

SM5S 2019

ST. MARGARET'S SECONDARY SCHOOL. Mid-Year Examinations 2019

[Turn over

CANDIDATE NAME			
CLASS		REGISTER NUMBER	
ADDITIONAL MA	THEMATICS	4047	/01
Paper 1		7 May 2	2019
Secondary 4 Express		2 ho	ours
Candidates answer on	the Question Paper.		
No Additional Materials	are required.		
READ THESE INSTRU	CTIONS FIRST		
Write your name, regis Write in dark blue or bla You may use an HB per Do not use staples, pape	ck pen. ncil for any diagrams o		•
case of angles in degree	al answers correct to 3 es, unless a different le scientific calculator is	3 significant figures, or 1 decimal place in evel of accuracy is specified in the question expected, where appropriate.	
At the end of the examir The number of marks is The total number of mar	given in brackets [] a	at the end of each question or part question	n.
This doc	ument consists of 17 p	orinted pages and a blank page.	

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation
$$ax^2 + bx + c = 0$$
,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n$$

where *n* is a positive integer and
$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$

$$sin(A \pm B) = sin A cos B \pm cos A sin B$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1-\tan^2 A}$$

Formulae for AABC,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2}ab\sin C$$

1 (i) Given that $\frac{8}{(27^x)} = 2^{3x}$, find the exact value of 6^x . [2]

(ii) Solve the equation $(25^x)^x = 125^{5x-6}$. [3]

SMSS 2019 [Turn over

2 (i) A prism with a trapezium base has a volume of $24 + 17\sqrt{2}$ cm³. The trapezium has a height of $\sqrt{2}$ cm and its parallel sides are $3\sqrt{2} + 2$ cm and 2 cm respectively. Find the height of the prism, leaving your answer in the form $a\sqrt{2} + b$ cm, where a and b are integers. [3]

(ii) Simplify
$$\frac{5}{\sqrt{2}} + 2\sqrt{50} - \frac{2}{\sqrt{8}}$$
. [2]

Variables x and y are related by the equation $y = \frac{11x-1}{9-x}$. Given that x and y are functions of t and that y increases from an initial value of 2.9 at a constant rate of 0.005 units/s, find the corresponding rate of change of x after 20 seconds. [5]

SMSS 2019

The diagram shows a trapezium BDEA in which BD is parallel to AE. The side ED is parallel to the x-axis. It is extended to meet at point C which has coordinates (-1,3). The equation of AE is 2x - 5y = 4 and the equation of AC is y + x - 2 = 0.

Find

(i) the coordinates of A, E and D.

[4]

(ii) t	the ratio of area of triangle BCD to area of trapezium BDEA.	[1]
--------	--	-----

5 (i) Differentiate $x^2 \ln x$ with respect to x. [2]

(ii) Hence find $\int x \ln x \, dx$. [3]

Given that $\sin A = \frac{24}{25}$ where A is acute, $\tan B = \frac{3}{4}$ and that A and B are in different quadrants, find, without evaluating A or B, the value of

(i)
$$\sin(A+B)$$
, [3]

(ii)
$$\cos\left(\frac{B}{2}\right)$$
. [2]

SMSS 2019

- It is given that a curve has equation = f(x), where $f(x) = (2x + 3)(x 2)^2$.
 - (i) Find the coordinates of the stationary points of the curve. [4]

(ii) Hence, determine the nature of these stationary points.

[3]

(iii) Sketch the graph of f'(x) against x.

[2]

SMSS 2019 [Turn over

8	(i)	The quadratic function is defined by $y = 2x^2 - 8x - 15$ where x is real
---	-----	---

(a) Find the set of values of x for which $y \le 3x^2$. [3]

(b) Find the set of values of k for which the equation y = kx - 23 has no real roots. [3]

(ii) Show that the line $y = \frac{x}{p} + \frac{p}{2}$ is a tangent to the curve $y^2 = 2x$ for all real values of p. [3]

9 (i) Sketch the graph of = $3\sqrt{x}$.

(ii) On the same axes, sketch the graph of
$$y = \frac{12}{\sqrt{x^3}}$$
, $x > 0$. [1]

(iii) Calculate the x co-ordinate of the point of intersection of your graphs in exact form. [2]

(iv) Determine, with explanation, whether the tangents to the graphs at the point of intersection are perpendicular. [4]

SMSS 2019 [Turn over

10

The diagram shows part of the graph y = 3 - |4 - x| intersecting the y-axis at U. V is the highest point on the graph.

(i) Find the coordinates of U and V.

[2]

The equation of a line is y = mx + 3, where m is a constant.

(ii) In the case where m = -2, find the coordinates of any point of intersection of the line and the graph of y = 3 - |4 - x|. [3]

(iii) Determine the range of values of m for which the line intersects the graph of y = 3 - |4 - x| in two points. [2]

11 The roots of the quadratic equation $2x^2 + 5x - 4 = 0$ are α and β . Find

(i) the value of
$$\alpha^3 + \beta^3$$
, [4]

(ii) a quadratic equation with roots
$$\frac{1}{\alpha^3}$$
 and $\frac{1}{\beta^3}$. [4]

12 (i) Show that $\frac{4\cos 2x}{1+\cos 2x}$ can be written as $+bsec^2x$, where a and b are integers. [4]

(ii) Solve, for
$$0^{\circ} < x < 180^{\circ}$$
, the equation $\frac{4 \cos 2x}{1 + \cos 2x} = 4 \tan x - 5$. [4]

(iii) State the number of solutions of the equation $\frac{4\cos 2x}{1+\cos 2x} = 4\tan x - 5 \text{ in}$ the range $-360^{\circ} < x < 360^{\circ}$. [1]

ST. MARGARET'S SECONDARY SCHOOL. Mid-Year Examinations 2019

CANDIDATE NAME				
CLASS			REGISTER	NUMBER
ADDITIONAL MAT	HEMATICS		14	4047/02
Paper 2				10 May 2019
Secondary 4 Express				2 hours 30 minutes
Candidates answer on the	ne Question Paper			
Additional Materials: Gra	aph Paper			
Write your name and inde Write in dark blue or blac You may use a HB penci Do not use staples, pape	ex number on all the k pen on both side I for any diagrams	s of the paper. or graphs.		
Answer all the questions Give non-exact numerica case of angles in degrees The use of an approved s You are reminded of the	al answers correct t s, unless a differer scientific calculator	nt level of accur r is expected, w	acy is specif here approp	fied in the question.
At the end of the examination The number of marks is good the total number of marks.	given in brackets [] at the end of	ly together. each question	on or part question.
	This document cor	nsists of 18 prin	ited pages.	

[Turn over

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation
$$ax^2 + bx + c = 0$$
,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where *n* is a positive integer and
$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

 $sin(A \pm B) = sin A cos B \pm cos A sin B$

 $cos(A \pm B) = cos A cos B \mp sin A sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1-\tan^2 A}$$

Formulae for AABC,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$\Delta = \frac{1}{2}ab\sin C$$

1 A curve has the equation $y = x^2 e^{2xy}$.

Find the range of values of x for which y is an increasing function of x.

[3]

Find all the exact values of x which satisfies the equation

$$8 \cos x - 2 \sin x \cos x + 4 - \sin x = 0$$
 for $0 \le x \le 9$.

[3]

3 Differentiate xe^{5x} with respect to x. Hence find $\int xe^{5x} dx$. [4]

4 Evaluate the following definite integrals, giving your answer in exact form.

(a)
$$\int_0^1 \frac{3e^{5x}-7}{e^{2x}} dx$$
, [3]

(b)
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{4 - \cos^2 2x}{1 - \sin^2 2x} dx.$$
 [3]

Express
$$\frac{x^3}{x^2+3x+2}$$
 in the form $Ax+B+\frac{C}{x+2}+\frac{D}{x+1}$, where A, B, C and D are constants. Hence evaluate $\int \frac{x^3}{x^2+3x+2} dx$. [6]

6 (i) Find the number of real roots of the equation $3x^3 + 2x^2 + 10 = 3x$. [4]

(ii) Hence solve the equation $3 + 2y - 3y^2 + 10y^3 = 0$. [2]

7 The diagram shows part of a graph whose gradient function is given by $\frac{dy}{dx} = 2 \cos 2x - 2 \sin x. A, B \text{ and } C \text{ are stationary points on the graph.}$

(i) Show that C is a point of inflexion.

[4]

(ii) Find the equation of the curve.

[2]

The diagram shows the arch AFTEB of a stone bridge. The bridge forms an arc of a circle and the length AB forms a chord of the circle. AB is 8 m and the top of the bridge T is 1 m vertically above AB. C and D are the midpoints of OA and OB. CF and DE are two vertical pillars supporting the arch.

(i) Show that the equation of the circle is $x^2 + y^2 + 15y - 16 = 0$.

[4]

(ii) Find the height of the pillar CF.

[2]

9 (i) Given that $y = \cos^3 x$, show that $\frac{dy}{dx} = 3 \sin^3 x - 3 \sin x$. [2]

(ii) Hence evaluate $\int_0^{\frac{\pi}{3}} \sin^3 x \, dx$. [5]

10 (a) Solve the equation $\ln (2x + e) = 1 + \frac{1}{\log_x e}$, leaving your answer in the exact form. [3]

10 (b) Without using a calculator, find the exact value of y if $(5y)^{\ln 5} = (2y)^{\ln 2}$. [5]

11 Answer the whole question on a sheet of graph paper.

The table below shows the experimental values of the variables x and y.

x	0.5	1.5	3	4.5	5.5	6
у	4.43	6.24	7.44	11.4	15.7	18.7

It is known that x and y are related by an equation of the form $y = e + ab^x$.

One of the y values is incorrect.

(i) Plot a straight line graph of $\ln (y - e)$ against x. [4]

(ii) Use your graph to identify the abnormal reading and estimate its correct

value. [2]

(iii) Use the graph to estimate the value of a and of b. [2]

SMSS 2019

12 A solid right circular cylinder with base radius r cm and height h cm has a hemisphere hollowed out from each end as shown in the diagram.

Given that the surface area is 128π cm²,

(i) show that the volume of the solid, $V \text{ cm}^3$, is given by $V = \frac{2\pi r}{3} (96 - 5r^2)$. [3]

(ii) find the value of r for which V is stationary, [2]

(iii) find the corresponding value of V and determine whether it is a maximum or a minimum value. [3]

13 A waterwheel rotates 5 revolutions anticlockwise in 1 minute. A bucket B is attached to the waterwheel. Tammy starts a stopwatch when the bucket B is at its highest height above water level. The radius of the waterwheel is 8 m and its centre is 5 m above the water level.

The height of the bucket B above water level is given by $h = a \cos bt + c$, where t is the time, in seconds, since Tammy started the stopwatch.

(i) Determine the value of each of the constant a, b, and c. [5]

(ii) For how long in each revolution is h < 0?

[3]

(iii) Explain what does the answer in (ii) mean.

[1]

14 (a) In the expansion of
$$\left(x^9 - \frac{1}{3x}\right)^{10}$$
, determine if there is a x^9 term. [3]

(b)(i) Find the first three terms in the expansion of
$$\left(2 - \frac{1}{x}\right)^8$$
 in descending powers of x. [2]

(ii) Hence find the values of a, b and c given that the first three terms in the

expansion of
$$(a + bx) \left(2 - \frac{1}{x}\right)^8$$
 are $128x$, -256 and $\frac{c}{x}$ respectively. [5]

15 An open cylindrical tank with O as the centre of the base is shown in the diagram.

It is given that $\angle EOF = 2\theta$ where $0^{\circ} < \theta < 90^{\circ}$ and OF = 2 cm.

The external total surface area of the cylindrical tank is S cm².

(i) Show that $S = 2\pi (2 \sin 2\theta - \cos 2\theta + 1)$.

[4]

(ii) Express $S = 2\pi (2 \sin 2\theta - \cos 2\theta + 1)$ in the form $2\pi [R \sin (2\theta - \alpha) + 1]$ where R > 0 and $0^{\circ} < \theta < 90^{\circ}$. [3]

(iii) Find the maximum possible value of S and the corresponding value of θ . [3]

Anwer

$$1 \quad 0 < x < \frac{2}{3}$$

$$2 \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{8\pi}{3}$$

$$3 \quad \frac{1}{5} \left(x e^{5x} - \frac{1}{5} e^{5x} \right) + C_2$$

4(a)
$$e^3 + \frac{7}{2e^2} - \frac{9}{2}$$
 (b) $2\sqrt{3} - \frac{\pi}{6}$

(b)
$$2\sqrt{3} - \frac{\pi}{6}$$

$$5 \qquad \frac{x^2}{2} - 3x + 8\ln(x+2) - \ln(x+1) + C$$

$$7(ii) \quad y = \sin 2x + 2\cos x$$

9(ii)
$$\frac{5}{24}$$

10(a)
$$x = \frac{e}{e-2}$$
 (b)

11(ii) abnormal reading
$$y = 6.24$$
 correctly = 5.30

(iii)
$$a = 1.42 / b = 1.50$$

$$12(ii) = 2.53$$

13(i)
$$a = 8, c = 5, h = \frac{\pi}{6}$$

14(a) no
$$x^9$$
 term (b)(i) 256 $-\frac{1024}{x} + \frac{1792}{x^2} + \cdots$

(c)
$$a = 1, b = 0.5, c = -128$$

15(ii)
$$S = 2\pi \left[\sqrt{5} sin(2\theta - 26.6^{\circ}) + 1 \right]$$

(iii)
$$\max s = 20.3 \text{ cm}^2 \text{ when } \theta = 58.3^0$$