	Patrice
Nat	mp*

(

Question	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
Marks	_											

No of additional bookets/	No of additional graph
writing paper used	paper used

This document consists of 15 printed pages including this cover page. Greendale Secondary School 2019 Greendale Secondary School

Preliminary Examination 2019

Secondary 4 Express / 5 Normal Academic Additional Mathematics Paper 1

Mathematical Formulae

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{n(n-1)\dots(n-r+1)}{r!}$,

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\cos ec^2 A = 1 + \cot^2 A$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\sin 2A = 2\sin A \cos A$$
$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$
$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc\cos A$$
Area of $\Delta = \frac{1}{2}bc\sin A$

Secondary 4 Express / 5 Normal Academic Additional Mathematics Paper 1

Answer all the questions.

.

3

1 Express
$$\frac{10x^2 - 7x + 10}{(3x-2)(x^2+2)}$$
 in partial fractions.

[5]

(ii) Find the coordinates of the points of intersection of the curve $y^2 = 3x$ and the line 3y = 6x - 5. [4]

٦,

3 The variables x and y are such that when the values of xy are plotted against \sqrt{x} , a straight line is obtained.

5

It is given that
$$y = \frac{1}{2}$$
 when $x = 1$, and that $y = -\frac{1}{4}$ when $x = 4$.

(i) Express y in terms of x.

(ii) Find the value of y when x = 16.

[1]

[4]

Green	Greendale Secondary School		Secondary 4 Express / 5 Normal Academic
Prelim	inary Examination 2019		Additional Mathematics Paper 1
4 (i	i) Show that $\frac{\cos 2x - \cos 4x}{\cos 2x - \cos 4x}$	$=1+2\cos 2x$.	[3]

1

4 (i) Show that
$$\frac{\cos 2x - \cos 4x}{2\sin^2 x} = 1 + 2\cos 2x$$
.

(ii) Hence find, for $0^{\circ} < x < 360^{\circ}$, the values of x for which $\frac{\cos 2x - \cos 4x}{2\sin^2 x} = 2$. [3]

Greendale Secondary School	7	Secondary 4 Express / 5 Normal Academic
Preliminary Examination 2019		Additional Mathematics Paper 1

5 The roots of a quadratic equation $4x^2 - 37x + 9 = 0$ are α^2 and β^2 , where $\alpha < 0 < \beta$ and $\beta < |\alpha|$.

(i) Show that
$$\alpha\beta = -\frac{3}{2}$$
 and find the value of $\alpha + \beta$. [4]

(ii) Find a quadratic equation whose roots are $\frac{\alpha}{\alpha+\beta}$ and $\frac{\beta}{\alpha+\beta}$. [2]

Greendale Secondary School	8	Secondary 4 Express / 5 Normal Academic
Preliminary Examination 2019		Additional Mathematics Paper 1

[5]

6 A curve is such that $\frac{d^2 y}{dx^2} = 1 - \frac{4}{(2x+5)^2}$ and has a stationary point at P(-2, 5).

Find the equation of the curve.

7 *VABCD* is a right pyramid with a square base *ABCD*, as shown in the diagram. The volume of the pyramid is $(6\sqrt{3}-8)$ cm³ and the height is $(1+2\sqrt{3})$ cm.

(i) Show that $AB^2 = 12 - 6\sqrt{3}$

[3]

(ii) Find the value of VA^2 , giving your answer in the form $p+q\sqrt{3}$ where p and q are rational numbers. [4]

9

8 The diagram shown is not drawn to scale.

A, B, C and D are four points on the circle such that CB = CD. The chords AC and BD meet at E. The tangent to the circle at C meets AD extended at T.

(i) Prove that BD is parallel to CT.

[3]

.

(ii) Show that $CT^2 = AT \times DT$

[4]

9 The diagram shows part of the curve $x = 2 + \frac{1}{(y-1)^2}$, $y \neq 1$. A line L intersects the curve at A, where y = 4, and cuts the y-axis at y = 2.

11

(i) Find the equation of line L.

[3]

(ii) Find the area of the shaded region bounded by the line L, the line y = 2 and the curve $x = 2 + \frac{1}{(y-1)^2}$. [4]

Greendale Secondary School	12	Secondary 4 Express / 5 Normal Academic
Preliminary Examination 2019	- A	Additional Mathematics Paper 1

2

[3]

[2]

10 An experiment to measure the growth of bacteria was conducted

At 0900 on Monday, 1000 bacteria were introduced to the culture. At 1700 on the same day, the number of bacteria had grown to 1492. It is known that the number of bacteria, N, at t hours from the start of the experiment, is given by $N = pe^{kt}$, where p and k are constants.

(i) Find the value of p and of k.

(ii) Calculate the number of bacteria at 0900 on Tuesday.

(iii) Determine the earliest day and time (to the whole hour) at which there is at least 20 000 bacteria.
 [3]

Greendale Secondary School	13	Secondary 4 Express / 5 Normal Academic
Preliminary Examination 2019		Additional Mathematics Paper 1

- 11 The equation of a circle C_1 is $x^2 + 6x + y^2 16y + 24 = 0$, and its centre is P_1 .
 - (i) Find the coordinates of P and the radius of C_1 . [2]

AB is a chord of C_1 and M is the midpoint of AB, where M(-1, 12).

(ii) Find the equation of the chord AB.

[3]

A second circle C_2 with centre Q also passes through A and B.

(iii) Given that PM: MQ = 1:2, show that one possible point for Q is (3, 20) and find the coordinates of another point. [4]

Greendale Secondary School	 Secondary 4 Express / 5 Normal Academic
Preliminary Examination 2019	Additional Mathematics Paper 1

12 PQRST is a pentagon as shown in the diagram. QRST is a rectangle with QR = 3 cm. PQT is a triangle with PQ = 4 cm and $\angle PQT = \angle PTQ = x$ radius.

(i) Show that $QT = k \cos x$, where k is a positive integer to be found. [2]

(ii) Show that the area of the pentagon, $A \operatorname{cm}^2$ is given by $A = 8\sin 2x + 24\cos x$. [2]

[Question 12 continues on next page]

[Question 12 continues]

(iii) Find the stationary value of A and determine whether it is a maximum or a minimum.

15

END-OF-PAPER

	: <u></u>							1			
				(Conve-LEAD	EXCEL				100	
		GF			SEC ry Exa				OL		
٩dd	itiona	l Mati	nema	tics P	aper	2				4	047/2
					-			1	7 Sep	tembei	r 2019
Seco	ndary 4	1 Expre	ess / 5	Norm	al Aca	demic			2 ho	urs 30	mins
Candi	idates ar	Iswer o	n the O	uestion	Paper						
	ditional										
Nrite Nrite You п	your ind in dark t nay use it use sta	ex num blue or l an HB p	ber and black pe bencil fo	l name en. or any d	in the sliagrams	s or gra	phs.	o of this	page.		
Nrite Nrite You m Do no Answe Give r Che ca questi The u You a At the The n questi	your ind in dark to nay use at use state on exact ase of an ion. ise of an ire remini- e end of for	ex num blue or l an HB p aples, p e questic t nume gles in approv ded of the exan	ber and black pe bencil fo aper clip ons. rical an degrees ed scie the nee mination s is give	l name en. or any d ps, glue swers o s, unles ntific ca d for cle n, faster n in bra	in the s iagrams or corr correct t s a diffe ilculator ear pres n all you ckets [s or gray rection f o 3 sign erent lev is expense is expense sentation ur work] at the	phs. luid. ificant f vel of ac ected, w n in you securel	igures, curacy here ap r answe	or 1 de is spec opropria ers.	tified in t	
Write Write You m Do no Answe Give r the ca quest The u You a At the The n quest	your ind in dark to hay use at use state er all the hon-exact ase of an ion. ise of an ire remine e end of to ion. btal num	ex num olue or l an HB p aples, p e questi- ct nume ogles in approv ided of the exai- f marks ber of n	ber and black pe bencil fo aper cli ons. rical an degrees ed scie the nee minatior is give	I name en. or any d ps, glue swers o s, unles ntific ca d for cle n, faster n in bra	in the s iagrams or corr correct t s a diffe ilculator ear pres n all you ckets [s or gran rection f to 3 sign erent lev is expension is e	phs. luid. vel of ac ected, w n in you securely end of	igures, ccuracy here ap r answe y togeth each qu	or 1 de is spec opropria ers. ner. Jestion	or part	the
Nrite Nrite You m Do no Answe Give r Che ca questi The u You a At the The n questi	your ind in dark t nay use at use sta er all the non-exact ase of an ion. se of an are remin e end of t umber of	ex num blue or l an HB p aples, p e questic t nume gles in approv ded of the exan	ber and black pe bencil fo aper clip ons. rical an degrees ed scie the nee mination s is give	l name en. or any d ps, glue swers o s, unles ntific ca d for cle n, faster n in bra	in the s iagrams or corr correct t s a diffe ilculator ear pres n all you ckets [s or gray rection f o 3 sign erent lev is expense is expense sentation ur work] at the	phs. luid. ificant f vel of ac ected, w n in you securel	igures, curacy here ap r answe	or 1 de is spec opropria ers.	tified in t	
Write Write You m Do no Answe Give r the ca questi The u You a At the The n questi The n questi The to Q M	your ind in dark to hay use at use state er all the hon-exact ase of an ion. ise of an ire remine e end of to ion. btal num	ex num blue or l an HB p aples, p e questic t nume agles in approv ded of the exam f marks ber of m	ber and black per bencil fo aper clip ons. rrical an degrees ed scie the nee mination is give	I name en. or any d ps, glue swers o s, unles ntific ca d for cle n, faster n in bra	in the s iagrams or corr correct t s a diffe ilculator ear pres n all you ckets [s or grap rection f to 3 signerent lev t is expension is	phs. luid. vel of ac ected, w n in you securely end of	igures, curacy here ap r answe y togeth each qu each qu 8	or 1 de is spec opropria ers. ner. Jestion	or part	the

Preliminary Examination 2019

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Binomial expansion

 \mathbf{w}

Identities

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

here *n* is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

$$\sin^{2} A + \cos^{2} A = 1$$
$$\sec^{2} A = 1 + \tan^{2} A$$
$$\csc^{2} A = 1 + \cot^{2} A$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\sin 2A = 2 \sin A \cos A$$
$$\cos 2A = \cos^{2} A - \sin^{2} A = 2 \cos^{2} A - 1 = 1 - 2 \sin^{2} A$$
$$\tan 2A = \frac{2 \tan A}{1 - \tan^{2} A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
$$\Delta = \frac{1}{2}ab \sin C$$

Greendale Secondary School
Preliminary Examination 2019

1 A curve has the equation $y = (ax-3)\ln x$, where x > 0, $x \neq \frac{3}{a}$ and a is a positive

constant. The normal to the curve at the point where the curve crosses the x-axis is parallel to the line x+5y-4=0. Find the value of a. [7]

Gre	endale	Secon	dary School	4	S4 Expres:/5 Normal (Academic)
	Preliminary Examination 2019				Additional Mathematics Paper 2
2	(a)	Diff	erentiate the following wit	h respect to x	.
		(i)	$\ln(\cos 2x)$		[2]

(ii) $\frac{x}{2} \tan 2x$ [2]

(b) Using your results from part (a), find
$$\int 2x \sec^2 2x \, dx$$
. [4]

÷.

Gr	eendale	Secondary School	5	S4 Express	mal (Academic)
Pre	eliminar	y Examination 2019		Additional Ma	thematics Paper 2
3	(i)	Given that the constant	at term in the binom	tial expansion of $\left(\frac{2}{x}\right)$	$\left(-\frac{x^2}{k}\right)^6$ is 60,
		find the value of the p	ositive constant k.		[4]

(ii) Using the value of k found in part (i), find the term independent of x in the expansion of $(1+x^3)\left(\frac{2}{x}-\frac{x^2}{k}\right)^6$. [4]

Greendale Secondary Sensol	6
Preliminary Examination 2019	

4 (a) A particle moves along the curve y = 3x² - 2x + 5. At the point P, the x-coordinate of the particle is increasing at a rate of 0 002 units/sec and the y-coordinate is increasing at 0.02 units/sec. Find the coordinates of P. [4]

(b) The equation of a curve is $y = x^3 + 5x^2 - 8x + k$, where k a constant. Find the set of values of x for which y is decreasing. [4]

Greendale Secondary School7S4 Express/5 Normal (Academic)Preliminary Examination 2019Additional Mathematics Paper 25(i)Show that
$$\frac{d}{dx} \left(\frac{\ln 2x}{x^3} \right) = \frac{1}{x^4} - \frac{3 \ln 2x}{x^4}$$
.[4]

(ii) Hence, integrate
$$\frac{\ln 2x}{x^4}$$
 with respect to x. [3]

(iii) Given that the curve
$$y = f(x)$$
 passes through the point $\left(1, \frac{8}{9}\right)$ and is such that $f'(x) = \frac{\ln 2x}{x^4}$, find $f(x)$. [2]

Mr Tan drives his car along a straight road. As he passes a point A he applies the 6 brake and his car slows down, coming to a rest at point B. For the journey from A to B, the distance, s meters, of the car from A, t seconds after passing A, is given by

$$s = 600 \left(1 - e^{-6} \right) - 12t$$

Find an expression, in terms of t, for the velocity of the car during the **(i)** [2] journey from A to B.

- [1] Find the velocity of the car at A. **(ii)**
- [3] (iii) Find the time taken for the journey from A to B.

(iv) Find the average speed of the car for the journey from A to B. [3]

Greendale Secondary School	9	S4 Express/	mal (Academic)
Preliminary Examination 2019		Additional Mat	thematics Paper 2

7 Solve each of the following equations.

(i)
$$e^{2\ln x} + \ln e^{2x} = 8$$
 [5]

(ii) $\log_5 50 + 4 \log_{25} x - \log_5 (2x + 4) = 2$

[5]

6

8 In the diagram, triangles *OAB* and *OCD* are right-angled triangles. Angle AOB = angle $ODC = \theta$, OA = 3 cm and OD = 8 cm.

(i) Show that the length of $AB + CD = 3\sin\theta + 8\cos\theta$

- [1]
- (ii) Express $3\sin\theta + 8\cos\theta$ in the form $R\sin(\theta + \alpha)$ where R > 0 and α is acute. [4]

		Secondary School	11	S4 Express/5 Normal (Academic)
		Examination 2019		Additional Mathematics Paper 2
8	(iii)	Find the maximum lense of θ .	gth of $AB + CD$ as	ad the corresponding value [3]

(iv) Find the value of θ , if B is the midpoint of OC.

[2]

		Secondary School Examination 2019	12	S4 Express/5 Normal (Academic) Additional Mathematics Paper 2
9		function f is defined by	$f(x) = 4\cos 2x - 3$	
	(i)	State the amplitude of	ff.	[1]
	(ii)	State the period of f i	n terms of π.	[1]
	The	equation of a curve is	$y = 4\cos 2x - 3$ for	$0 \le x \le \pi$
	(iii)	Find the minimum va	ahue of the curve.	[1]

(iv) Find the x-coordinates of the points where the curve meets the x-axis. [3]

Greendale Secondary School	13	S4 Expressor mal (Academic)
Preliminary Examination 2019		Additional Mathematics Paper 2

9 (v) Sketch the graph of $y = |4\cos 2x - 3|$ for $0 \le x \le \pi$. [3]

(vi) Hence, find the range of values of c, for which $|4\cos 2x - 3| = c$ has exactly two solutions only.

[1]

10 The diagram shows a triangle ABC with vertices at A(0, 3), B(8, 12) and C(k, 13).

Given that AB = BC,

(i) find the value of k.

[4]

Gre	endale	Secondary School	S4 Express/5 Normal (Academic)	
Prel	iminary	Examination 2019		Additional Mathematics Paper 2
10	A lir (ii)	te is drawn from B to magnitude B to magnited B tomagnitude B to magnitude B tom		such that $AD = CD$. [1]

(iii) Find the equation of BD and the coordinates of D. [4]

(iv) Find the area of the triangle ABC.

[2]

Gre	endale	Secon	dary School	16	S4 Expres 1/5 Normal	and a second sec
			ination 2019		Additional Mathemati	cs Paper 2
11	(a)	(i)		of values of x for when	ich $x^2 - 8x + 0$	[2]

(ii) Hence, find the range of values of x for which $(x+2)^2 - 8x - 1 < 0$. [3]

10

(b) Show that $my = x^2 - 4(x-1)$ meets the curve $y = x^2 - 3x + 2$ at two distinct points for all real values of m, except m = 0 and n = 1. [5]

2019 PRELIMINARY EXAMINATION SECONDARY 4E5N AMATH PAPER 1 - MARK SCHEME

	(ii)	$y = -\frac{1}{4}$	
3		Coordinates of two points on the straight line are $\left(1,\frac{1}{2}\right)$ and $\left(2,-1\right)$ Gradient of line $=\frac{\frac{1}{2}-\left(-1\right)}{1-2}=-\frac{3}{2}$ Equation of curve is $\frac{xy-\left(-1\right)}{\sqrt{x}-2}=-\frac{3}{2}$ $y=\frac{4-3\sqrt{x}}{2x}$	
3	 (i)	Coordinates of two points on the straight line are	TOTAL: 5m
	(ii)	Equate both equations to reduce to one variable $2y^2 - 3y - 5 = 0$ (2y-5)(y+1) = 0 Solve for x and y The points of intersection are $\left(\frac{25}{12}, \frac{5}{2}\right)$ and $\left(\frac{1}{3}, -1\right)$	
2	(i)	y *	TOTAL: 5n
		$\frac{10x^2 - 7x + 10}{(3x - 2)(x^2 + 2)} = \frac{4}{3x - 2} + \frac{2x - 1}{x^2 + 2}$	
		Sub $x=0$ to get $C=-1$ Sub $x=1$ (or any other value) to get $B=2$	
		Sub $x = \frac{2}{3}$ to get $A = 4$	
		$10x^{2} - 7x + 10 = A(x^{2} + 2) + (Bx + C)(3x - 2)$	
1		Let $\frac{10x^2 - 7x + 10}{(3x-2)(x^2+2)} = \frac{A}{3x-2} + \frac{Bx+C}{x^2+2}$	

TOTAL: 5m

2019_Prelim_4E5N_AMATHP1_MarkScheme

2019_Prelim_4E5N_AMATHP1_MarkScheme

2

Sub $x = -2$, $\frac{dy}{dx} = 0$ to get $c = 0$, so $\frac{dy}{dx} = x + \frac{2}{2x+5}$ $y = \int \left[x + \frac{2}{2x+5} \right] dx = \frac{1}{2}x^2 + \ln(2x+5) + k$ Sub $x = -2$, $y = 5$ to get $k = 3$ $y = \frac{1}{2}x^2 + \ln(2x+5) + 3$ TOTAL: Sm 7 (i) $\frac{1}{3}(AB)^2(1+2\sqrt{3}) = 6\sqrt{3} - 8$ $AB^2 = \frac{18\sqrt{3} - 24}{1+2\sqrt{3}} \times \frac{1-2\sqrt{3}}{1-2\sqrt{3}}$ $= \frac{18\sqrt{3} - 108 - 24 + 48\sqrt{3}}{1-12}$ $= \frac{66\sqrt{3} - 132}{-11} = 12 - 6\sqrt{3}$ (shown) (ii) Let <i>M</i> be midpoint of <i>AC</i> . By Pythagoras Theorem, $AC^2 = AB^2 + BC^2 = 2AB^2$, so $AM^2 = \left(\frac{1}{2}AC\right)^2 = \frac{1}{2}AB^2 = 6 - 3\sqrt{3}$ $VA^2 = AM^2 + VM^2$ $= (6 - 3\sqrt{3}) + (1 + 2\sqrt{3})^2 = 19 + \sqrt{3}$ TOTAL: 7 <i>n</i> 8 (i) $\angle BDC = \angle CBD$ (base angles in isos A) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, BD is parallel to <i>CT</i> . (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle TAC$ (common angle) Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test)	5		$\frac{dy}{dx} = \int \left[1 - \frac{4}{(2x+5)^2} \right] dx = x + \frac{2}{2x+5} + c$	
$\frac{dy}{dx} = x + \frac{2}{2x+5}$ $y = \int \left[x + \frac{2}{2x+5} \right] dx = \frac{1}{2}x^{2} + \ln(2x+5) + k$ Sub $x = -2$, $y = 5$ to get $k = 3$ $y = \frac{1}{2}x^{2} + \ln(2x+5) + 3$ TOTAL: 5m $7 (i) \frac{1}{3}(AB)^{2} (1 + 2\sqrt{3}) = 6\sqrt{3} - 8$ $AB^{2} = \frac{18\sqrt{3} - 24}{1 + 2\sqrt{3}} \times \frac{1 - 2\sqrt{3}}{1 - 2\sqrt{3}}$ $= \frac{18\sqrt{3} - 108 - 24 + 48\sqrt{3}}{1 - 12}$ $= \frac{66\sqrt{3} - 132}{-12} = 12 - 6\sqrt{3} \text{ (shown)}$ (ii) Let M be midpoint of AC . By Pythagoras Theorem, $AC^{2} = AB^{2} + BC^{2} = 2AB^{2}$, so $AM^{2} = \left(\frac{1}{2}AC\right)^{2} = \frac{1}{2}AB^{2} = 6 - 3\sqrt{3}$ $VA^{2} = AM^{2} + VM^{2}$ $= (6 - 3\sqrt{3}) + (1 + 2\sqrt{3})^{2} = 19 + \sqrt{3}$ TOTAL: 7m $8 (i) \qquad \angle BDC = \angle CBD \text{ (base angles in isos } \Delta)$ $= \angle TCD \text{ (alternate segment theorem)}$ By the alternate-angle property, BD is parallel to CT . (ii) $\angle CTD = \angle TAC \text{ (alternate segment theorem)}$ $\angle CTD = \angle ATC \text{ (common angle)}$ Hence ΔTCD is similar to $\Delta TAC \text{ (AA-test)}$				
$\begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $			u.A	
Sub $x = -2$, $y = 5$ to get $k = 3$ $y = \frac{1}{2}x^2 + \ln(2x+5) + 3$ TOTAL: 5m 7 (i) $\frac{1}{3}(AB)^2(1+2\sqrt{3}) = 6\sqrt{3} - 8$ $AB^2 = \frac{18\sqrt{3}-24}{1+2\sqrt{3}} \times \frac{1-2\sqrt{3}}{1-2\sqrt{3}}$ $= \frac{18\sqrt{3}-108-24+48\sqrt{3}}{1-12}$ $= \frac{66\sqrt{3}-132}{1-12} = 12-6\sqrt{3}$ (shown) (ii) Let <i>M</i> be midpoint of <i>AC</i> . By Pythagoras Theorem, $AC^2 = AB^2 + BC^2 = 2AB^2$, so $AM^2 = (\frac{1}{2}AC)^2 = \frac{1}{2}AB^2 = 6 - 3\sqrt{3}$ $VA^2 = AM^2 + VM^2$ $= (6-3\sqrt{3}) + (1+2\sqrt{3})^2 = 19 + \sqrt{3}$ TOTAL: 7m 8 (i) $\angle BDC = \angle CBD$ (base angles in isos Δ) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, <i>BD</i> is parallel to <i>CT</i> . (ii) $\angle CTD = \angle ATC$ (common angle) Hence ΔTCD is similar to ΔTAC (AA-test)			$\frac{\mathrm{d}y}{\mathrm{d}x} = x + \frac{2}{2x+5}$	
7 (i) $\frac{1}{2}x^{2} + \ln(2x+5) + 3$ TOTAL: 5m 7 (i) $\frac{1}{3}(AB)^{2}(1+2\sqrt{3}) = 6\sqrt{3} - 8$ $AB^{2} = \frac{18\sqrt{3} - 24}{1+2\sqrt{3}} \times \frac{1-2\sqrt{3}}{1-2\sqrt{3}}$ $= \frac{18\sqrt{3} - 108 - 24 + 48\sqrt{3}}{1-12}$ $= \frac{66\sqrt{3} - 132}{-11} = 12 - 6\sqrt{3} \text{ (shown)}$ (ii) Let <i>M</i> be midpoint of <i>AC</i> . By Pythagoras Theorem, $AC^{2} = AB^{2} + BC^{2} = 2AB^{2}, \text{ so}$ $AM^{2} = \left(\frac{1}{2}AC\right)^{2} = \frac{1}{2}AB^{2} = 6 - 3\sqrt{3}$ $VA^{2} = AM^{2} + VM^{2}$ $= (6 - 3\sqrt{3}) + (1 + 2\sqrt{3})^{2} = 19 + \sqrt{3}$ TOTAL: 7m 8 (i) $\angle BDC = \angle CBD$ (base angles in isos A) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, <i>BD</i> is parallel to <i>CT</i> . (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle) Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test)				
TOTAL: 5m 7 (i) $\frac{1}{3}(AB)^2(1+2\sqrt{3}) = 6\sqrt{3} - 8$ $AB^2 = \frac{18\sqrt{3} - 24}{1+2\sqrt{3}} \times \frac{1-2\sqrt{3}}{1-2\sqrt{3}}$ $= \frac{18\sqrt{3} - 108 - 24 + 48\sqrt{3}}{1-12}$ $= \frac{66\sqrt{3} - 132}{-11} = 12 - 6\sqrt{3} \text{ (shown)}$ (ii) Let <i>M</i> be midpoint of <i>AC</i> . By Pythagoras Theorem, $AC^2 = AB^2 + BC^2 = 2AB^2$, so $AM^2 = (\frac{1}{2}AC)^2 = \frac{1}{2}AB^2 = 6 - 3\sqrt{3}$ $VA^2 = AM^2 + VM^2$ $= (6 - 3\sqrt{3}) + (1 + 2\sqrt{3})^2 = 19 + \sqrt{3}$ 7 TOTAL: 7m 8 (i) $\angle BDC = \angle CBD$ (base angles in isos A) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, <i>BD</i> is parallel to <i>CT</i> . (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle) Hence ΔTCD is similar to ΔTAC (AA-test)			Sub $x = -2$, $y = 5$ to get $k = 3$	
7 (i) $\frac{1}{3}(AB)^{2}(1+2\sqrt{3}) = 6\sqrt{3} - 8$ $AB^{2} = \frac{18\sqrt{3} - 24}{1+2\sqrt{3}} \times \frac{1-2\sqrt{3}}{1-2\sqrt{3}}$ $= \frac{18\sqrt{3} - 108 - 24 + 48\sqrt{3}}{1-2\sqrt{3}}$ $= \frac{66\sqrt{3} - 132}{1-12}$ $= \frac{66\sqrt{3} - 132}{-11} = 12 - 6\sqrt{3} \text{ (shown)}$ (ii) Let <i>M</i> be midpoint of <i>AC</i> . By Pythagoras Theorem, $AC^{2} = AB^{2} + BC^{2} = 2AB^{2}, \text{ so}$ $AM^{2} = (\frac{1}{2}AC)^{2} = \frac{1}{2}AB^{2} = 6 - 3\sqrt{3}$ $VA^{2} = AM^{2} + VM^{2}$ $= (6 - 3\sqrt{3}) + (1 + 2\sqrt{3})^{2} = 19 + \sqrt{3}$ TOTAL: 7n 8 (i) $\angle BDC = \angle CBD$ (base angles in isos \triangle) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, <i>BD</i> is parallel to <i>CT</i> . (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle) Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test)			$y = \frac{1}{2}x^2 + \ln(2x+5) + 3$	
$\begin{array}{c} (i) & -\frac{1}{3}(AB) \left(1 + 2\sqrt{3}\right) = 6\sqrt{3} - 8 \\ AB^2 = \frac{18\sqrt{3} - 24}{1 + 2\sqrt{3}} \times \frac{1 - 2\sqrt{3}}{1 - 2\sqrt{3}} \\ = \frac{18\sqrt{3} - 108 - 24 + 48\sqrt{3}}{1 - 12} \\ = \frac{66\sqrt{3} - 132}{1 - 12} = 12 - 6\sqrt{3} \text{ (shown)} \\ \hline \\ (ii) & \text{Let } M \text{ be midpoint of } AC. \\ \text{By Pythagoras Theorem,} \\ AC^2 = AB^2 + BC^2 = 2AB^2, \text{ so} \\ AM^2 = \left(\frac{1}{2}AC\right)^2 = \frac{1}{2}AB^2 = 6 - 3\sqrt{3} \\ VA^2 = AM^2 + VM^2 \\ = (6 - 3\sqrt{3}) + (1 + 2\sqrt{3})^2 = 19 + \sqrt{3} \\ \hline \\ \hline \\ 8 & (i) & \angle BDC = \angle CBD \text{ (base angles in isos } A) \\ = \angle TCD \text{ (alternate segment theorem)} \\ \text{By the alternate-angle property, } BD \text{ is parallel to } CT. \\ \hline \\ (ii) & \angle TCD = \angle TAC \text{ (alternate segment theorem)} \\ \angle CTD = \angle ATC \text{ (common angle)} \\ \text{Hence } \Delta TCD \text{ is similar to } \Delta TAC \text{ (AA-test)} \\ \hline \end{array}$	_		2	TOTAL: 5m
$AB^{2} = \frac{18\sqrt{3} - 24}{1 + 2\sqrt{3}} \times \frac{1 - 2\sqrt{3}}{1 - 2\sqrt{3}}$ $= \frac{18\sqrt{3} - 108 - 24 + 48\sqrt{3}}{1 - 12}$ $= \frac{66\sqrt{3} - 132}{-11} = 12 - 6\sqrt{3} \text{ (shown)}$ (ii) Let <i>M</i> be midpoint of <i>AC</i> . By Pythagoras Theorem, $AC^{2} = AB^{2} + BC^{2} = 2AB^{2}$, so $AM^{2} = \left(\frac{1}{2}AC\right)^{2} = \frac{1}{2}AB^{2} = 6 - 3\sqrt{3}$ $VA^{2} = AM^{2} + VM^{2}$ $= (6 - 3\sqrt{3}) + (1 + 2\sqrt{3})^{2} = 19 + \sqrt{3}$ TOTAL: 7n 8 (i) $\angle BDC = \angle CBD$ (base angles in isos A) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, <i>BD</i> is parallel to <i>CT</i> . (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle) Hence ΔTCD is similar to ΔTAC (AA-test)	7	(i)	$\frac{1}{2}(AB)^2(1+2\sqrt{3}) = 6\sqrt{3} - 8$	
$\frac{18\sqrt{3} - 108 - 24 + 48\sqrt{3}}{1 - 12}$ $= \frac{18\sqrt{3} - 108 - 24 + 48\sqrt{3}}{1 - 12}$ $= \frac{66\sqrt{3} - 132}{-11} = 12 - 6\sqrt{3} \text{ (shown)}$ (ii) Let <i>M</i> be midpoint of <i>AC</i> . By Pythagoras Theorem, $AC^2 = AB^2 + BC^2 = 2AB^2$, so $AM^2 = \left(\frac{1}{2}AC\right)^2 = \frac{1}{2}AB^2 = 6 - 3\sqrt{3}$ $VA^2 = AM^2 + VM^2$ $= \left(6 - 3\sqrt{3}\right) + \left(1 + 2\sqrt{3}\right)^2 = 19 + \sqrt{3}$ TOTAL: 7r 8 (i) $\angle BDC = \angle CBD$ (base angles in isos \triangle) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, <i>BD</i> is parallel to <i>CT</i> . (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle) Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test)			5	
$= \frac{66\sqrt{3} - 132}{-11} = 12 - 6\sqrt{3} \text{ (shown)}$ (ii) Let <i>M</i> be midpoint of <i>AC</i> . By Pythagoras Theorem, $AC^2 = AB^2 + BC^2 = 2AB^2$, so $AM^2 = \left(\frac{1}{2}AC\right)^2 = \frac{1}{2}AB^2 = 6 - 3\sqrt{3}$ $VA^2 = AM^2 + VM^2$ $= (6 - 3\sqrt{3}) + (1 + 2\sqrt{3})^2 = 19 + \sqrt{3}$ TOTAL: 7 8 (i) $\angle BDC = \angle CBD$ (base angles in isos \triangle) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, <i>BD</i> is parallel to <i>CT</i> . (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle) Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test) = D = D = D			$AB^2 = \frac{10\sqrt{5}}{1+2\sqrt{3}} \times \frac{1-\sqrt{5}}{1-2\sqrt{3}}$	
$= \frac{66\sqrt{3} - 132}{-11} = 12 - 6\sqrt{3} \text{ (shown)}$ (ii) Let <i>M</i> be midpoint of <i>AC</i> . By Pythagoras Theorem, $AC^2 = AB^2 + BC^2 = 2AB^2$, so $AM^2 = \left(\frac{1}{2}AC\right)^2 = \frac{1}{2}AB^2 = 6 - 3\sqrt{3}$ $VA^2 = AM^2 + VM^2$ $= (6 - 3\sqrt{3}) + (1 + 2\sqrt{3})^2 = 19 + \sqrt{3}$ TOTAL: 7 8 (i) $\angle BDC = \angle CBD$ (base angles in isos \triangle) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, <i>BD</i> is parallel to <i>CT</i> . (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle) Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test) AT = ATC			$18\sqrt{3} - 108 - 24 + 48\sqrt{3}$	
(ii) Let <i>M</i> be midpoint of <i>AC</i> . By Pythagoras Theorem, $AC^2 = AB^2 + BC^2 = 2AB^2$, so $AM^2 = \left(\frac{1}{2}AC\right)^2 = \frac{1}{2}AB^2 = 6 - 3\sqrt{3}$ $VA^2 = AM^2 + VM^2$ $= (6 - 3\sqrt{3}) + (1 + 2\sqrt{3})^2 = 19 + \sqrt{3}$ TOTAL: 7 8 (i) $\angle BDC = \angle CBD$ (base angles in isos \triangle) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, <i>BD</i> is parallel to <i>CT</i> . (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle) Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test)			=1000000000000000000000000000000000000	1
By Pythagoras Theorem, $AC^2 = AB^2 + BC^2 = 2AB^2$, so $AM^2 = \left(\frac{1}{2}AC\right)^2 = \frac{1}{2}AB^2 = 6 - 3\sqrt{3}$ $VA^2 = AM^2 + VM^2$ $= \left(6 - 3\sqrt{3}\right) + \left(1 + 2\sqrt{3}\right)^2 = 19 + \sqrt{3}$ TOTAL: 7 8 (i) $\angle BDC = \angle CBD$ (base angles in isos \triangle) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, <i>BD</i> is parallel to <i>CT</i> . (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle) Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test) = ATCD (and the common angle) Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test)			$=\frac{66\sqrt{3}-132}{-11}=12-6\sqrt{3} \text{ (shown)}$	
$AC^{2} = AB^{2} + BC^{2} = 2AB^{2}, \text{ so}$ $AM^{2} = \left(\frac{1}{2}AC\right)^{2} = \frac{1}{2}AB^{2} = 6 - 3\sqrt{3}$ $VA^{2} = AM^{2} + VM^{2}$ $= \left(6 - 3\sqrt{3}\right) + \left(1 + 2\sqrt{3}\right)^{2} = 19 + \sqrt{3}$ TOTAL: 7 8 (i) $\angle BDC = \angle CBD$ (base angles in isos \triangle) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, <i>BD</i> is parallel to <i>CT</i> . (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle) Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test) $= \Box = \Box \Xi$		(ii)	Let M be midpoint of AC.	
$AM^{2} = \left(\frac{1}{2}AC\right)^{2} = \frac{1}{2}AB^{2} = 6 - 3\sqrt{3}$ $VA^{2} = AM^{2} + VM^{2}$ $= \left(6 - 3\sqrt{3}\right) + \left(1 + 2\sqrt{3}\right)^{2} = 19 + \sqrt{3}$ TOTAL: 7 8 (i) $\angle BDC = \angle CBD$ (base angles in isos \triangle) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, <i>BD</i> is parallel to <i>CT</i> . (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle) Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test)			By Pythagoras Theorem,	
$VA^{2} = AM^{2} + VM^{2}$ $= (6 - 3\sqrt{3}) + (1 + 2\sqrt{3})^{2} = 19 + \sqrt{3}$ TOTAL: 7 8 (i) $\angle BDC = \angle CBD$ (base angles in isos \triangle) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, <i>BD</i> is parallel to <i>CT</i> . (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle) Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test)				
8 (i) $\angle BDC = \angle CBD$ (base angles in isos \triangle) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, BD is parallel to CT. (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle) Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test)			$AM^{2} = \left(\frac{1}{2}AC\right)^{2} = \frac{1}{2}AB^{2} = 6 - 3\sqrt{3}$	
8 (i) $\angle BDC = \angle CBD$ (base angles in isos \triangle) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, BD is parallel to CT. (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle) Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test) $\Box = \Box = \Box = \Box = \Box$			$VA^2 = AM^2 + VM^2$	
8 (i) $\angle BDC = \angle CBD$ (base angles in isos \triangle) $= \angle TCD$ (alternate segment theorem) By the alternate-angle property, BD is parallel to CT. (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) (ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle) Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test) $\Box = \Box = \Box = \Box$			$=(6-3\sqrt{3})+(1+2\sqrt{3})^2=19+\sqrt{3}$	
$= \angle TCD \text{ (alternate segment theorem)}$ By the alternate-angle property, BD is parallel to CT. (ii) $\angle TCD = \angle TAC \text{ (alternate segment theorem)}$ $\angle CTD = \angle ATC \text{ (common angle)}$ Hence $\triangle TCD$ is similar to $\triangle TAC \text{ (AA-test)}$	-	-		TOTAL: 7m
By the alternate-angle property, BD is parallel to CT.(ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle)Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test)	8	(i)	$\angle BDC = \angle CBD$ (base angles in isos \triangle)	
(ii) $\angle TCD = \angle TAC$ (alternate segment theorem) $\angle CTD = \angle ATC$ (common angle) Hence $\triangle TCD$ is similar to $\triangle TAC$ (AA-test)				
$\angle CTD = \angle ATC \text{ (common angle)}$ Hence ΔTCD is similar to $\Delta TAC \text{ (AA-test)}$		(11)	By the alternate-angle property, BD is parallel to CT .	_
Hence ΔTCD is similar to ΔTAC (AA-test)		(ii)		
CT DT CT^2 $AT = DT$ (chown)				
$ = - = - = = (1 = AI \times DI (SIUWII) $			$\frac{CT}{T} = \frac{DT}{T} \implies CT^2 = AT \times DT \text{ (shown)}$	
AT CT			AT CT	TOTAL: 7m

2019_Prelim_4E5N_AMATHP1_MarkScheme

3

	(i)	When $y = 4$, $x = 2 + \frac{1}{(4-1)^2} = \frac{19}{9}$	
		Gradient of line $L = \frac{4-2}{\frac{19}{12}-0} = \frac{18}{19}$	
		Equation of L is $y = \frac{18}{19}x + 2$	
	(ii)	Area = $\int_{2}^{4} \left[2 + \frac{1}{(y-1)^{2}} \right] dy - \frac{1}{2} (2) \left(\frac{19}{9} \right)$	
		$= \left[2y - \frac{1}{y - 1}\right]_{2}^{4} - \frac{19}{9}$	
		$=\left[\left(8-\frac{1}{3}\right)-(4-1)\right]-\frac{19}{9}=\frac{23}{9}$ sq units	
-	1		TOTAL: 7m
10	(i)	p = 1000 Sub $t = 8$, $N = 1492$ and $p = 1000$ (found value)	
		$1492 = 1000e^{Bk}$	
		$8k = \ln\left(\frac{1492}{1000}\right)$	
		$k = 0.05001 \approx 0.05$	
	(ii)	Sub $t = 24$ $N = 1000e^{0.05(24)} = 3320.1 \approx 3320$	
	(iii)	$1000e^{0.05t} \ge 20000$ $t \ge \frac{\ln\left(\frac{20000}{1000}\right)}{0.05}$	
		$t \ge 59.9$ hours = 2 days 11.9 hours	
0		On Wednesday 2100 (or 9pm)	TOTAL: 8m
11	(i)	$(x+3)^{2} + (y-8)^{2} = 49$	TO TAES. OIL
		Centre $P = (-3, 8)$, Radius = 7	
	(ii)	Centre $P = (-3, 8)$, Radius = 7 Gradient of $PM = \frac{8-12}{-3-(-1)} = 2$	
		Gradient of chord $AB = -\frac{1}{2}$ (AB perpendicular to PM)	
		Equation of chord AB is	
-	1		

2019_Prelim_4E5N_AMATHP1_MarkScheme

		-
	$\frac{y-12}{x-(-1)} = -\frac{1}{2}$	
_	2y = -x + 23	
(iii)	Note that P, M and Q lie on a straight line. Case 1: M is between P and Q	
	Case 1. <i>M</i> is between <i>P</i> and <i>Q</i> $x_0 = x_M + 2(x_M - x_P) = -1 + 2(-1 - (-3)) = 3$	
	$y_Q = y_M + 2(y_M - y_P) = 12 + 2(12 - 8) = 20$	
	So coordinate of Q is (3,20) (shown)	
	Case 2: P is the midpoint of Q and M	
	$x_P = \frac{x_Q + x_M}{2} \implies x_Q = 2x_P - x_M = 2(-3) - (-1) = -5$	
	$y_P = \frac{y_Q + y_M}{2} \Rightarrow y_Q = 2y_P - y_M = 2(8) - (12) = 4$	
	So coordinate of Q is $(-5, 4)$.	
12 (i)	Using cosine rule.	TOTAL: 9m
	$QT^{2} = 4^{2} + 4^{2} - 2(4)(4)\cos(\pi - 2x)$	
	$= 32 + 32 \cos 2x$	
	$= 32 + 32(2\cos^2 x - 1)$	
	$= 64\cos^2 x$	
(**)	$QT = \sqrt{64\cos^2 x} = 8\cos x$	
(ii)	$A = \frac{1}{2}(4)(4)\sin(\pi - 2x) + 3(8\cos x)$	
	$=8\sin 2x + 24\cos x$ (shown)	
(iii)	$\frac{\mathrm{d}A}{\mathrm{d}x} = 16\cos 2x - 24\sin x = 0$	
	$16(1-2\sin^2 x) - 24\sin x = 0$	
	$4\sin^2 x + 3\sin x - 2 = 0$	
	$\sin x = 0.4253$ or -1.175 (rejected)	
	For stationary point,	
	$x = 0.4392$, $A = 27.8799 \approx 27.9$ cm ²	
	$\frac{\mathrm{d}^2 A}{\mathrm{d} x^2} = -32\sin 2x - 24\cos x$	
	1995/19	
	When $x = 0.4392$, $\frac{d^2 A}{dx^2} = -46.35 < 0$, so $A = 27.9$ cm ² is	
	a maximum area.	TOTAL: 10m

TOTAL: 10m

2019_Prelim_4E5N_AMATHP1_MarkScheme

5

Greendale Secondary School
Preliminary Examination 2019

17

Marking Scheme

1 A curve has the equation $y = (ax-3)\ln x$, where x > 0, $x \neq \frac{3}{a}$ and a is a positive constant. The normal to the curve at the point where the curve crosses the x-axis is parallel to the line x+5y-4=0. Find the value of a. [7]

$(ax-3)\ln x=0$	M1
$\ln x = 0$	
x = 1	M1
x + 5y - 4 = 0	
$y = -\frac{1}{5}x + \frac{4}{5}$	
$m_{line} = -\frac{1}{5}$	M1
$m_{\perp} = 5$	M1
$y = (ax - 3)\ln x$	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(ax-3)}{x} + a\ln x$	M1
$@x = 1, m_{tan} = \frac{a-3}{1} + a \ln 1$	M1
= a - 3	
a - 3 = 5	
<i>a</i> = 8	Al

S4 Express/5 Normal (Academic)

Additional Mathematics Paper 2

2a Differentiate the following with respect to x,(i) ln(cos 2x)

$y = \ln(\cos 2x)$	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\cos 2x} \cdot -\sin 2x \cdot 2$	M1
$=-2\tan 2x$	A1

(ii) $\frac{x}{2} \tan 2x$	[2]
$y = \frac{x}{2} \tan 2x$	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{2} \cdot \sec^2 2x \cdot 2 + \tan 2x \cdot \frac{1}{2}$	M1
$= x \sec^2 2x + \frac{1}{2} \tan 2x$	A1

b	Using your results from part (a) find $\int 2x \sec^2 2x dx$.		[4]
	$\int x \sec^2 2x + \frac{1}{2} \tan 2x dx = \frac{x}{2} \tan 2x$	M1	
	$\int x \sec^2 2x dx = \frac{x}{2} \tan 2x - \frac{1}{2} \int \tan 2x dx$	M1	
	$2\int x \sec^2 2x \mathrm{d}x = x \tan 2x - \int \tan 2x \mathrm{d}x$	M1	
	$\int 2x \sec^2 2x \mathrm{d}x = x \tan 2x + \frac{1}{2} \ln \cos 2x + c$	A1	

[4]

[2]

3 (i) Given that the constant term in the binomial expansion of $\left(\frac{2}{x} - \frac{x^2}{k}\right)^6$ is 60, find the value of the positive constant k. [4]

 $T_{r+1} = \left(\frac{2}{x}\right)^{6-r} C_r^6 \left(\frac{x^2}{k}\right)^r \qquad M1$ $\rightarrow x^{-6+r} \times x^{2r} \qquad M1$ $\therefore 3r - 6 = 0$ $r = 2 \qquad M1$ $T_3 = \left(\frac{2}{x}\right)^4 C_2^6 \left(\frac{x^2}{k}\right)^2$ $\frac{240}{k^2} = 60$ $k = 2, -2(NA) \qquad A1$

(ii) Using the value of k found in part (i), find the term independent of x

in the expression
$$(1+x^3)\left(\frac{2}{x}-\frac{x^2}{k}\right)^6$$
. [4]

$$(1+x^3) \left(\frac{2}{x} - \frac{x^2}{k}\right)^6$$

$$= (1+x^3) \left[\left(\frac{2}{x}\right)^6 + \left(\frac{2}{x}\right)^5 C_1^6 \left(-\frac{x^2}{2}\right)^1 + \left(\frac{2}{x}\right)^4 C_2^6 \left(-\frac{x^2}{2}\right)^2 + \dots \right]$$

$$= (1+x^3) \left[\dots - 6 \left(\frac{2^{5-1}}{x^{5-2}}\right) + 15 \left(\frac{2^{4-2}}{x^{4-4}}\right) + \dots \right]$$

$$= -96 + 60$$

$$= -36$$

$$M1$$

Additional Mathematics Paper 2

[4]

4a A particle moves along the curve $y = 3x^2 - 2x + 5$. At the point *P*, the *x*-coordinate of the particle is increasing at a rate of 0.002 units/sec and the *y*-coordinate is increasing at 0.02 units/sec. Find the coordinates of *P*. [4]

	1
$y = 3x^2 - 2x + 5$	
$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x - 2$	M1
$\frac{\mathrm{d}x}{\mathrm{d}t} = 0.002 \ u \ / \ s \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = 0.02 \ u \ / \ s$	Both seen M1
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$	
$6x - 2 = \frac{0.02}{0.002}$	M1
x = 2	A1
$y = 3(2)^2 - 2(2) + 5$	
=13	
P(2,13)	

b The equation of a curve is $y = x^3 + 5x^2 - 8x + k$, where k is a constant. Find the set of values of x for which y is decreasing.

 $y = x^{3} + 5x^{2} - 8x + k$ $\frac{dy}{dx} = 3x^{2} + 10x - 8$ M1
For decreasing function, $\frac{dy}{dx} < 0$ $3x^{2} + 10x - 8 < 0$ (3x - 2)(x + 4) < 0M1 $-4 < x < \frac{2}{3}$ A1

Preliminary Examination 2019	21	S4 Express/c mal (Additional Mathematic	
(i) Show that $\frac{d}{dx}\left(\frac{\ln 2x}{x^3}\right)$	$=\frac{1}{x^4}-\frac{3\ln 2x}{x^4}$		[4]
$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\ln 2x}{x^3}\right) = \frac{x^3 \cdot \frac{1}{2x} \cdot 2 - 1}{\left(x^3\right)^3}$	$n 2x \cdot (3x^2)$	MI, M	1
$=\frac{x^2}{x^6} - \frac{3x^2 \ln 2}{x^6}$ $=\frac{1}{x^4} - \frac{3\ln 2x}{x^4}$		M1	
$=\frac{1}{x^4}-\frac{1}{x^4}$		A1	

$\int \frac{1}{x^4} - \frac{3\ln 2x}{x^4} \mathrm{d}x = \frac{\ln 2x}{x^3}$	M1
$\int \frac{3\ln 2x}{x^4} \mathrm{d}x = \int \frac{1}{x^4} \mathrm{d}x - \frac{\ln 2x}{x^3}$	MI
$3\int \frac{\ln 2x}{x^4} dx = \frac{x^{-3}}{-3} - \frac{\ln 2x}{x^3} + c$	
$\int \frac{\ln 2x}{x^4} dx = -\frac{1}{9x^3} - \frac{\ln 2x}{3x^3} + c$	AI

(iii) Given that the curve y = f(x) passes through the point $\left(1, \frac{8}{9}\right)$ and is such

that
$$f'(x) = \frac{\ln 2x}{x^4}$$
, find $f(x)$. [2]

$$f(x) = \int \frac{\ln 2x}{x^4} dx$$

$$y = -\frac{1}{9x^3} [1 + 3\ln 2x] + c$$
MI
$$\frac{8}{9} = -\frac{1}{9} [1 + 3\ln 1] + c$$

$$c = 1$$
A1
$$f(x) = -\frac{1}{9x^3} [1 + 3\ln 2x] + 1$$

Preliminary Examination 2019

Greendale Secondary St.

6 Mr Tan drives his car along a straight road. As he passes a point *A* he applies the brake and his car slows down, coming to a rest at point *B*. For the journey from *A* to *B*, the distance, *s* meters, of the car from *A*, *t* seconds

after passing A, is given by

$$s = 600 \left(1 - e^{\frac{t}{6}} \right) - 12t$$

(i) Find an expression, in terms of t, for the velocity of the car during the journey from A to B. [2]

$s = 600 - 600e^{\frac{t}{6}} - 12t$	
$\frac{\mathrm{d}s}{\mathrm{d}t} = -600 \cdot e^{-\frac{t}{6}} \cdot \left(-\frac{1}{6}\right) - 12$	M1
$v = 100e^{-\frac{r}{6}} - 12$	A1

(ii) Find the velocity of the car at A_{\cdot}

1
B1

(iii) Find the time taken for the journey from A to B.

[3]

[1]

$0 = 100e^{-\frac{t}{6}} - 12$	MI
$100e^{-\frac{t}{6}} = 12$	
$-\frac{t}{6} = \ln\left(\frac{12}{100}\right)$	M1
<i>t</i> = 12.72 <i>s</i>	AI

(iv)	Find the average speed of the car for the journey from A	to B.	[3]
------	--	-------	-----

Ave speed = $\frac{\text{tot dist}}{1}$	
tot time	
$=\frac{600\left(1-e^{\frac{12.72}{6}}\right)-12(12.72)}{12.72}$	M1 (num) M1 (den)
= 29.5 m/s	AI

7

23

[5]

Solve each of the following equations. (i) $e^{2\ln x} + \ln e^{2x} = 8$	[5
$e^{2\ln x} + \ln e^{2x} = 8$	
$e^{\ln x^2} + 2x \ln e = 8$	M1, M1
$x^2 + 2x - 8 = 0$	M1
(x+4)(x-2)=0	
x = 2, or $x = -4$ (NA)	A1, A1

(ii) $\log_5 50 + 4\log_{25} x - \log_5(2x+4) = 2$

$$\log_{5} 50 + 4 \log_{25} x - \log_{5} (2x+4) = 2$$

$$\log_{5} 25 \times 2 + \frac{4 \log_{5} x}{\log_{5} 25} - \log_{5} (2x+4) = 2$$

$$M1, M1$$

$$\log_{5} 5^{2} + \log_{5} 2 + \frac{4 \log_{5} x}{\log_{5} 5^{2}} - \log_{5} 2(x+2) = 2$$

$$2 + \log_{5} 2 + \frac{4 \log_{5} x}{2} - [\log_{5} 2 + \log_{5} (x+2)] = 2$$

$$1 + \log_{5} 2 + 2 \log_{5} x - \log_{5} 2 - \log_{5} (x+2) = 2$$

$$\log_{5} (x+2) = 2 \log_{5} x$$

$$x+2 = x^{2}$$

$$x^{2} - x - 2 = 0$$

$$M1$$

$$(x-2)(x+1) = 0$$

$$x = 2, \text{ or } x = -1 (N4)$$
A1

24

B1

8 In the diagram, triangles OAB and OCD are right-angled triangles.

Angle AOB = angle $ODC = \theta$., OA = 3 cm and OD = 8 cm.

(i) Show that the length of
$$AB + CD = 3\sin\theta + 8\cos\theta$$
.

[1]

[2]

 $AB + CD = 3\sin\theta + 8\cos\theta$

(ii) Express $3\sin\theta + 8\cos\theta$ in the form $R\sin(\theta + \alpha)$ where R > 0 and α is acute. [4]

$3\sin\theta + 8\cos\theta = R\sin(\theta + \alpha)$	1
$= R\sin\theta\cos\alpha + R\cos\theta\sin\alpha$	
$R\cos\alpha = 3$	M1
$R\sin\alpha = 8$	both
$\tan\alpha = \frac{8}{3}$	
$\alpha = 69.44^{\circ}$	M1
$R = \sqrt{73}$	M1
$3\sin\theta + 8\cos\theta = \sqrt{73}\sin(\theta + 69.44^*)$	A1

(iii) Find the maximum length of AB + CD and the corresponding value of θ . [3]

$Max = \sqrt{73}$ or 8.544	B1
$sin(\theta + 69.44^{\circ}) = 1$ $\theta = 90^{\circ} - 69.44^{\circ}$	M1
$\theta = 20.56^{\circ}$	AI

(iv) Find the value of θ , if B is the midpoint of OC.

2OB = OC $2(3\cos\theta) = 8\sin\theta$ $\tan\theta = \frac{6}{8}$ $\theta = 36.87^{\circ}$ A1

Pre	liminary Examination 2019	Additional Mathematics Paper
)	The function f is defined by $f(x) = 4\cos 2x - 3$.	
	(i) State the amplitude of f.	[1]
	Amplitude = 4	Bl
	(ii) State the period of f in terms of π .	[1]
	Period = $\frac{2\pi}{2}$	

Min = -4 - 3	······································	1
= -7		B1

(iv) Find the x-coordinates of the points where the curve meets the x-axis. [3]

$4\cos 2x - 3 = 0$	$0 \le x \le \pi$	M1
$\cos 2x = \frac{3}{4}$	$0 \le 2x \le 2\pi$	M1
2x = 0.722	27, 5.560	4
<i>x</i> = 0.361	4, 2.780	A1

(v) Sketch the graph of $y = |3\cos 2x - 4|$ for $0 \le x \le \pi$.

....

....

.

[3]

1	
1 < c < 7	B1
	~1

v=4cos2x - 3

Preliminary Examination 2019

Greendale Secondary St.

Kite

10 The diagram shows a triangle ABC with vertices at A(0, 3), B(8, 12) and C(k, 13).
(i) Given that AB = BC, find the value of k.

$AB^2 = BC^2$	
$(k-8)^{2} + (13-12)^{2} = (8-0)^{2} + (12-3)^{2}$ $(k-8)^{2} = 64+81-1$	M1
$(k-8)^2 - 144 = 0$ $(k-8+12)(k-8-12) = 0$	M1
(k+4)(k-20) = 0	M1
k = 20, k = -4(NA)	A1

26

A line is drawn from B to meet the x-axis at D such that AD = CD.

(ii) Name the quadrilateral *ABCD*.

[1]

B1

(iii) H	Find the	equation	of BD	and the	coordinates	of <i>D</i> .
---------	----------	----------	-------	---------	-------------	---------------

Property of Kite △. Diagonals intersect at 90° 13-3		
$m_{AC} = \frac{1}{20 - 0}$	M1	
$=\frac{1}{2}$		
$m_{BD} = -2$	M1	
12 = -2(8) + c		
<i>c</i> = 28	1	
y = -2x + 28	A1	
0 = -2x + 28		
x = 14		
<i>D</i> (14,0)	A1	

(iv) Find the area of the triangle ABC.

[2]

4 - 108200	
$A = \frac{1}{2} \begin{vmatrix} 3 & 12 & 13 & 3 \end{vmatrix}$	M1
$=\frac{1}{2}[(264)-(104)]$	
2 [[[201]] [[101]]]	and the second se
$= 80 \text{ units}^2$	Al

[4]

11a (i) Find the range of values of x for which $x^2 - 8x + 15 \ge 0$

[2]

M1
1411
A1

(ii) Hence, find the range of values of x for which $(x+2)^2 - 8x - 1 < 0$ [3]

$(x+2)^2 - 8(x+2) + 16 - 1 < 0$	
$(x+2)^2 - 8(x+2) + 15 < 0$	M1
$\left[\left(x+2\right)-5\right]\left[\left(x+2\right)-3\right]<0$	M1
(x-3)(x-1) < 0 $1 < x < 3$	A1

b Show that $my = x^2 - 4(x-1)$ meets the curve $y = x^2 - 3x + 2$ at two distinct points for all real values of m, except m = 0 and m = 1. [5]

$$my = x^{2} - 4(x-1)$$

$$y = \frac{x^{2} - 4x + 4}{m}$$

$$y = x^{2} - 3x + 2$$

$$\frac{x^{2} - 4x + 4}{m} = x^{2} - 3x + 2$$

$$\frac{x^{2} - 4x + 4}{m} = x^{2} - 3mx + 2m$$

$$(m-1)x^{2} + (4-3m)x + (2m-4) = 0$$

$$b^{2} - 4ac = (4-3m)^{2} - 4(m-1) \cdot 2(m-2)$$

$$= 16 - 24m + 9m^{2} - 8(m^{2} - 3m + 2)$$

$$= 16 - 24m + 9m^{2} - 8(m^{2} - 3m + 2)$$

$$= 16 - 24m + 9m^{2} - 8m^{2} + 24m - 16$$

$$= m^{2}$$

$$m^{2} > 0$$

$$\therefore b^{2} - 4ac > 0$$

$$\therefore 2 \text{ distinct roots}$$
A1