| Class | Index Number | Name |  |
|-------|--------------|------|--|
|       |              |      |  |



## 新加坡海星中学

## MARIS STELLA HIGH SCHOOL MID-YEAR EXAMINATION SECONDARY FOUR

### ADDITIONAL MATHEMATICS

Paper 1

4047/01 10 May 2019 2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

### READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Write your answers on the separate Answer Paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

The total number of marks for this paper is 80.



### Mathematical Formulae

### 1. ALGEBRA

Quadratic Equation

For the equation  $ax^2 + bx + c = 0$ 

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and

$$\begin{pmatrix} n \\ r \end{pmatrix} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-r+1)}{r!}$$

### 2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for  $\triangle ABC$ 

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

A triangle has an area of  $(58+8\sqrt{5})$  cm<sup>2</sup> and a height of  $(7+3\sqrt{5})$  cm. Without using a calculator, find the exact length of its base, expressing in the form  $a+b\sqrt{5}$ , where a and b are integers. [4]

2 (i) On the same diagram, sketch the curves  $y = 9x^{-\frac{1}{2}}$  and  $y^2 = 4x$ . [2]

(ii) Find the coordinates of the point(s) of intersection of the two curves. [2]

The equation of a curve is  $y = 2xe^{x-k}$ , where k is a constant. The curve passes through the point (5,10).

(i) Find the value of k. [2]

(ii) For what values of x is y an increasing function of x? [3]

4 Express  $\frac{16x^2 - 9x + 18}{x^3 + 3x^2}$  in partial fractions. [5]

- 5 The function f is given by  $f(x) = -3\sin\frac{x}{2} + 2$ .
  - (i) State the amplitude and period of f. [2]

(ii) Sketch the graph of y = f(x) for  $0 \le x \le 4\pi$ . By drawing a suitable straight line on the same axes, state the number of solutions to the equation  $4\pi - x - 6\pi \sin \frac{x}{2} = 0$  for  $0 \le x \le 4\pi$ . [5]

6 (i) Given that cos(A+B) = 3cos(A-B) and  $tan A = -\frac{5}{2}$ , find the value of cot B. [3]

(ii) Prove that 
$$\frac{1 + \tan^2 x}{1 - \tan^2 x} = \sec 2x$$
. [3]

7 The roots of the quadratic equation  $2x^2 + x + 6 = 0$  are  $\alpha$  and  $\beta$ .

(i) Express  $\alpha^2 - \alpha\beta + \beta^2$  in terms of  $(\alpha + \beta)$  and  $\alpha\beta$ . [1]

(ii) Form a quadratic equation whose roots are  $\alpha^3$  and  $\beta^3$ . [5]

An antique grandfather clock manufactured using the finest wood in 1850 had an initial value \$2000. The clock appreciated in its value such that its value \$V can be modelled by the equation  $V = 20000 - Ae^{kt}$ , where t is the number of years after its manufacture date.

(i) Find the value of A. [2]

(ii) In the year 1880, the clock reached five times its initial value. Show that k = -0.01959 correct to 4 significant figures. [3]

(iii) Explain why the value of the clock will not exceed \$20000. [2]

9 The diagram shows the graph of y = |6-2x|-1.



(i) Find the coordinates of A and of B.

(ii) By solving the equation |6-2x| = 3x+1, find the x-coordinate of the point(s) of intersection between the graphs y = |6-2x|-1 and y = 3x. [3]

[2]

(iii) State the range of values of m for the equation |6-2x| = mx + 1 to have no solution. [2]

A circle passes through the points P(0,8) and Q(8,12). The <u>y-axis is a tangent to the circle at P.</u>

(i) Find the equation of the circle.

[5]

The tangent to the circle at Q intersects the x-axis and y-axis at A and B respectively.

(ii) Find the ratio of AQ:QB.

[3]

11 (i) Expand  $(1-2x)^9$  in ascending powers of x up to the term in  $x^3$ . [2]

(ii) Find the value of k, given that the coefficient of x in the expansion of  $\left(3x + \frac{1}{kx^2}\right)(1-2x)^9$  is -53. [3]

- The equation of a curve is given by  $y = \ln \sqrt{\frac{5x}{9x+4}}$ .
  - (i) Find  $\frac{dy}{dx}$ , expressing it as a single fraction. [3]

(ii) Find the rate at which x is changing when the graph crosses the x-axis, given that y is increasing at a rate of 0.3 units per second. [4]

Solutions to this question by accurate drawing will not be accepted.





The diagram, which is not drawn to scale, shows a triangle PQR in which PQ = QR. The coordinates of the points P and R are (-4,0) and (12,4) respectively.

(i) Find the equation of the perpendicular bisector of PR. [3]

The equation of the line QR is 2y = 9x - 100.

(ii) Find the coordinates of Q.

[2]

(iii) Find the coordinates of S if PQRS forms a rhombus. Hence, or otherwise, find the area of the rhombus PQRS.

[4]

| Class | Index Number | Name |
|-------|--------------|------|
|       | =            |      |



# 新加坡海星中学

### MARIS STELLA HIGH SCHOOL MID-YEAR EXAMINATION SECONDARY FOUR

### ADDITIONAL MATHEMATICS

Paper 2

4047/02 15 May 2019 2 hours

Candidates answer on the Question Paper. No Additional Materials are required.

### **READ THESE INSTRUCTIONS FIRST**

Write your class, index number and name on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

### Answer all the questions.

Write your answers on the separate Answer Paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 80.



### Mathematical Formulae

### 1. ALGEBRA

Quadratic Equation

For the equation  $ax^2 + bx + c = 0$ 

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and

$$\begin{pmatrix} n \\ r \end{pmatrix} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-r+1)}{r!}$$

#### 2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for \( \Delta ABC \)

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

- The polynomial  $f(x) = 2x^3 + ax^2 + bx + 8$ , where a and b are constants, has a factor (x+2) and leaves a remainder of 10 when divided by (2x-1).
  - (i) Find the value of a and of b.

[4]

(ii) Using the values of a and b found in part (i), explain why the equation f(x) = 0 has only one real root. Find this root. [4]

(iii) Hence, solve  $x^3 + 3x^2 + 4x + 32 = 0$ .

2 (a) Find the range of values of k for which  $((k-3)x^{2} + 4x + k)$  is always positive for all real values of x.

[4]

(b) Show that the roots of the equation  $6x^2 + 4(m-1) = 2(x+m)$  are real if  $m \le 2\frac{1}{12}$ . [3]

Page 6 missing - to copy questions from answers

(c) Solve the equation  $\log_3(2x-1) - \frac{1}{2}\log_3(x^2+2) = \log_{25} 5$ . [5]

In a Science experiment, a container of liquid was heated to a temperature of K °C.

It was then left to cool in a chiller such that its temperature, T °C, t minutes after removing the heat, is given by  $T = Ke^{-qt}$ , where q is a constant.

Measured values of t and T are given in the following table.

| t (minutes) | 2    | . 4  | 7    | 10   | 12   |
|-------------|------|------|------|------|------|
| T°C         | 71.1 | 57.0 | 40.8 | 29.3 | 23.4 |

- (i) Using a scale of 1 cm to 1 unit on the t-axis and 4 cm to 1 unit on the ln T-axis, plot ln T against t and draw a straight line graph. [2]
- (ii) Use the graph to estimate the value of K and of q. [4]

(iii) Estimate the temperature of the liquid 8 minutes after it was left to cool. [2]

5 (a) (i) Prove that  $\frac{\sin x}{\sec x + 1} + \frac{\sin x}{\sec x - 1} = 2 \cot x.$ 

[4]

(ii) Hence find, for  $0 \le x \le 4$ , the exact solutions of the equation

[3]

(b) Given that  $\theta$  is obtuse and that  $\sin \theta = \frac{1}{\sqrt{3}}$ , express, without the use of a calculator,

$$\frac{1}{\sin \theta - \cos \theta} \text{ in the form } \sqrt{a} - \sqrt{b} \text{ where } a \text{ and } b \text{ are integers.}$$
 [4]

The equation of a curve is  $y = \frac{a}{x} + bx - 1$ , where a and b are constants. The normal to the curve at the point Q(1,-1) is parallel to the line 4y - x = 20. This normal meets the curve again at point P.

(i) Find the value of a and of b.

[5]

(ii) Find the coordinates of point P.

[3]

7 The equation of a curve is  $y = \frac{x^2}{x-1}$ , where  $x \neq 1$ .

(i) Obtain an expression for  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$ . [4]

(ii) Find the coordinates of the stationary points of the curve and determine their nature. [4]

8 (a) Differentiate  $\cot^4\left(\frac{\pi}{2} - 2x\right)$  with respect to x. [3]

(b) Given that a curve has the equation  $y = 3\sin 2x - \cos x$ , find the gradient of the curve when  $x = \frac{\pi}{3}$ , leaving your answer in exact form. [3]

9



The diagram shows the top view of a rectangular desk, PQRS, in a corner of a room. The desk has a length of 1.5 m and width 0.8 m,  $\angle POS = \angle STR = 90^{\circ}$  and  $\angle OPS = \theta$ .

(i) Show that 
$$OT = (1.5\sin\theta + 0.8\cos\theta)$$
 m.

[3]

(ii) Express 
$$OT$$
 in the form  $R\sin(\theta + \alpha)$ , where  $R > 0$  and  $\alpha$  is acute.

[3]

(iii) Given that  $\theta$  can vary, find the maximum value of OT and the corresponding value of  $\theta$ .

End of paper



2019 Additional Mathematics Paper 1 Sec 4 MYE (Solutions)

| 1 | A triangle has an area of $(58 + 8\sqrt{5})$ cm <sup>2</sup> and a height of $(7 + 3\sqrt{5})$ cm. Without using a |
|---|--------------------------------------------------------------------------------------------------------------------|
|   | calculator, find the exact length of its base, expressing in the form $+b\sqrt{5}$ , where a and b are             |
|   | integers. [4]                                                                                                      |
| 1 | Length of the base                                                                                                 |

Length of the base 
$$2(58 + 8\sqrt{5})$$

$$= \frac{116 + 16\sqrt{5}}{7 + 3\sqrt{5}} \times \frac{7 - 3\sqrt{5}}{7 - 3\sqrt{5}}$$

$$=\frac{812-348\sqrt{5}+112\sqrt{5}-240}{49-45}$$

$$=\frac{572-236\sqrt{5}}{4}$$

$$= 143 - 59\sqrt{5}$$
 cm

- 2 On the same diagram, sketch the curves  $y = 9x^{-\frac{1}{2}}$  and  $y^2 = 4x$ 
  - Find the coordinates of the point(s) of intersection of the two curves.

2(i)



(ii)  $y = 9x^{-\frac{1}{2}}$  ----(1)  $y^2 = 4x$  ----(2)

Sub (1) into (2):  $(9x^{-\frac{1}{2}})^2 = 4x$   $81x^{-1} = 4x$   $x^2 = \frac{81}{4}$   $x = \frac{9}{2} \text{ or } -\frac{9}{2} \text{ (reject)}$ 

$$x = \frac{9}{2}^4 or -\frac{9}{2} (reject)$$

When  $x = \frac{9}{2}$ ,  $y = 9(\frac{9}{2})^{-\frac{1}{2}}$ 

 $= 3\sqrt{2}$ The coordinates of the point of intersection is  $(4\frac{1}{2}, 3\sqrt{2}).$ 

The equation of a curve is  $y = 2xe^{x-k}$ , where k is a constant. The curve passes through the point (5, 10).

Find the value of k.

[2]

[3]

For what values of x is y an increasing function of x.

$$3(i) \quad y = 2xe^{x-k}$$

When 
$$x = 5, y = 10,$$

(ii) 
$$y = 2xe^{x-5}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2xe^{x-5} + 2e^x$$

$$= 2e^{x-5}(x+1)$$

be an increasing function of x,

$$\frac{\mathrm{d}y}{}$$

$$\begin{array}{l} dx \\ \text{Since } 2e^{x-5} > 0, x + \end{array}$$

Express 
$$\frac{16x^2-9x+18}{x^3+3x^2}$$
 in partial fraction

[5]

$$\frac{16x^2 - 9x + 18}{3 \cdot 2 \cdot 2} = \frac{16x^2 - 9x + 18}{2(x + 2)}$$

Let 
$$\frac{16x^2 - 9x + 18}{x^3 + 3x^2} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x + 3}$$

$$16x^2 - 9x + 18 = Ax(x+3) + B(x+3) + Cx^2$$

Let 
$$x = -3$$
,  $16(-3)^2 - 9(-3) + 18 = 9C$ 

$$9C = 189$$
  
 $C = 21$ 

Let 
$$x = 0$$
,  $18 = 3B$ 

$$B=6$$

Comparing  $x^2$  term,  $16x^2 = Ax^2 + Cx^2$ 

$$A+C=16$$

$$A + 21 = 16$$
  
 $A = -5$ 

$$\frac{16x^2 - 9x + 18}{x^3 + 3x^2} = \frac{-5}{x} + \frac{6}{x^2} + \frac{21}{x + 3}$$

| 5    | The function f is given by $f(x) = -3\sin{\frac{x}{2}} + 2$ .                                                                                                                                                                                                                                                                                                                                                                                          |   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | (i) State the amplitude and period of f. [2]                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|      | (ii) Sketch the graph of $y = f(x)$ for $0 \le x \le 4\pi$ . By drawing a suitable straight line on                                                                                                                                                                                                                                                                                                                                                    |   |
|      | the same axes, state the number of solutions to the equation $4\pi - x - 6\pi \sin \frac{x}{2} = 0$                                                                                                                                                                                                                                                                                                                                                    |   |
|      | for $0 \le x \le 4\pi$ . [5]                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| 5(i) | Amplitude = 3                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|      | Period = $2\pi \div \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|      | $=4\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| (ii) | ν <b>↑</b>                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|      | 5+                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|      | $y = -3\sin\frac{x}{2} + 2$                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|      | y = -3 siii 2 + 2                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|      | $y = \frac{x}{2\pi}$                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|      | $\frac{1}{2\pi}$ $\frac{2\pi}{4\pi}$                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 |
|      | $4\pi - x - 6\pi \sin \frac{x}{2} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|      | $4\pi - x - 6\pi \sin\frac{x}{2} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 |
|      | $\frac{2\pi}{2\pi} = \frac{2\pi}{2\pi}$                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      | $\begin{vmatrix} \frac{4\pi - x - 6\pi \sin\frac{x}{2}}{2\pi} = \frac{0}{2\pi} \\ 2 - \frac{x}{2\pi} - 3\sin\frac{x}{2} = 0 \end{vmatrix}$                                                                                                                                                                                                                                                                                                             | 1 |
|      | $-3\sin\frac{x}{2} + 2 = \frac{x}{2\pi}$                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|      | Since there are 3 points of intersection between the graphs $y = -3\sin\frac{x}{2} + 2$ and $y = \frac{x}{2\pi}$ ,                                                                                                                                                                                                                                                                                                                                     | ĺ |
| ,    | there are 3 solutions.                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ |
| 6    | (i) Given that $\cos(A + B) = 3\cos(A - B)$ and $\tan A = -\frac{5}{2}$ , find the                                                                                                                                                                                                                                                                                                                                                                     | 0 |
|      | value of cot B.                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 |
|      | (ii) Prove that $\frac{1+\tan^2 x}{1-\tan^2 x} = \sec 2x$                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 6(i) | $\cos(A+B) = 3\cos(A-B)$                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 0(1) | $\cos(A + B) = 3\cos(A - B)$ $\cos A \cos B - \sin A \sin B = 3(\cos A \cos B + \sin A \sin B)$                                                                                                                                                                                                                                                                                                                                                        |   |
|      | $\cos A \cos B - \sin A \sin B = 3 \cos A \cos B + 3 \sin A \sin B$                                                                                                                                                                                                                                                                                                                                                                                    | 2 |
|      | $-4\sin A\sin B = 2\cos A\cos B$                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|      | -A sin A sin P. 3 cos A cos P.                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|      | $\frac{-4\sin A \sin B}{\cos A \cos B} = \frac{2\cos A \cos B}{\cos A \cos B}$                                                                                                                                                                                                                                                                                                                                                                         |   |
|      | AMIC.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|      | $-4\tan A \tan B = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|      | Sub tan $A = -\frac{5}{2}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|      | (ii) Prove that $\frac{1}{1-\tan^2 x} = \sec 2x$ .<br>$\cos(A+B) = 3\cos(A-B)$<br>$\cos A \cos B - \sin A \sin B = 3(\cos A \cos B + \sin A \sin B)$<br>$\cos A \cos B - \sin A \sin B = 3\cos A \cos B + 3\sin A \sin B$<br>$-4\sin A \sin B = 2\cos A \cos B$<br>$\frac{-4\sin A \sin B}{\cos A \cos B} = \frac{2\cos A \cos B}{\cos A \cos B}$<br>$-4\tan A \tan B = 2$<br>Sub $\tan A = -\frac{5}{2}$ ,<br>$-4\left(-\frac{5}{2}\right)\tan B = 2$ |   |
|      | $10 \tan B = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|      | $\tan B = \frac{1}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|      | $\cot B = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |

```
LHS = \frac{1 + \tan^2 x}{1 + \tan^2 x}
                            cos² x-sin² x
       The roots of the quadratic equation 2x^2 + x + 6 = 0 are \alpha and \beta.
                                                                                                    [1]
                        Express \alpha^2 - \alpha\beta + \beta^2 in terms of (\alpha + \beta) and \alpha\beta.
                         Form a quadratic equation whose roots are \alpha^3 and \beta^3.
                                                                                                    [5]
                 \frac{3}{3} + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta - \alpha\beta
                        = (\alpha + \beta)^2 - 3\alpha\beta
    Product of roots: \alpha\beta =
       For an equation whose roots are \alpha^3 and \beta^3
       Sum of roots: \alpha^3 + \beta^3 =
       Product of roots: \alpha^3 \beta^3 = (3)^3
       The equation is x^2 - \left(\frac{35}{8}\right)x + 27 = 0
                   or 8x^2 - 35x + 216 = 0
        An antique grandfather clock manufactured using the finest wood in 1850 was valued at $2000.
       The clock appreciated in its value such that its value V can be modelled by the equation
       V = 20000 - Ae^{kt}, where t was the number of years after its manufacture date.
                    Find the value of A.
                    In the year 1880, the clock reached five times its initial value. Show that
            (ii)
                     k = -0.01959 correct to 4 significant figures.
                                                                                                     [2]
                    Explain why the value of the clock will not exceed $20000.
8(i)
       When t=0,
                           V = 2000
                       2000 = 20000 - Ae^{k(0)}
                           A = 20000 - 2000
                              = 18000
                        V = 20000 - 18000e^{kt}
(ii)
        In the year 1880, t = 30, V = 5(2000)
                    20000 - 18000e^{30k} = 10000
                             -18000e^{30k} = -10000
                                       e^{30k} = \frac{5}{10}
```

|          | $\ln e^{30k} = \ln \frac{5}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 1  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----|
|          | $30k = \ln\frac{5}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |    |
|          | $k = \frac{\ln \frac{5}{2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ĭ                          |    |
|          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                          |    |
|          | $= -0.019592 \dots \text{ or } 3$<br>= -0.01959 (4 sf)(shown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | 1) |
| (iii)    | For all values of $t \ge 0$ , $e^{-0.01959t} > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ľ                          |    |
| \$5000 E | $-18000e^{-0.01959t} < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |    |
|          | $20000 - 18000e^{-0.01959t} < 20000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |
|          | V < 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |    |
| 9        | Hence the value of the clock will not exceed \$20000.<br>The diagram shows the graph of $y =  6 - 2x  - 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |    |
|          | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | _  |
| i        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |    |
|          | $A \downarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \ \                        |    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) )                        |    |
|          | $\longrightarrow x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |    |
|          | V P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | (  |
|          | (i) Find the coordinates of A and of B. [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | ,  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |    |
| 9        | (ii) By solving the equation $ 6-2x  = 3x + 1$ , find the x-coordinate of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |    |
|          | the point(s) of intersection between the graphs $y =  6 - 2x  - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\langle \bigcirc \rangle$ | 2  |
|          | and $y = 3x$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3/5 45                     | 0  |
| 3        | (iii) State the range of values of $m$ for the equation $6-2x=mx+1$ to have no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INA                        |    |
| 2 * 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 111,                     |    |
|          | solution. [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Whats                      |    |
| 9(i)     | solution. [2]  When $x = 0$ , $y =  6 - 2(0)  + 1$ $= 5$ $A(0,5)$ At $B$ , $y$ is minimum when $6 - 2x = 0$ $x = 3$ $y = -1$ $B(3,-1)$ $ 6 - 2x  = 3x + 1$ $6 - 2x = 3x + 1$ or $6 - 2x = -(3x + 1)$ $-5x = -5$ $x = 1$ For $ 6 - 2x  = mx + 1$ to have no solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |
|          | = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |    |
| ٠.       | At B, y is minimum when $6 - 2x = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |    |
| 1.       | x = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                          |    |
| 4, 22    | y = -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | 1  |
| (**)     | B(3,-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |    |
| (ii)     | b-2x  = 3x + 1<br> b-2x  = 3x + 1 or $ b-2x  = -(3x + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |    |
|          | -5x = -5 $x = -7$ (reject)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 1  |
| 1,       | x = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |    |
| (iii)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |    |
|          | For $ 6 - 2x  = mx + 1$ to have no solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |    |
| 8 8      | $-2 \le m < -\frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |    |
| 4.1      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | 5. |
|          | All the Control of th |                            |    |

1.7 3

| 10                                                                                  | A circle passes through the points $P(0,8)$ and $Q(8,12)$ . The y-axisis a tang $P$ .            | ent to the circle at |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|
|                                                                                     | (i) Find the equation of the circle.                                                             | [5]                  |
|                                                                                     | The tangent to the circle at Q intersects the x-axis and y-axis at A an                          |                      |
|                                                                                     | (ii) Find the ratio of AQ: QB.                                                                   | [3]                  |
| 10(i                                                                                | y – coordinate of centre of circle = 8                                                           |                      |
| )                                                                                   | Midpoint of $PQ = \left(\frac{0+8}{2}, \frac{8+12}{2}\right)$                                    |                      |
|                                                                                     | = (4,10)                                                                                         |                      |
|                                                                                     | Gradient of $PQ = \frac{12-8}{8-6}$                                                              |                      |
|                                                                                     | Gradient of $PQ = \frac{12-8}{8-0}$                                                              |                      |
|                                                                                     | Gradient of perpendicular bisector of $PQ = -2$                                                  |                      |
| - (                                                                                 | Equation of perpendicular bisector of PQ:                                                        |                      |
|                                                                                     | y-10=-2(x-4)                                                                                     |                      |
|                                                                                     | y = -2x + 18 Sub y = 8, 8 = -2x + 18                                                             |                      |
|                                                                                     | x = 5                                                                                            |                      |
|                                                                                     | Centre of the circle is (5,8).                                                                   |                      |
|                                                                                     | - 1 1 m /s/                                                                                      |                      |
|                                                                                     | $Radius^2 = (5-0)^2$<br>= 25                                                                     |                      |
|                                                                                     | The equation of the circle is                                                                    |                      |
|                                                                                     | $(x-5)^2 + (y+8)^2 = 25$                                                                         |                      |
| (ii)                                                                                | Gradient of line from Q to centre of circle= $\frac{12-8}{8-5}$                                  |                      |
|                                                                                     | ===                                                                                              |                      |
|                                                                                     | Equation of tangent at Q(8, 12):                                                                 |                      |
| ~(                                                                                  | $y-12=-\frac{3}{4}(x-8)$                                                                         |                      |
| $^{\gamma}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $y - 12 = -\frac{3}{4}(x - 8)$ $y = -\frac{3}{4}x + 18$                                          |                      |
| ,                                                                                   | When $y = 0$ , $x = 24$                                                                          |                      |
|                                                                                     | A(24,0)                                                                                          |                      |
|                                                                                     | When $x = 0$ , $y = 18$ .                                                                        |                      |
|                                                                                     | B(0,18)                                                                                          |                      |
|                                                                                     | For the points $A(24,0)$ , $Q(8,12)$ and $B(0,18)$ ,                                             |                      |
|                                                                                     | AQ: QB = 24 - 8: 8 - 0 (Comparing difference in                                                  |                      |
|                                                                                     | = 2 : 1 $x  or  y-coordinates)$                                                                  |                      |
| 11                                                                                  | (i) Expand $(1-2x)^9$ in ascending powers of x up to the term in $x^3$ .                         | 2]                   |
| •                                                                                   | (ii) Find the value of $k$ , given that the coefficient of $x$ in the expansion of               |                      |
|                                                                                     | / 1)                                                                                             |                      |
| 11(i)                                                                               |                                                                                                  | 3]                   |
| 11(1)                                                                               | $(1-2x)^9 = \binom{9}{0}(-2x)^0 + \binom{9}{1}(-2x)^1 + \binom{9}{2}(-2x)^2$                     |                      |
|                                                                                     | $+ {9 \choose 3} (-2x)^3 + \cdots$<br>= 1 - 18x + 144x <sup>2</sup> - 672x <sup>3</sup> + \cdots |                      |
|                                                                                     | $= 1 - 18x + 144x^2 - 672x^3 + \cdots$                                                           |                      |
|                                                                                     |                                                                                                  |                      |
|                                                                                     |                                                                                                  |                      |



Solutions to this question by accurate drawing will not be accepted.

The equation of the line QR is 2y = 9x - 100. Find the coordinates of Q.

The diagram, which is not drawn to scale, shows a triangle PQR in which PQ = QR.

Find the coordinates of S if PQRS forms a rhombus. Hence, or otherwise, find the area of rhombus PQRS.

The coordinates of the points P and R are (-4,0) and (12,4) respectively. Find the equation of the perpendicular bisector of PR.

[2]

[4]



(i) Midpoint of 
$$PR = \left(\frac{-4+12}{2}, \frac{0+4}{2}\right)$$
  
=  $(4, 2)$   
Gradient of  $PR = \frac{4-0}{2}$ 

Equation of perpendicular bisector of PR:

$$y - 2 = -4(x - 4)$$
  
 $y = -4x + 18$ 

(ii) 
$$y = -4x + 18 - \dots (1)$$
  
 $2y = 9x - 100 - \dots (2)$   
Sub (1) into (2):  $2(-4x + 18) = 9x - 10$   
 $-8x + 36 = 9x - 10$ 

$$\begin{array}{c}
x = 8 \\
y = -14
\end{array}$$

The coordinates of Q are (8, -14).

Let the coordinates of S be  $(x_S, y_S)$ . If PQRS forms a rhombus, then

Midpoint of 
$$QS = \text{Midpoint of } PR$$

$$(8 + x_S - 14 + y_S) = (4.2)$$

$$\begin{cases} \left(\frac{8+x_S}{2}, \frac{-14+y_S}{2}\right) = (4,2) \\ \frac{8+x_S}{2} = 4 \\ x_S = 0 \\ \frac{-14+y_S}{2} = 2 \\ y_S = 18 \end{cases}$$

The coordinates of S are (0, 18).

Area of the rhombus PQRS

$$= \frac{1}{2} \begin{vmatrix} -4 & 8 & 12 & 0 & -4 \\ 0 & -14 & 4 & 18 & 0 \end{vmatrix}$$

$$= \frac{1}{2} |(56 + 32 + 216 + 0) - (0 - 168 + 0 - 72)|$$

$$= \frac{1}{2} |544|$$

$$= 272 \text{ unit sq}$$

## 海 画 H 鄉 Mar. Tien School

Mame: 班级/ 科目/Subject:

## 2019 Mid-Year Sec 4 AM Paper 2 Solution

The polynomial  $f(x) = 2x^3 + ax^2 + bx + 8$ , where a and b are constants, has a factor (x+2) and leaves a remainder of 10 when divided by (2x-1).

- (i) Find the value of a and of b. [4]
- (ii) Using the values of a and of b found in part (i), explain why the equation f(x) = 0 has only one real root. Find this root. [4]
- (iii) Hence, solve  $x^3 + 3x^2 + 4x + 32 = 0$ . [2]

| 1    | $f(x) = 2x^3 + ax^2 + bx + 8$                                                                                                                                                                                                                                                            |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)  | $f(-2) = 2(-2)^3 + a(-2)^2 + b(-2) + 8 = 0$                                                                                                                                                                                                                                              |
|      | 4a - 2b = 8 Eqn (1)                                                                                                                                                                                                                                                                      |
|      | $f\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 + a\left(\frac{1}{2}\right)^2 + b\left(\frac{1}{2}\right) + 8 = 10$                                                                                                                                                             |
|      | a + 2b = 7 Eqn (2)                                                                                                                                                                                                                                                                       |
|      | Solving the equations, $b=2$ , $a=7-2(2)=3$                                                                                                                                                                                                                                              |
| (ii  | $f(x) = 2x^3 + 3x^2 + 2x + 8$                                                                                                                                                                                                                                                            |
|      | $=(x+2)(2x^2+bx+4)$                                                                                                                                                                                                                                                                      |
|      | Term in $x^2$ : $3x^2 = bx^2 + 4x^2$ , $b = -1$                                                                                                                                                                                                                                          |
|      | $f(x) = 2x^3 + 3x^2 + 2x + 8$                                                                                                                                                                                                                                                            |
|      | = $(x+2)(2x^2-x+4)$ [Gerting Quadratic factor by long division also allowed]                                                                                                                                                                                                             |
|      | For the factor $2x^2 - x + 4$ ,                                                                                                                                                                                                                                                          |
|      | Discriminant = $1-4(2)(4)$                                                                                                                                                                                                                                                               |
|      | =-31<0                                                                                                                                                                                                                                                                                   |
|      | Hence, the equation $2x^2 - x + 4 = 0$ has no real roots. Therefore $f(x) = 0$ has only 1                                                                                                                                                                                                |
| -    | real root. The root is $x = -2$<br>$2x^3 + 3x^2 + 2x + 32 = 0$                                                                                                                                                                                                                           |
|      | (")3 (")2 (")                                                                                                                                                                                                                                                                            |
|      | $2\left(\frac{x}{2}\right)^{2} + 3\left(\frac{x}{2}\right)^{2} + 2\left(\frac{x}{2}\right) + 8 = 0$                                                                                                                                                                                      |
| (iii | real root. The root is $x = -2$ $2x^{3} + 3x^{2} + 2x + 32 = 0$ $2\left(\frac{x}{2}\right)^{3} + 3\left(\frac{x}{2}\right)^{2} + 2\left(\frac{x}{2}\right) + 8 = 0$ $\left(\frac{x}{2} + 2\right)\left(2\left(\frac{x}{2}\right)^{2} - \left(\frac{x}{2}\right) + 4\right) = 0$ $x = -4$ |
|      | x = -4                                                                                                                                                                                                                                                                                   |

## 2019 Mid-Year Sec 4 AM Paper 2 Solution

- 2 (a) Find the range of values of k for which  $(k-3)x^2+4x+k$  is always positive for all real values of x. [4]
  - (b) Show that the roots of the equation  $6x^2 + 4(m-1) = 2(x+m)$  are real

$$\text{if } m \le 2\frac{1}{12}. \tag{3}$$



- (a) Simplify  $\frac{9^{x+1} + 18(3^{2x})}{3^{2-x} \times 27^{x+1}}$  without the use of a calculator. [4]
  - (b) Solve the equation  $4^{x+1} = 18(2^x) 8$ . [4]
  - Solve the equation  $\log_3(2x-1) \frac{1}{2}\log_3(x^2+2) = \log_{25} 5$ . [5]

In a Science experiment, a container of liquid was heated to a temperature of K °C. It was then left to cool in a chiller such that its temperature, T °C, t minutes after removing the heat, is given by  $T = Ke^{-qt}$ , where q is a constant.

Measured values of and T are given in the following table.

| t (minutes) | 2    | 4    | 7    | 10   | 12   |
|-------------|------|------|------|------|------|
| T°C.        | 71.1 | 57.0 | 40.8 | 29.3 | 23.4 |

sing a scale of 1 cm to 1 unit on the t-axis and 4 cm to 1 unit on the lnT- axis, plot In Tagainst t and draw a straight line graph.

| <i>ln T</i> 4.26 | 4.04 | 3.71 | 3.38 | 3.15 |
|------------------|------|------|------|------|
| 1 2              | 4    | 7    | 10   | 12   |

- (ii) Use the graph to estimate the value of K and of q.
  (iii) Estimate the temperature of the liquid 8 minutes after it was left to cool.
  - [4] [2]

|             | G()°                                                               |
|-------------|--------------------------------------------------------------------|
| 4(i)        | Plot a straight line passing all the points with correct scale etc |
| 1           | $T = Ke^{-qt}$                                                     |
| (ii)        | $\ln T = -gt + \ln K$                                              |
| (           | Gradient = $\frac{3.15 - 4.45}{1.00}$                              |
| $^{\prime}$ | 12-0                                                               |
| 7           | 13                                                                 |
|             | $= -\frac{120}{120}$                                               |
|             | $-a - \frac{13}{a}$                                                |
|             | $-q = -\frac{120}{120}$                                            |
|             | $q \approx \frac{13}{130}$                                         |
|             | <sup>4</sup> ~ 120                                                 |
|             | ln K = 4.475                                                       |
|             | $K = e^{4.475}$                                                    |
|             | ≈87.8                                                              |
| (iii)       | $T = 87.8e^{-\frac{13}{120}(8)}$                                   |
|             | ≈ 36.9                                                             |
|             | Temperature is 36.9°.                                              |
|             | Alternatively from graph,                                          |
|             | $t = 8$ , $\ln T = 3.6$                                            |
|             | $T = e^{3.6} \approx 36.6$                                         |
|             | Temperature is 36.6°.                                              |

|       | 0.14 10/0 <sup>2</sup> 1)                                                                                                                                                                                                                                              | 1    |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3 (a) | $\frac{9^{s+1} + 18(3^{2s})}{3^{2-s} \times 27^{s+1}}$                                                                                                                                                                                                                 |      |
|       |                                                                                                                                                                                                                                                                        | 1    |
|       | $=\frac{3^{2(x+1)}+18(3^{2x})}{3^{2-x}\times 3^{3(x+1)}}$                                                                                                                                                                                                              |      |
|       | $=\frac{3^{2x}(3^2+18)}{3^{2x+5}}$                                                                                                                                                                                                                                     |      |
|       | $={3^{2n+5}}$                                                                                                                                                                                                                                                          |      |
|       | $=\frac{3^{2x}(3^3)}{3^{2x}(3^5)}$                                                                                                                                                                                                                                     |      |
|       | $=\frac{1}{3^2}$                                                                                                                                                                                                                                                       |      |
|       | $=\frac{1}{9}$                                                                                                                                                                                                                                                         |      |
| (b)   | $4^{x+1} = 18(2^x) - 8$                                                                                                                                                                                                                                                |      |
|       | $4(2^{2x}) = 18(2^x) - 8$                                                                                                                                                                                                                                              | h    |
|       | $4(2^{x})^{2}-18(2^{x})+8=0$                                                                                                                                                                                                                                           |      |
|       | Let $2^x = A$ ,                                                                                                                                                                                                                                                        |      |
|       | $4A^2 - 18A + 8 = 0$                                                                                                                                                                                                                                                   | 1//  |
|       | $2A^2 - 9A + 4 = 0$                                                                                                                                                                                                                                                    | 1/   |
|       | (2A-1)(A-4)=0                                                                                                                                                                                                                                                          | ))   |
|       | $A = \frac{1}{2}$ or $A = 4$                                                                                                                                                                                                                                           | / ~  |
|       | $2^{x} = \frac{1}{2}  2^{x} = 4$                                                                                                                                                                                                                                       |      |
|       | r=-1 or $r=2$                                                                                                                                                                                                                                                          | 102  |
| (c)   | $\log_3(2x-1) - \frac{1}{2}\log_3(x^2+2) = \log_{26} 5$                                                                                                                                                                                                                |      |
|       | $2\log_3(2x-1) - \log_3(x^2+2) = 1$                                                                                                                                                                                                                                    | M    |
|       | $\log_{3}(2x-1) - \frac{1}{2}\log_{3}(x^{2}+2) = \log_{35} 5$ $2\log_{3}(2x-1) - \log_{3}(x^{2}+2) = 1$ $\log_{3}\left(\frac{(2x-1)^{2}}{x^{2}+2}\right) = 1$ $(2x-1)^{2} = 3(x^{2}+2)$ $x^{2} - 4x - 5 = 0$ $(x-5)(x+1) = 0$ $x = 5 \text{ or } x = -1 \text{ (rej)}$ | 10,, |
|       | $(2x-1)^2 = 3(x^2+2)$                                                                                                                                                                                                                                                  |      |
|       | $x^2 - 4x - 5 = 0$                                                                                                                                                                                                                                                     |      |
|       | (x-5)(x+1)=0                                                                                                                                                                                                                                                           |      |
|       | x=5 or $x=-1$ (rej)                                                                                                                                                                                                                                                    |      |

3

- 5 (a) (i) Prove that  $\frac{\sin x}{\sec x + 1} + \frac{\sin x}{\sec x 1} = 2 \cot x.$ [4]
  - (ii) Hence find, for  $0 \le x \le 4$ , the exact solution of the equation

$$\frac{\sin x}{\sec x + 1} + \frac{\sin x}{\sec x - 1} = \frac{2\tan x}{3}.$$
 [3]

(b) Given that  $\theta$  is obtuse and that  $\sin \theta = \frac{1}{\sqrt{3}}$ , express, without the use of a calculator,

$$\frac{1}{\sin \theta - \cos \theta} \text{ in the form } \sqrt{a} - \sqrt{b} \text{ where } a \text{ and } b \text{ are integers.}$$
 [4]



| 5b. | $1^2 + x^2 = \left(\sqrt{3}\right)^2$                                                                                                                             |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $x = \sqrt{2}$                                                                                                                                                    |
|     | $\cos\theta = -\frac{\sqrt{2}}{\sqrt{3}}$                                                                                                                         |
|     | $\frac{1}{\sin \theta - \cos \theta} = \frac{1}{\sqrt{3}} + \frac{\sqrt{2}}{\sqrt{3}}$ $= \frac{\sqrt{3}}{1 + \sqrt{2}} \times \frac{1 - \sqrt{2}}{1 - \sqrt{2}}$ |
|     | $=\frac{\sqrt{3}-\sqrt{6}}{-1}$ $=\sqrt{6}-\sqrt{3}$                                                                                                              |
|     |                                                                                                                                                                   |

equation of a curve is y = -bx - 1, where a and b are constants. The normal to the curve at the point Q(1,-1) is parallel to the line 4y-x=20. This normal meets the curve

[5]

- (i) Find the value of a and of b.(ii) Find the coordinates of point P.
  - [3]

Equation of line:  $y = \frac{1}{4}x + 5$ 

At x = 1, gradient of normal  $= \frac{1}{4}$ 

Gradient of tangent = -4

$$\frac{dy}{dx} = -\frac{a}{x^2} + b$$

$$-a+b=-4$$
 ---- Eqn (1)

sub (1,-1) into 
$$y = \frac{a}{x} + bx - 1$$

$$a+b=0$$
 ----- Eqn (2)

Solving: 
$$a = 2, b = -2$$

 $y = \frac{2}{x} - 2x - 1$ 

Equation of normal is :  $y+1=\frac{1}{4}(x-1)$ 

$$y = \frac{1}{4}x - \frac{5}{4}$$

$$\frac{2}{x} - 2x - 1 = \frac{1}{4}x - \frac{5}{4}$$

$$8 - 8x^2 - 4x = x^2 - 5x$$

$$9x^2 - x - 8 = 0$$

$$(9x+8)(x-1)=0$$

$$x = -\frac{8}{9}$$
 or  $x = 1$ 

$$y = 2\left(-\frac{9}{8}\right) - 2\left(-\frac{8}{9}\right) - 1$$

$$=-\frac{53}{36}$$

Coordinates of P is  $\left(-\frac{8}{9}, -\frac{53}{36}\right)$ 

- 7 The equation of a curve is  $y = \frac{x^2}{x-1}$ , where  $x \ne 1$ .
  - (i) Obtain an expression for  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$ .
  - (ii) Find the coordinates of the stationary points of the curve and determine their nature. [4]

[4]

 $(x-1)(2x)-x^{2}(1)$ 

$$=\frac{x^2-2x}{(x-1)^2}$$

$$\frac{d^2y}{dx^2} = \frac{(x-1)^2(2x-2) - 2(x-1)(x^2-2x)}{(x-1)^4}$$

$$= \frac{(x-1)(2x^2-4x+2-2x^2+4x)}{(x-1)^4}$$

$$=\frac{2}{(x-1)^3}$$

(ii) For stationary point, 
$$\frac{dy}{dx} = 0$$

$$\frac{x^2 2x}{(x-1)^2} = 0$$

$$x^2 - 2x = 0$$

$$x(x-2) = 0$$

$$x = 0 \text{ or } 2$$
when  $x = 0, y = 0$ 

$$\frac{d^2y}{dx^2} = \frac{2}{(0-1)^3}$$

$$= -2 < 0$$
(0,0) is a maximum point.

when  $x = 2, y = 4$ 

$$\frac{d^2y}{dx^2} = \frac{2}{(2-1)^3}$$

$$= 2 > 0$$
(2,4) is a minimum point.

$$\left(\frac{x^{2}-2x}{(x-1)^{2}}=0\right)$$

$$x^2 - 2x = 0$$

$$x(x-2)=0$$

$$x = 0$$
 or 2

when 
$$x = 0$$
,  $y = 0$ 

$$\frac{d^2y}{dx^2} = \frac{2}{(0-1)^3}$$

$$=-2<0$$

(0,0) is a maximum point.

when 
$$x = 2, y = 4$$

$$\frac{d^2y}{dx^2} = \frac{2}{(2-1)^3}$$
$$= 2 > 0$$

(2,4) is a minimum point.

8 (a) Differentiate  $\cot^4\left(\frac{\pi}{2}-2x\right)$  with respect to x.

- [3]
- (b) Given that the curve has the equation  $y = 3\sin 2x \cos x$ , find the gradient of the curve when  $x = \frac{\pi}{2}$ , leaving your answer in exact form. [3]





The diagram shows the top view of a rectangular desk, PQRS, in a corner of a room. The desk has a length of 1.5 m and width 0.8 m,  $\angle POS = \angle STR = 90^{\circ}$  and  $\angle OPS = \theta$ .

- Show that  $OT = (1.5 \sin \theta + 0.8 \cos \theta)$  m.
  - [3] press OT in the form  $R\sin(\theta+\alpha)$ , where R>0 and  $\alpha$  is acute. [3]

[3]

- ven that  $\theta$  can vary, find the maximum value of OT and the corresponding value

9(i) 
$$\angle TSR = \theta, \cos \theta = \frac{ST}{0.8}$$

$$ST = 0.8\cos \theta$$

$$Sin \theta = \frac{OS}{1.5}$$

$$OS = 1.5\sin \theta$$

$$- (1.5\sin \theta + 0.8\cos \theta) \text{ m (Shown)}$$

$$OT = 1.5\sin \theta + 0.8\cos \theta = R\sin(\theta + \alpha)$$

$$\text{where } R = \sqrt{1.5^2 + 0.8^2} = 1.7$$

$$\tan \alpha = \frac{0.8}{1.5}, \Rightarrow \alpha = 28.072^*$$

$$\therefore OT = 1.7\sin(\theta + 28.1^*) \text{ (correct to 1 d.p.)}$$

$$\text{Maximum value of } OT = 1.7m$$

$$\text{when } \sin(\theta + 28.072^\circ) = 1$$

$$\theta + 28.072^* = 90^*$$

$$\theta = 61.9^* \text{ (1 dp)}$$