (4, 2) and (0, 5)

respectively.

>

R(0, 5)
/Q(4, 2)
0 \/ !
P(3,-1)

(i) Find the equation of the perpendicular bisector of OQ. [3]
(ii) Name the quadrilateral OPQR. Justify your answer. (2]

(iii) Given that T'is a point on PR such that OPQT is a thombus, find the
coordinates of T. [2]



6

The roots of the quadratic equation 4x* + px + g =0 are = and L .

(i)

(i)

1
B

Giventhat a+f =5 and aff =2, find the value of p and gq.

2 2
Find the quadratic equation whose roots are 20~ andi .

p a

[5]



(a) Find the range of values of ¢ for which x2 +ax + 2(a—1) is greater than 1. [3]

(b) The equation of a curve is y = 3xt +4x+6.
(i) Find the set of values of x for which the curve is above the line y=6.

(ii)  Show that the line y =—8x—6 is a tangent to the curve. [2]



(@)  Find the minimum gradient of y =2x" — o2 =1, [3]

(b) Thecurve y=x - 6x2 + k touches the positive x-axis at point 4.

(i) Find the coordinates of point 4. [2]

(i)  Find the value of %

2
(iii)  Find the value of L at 4 and hence the nature of this point. 2]

dx2



2
(a)  Show that % can be written as k (sin 4 + cos A) and state the

value of k.

(b)  Given that sin 4 = —p and cos B = —g, where 4 and B are in the same quadrant
and p and ¢ are positive constants, find the value of

®  sin(-A), (1]

(i)  tan(45° - 4),

(iii)  sec (2B). [2]



10 The diagram shows a trapezium ABCD in which CD = 12 cm, BC =4 c¢m and angle

ABC = 6 radians, where 6 is acute.

D 12 ¢m 8l

(i) Show that the area, 4 cm?, of the trapezium ABCD is given by
A=48sin 0 +4sin 20.

12

(3]



(ii)

(iii)

Given that @ can vary, find the value of @ for which the area of the trapezium
A 18 maximum. [5]

Hence find the maximum value of 4. 1

13



11

The diagram shows a trapezium OSTU inscribed in a semi-circle of centre O and
radius 10 cm. OU makes an angle € with the diameter. UT is parallel to the diameter
and S7 is perpendicular to the OS. The perimeter of the trapezium is L cm.

(i) Show that L =10+ 30 cos &+ 10 sin 6. [3]

(ii)  Express L inthe form a+ R cos (60— @) where R>0and 0°<a<90°.  [3]



(iii)  Anthony claims that the perimeter of OSTU is 50 c¢m. Is his claim reasonable?
Justify your answer. [2]

(iv)  Find the value of @ for which L = 35. 12]

15
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Mathematical Formulae

T ALGEBRA
Quadratic Equation
For the equation ax” +bx+c =0,
— b+ (b —4ac)
2a '

Binomial Expansion

n n n n-1 n n-212 n n-ryr n
(a+b)' =a" + { b+ ) a" b 44| @b +--+b",
r

n} n n(n=1)-(n—r+1)

S (m=r) !

where n is a positive integer and [
3

2 TRIGONOMETRY
Identities
sin’ 4+cos’A=1
sec’ A=1+tan’ 4
cosec A =1+cot’ 4
sin(4 + B) =sin Acos B tcos Asin B
cos(A+ B) =cos Acos B Fsin Asin B

tan A +tan B

tan(4+B)= ———
1Ftan Atan B

sin2A4 =2sinAcosA
cos2A=cos* A—-sin* A=2cos’ A-1=1-2sin’ 4
2tan 4

tan2A=42-—
l—tan” 4



2
A curve is such that 2—21 =6x—2 and P(2, -8) is a point on the curve. The gradient
dx

of the normal at P is —%. Find the equation of the curve. [6]



(i) On the same axes, sketch the graphs y =+/288x and y=3x° for x>0. [2]

(ii) The tangent to the curve y = 3x° at point 4 is parallel to the line passing
through the two points of intersection of the curves drawn in (i).
Find the x-coordinate of 4. [4]



A waterwheel rotates 5 revolutions anticlockwise in 1 minute. Tom starts a
stopwatch when the bucket B is at its highest height above water level. The radius of
the waterwheel is 8 m and its centre is 5 m above the water level.

The height of bucket B above water level is given by & =a cos bt + ¢, where ¢ is
the time, in seconds, since Tom started the stopwatch.

(i) Determine the value of each of the constant a, b and c. (3]

(ii)  Forhow longis 4 <0? (3]



8
4 In the binomial expansion of x[2x+—) , where £ is a positive constant, the
%

coefficient of x* is 28.

()  Show that k = %. (4]

8
(i)  Explain Why thereis no constant term in the expansion of x[Zx + Ej 1]
X

(iii)  Hence find the coefficient of x° in the expansion of

( k]s \10
X[ 2x+—| +k(1-x)". [2]

X



0

P

In the diagram, the two circles touch each other at 7" and PTQ is their common
tangent. 4B is a tangent to the smaller circle at E. AT and BT cut the smaller circle at
D and C respectively. ET and CD intersect at F. Prove that

(i) AB is parallel to DC, [2]

(ii)  theline 7E bisects angle ATB, [3]



6

(iii)

The variables x and y are related by an equation of the form y-—x= %xz +b.

Corresponding values of x and y are shown in the table below.

(i)

triangle DFT is congruent to triangle EFC if DF = EF.

X

1

2

3

4

b

2:13

1.3

14.75

24.5

Using suitable variables, draw on the graph paper, a straight line graph.

(2]

(3]



(i)  Using the graph, estimate the value of each of constants @ and b. [2]

(i) By drawing a suitable straight line on your graph, estimate the value of x and
y when y=%x2+x+2. [2]

10



The term containing the highest power of x and the term independent of x in the
polynomial P(x) are 2x* and -3 respectively. It is given that (2x2 +x~l) isa

quadratic factor of P(x) and the remainder when P(x) is divided by (x—1) is 4.

(i) Find the polynomial P(x) and factorise it completely.

(i) Solve P(x) = 0.

(iii)  Find the values of x that satisty the equation P(1 — x) =0.

[4]

(1]

(2]



(a) Giventhat y= P * , find the range of values of x for which y is an
increasing function. [4]

X

\;‘2x2—l

rate of decrease of yis 9 times the rate of increase of x.

8

(b) It is given that y = , where x > 0. Find the exact value of x when the



Given that y=xInx—x,

@) showthat%(xlnx—x)=lnx, 2]
()  henceshow that [ (inx+1)dv=blnb-alna. 3]

13



(iii)

find the area of the shaded region. [3]

Y44 3 -
10 (a) Given that 0 <x <, find the-galues of x such that

cos (%‘) = —cos;f%-? giving your answers in terms of T. [3]



. . L il Rl ]
(b) Prove the identity Sy Jtan xsecx . [3]

(c) Solve the equation sin4x+3sin2x=0 for —180°< x<180°. [3]



11

A particle travelling in a straight line passes through a fixed point O with a speed of
—10 m/s. The acceleration, @ m/s?, of the particle, ¢ s after passing through O, is given

by a= 24 5 - The particle comes to instantaneous rest at the point P.
(2t+1)
(i) Find the time when the particle reaches P. [4]
(ii) Calculate the distance travelled by the particle in the first 3 sec. [3]

16



(iii)  Show that the particle is again at O at some instant during the ninth second
after first passing through O. [2]

12 A circle C has a diameter 4B where 4 and B are (-2, 5) and (12, 11) respectively.
i) Find the equation of the circle C. [3]

The line AB produced intersects another line / which touches the circle C at point
D(8, k), where k> 1.

(ii)  Find the value of £. [1]

i



(iii)  Find the equation of line /. [3]

A chord in the circle C has a midpoint (12, 8).

(iv)  Find the coordinates of the points of the intersection of the chord with the
circle C. [2]

18



13 (a)  Solvethe equation 9% +8=3**2, [4]

(b)  Without using a calculator, find the value of 207 given that
40%P71 =527P [3]

19



() Find the value(s) of p that satisfy the equation
log4(2y) =logyg(y—3)+3logg 3, [4]

20
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4
JE{-I

4

5 o _ 3+l
ASQOR: tan30 ——-——QR =
=5

£
V3
OR

s 10
&l‘ﬁa

3+1

43

3+1
43(V3-1)
31
2(3-43)
© PR=2/3+4(3-43)
=12-243

.. Area of trapezium = %[2J§+12~2\/§]x 4

\/3+1

%
3

3-1

x

&
&

—

—

1

Il

24
Jg+l

24(J§—1)

(\EH)(«E“I)

) 24(f1-1)

= 12(J§—1) it [
s x

3

W 8 -(x-1= (2x)' = (x-1)

- [2x—-();—l)]|:(2x)2+2x{x—1)+(x—1)21
= x+ D@+ 22 -2x+x*-2x+ 1)
= (x +1)(Tx2-4x+1)

8 = (x~1P=0

=+ 1)(72-4x+1)=0

= x=—1sincefor 7x? —4x+1=0,

D= (4 -4(7)=-12<0
. 7x* —4x + 1 = 0 has no real roo
Thus 8x* —(x—1)*=0 has only one real root,

(i)

2

Multiplying by (x—2)(x +2) , we obtain

43+ 32+ 6=4(x-2)(* +2) + AP +2) + (Bx + C)(x\-gv\’a
Subx=2: 4x8+4+6=A(4+2)
42=64 = A=7
6=-16+2(7) + C(-2)
-2C=8 = C=-+4
Comparex*: 1=-8+7+B =B=2
4 +x*+6 _ 7

2—-4x
; 5
(e ) E2ig .

4x* +x*+6  _

4+i.+§:§.i.g
(x-2)(x2+2)

=2 x*4.2

Subx=0:

>

OF

X 243
S;\'\@‘ k=3
b{ ere the line y = mx is
e.

04

?8 y=3(x-2)"-3...(2)

Q@ T=@): mx=32-12x+9

\ 32— (12+mx+9=0

Since the line is tangent to the curve, then D = 0,

[-2+m)] —~4x3x9=0
(12+m)’ =108

i.e.

12 +m =108
=463
m=—-12+6y3

Lom =—12+6\/5 since m > -3

Thus, the line intersects the curve at four distinct points

(3]

]

P

when —12+6\/§~<m<0. (2]
5 (i) gradientof OQ= 421_:_3 =%

sas

(iii)

.. gradient of L bisector of 0Q = -2

Midpoint of 0Q = (i‘%g, 2—;—0-)

=(2,1)
hus, equation of the perpendicular bisector of OQ
1s y-1=-2(x-2)
=2t [3]
When x=0, y=5.
When x=3, y=-1.
'I‘heisrz_‘a ults show that R and P lie on the
6@1 dicular bisector of 0Q.

‘e., RP is the perpendicular bisector of OQ.
Thus, the quadrilateral OPQR is a kite. [2]
Let T'=(a, b)

Since OPQT is a thombus, then midpoint of OQ is
the midpoint of RP.

= a=1,.b=3

v I=(13) (2]

@

42+ px+g=0

Since the roots are éanc[ L , then

B
_ P ﬁ+a:

= =

=)~
'

Y= =2 [4]




.. 20 28’ 3(x+2)*=0 =12(>0)
(ii) For the new equation, the roots are -—B—— and " The equation has equal roots x = —2 Thiled s tipipoT 2]
2 2 So the line is tangent to the curve. [2]
Sum of roots = -2—%~ s
8 a) Given: =22 -9x2 -1 . 2 2\ 2
( 3+ﬁ3) (a) )’dy x g @) 5_10cos 4 =5(sm A+cos A) 10cos” 4
- gradient: T 6x* —18x sin A—cos A sin A —cos A
af 2 2 iy S(Siﬂz A-cos? A]
= 2(a+/5’)|:a —af+p ] E:lh 18 " sind—cos 4
af ~ 5(sinA+cos 4)(sin 4—cos 4)
2{oc+)9)|:(ar+ﬁ)2 —Saﬁ] sin A —-cos A
B ap 3 = 5(sin 4 + cos A) 3]
_ 2(9)[5°-3x2] // (b) Given: sin A4 =—p cos B=—q and A and B lie in the
- 2 i1 } same quadrant, then they both lie in 3™ quadrant.
=95 o
202\ 28° o
Product of roots = [_a_)
FA S ]8 3
=408 B E ‘
=4x2 %%
=8 \\ ()  sin(-4)=-sin 4
Thus the equation is x* - 95x+8=0. sitive x- (\ =p [l][
. 5 45°—tan A4
the (i) tan (45°-4) =202 —fan £
7 (a) Given: X +ax+2a %glnt 1 1+tan45°tan A4
X2 +ax+ (2a- =1-tand oo tan450 =1
w ; ; I+tan 4
For a positive quadratic functi —p
. a*-4(2a-3)<0 s
—8a+12<0 —r
(@-2)a—-6)<0 E_O =3x(x-4)=0 L
2<a<6 p 66 x=0orx=4 (3]
(b) y=3x+4x+6 G\N\ For 4,x>0, =(4 (2]
i y>6=> gﬁ I :x ;r 3 >6 %\"a(\ (ii) A also lies on the curve, (iif) sec2B= 1
7 \ L 0=4-6x42+k AT
x<—% orx>0 2] o 2cos” B-1
as S dzy = ;
(i) y=32+4x+6 (i) —5 =6x-12 2(~q)? -1
y=-8x-6 e i -
L 32 +4x+6=-8x—6 d’y 1
. Atd, —-=6(4)-12 2q" -1
32 +12x+12=0 ) dx? “) ) _




S

10 (i)

12 cm

BX

4 = BX =4cosf

cosf =

5[12+12+4cos6]x4sing

= (12 + 2 cosf) 4 sind

=48 sin@ + 4(2sinfcosh)

=48 sin@+ 4 sin 26 (shown)
[3]

Area of trapezium =

dd _ .
0 48cos @ +8cos 268

For maximum A4, a4 _ 0.

deo
.. 48 cos 8+ 8cos28=0
48 cos O+ 8(2cos’ 8—1)=0
8(2cos’ B+6cos 8 -1)=0

—6446> —4x2x(=

(ii)

2
d_§=-4ssin9—msinze
de

2
When 6=1.49155, 44 <0,
de
Thus A is maximum when 6= 1.49.

(ili) Maximum 4

=48 sin (1.491 55) + 4 sin 2(1.491 55)
= 53.3 sq units

cosf = 2

cosf@ = -G_i‘;/ﬁ

cos@ = Z6£2vil ij‘/ﬁ

cos@ = :—3—’-1'4—@ since @ is acute. @
c.0=1.49155

oW

(3]

(1]

11 @

>

O
O

Consider A QUX,
ZOUX = @ (alternate angles)

sin @ = %: OX=10sin @

10+ st(@-l&%@) =35
35-10 5]
9(9-13.43-@ - S
) 1§10 2410

Basic angle = 37.761°
s 8 -18.434°=37.761°
2 B=56.2°

(1]

13]
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2
Given: % =6x-2

. Integrating, % =3x> -2x+c

Given that gradient of normal at P(2, —8) = ;% , this means
that gradient of tangent at P = 2, i.e. whenx = 2, % =7
2=32%-212)+c
= c=-6
o %=3x2 —-2x-6

-. Integrating, y =x’ —x* —6x+c,
Since P(2, —8) lies on the curve, i.e. whenx =2,y =-8,
s -8=23-22-6()+c
= =0
Thus the equation of the curve is
y=x'—x’—6x

lﬁﬁ
=N\

y=3x
%=9x2

SOxE=12

=4

3
B3

since x=0.

@

(ii)

X
9 d -
To find the point of intersection, wi @9 _ e\\\\ )
equations simultaneously: k GWCHO 5 revolutions take 1
y=3 e (D) \‘\\\66 ~ 1 revolution takes 1

y=~288x ...(2) 6
. 27 T
d <2 =12 = b==
(1)=@): 3x* =288x \@1(\ So,  period: %/ =g
9x6 = 288 \S o
9x5 —288x =0 [Do not divide by variable x| Soh= 8905(?‘)*’ 5
ox (x5 —32) =0
i S @) h<0 = 8005(%I)+5<0
y=0or x=24 -
So the 2 points of intersection are (0, 0) and (2, 24). When /=0, SCOS("gt) +5=0
Gradient of line joining these 2 points = % o (Et) 5
6 8
=12

. (2)

minute

Since gradient of tangent to the curve at A is parallel to
the line passing through the 2 points of intersection,

5 minute (= 12 seconds)

(3]

Basic angle = cos™ (-g’-) =0.895 66

6
JT
6
t=4.289 or 7.710
so duration=7.710 — 4.289
= 3.42 seconds

The variable angle Z¢ lies in the 2™ and 3" quadrants,

. Zr=7-0.89566 or 7w+ 0.895 66 in the 1* revolution

B3l

2w s (e

Power of x =1+ (8 = r) + (—r)

=0_2r
!@’%m in x>, power of x =3
S 9-2r=3
660 = r=3

=1792 8
Since coefficient of x* = 28,
1792413 =28
= k= % (shown)
(i)  For constant term, power of x = 0,
S 9-2r=0
9

= r==

2
Since r is not a whole number
we can conclude that there is no constant term.

8
(iii)  In the expansion of 3(2,\+%) + k(l—x)m,
: 1. (10 3
Term in x* = 28x° + i 3 (=x)

N W U 3
=28x3 + 4x( 120x )
= _2_"*3

. coefficient of x* = -2

e number (or positive integer), then

(4]

(1]

(2]




@

(i)

(iii)

To show: 4B is parallel to DC

This means that we need only to show that there are 2 equal
angles that satisfy either alternate angles, corresponding
angles or interior angles

Here we can show £ CDT = £ZBAT)

£CDT = ZDTP (alternate segment theorem)

= ZATP (common angle)

= ZBAT (alternate segment theorem)
Since this result satisfies the properties of
corresponding angles, then 4B // DC. (shown) [2]

To show: the line TF bisects ZATB
|This means that we need to show: ZATE = ZETB|
ZATE = ZDTE (common angle)
= ZDCE (angle in the same segment)
= ZCEB (alternate angles since AB/DC)
= ZETB (alternate segment theorem)
Thus, TE bisects LATB. (show) [3]

To show: ADFT = AEFC if DF = EF
From (ii), ZDTE = ZDCE (angle in same segent)
i.e. ZDTF = £ZECF (common
DF = EF (given)

Thus, ADFT= AEFC (AA

Given: y—x=—2-33+b [note that this is alrea m]

®

(i)

(_“\.

Y =mX+ ¢
Plotting y — x against x* will give a§traighti
x? 1 4 9 ¥
y—x 1.73 55 11.75

b =Y — intercept

. o

—JL and X=2x2

i thesameax
nwenee I.helme Y—2X+2.
—2andwhenX 16, Y=10

e passes through (0, 2) and (16, 10)
e pomt of intersection between the 2 lines is
approximately (2, 3).

ie. X=2 = x*=2, . x=141Gsl)
Y=3 = y-x=3,. . y=3+141=441
x=141 and y =441 [2]

This tells us that a =1 and ¢ = 3.
S0, P(x) = (2x* + x — 1)(x® + bx + 3).

[Writing P(x) in this form, we only need to find one
unknown, i.e. b.]

Given: when divided by (x — 1), P(x) has remainder
4,ie. P(1)=4.
LA=02+1-1D)(1+b+3)
=2(b+4)
b+4=2=>b=-2.
Y. P(x) = (2 +x - 1)(x* ~ 2x + 3)
=(2x—Dx+ 1D -2x+3) [4]

P(x)=0

= x=% or —~1 since x%— 2x + 3 =0 has no real

(3_) \ roots as D = (-2)2—4x3 =-8 < 0.

% = gradient of line
_20.5-0.5
16-0
=1.25

. 9‘;—5=1.25:>a=0.4

-.a=04,b=0.5 2]

Since (2x*+ x — 1) is a factor of P(x), then we can
write P(x) = (2x* + x — 1) O(x). However, we know
that O(x) is a polynomial of degree 2.

So, P(x)= (2x2+x—1) (@x>+ bx + ©).

However, we know that for P(x), coeff of x? = )
and constant term = 3.

(1]
6®OQP(1_I) 0
= 1l-x= 5 or -1
5 x=% or2 [2]
y=x2e3x

%x}: =2xe>* +3x%e*

= xe*(2+3x)
; ; . dy
For increasing function, i >0

xe*¥(2+3x) >0

Since e >0 for all real values of x.
x(2+3x)>0

=

x<—% orx>0 [4]




4x

V2?1 22?1

2% —1

(2x2 —l)3

1 2 .
x= |=+—= sincex>0
V2 Y81

= 0.981 (3 sf)

Jsz -1

(ii) From (i), we know that I]nxdx:xlnx—.wc
[" (nx+1)de= [ x| 1dx
= [xlnx—x]z +[x]:

=(blnb-b)-(alna—a)+(b-a)
=blnb-alna (shown)

(iii) The shaded area is the same in both dia,

~ [using 8@

o) 3]
AP

_ 2sinx
cos’ x
- zsinx>< 1
COSX COSX

= 2tanxsecx (shown)
sindx+3sin2x=0 for —180°<x<180°
2sin2xcos2x+ 3 sin2x=0
sin2x (2cos2x +3)=0

(3]

. sin2x=0 or cos2x= —>

. (no solution)
basic angle = 0°

o 2x =-360°, -180°, 0°, 180° or 360°

%' %180", —90°, 0°, 90° or 180°
Q

(3]

N

a Tx =— %\\f}i\:;x-:w
@@4&

9

Given:

@

dy
dx

y=xlnx-x
=[lnx+xxl‘)—i
X
=(lnx+1)-1
=Inx (shown)

508

e variable angle

5 B e
B 2v—?f 1001'37'5'10
9z 1z
10 7 10
117z
3z op Lz 3
s s [3]

3x

lies in 2™ and 3" quadrants.

: pmiE

| _ (1+sinx)—(1-sinx)
1-sinx l+sinx  (1—sinx)(1+sinx)

(b)

2sinx
2

l-sin” x

®

(ii)

%‘E)@é: i

24
2e+1)?
242 +))"
—-———2(_1) +c
___12
TR
when t=0,v=-10 m/s
Le=2
R |
w 2t+1
AtP, v=0 = 2--12 -0
g 2t+1
> (=258 (4]
s=2£—l2m(2;+l)+c,

=2t—-6In(2t+1)+¢
whent=0, s=0, .. ¢ =0
s =2t-6In(2¢+1)
t=0, s=0
t=25, §=2(2.5)-6In6=-57505
t=3, §=2(33)-6In7=-5.6754
Distance travelled = 5.750 5 + (5.750 5 — 5.675 4)
=5.83m (3sf) [3]




(iii)

[9" second means fromr=8stor=9s|

Whent=8, s=2(8)-61In17=-0.999 28 m
Whent=9, s=2(9)-61n19=+0.333 36 m
S.85=0 for 8<t<9

i.e. The particle is again at O during the 9% sec. [2]

12 @)

(i)

@i

centre, X' = midpoint of 4B
. (—_2& ,S_Jru)

T
=(5,8)
diameter = AB
= Ja2+272 +(11-5)
= V232

A(-2.5

(iv)

(e)

Given that (12, 8) is the midpoint of the

.. Equation of circle is

2

(x=5)" +(y-8) =[_\f2232] B
(x5 +(y-8)2 =58 3]

Since D(8, k) lies on the cirelé)the

(8-5)2+ (k—8)*=58 >
(k—8)>=49

S k-8=7 or -7

k=150r1

Since k> 1, .. k=15. ﬁﬂ
gradient of DX = lSST—f? =~3-‘Jl ,[\
Since line / is perpendicular to radius DX, !
- _ .3 &
.. gradient of / 7 \6\

So, equation of line / is

y-15= %(;:—8)

=3 24

y= 7).+7+15

W ]

y=-3usl2 3

(b)

log,(2y) =log,s(y—3) +3logy 3
log,(y—3) _log;3

2y)=
log(25) log, 16 log, 9

lo -3
log, 29) = 28+=3) . 3

2log,(2y) =log,(y—3)+3
g,(2y)" —log,(y-3) =3
@) _
y-3
ﬁ =4?

;
4y3=’\s4(y—3)

3

log,

6()9 =16(y-3)

1’ —16y+48=0
y-4)r-12)=0
.-. Ez:i g; E:l;'

[4]

=1.89 (3 sf) (4]
2p 2
407! =577 = 4=~ g—p
4027 x 57 = 52 x 40
(407 x5)" =1000
(8000)” =1000
(20)*7 =10°
207 =10 A]
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