Name:	Class: Sec

GREENDALE SECONDARY SCHOOL Preliminary Examination 2019

Additional Mathematics

Secondary 4 Express / 5 Normal Academic

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your index number and name in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all the questions.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of an approved scientific calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80 .

Question	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
Marks												

| No of additional bookets/
 writing paper used | No of additional graph
 paper used | |
| :--- | :--- | :--- | :--- |

This document consists of 15 printed pages including this cover page.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation
For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial expansion

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

where n is a positive integer and $\binom{n}{r}=\frac{n!}{(n-r)!r!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$.

2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\text { Area of } \Delta=\frac{1}{2} b c \sin A
\end{gathered}
$$

Answer all the questions.

1 Express $\frac{10 x^{2}-7 x+10}{(3 x-2)\left(x^{2}+2\right)}$ in partial fractions.

2 (i) Sketch the graph of $y^{2}=3 x$.

(ii) Find the coordinates of the points of intersection of the curye $y^{2}=3 x$ and the line $3 y=6 x-5$.

3 The variables x and y are such that when the values of $x y$ are plotted against \sqrt{x}, a straight line is obtained.
It is given that $y=\frac{1}{2}$ when $x=1$, and that $y=-\frac{1}{4}$ when $x=4$.
(i) Express y in terms of x.
(ii) Find the value of y when $x=16$.

4 (i) Show that $\frac{\cos 2 x-\cos 4 x}{2 \sin ^{2} x}=1+2 \cos 2 x$.
(ii) Hence find, for $0^{\circ}<x<360^{\circ}$, the values of x for which $\frac{\cos 2 x-\cos 4 x}{2 \sin ^{2} x}=2$. [3]

5 The roots of a quadratic equation $4 x^{2}-37 x+9=0$ are α^{2} and β^{2}, where $\alpha<0<\beta$ and $\beta<|\alpha|$.
(i) Show that $\alpha \beta=-\frac{3}{2}$ and find the value of $\alpha+\beta$.
(ii) Find a quadratic equation whose roots are $\frac{\alpha}{\alpha+\beta}$ and $\frac{\beta}{\alpha+\beta}$.

6 A curve is such that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=1-\frac{4}{(2 x+5)^{2}}$ and has a stationary point at $P(-2,5)$.
Find the equation of the curve.
$7 V A B C D$ is a right pyramid with a square base $A B C D$, as shown in the diagram. The volume of the pyramid is $(6 \sqrt{3}-8) \mathrm{cm}^{3}$ and the height is $(1+2 \sqrt{3}) \mathrm{cm}$.

(i) Show that $A B^{2}=12-6 \sqrt{3}$.
(ii) Find the value of $V A^{2}$, giving your answer in the form $p+q \sqrt{3}$ where p and q are rational numbers.

8 The diagram shown is not drawn to scale.

A, B, C and D are four points on the circle such that $C B=C D$. The chords $A C$ and $B D$ meet at E. The tangent to the circle at C meets $A D$ extended at T.
(i) Prove that $B D$ is parallel to $C T$.
(ii) Show that $C T^{2}=A T \times D T$

9 The diagram shows part of the curve $x=2+\frac{1}{(y-1)^{2}}, y \neq 1$. A line L intersects the curve at A, where $y=4$, and cuts the y-axis at $y=2$.

(i) Find the equation of line L.
(ii) Find the area of the shaded region bounded by the line L, the line $y=2$ and the

$$
\begin{equation*}
\text { curve } x=2+\frac{1}{(y-1)^{2}} . \tag{4}
\end{equation*}
$$

10 An experiment to measure the growth of bacteria was conducted
At 0900 on Monday, 1000 bacteria were introduced to the cultur:. At 1700 on the same day, the number of bacteria had grown to 1492. It is known that the number of bacteria, N, at t hours from the start of the experiment, is given by $N=p \epsilon^{k}$, where p and k are constants.
(i) Find the value of p and of k.
(ii) Calculate the number of bacteria at 0900 on Tuesday.
(iii) Determine the earliest day and time (to the whole hour) at which there is at least 20000 bacteria.

11 The equation of a circle C_{1} is $x^{2}+6 x+y^{2}-16 y+24=0$, and its centre is P.
(i) Find the coordinates of P and the radius of C_{1}.
$A B$ is a chord of C_{1} and M is the midpoint of $A B$, where $M(-1,12)$.
(ii) Find the equation of the chord $A B$.

A second circle C_{2} with centre Q also passes through A and B.
(iii) Given that $P M: M Q=1: 2$, show that one possible point for Q is $(3,20)$ and find the coordinates of another point.
$12 P Q R S T$ is a pentagon as shown in the diagram. $Q R S T$ is a rectangle with $Q R=3 \mathrm{~cm}$. $P Q T$ is a triangle with $P Q=4 \mathrm{~cm}$ and $\angle P Q T=\angle P T Q=x$ radiuns.

(i) Show that $Q T=k \cos x$, where k is a positive integer to be found.
[2]
(ii) Show that the area of the pentagon, $A \mathrm{~cm}^{2}$ is given by $A=8 \sin 2 x+24 \cos x$.

[Question 12 continues]

(iii) Find the stationary value of A and determine whether it is a maximum or a minimum.
\qquad (

GREENDALE SECONDARY SCHOOL
 Preliminary Examination 2019

Additional Mathematics Paper 2

Secondary 4 Express / 5 Normal Academic

Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your index number and name in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all the questions.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of an approved scientific calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is $\mathbf{1 0 0}$.

\mathbf{Q}	1	2	3	4	5	6	7	8	9	10	11
\mathbf{M}											

| No of additional booklets/ writing
 paper used | No of additional
 graph paper used | |
| :--- | :--- | :--- | :--- |

Target Before:
Target After:
This document consists of 16 printed pages including this cover page.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial expansion

$$
\begin{aligned}
& \quad(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots-b^{n} . \\
& \text { where } n \text { is a positive integer and }\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}
\end{aligned}
$$

2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2 A=2 \sin A \cos A \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} a b \sin C
\end{gathered}
$$

1 A curve has the equation $y=(a x-3) \ln x$, where $x>0, x \neq \frac{3}{a}$ and a is a positive constant. The normal to the curve at the point where the curve crosses the x-axis is parallel to the line $x+5 y-4=0$. Find the value of a.

Greendale Secondary School	4	S4 Expres:/5 Normal (Academic)
Preliminary Examination 2019	Additiona/ Mathematics Paper 2	

2 (a) Differentiate the following with respect to x.
(i) $\quad \ln (\cos 2 x)$
(ii) $\frac{x}{2} \tan 2 x$
[2]
(b) Using your results from part (a), find $\int 2 x \sec ^{2} 2 x \mathrm{~d} x$.

3 (i) Given that the constant term in the binomial expansion of $\left(\frac{2}{x}-\frac{x^{2}}{k}\right)^{6}$ is 60 , find the value of the positive constant k.
(ii) Using the value of k found in part (i), find the term independent of x in the expansion of $\left(1+x^{3}\right)\left(\frac{2}{x}-\frac{x^{2}}{k}\right)^{6}$.

4 (a) A particle moves along the curve $y=3 x^{2}-2 x+5$. At the point P. the x-coordinate of the particle is increasing at a rate of 0002 units/sec and the y-coordinate is increasing at 0.02 unitsisec.
Find the coordinates of P.
(b) The equation of a curve is $y=x^{3}+5 x^{2}-8 x+k$, where k a constant. Find the set of values of x for which y is decreasing.

5 (i) Show that $\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\ln 2 x}{x^{3}}\right)=\frac{1}{x^{4}}-\frac{3 \ln 2 x}{x^{4}}$.
(ii) Hence, integrate $\frac{\ln 2 x}{x^{4}}$ with respect to x.
(iii) Given that the curve $y=\mathrm{f}(x)$ passes through the point $\left(1, \frac{8}{9}\right)$ and is such that $\mathrm{f}^{\prime}(x)=\frac{\ln 2 x}{x^{4}}$, find $\mathrm{f}(x)$.

6 Mr Tan drives his car along a straight road. As he passes a point A he applies the brake and his car slows down, coming to a rest at point B. For the journey from A to B, the distance, s meters, of the car from A, t seconds after passing A, is given by

$$
s=600\left(1-e^{6}\right)-12 t
$$

(i) Find an expression, in terms of t, for the velocity of the car during the journey from A to B.
(ii) Find the velocity of the car at A.
(iii) Find the time taken for the journey from A to B.
(iv) Find the average speed of the car for the journey from $\&$ to B.

7 Solve each of the following equations.

$$
\text { (i) } e^{2 \ln x}+\ln e^{2 x}=8
$$

(ii) $\log _{5} 50+4 \log _{25} x-\log _{5}(2 x+4)=2$

8 In the diagram, triangles $O A B$ and $O C D$ are right-angled triangles.
Angle $A O B=$ angle $O D C=\theta, O A=3 \mathrm{~cm}$ and $O D=8 \mathrm{~cm}$.

(i) Show that the length of $A B+C D=3 \sin \theta+8 \cos \theta$
(ii) Express $3 \sin \theta+8 \cos \theta$ in the form $R \sin (\theta+\alpha)$ where $R>0$ and α is acute.

8 (iii) Find the maximum length of $A B+C D$ and the corresponding value of θ.
(iv) Find the value of θ, if B is the midpoint of $O C$.

9 The function f is defined by $\mathrm{f}(x)=4 \cos 2 x-3$.
(i) State the amplitude of f .
(ii) State the period of f in terms of π.

The equation of a curve is $y=4 \cos 2 x-3$ for $0 \leq x \leq \pi$
(iii) Find the minimnm value of the curve.
(iv) Find the x-coordinates of the points where the curve meets the x-axis. [3]

9 (v) Sketch the graph of $y=|4 \cos 2 x-3|$ for $0 \leq x \leq \pi$.
(vi) Hence, find the range of values of c, for which $|4 \cos 2 x-3|=c$ has exactly two solutions only.

10 The diagram shows a triangle $A B C$ with vertices at $A(0,3), B(8 \quad 12)$ and $C(k, 13)$.

Given that $A B=B C$,
(i) find the value of k.

10 A line is drawn from B to meet the x-axis at D such that $A D=C D$.
(ii) Name the quadrilateral $A B C D$.
(iii) Find the equation of $B D$ and the coordinates of D.

11 (a) (i) Find the range of values of x for which $x^{2}-8 x+\cdots 0$
(ii) Hence, find the range of values of x for which $(x+2)^{2}-8 x-1<0$.
(b) Show that $m y=x^{2}-4(x-1)$ meets the curve $y=x^{2}-3\{+2$ at two distinct points for all real values of m, except $m=0$ and $n=1$.

1		Let $\frac{10 x^{2}-7 x+10}{(3 x-2)\left(x^{2}+2\right)}=\frac{A}{3 x-2}+\frac{B x+C}{x^{2}+2}$ $10 x^{2}-7 x+10=A\left(x^{2}+2\right)+(B x+C)(3 x-2)$ Sub $x=\frac{2}{3}$ to get $A=4$ Sub $x=0$ to get $C=-1$ Sub $x=1$ (or any other value) to get $B=2$ $\frac{10 x^{2}-7 x+10}{(3 x-2)\left(x^{2}+2\right)}=\frac{4}{3 x-2}+\frac{2 x-1}{x^{2}+2}$	
			TOTAL: 5m
2	(i)		
	(ii)	Equate both equations to reduce to one variable $\begin{gathered} 2 y^{2}-3 y-5=0 \\ (2 y-5)(y+1)=0 \end{gathered}$ Solve for x and y The points of intersection are $\left(\frac{25}{12}, \frac{5}{2}\right)$ and $\left(\frac{1}{3},-1\right)$	
			TOTAL: 5 m
3	(i)	Coordinates of two points on the straight line are $\left(1, \frac{1}{2}\right)$ and $(2,-1)$ Gradient of line $=\frac{\frac{1}{2}-(-1)}{1-2}=-\frac{3}{2}$ Equation of curve is $\begin{aligned} & \frac{x y-(-1)}{\sqrt{x}-2}=-\frac{3}{2} \\ & y=\frac{4-3 \sqrt{x}}{2 x} \end{aligned}$	
	(ii)	$y=-\frac{1}{4}$	
			TOTAL: 5m

TOTAL: 6m

$$
6\left[\begin{array}{l}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\int\left[1-\frac{4}{(2 x+5)^{2}}\right] \mathrm{d} x=x+\frac{2}{2 x+5}+c \\
\text { Sub } x=-2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \text { to get } c=0, \text { so } \\
\frac{\mathrm{d} y}{\mathrm{~d} x}=x+\frac{2}{2 x+5} \\
y=\int\left[x+\frac{2}{2 x+5}\right] \mathrm{d} x=\frac{1}{2} x^{2}+\ln (2 x+5)+k \\
\text { Sub } x=-2, y=5 \text { to get } k=3 \\
y=\frac{1}{2} x^{2}+\ln (2 x+5)+3
\end{array}\right.
$$

7	(i)	$\begin{aligned} & \frac{1}{3}(A B)^{2}(1+2 \sqrt{3})=6 \sqrt{3}-8 \\ & \begin{aligned} A B^{2} & =\frac{18 \sqrt{3}-24}{1+2 \sqrt{3}} \times \frac{1-2 \sqrt{3}}{1-2 \sqrt{3}} \\ & =\frac{18 \sqrt{3}-108-24+48 \sqrt{3}}{1-12} \\ & =\frac{66 \sqrt{3}-132}{-11}=12-6 \sqrt{3} \text { (shown) } \end{aligned} \end{aligned}$
	(ii)	Let M be midpoint of $A C$. By Pythagoras Theorem, $\begin{aligned} & A C^{2}=A B^{2}+B C^{2}=2 A B^{2}, \text { so } \\ & A M^{2}=\left(\frac{1}{2} A C\right)^{2}=\frac{1}{2} A B^{2}=6-3 \sqrt{3} \\ & V A^{2} \end{aligned}=A M^{2}+V M^{2} .$

TOTAL: 7m

	$\frac{y-12}{x-(-1)}=-\frac{1}{2}$ $2 y=-x+23$
(iii)Note that P, M and Q lie on a straight line. Case $1: M$ is between P and Q $x_{Q}=x_{M}+2\left(x_{M}-x_{P}\right)=-1+2(-1-(-3))=3$ $y_{Q}=y_{H S}+2\left(y_{M}-y_{P}\right)=12+2(12-8)=20$ So coordinate of Q is $(3,20)$ (shown) Case $2: P$ is the midpoint of Q and M $x_{P}=\frac{x_{Q}+x_{M A}}{2} \Rightarrow x_{Q}=2 x_{P}-x_{M}=2(-3)-(-1)=-5$ $y_{P}=\frac{y_{Q}+y_{M}}{2} \Rightarrow y_{Q}=2 y_{P}-y_{M M}=2(8)-(12)=4$ So coordinate of Q is $(-5,4)$.	

12	(i)	Using cosine rule, $\begin{aligned} Q T^{2} & =4^{2}+4^{2}-2(4)(4) \cos (\pi-2 x) \\ & =32+32 \cos 2 x \\ & =32+32\left(2 \cos ^{2} x-1\right) \\ & =64 \cos ^{2} x \\ Q T & =\sqrt{64 \cos ^{2} x}=8 \cos x \end{aligned}$
	(ii)	$\begin{aligned} A & =\frac{1}{2}(4)(4) \sin (\pi-2 x)+3(8 \cos x) \\ & =8 \sin 2 x+24 \cos x \text { (shown) } \end{aligned}$
	(iii)	$\begin{gathered} \frac{\mathrm{d} A}{\mathrm{~d} x}=16 \cos 2 x-24 \sin x=0 \\ 16\left(1-2 \sin ^{2} x\right)-24 \sin x=0 \\ 4 \sin ^{2} x+3 \sin x-2=0 \\ \sin x=0.4253 \text { or }-1.175 \text { (rejected) } \end{gathered}$ For stationary point, $\begin{aligned} & x=0.4392, A=27.8799 \approx 27.9 \mathrm{~cm}^{2} \\ & \frac{\mathrm{~d}^{2} A}{\mathrm{~d} x^{2}}=-32 \sin 2 x-24 \cos x \end{aligned}$ When $x=0.4392, \frac{\mathrm{~d}^{2} A}{\mathrm{~d} x^{2}}=-46.35<0$, so $A=27.9 \mathrm{~cm}^{2}$ is a maximum area.

TOTAL: 9m

TOTAL: 10m

Marking Scheme

1 A curve has the equation $y=(a x-3) \ln x$, where $x>0, x \neq \frac{3}{a}$ and a is a positive constant. The normal to the curve at the point where the curve crosses the x-axis is parallel to the line $x+5 y-4=0$. Find the value of a.

$(a x-3) \ln x$	$=0$	M 1
$\ln x$	$=0$	
x	$=1$	M 1
$x+5 y-4$	$=0$	
y	$=-\frac{1}{5} x+\frac{4}{5}$	
$m_{\text {line }}$	$=-\frac{1}{5}$	
m_{\perp}	$=5$	M 1
y	$=(a x-3) \ln x$	
$\frac{\mathrm{~d} y}{\mathrm{~d} x}$	$=\frac{(a x-3)}{x}+a \ln x$	M 1
$@$	$=1, \quad m_{\operatorname{lan}}=\frac{a-3}{1}+a \ln 1$	
	$=a-3$	
$\therefore \quad a-3=5$	M 1	
a	$=8$	

2a Differentiate the following with respect to x, (i) $\ln (\cos 2 x)$

$$
\begin{aligned}
y & =\ln (\cos 2 x) \\
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{1}{\cos 2 x} \cdot-\sin 2 x \cdot 2 \\
& =-2 \tan 2 x
\end{aligned}
$$

(ii) $\frac{x}{2} \tan 2 x$

$$
\begin{aligned}
y & =\frac{x}{2} \tan 2 x \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{x}{2} \cdot \sec ^{2} 2 x \cdot 2+\tan 2 x \cdot \frac{1}{2} \\
& =x \sec ^{2} 2 x+\frac{1}{2} \tan 2 x
\end{aligned}
$$

b Using your results from part (a) find $\int 2 x \sec ^{2} 2 x \mathrm{~d} x$.

$$
\int x \sec ^{2} 2 x+\frac{1}{2} \tan 2 x d x=\frac{x}{2} \tan 2 x
$$

$$
\int x \sec ^{2} 2 x \mathrm{~d} x=\frac{x}{2} \tan 2 x-\frac{1}{2} \int \tan 2 x \mathrm{~d} x
$$

$$
2 \int x \sec ^{2} 2 x \mathrm{~d} x=x \tan 2 x-\int \tan 2 x \mathrm{~d} x
$$

$$
\int 2 x \sec ^{2} 2 x \mathrm{~d} x=x \tan 2 x+\frac{1}{2} \ln \cos 2 x+c
$$

3 (i) Given that the constant term in the binomial expansion of $\left(\frac{2}{x}-\frac{x^{2}}{k}\right)^{6}$ is 60 , find the value of the positive constant k.

$$
\begin{aligned}
& T_{r+1}=\left(\frac{2}{x}\right)^{6-r} C_{r}^{6}\left(\frac{x^{2}}{k}\right)^{r} \\
& \rightarrow x^{-6+r} \times x^{2 r} \\
& \therefore 3 r-6=0 \\
& r=2 \\
& T_{3}=\left(\frac{2}{x}\right)^{4} C_{2}^{6}\left(\frac{x^{2}}{k}\right)^{2} \\
& \frac{240}{k^{2}}=60 \\
& k=2, \quad-2(N A)
\end{aligned}
$$

(ii) Using the value of k found in part (i), find the term independent of x
in the expression $\left(1+x^{3}\right)\left(\frac{2}{x}-\frac{x^{2}}{k}\right)^{6}$.

$$
\begin{aligned}
& \left(1+x^{3}\right)\left(\frac{2}{x}-\frac{x^{2}}{k}\right)^{6} \\
& =\left(1+x^{3}\right)\left[\left(\frac{2}{x}\right)^{6}+\left(\frac{2}{x}\right)^{5} C_{1}^{6}\left(-\frac{x^{2}}{2}\right)^{1}+\left(\frac{2}{x}\right)^{4} C_{2}^{6}\left(-\frac{x^{2}}{2}\right)^{2}+\ldots\right] \\
& =\left(1+x^{3}\right)\left[\ldots-6\left(\frac{2^{5-1}}{x^{5-2}}\right)+15\left(\frac{2^{4-2}}{x^{4-4}}\right)+\ldots\right] \\
& =-96+60 \\
& =-36
\end{aligned}
$$

4a A particle moves along the curve $y=3 x^{2}-2 x+5$. At the point P. the x-coordinate of the particle is increasing at a rate of 0.002 units $/ \mathrm{sec}$ and the y-coordinate is increasing at $0.02 \mathrm{units} / \mathrm{sec}$. Find the coordirates of P.

$$
\begin{aligned}
& y=3 x^{2}-2 x+5 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=6 x-2 \\
& \frac{\mathrm{~d} x}{\mathrm{~d} t}=0.002 u / \mathrm{s} \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=0.02 u / \mathrm{s} \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t} \\
& 6 x-2=\frac{0.02}{0.002} \\
& x=2 \\
& y=3(2)^{2}-2(2)+5 \\
&=13 \\
& P(2,13)
\end{aligned}
$$

b The equation of a curve is $y=x^{3}+5 x^{2}-8 x+k$, where k is a constant. Find the set of values of x for which y is decreasing.

y	$=x^{3}+5 x^{2}-8 x+k$	
$\frac{\mathrm{~d} y}{\mathrm{~d} x}$	$=3 x^{2}+10 x-8$	M 1
For decreasing function, $\frac{\mathrm{d} y}{\mathrm{~d} x}$	<0	
$3 x^{2}+10 x-8$	<0	M1
$(3 x-2)(x+4)$	<0	M1
$-4<x<\frac{2}{3}$	A1	

5 (i) Show that $\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\ln 2 x}{x^{3}}\right)=\frac{1}{x^{4}}-\frac{3 \ln 2 x}{x^{4}}$

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\ln 2 x}{x^{3}}\right) & =\frac{x^{3} \cdot \frac{1}{2 x} \cdot 2-\ln 2 x \cdot\left(3 x^{2}\right)}{\left(x^{3}\right)^{2}} \tag{4}\\
& =\frac{x^{2}}{x^{6}}-\frac{3 x^{2} \ln 2 x}{x^{6}} \\
& =\frac{1}{x^{4}}-\frac{3 \ln 2 x}{x^{4}}
\end{align*}
$$

MI, M1

M1

A1
(ii) Hence, integrate $\frac{\ln 2 x}{x^{4}}$ with respect to x.

$$
\begin{aligned}
\int \frac{1}{x^{4}}-\frac{3 \ln 2 x}{x^{4}} \mathrm{~d} x & =\frac{\ln 2 x}{x^{3}} \\
\int \frac{3 \ln 2 x}{x^{4}} \mathrm{~d} x & =\int \frac{1}{x^{4}} \mathrm{~d} x-\frac{\ln 2 x}{x^{3}} \\
3 \int \frac{\ln 2 x}{x^{4}} \mathrm{~d} x & =\frac{x^{-3}}{-3}-\frac{\ln 2 x}{x^{3}}+c \\
\int \frac{\ln 2 x}{x^{2}} \mathrm{~d} x & =-\frac{1}{9 x^{3}}-\frac{\ln 2 x}{3 x^{3}}+c
\end{aligned}
$$

(iii) Given that the curve $y=\mathrm{f}(x)$ passes through the point $\left(1, \frac{8}{9}\right)$ and is such that $\mathrm{f}^{\prime}(x)=\frac{\ln 2 x}{x^{4}}$, find $\mathrm{f}(x)$.

$$
\begin{align*}
f(x) & =\int \frac{\ln 2 x}{x^{4}} \mathrm{~d} x \tag{2}\\
y & =-\frac{1}{9 x^{3}}[1+3 \ln 2 x]+c \\
\frac{8}{9} & =-\frac{1}{9}[1+3 \ln 1]+c \\
c & =1 \\
f(x) & =-\frac{1}{9 x^{3}}[1+3 \ln 2 x]+1
\end{align*}
$$

6 Mr Tan drives his car along a straight road. As he passes a point A he applies the brake and his car slows down, coming to a rest at point B.
For the joumey from A to B, the distance, s meters, of the car from A, t seconds after passing A, is given by

$$
s=600\left(1-e^{\frac{1}{6}}\right)-12 t
$$

(i) Find an expression, in terms of t, for the velocity of the ca- during the joumey from A to B.

s	$=600-600 e^{\frac{1}{6}}-12 t$	
$\frac{\mathrm{~d} s}{\mathrm{~d} t}$	$=-600 \cdot e^{\frac{1}{6}} \cdot\left(-\frac{1}{6}\right)-12$	M 1
v	$=100 e^{\frac{1}{6}}-12$	Al

(ii) Find the velocity of the car at A.

$$
\begin{aligned}
v & =100 e^{\frac{1}{6}}-12 \\
& =100-12 \\
& =88 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(iii) Find the time taken for the joumey from A to B.

0	$=100 e^{\frac{1}{6}}-12$	
$100 e^{\frac{1}{6}}$	$=12$	$\mathrm{M1}$
$-\frac{t}{6}$	$=\ln \left(\frac{12}{100}\right)$	
t	$=12.72 \mathrm{~s}$	M 1

(iv) Find the average speed of the car for the journey from A to B.

$$
\begin{aligned}
\text { Ave speed } & =\frac{\text { tot dist }}{\text { tot time }} \\
& =\frac{600\left(1-e^{\frac{1272}{6}}\right)-12(12.72)}{12.72} \\
& =29.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

M1 (num)
M1 (den)
AI

7 Solve each of the following equations.
(i) $e^{2 \ln x}+\ln e^{2 x}=8$

$$
\begin{aligned}
e^{2 \ln x}+\ln e^{2 x} & =8 \\
e^{\ln x^{2}}+2 x \ln e & =8 \\
x^{2}+2 x-8 & =0 \\
(x+4)(x-2) & =0 \\
x & =2, \quad \text { or } x=-4(N A)
\end{aligned}
$$

M1, M1
M1

Al, A1
(ii) $\log _{5} 50+4 \log _{25} x-\log _{5}(2 x+4)=2$

$$
\begin{aligned}
\log _{5} 50+4 \log _{55} x-\log _{5}(2 x+4) & =2 \\
\log _{5} 25 \times 2+\frac{4 \log _{5} x}{\log _{5} 25}-\log _{5}(2 x+4) & =2 \\
\log _{5} 5^{2}+\log _{5} 2+\frac{4 \log _{5} x}{\log _{5} 5^{2}}-\log _{5} 2(x+2) & =2 \\
2+\log _{5} 2+\frac{4 \log _{5} x}{2}-\left[\log _{5} 2+\log _{5}(x+2)\right] & =2 \\
2+\log _{5} 2+2 \log _{5} x-\log _{5} 2-\log _{5}(x+2) & =2 \\
\log _{5}(x+2) & =2 \log _{5} x \\
x+2 & =x^{2} \\
x^{2}-x-2 & =0 \\
(x-2)(x+1) & =0 \\
x & =2, \text { or } x=-1(N A)
\end{aligned}
$$

8 In the diagram, triangles $O A B$ and $O C D$ are right-angled triangles.

Angle $A O B=$ angle $O D C=\theta, O A=3 \mathrm{~cm}$ and $O D=8 \mathrm{~cm}$.
(i) Show that the length of $A B+C D=3 \sin \theta+8 \cos \theta$.

$$
A B+C D=3 \sin \theta+8 \cos \theta
$$

(ii) Express $3 \sin \theta+8 \cos \theta$ in the form $R \sin (\theta+\alpha)$ where $R>0$ and α is acute.

$$
\begin{aligned}
3 \sin \theta+8 \cos \theta & =R \sin (\theta+\alpha) \\
& =R \sin \theta \cos \alpha+R \cos \theta \sin \alpha
\end{aligned}
$$

$$
R \cos \alpha=3
$$

$$
R \sin \alpha=8
$$

$$
\begin{aligned}
\tan \alpha & =\frac{8}{3} \\
\alpha & =69.44^{\circ} \\
R & =\sqrt{73} \\
3 \sin \theta+8 \cos \theta & =\sqrt{73} \sin \left(\theta+69.44^{\circ}\right)
\end{aligned}
$$

(iii) Find the maximum length of $A B+C D$ and the corresponding value of θ. [3]

$$
\begin{aligned}
& \operatorname{Max}=\sqrt{73} \text { or } 8.544 \\
& \sin \left(\theta+69.44^{\circ}\right)=1 \\
& \theta=90^{\circ}-69.44^{\circ} \\
& \theta=20.56^{\circ}
\end{aligned}
$$

(iv) Find the value of θ, if B is the midpoint of $O C$.

$2 O B$	$=O C$
$2(3 \cos \theta)$	$=8 \sin \theta$
$\tan \theta$	$=\frac{6}{8}$
θ	$=36.87^{\circ}$

9 The function f is defined by $\mathrm{f}(x)=4 \cos 2 x-3$.
(i) State the amplitude of \mathbf{f}.

Amplitude $=4$

(ii) State the period of f in terms of π.

$$
\text { Period }=\frac{2 \pi}{2}
$$

$$
=\pi
$$

The equation of a curve is $y=4 \cos 2 x-3$ for $0 \leq x \leq \pi$.
(iii) Find the ininimum value of the curve.

$$
\begin{aligned}
\text { Min } & =-4-3 \\
& =-7
\end{aligned}
$$

B1
(iv) Find the x-coordinates of the points where the curve meets the x-axis.

$$
\begin{array}{rlr|r}
4 \cos 2 x-3 & =0 & & 0 \leq x \leq \pi \\
\cos 2 x & =\frac{3}{4} & & 0 \leq 2 x \leq 2 \pi \\
2 x & =0.7227, & & 5.560 \\
x & =0.3614, & & 2.780
\end{array}
$$

(v) Sketch the graph of $y=|3 \cos 2 x-4|$ for $0 \leq x \leq \pi$.
[3]

(vi) Hence, find the range of values of c, for which $|3 \cos 2 x-4|=c$ has exactly two solutions only.

$l<c<7$	Bl

10 The diagram shows a triangle $A B C$ with vertices at $A(0,3), B(8,12)$ and $C(k, 13)$.
(i) Given that $A B=B C$, find the value of k.

$A B^{2}$	$=B C^{2}$	
$(k-8)^{2}+(13-12)^{2}$	$=(8-0)^{2}+(12-3)^{2}$	
$(k-8)^{2}$	$=64+81-1$	M 1
$(k-8)^{2}-144$	$=0$	
$(k-8+12)(k-8-12)$	$=0$	M1
$(k+4)(k-20)$	$=0$	M1
k	$=20, \quad k=-4(N A)$	

A line is drawn from B to meet the x-axis at D such that $A D=C D$.
(ii) Name the quadrilateral $A B C D$.

Kite

B1

(iii) Find the equation of $B D$ and the coordinates of D.

Property of Kite Δ. Diagonals intersect at 90°

$$
m_{A C}=\frac{13-3}{20-0}
$$

$$
=\frac{1}{2}
$$

$$
m_{B D}=-2
$$

$$
12=-2(8)+c
$$

$$
c=28
$$

$$
y=-2 x+28
$$

$$
0=-2 x+28
$$

$$
x=14
$$

$D(14,0)$
(iv) Find the area of the triangle $A B C$.

$$
\begin{aligned}
A & =\frac{1}{2}\left|\begin{array}{cccc}
0 & 8 & 20 & 0 \\
3 & 12 & 13 & 3
\end{array}\right| \\
& =\frac{1}{2}[(264)-(104)] \\
& =80 u n i t s^{2}
\end{aligned}
$$

11a (i) Find the range of values of x for which $x^{2}-8 x+15 \geq 0$

$$
\begin{aligned}
x^{2}-8 x+15 & \geq 0 \\
(x-5)(x-3) & \geq 0 \\
x & \leq 3 \text { or } x \geq 5
\end{aligned}
$$

(ii) Hence, find the range of values of x for which $(x+2)^{2}-8 x-1<0$

$$
\begin{aligned}
(x+2)^{2}-8(x+2)+16-1 & <0 \\
(x+2)^{2}-8(x+2)+15 & <0 \\
{[(x+2)-5][(x+2)-3] } & <0 \\
(x-3)(x-1) & <0 \\
1 & <x<3
\end{aligned}
$$

b Show that $m y=x^{2}-4(x-1)$ meets the curve $y=x^{2}-3 x+2$ at two distinct points for all real values of m, except $m=0$ and $m=1$.

$$
\begin{array}{rl|l}
m y & =x^{2}-4(x-1) \\
y & =\frac{x^{2}-4 x+4}{m} \\
y & =x^{2}-3 x+2 \\
\frac{x^{2}-4 x+4}{m} & =x^{2}-3 x+2 \\
x^{2}-4 x+4 & =m x^{2}-3 m x+2 m & \mathrm{Ml} \\
(m-1) x^{2}+(4-3 m) x+(2 m-4) & =0 & \mathrm{M} 1 \\
b^{2}-4 a c & =(4-3 m)^{2}-4(m-1) \cdot 2(m-2) \\
& =16-24 m+9 m^{2}-8\left(m^{2}-3 m+2\right) \\
& =16-24 m+9 m^{2}-8 m^{2}+24 m-16 \\
& =m^{2} & \\
m^{2} & >0 & \mathrm{M} 1 \\
& \therefore b^{2}-4 a c>0 \\
& \therefore 2 \text { distinct roots } & \mathrm{M} 1 \\
\mathrm{Al}
\end{array}
$$

