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Mathematical Formulae
1: ALGEBRA
Quadratic Equation

For the equation gx* +bx+c¢ =0

—bx+b* —4dac

2a

Binomial expansion

r

(a+b)"=a”+( ? ]a""b-l-( ; )a""zb3+...+[ "t ]a""b*’+.‘.+b”,

where n is a positive integer and

r ri(n-r)! r!

( " ) n! _n(n=1)..(n=-r+1)

2. TRIGONOMETRY

Identities

sin?A+cos’ A=1

sec’ A=1+tan’ A

cosec’A=1+cot’ A
sin(A=B)=sinAcosBxcosAsinB
cos(A=B)=cosAcosBFsinAsinB
tanA+tanB
lFtanAtan B
sin2A =2sinAcosA

cos2A=cos’A—sin?A=2cos’A-1=1-2sin* A

tan(Ax B) =

tan2A = —-—2 tan:ﬁl
|-tan” A
Formulae for AABC
a b ¢

sinA " sinB N sinC
a® =b*+c* -2bccos A

A=lbcsinA
2



1

A triangle has an area of (58+8\f§) cm’and a height of (7+3\/§) cm.

Without using a calculator, find the exact length of its base, expressing in the
form a + b~/5, where a and b are integers. [4]
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()  On the same diagram, sketch the curves y =9x 2 and y* = 4x. [2]

(ii) Find the coordinates of the point(s) of intersection of the two curves.

2]
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The equation of a curve is y =2xe™™, where k is a constant. The curve
passes through the point (5,10).

(i) Find the value of k. [2]

(ii) For what values of x is y an increasing function of x? [3]
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Express

16x* —9x+18 .

—————— in partial fractions.

X +3x

(3]
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The function fis given by f(x)=-3 sin% 43,

(i) State the amplitude and period of f. (2]

(ii) Sketch the graph of y =f(x) for 0 < x <4n. By drawing a
suitable straight line on the same axes, state the number of solutions

to the equation 4n — x—6nsin% =0for0<x<4n. [5]
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(i) Given that cos(4+ B)=3cos(A—B) and tan 4 = —g , find the

value of cot B. [3]

1+tan’
(i) Prove that l-k;# =sec2x. [3]
—tan” x
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The roots of the quadratic equation 2x* + x+6 =0 are & and £.

()  Express @’ ~af+ f* interms of (@ + /) and of. [1]

(ii) Form a quadratic equation whose roots are o’ and f3°. [5]
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An antique grandfather clock manufactured using the finest wood in 1850 had
an initial value $2000. The clock appreciated in its value such that its value $V

can be modelled by the equation ¥ =20000— Ae “, where ¢ is the number of

years after its manufacture date.

(i) Find the value of 4. (2]
(ii) In the year 1880, the clock reached five times its initial value.
,SQOW that &£ =-0.01959 correct to 4 significant figures. [3]

(iii) Explain why the value of the clock will not exceed $20000. [2]
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The diagram shows the graph of y = |6 - 2x| -1.

Ny
k

0\/' >

T B
(i) Find the coordinates of 4 and of B. (2]

(ii) By solving the equation ]6 - 2x‘ =3x+1, find the x-coordinate of

the point(s) of intersection between the graphs y = ]6 -2x]-1

and y =3x. [3]

(iii) State the range of values of m for the equation ‘6 - 2x[ =mx+1 to

have no solution. [2]
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12

A circle passes through the points P(0,8) and O(8,12). The y-axis is a

tangent to the circle at P.
e

(i) Find the equation of the circle.

[3]
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The tangent to the circle at Q intersects the x-axis and y-axis at 4 and B
respectively.

(i)  Find the ratio of 4Q:0B. [3]
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)

(i)

14

Expand (1-2x)’ in ascending powers of x up to the term in x°.

Find the value of k, given that the coefficient of x in the expansion

of (3x+—k)-1{?](1—2x)° is —53.

[2]

[3]
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15

The equation of a curve is given by y =In :
9x+4

(i) Find % expressing it as a single fraction.

(ii) Find the rate at which x is changing when the graph crosses the

x-axis, given that y is increasing at a rate of 0.3 units per second.

(3]

[4]
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Solutions to this question by accurate drawing will not be accepted.

N
13 )
\
‘ R(12,4)
/ ‘l }_x
P(-4,00\/ O
2y =9x-100

The diagram, which is not drawn to scale, shows a triangle POR in which
PO =0R. The coordinates of the points P and R are (—4,0) and (12,4)

respectively.

(i) Find the equation of the perpendicular bisector of PR. [3]
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The equation of the line QR is 2y =9x—100.

(i) Find the coordinates of Q. (2]

/
(iii) Find the coordinates of S if PORS forms a rhombus.
Hence, or otherwise, find the area of the rhombus PORS. [4]

End of paper
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Mathematical Formulae
L ALGEBRA
Quadratic Equation

For the equation ax” +bx +¢ =0
_=b= Vb* - 4ac

X =
2a

Binomial expansion

F

(a+b')"=a"+( T )a”"b+( ; )a"‘zbz+.,.+[ i )a""b’+,,,+b“,

where n is a positive integer and

r ri{(n-r)! r!

( n ) n!  nn-=-1..(r-r+1)

2. TRIGONOMETRY

Identities

sin* A+cos” A=1

sec’A=1+tan’ A

cosec’A =1+cot’ A
sin(A+ B)=sin Acos B+cosAsinB
cos(A=B)=cosAcos BFsinAsinB
tan A+=tan B
lxtanAtan B

sin2A =2sinAcosA

cos2A=cos’A-sin® A=2cos’ A-1=1-2sin’ A

tan(A= B) =

tan2A = ——2tanf
I-tan” A
Formulae for AABC
a b e

sinA N sinB N sinC
a’ =b® +c*-2bccosA

= lbcsin A
2
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3

The polynomial f(x) =2x" +ax’ +bx+8, where a and b are constants, has a factor (x+2)

and leaves a remainder of 10 when divided by (2x-1).

@ Find the value of ¢ and of b. 4]
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(ii) Using the values of ¢ and & found 1n part (i), explain why the equation f(x) =0 has

only one real root. Find this root. [4]

(iii) Hence, solve x* +3x” +4x+32=0. (2]



S

2 (a) Find the range of values of k for which [(k —3);«)2 +4x+k is always positive
for all real values of x.

(b) Show that the roots of the equation 6x* +4(m—1)=2(x+m) arereal if m<2 é

[4]

(3]
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(c)

. 1 2
Solve the equation log,(2x—1) “5 log,(x" +2)=log,; 5.
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8
In a Science experiment, a container of liquid was heated to a temperature of K °C.
It was then left to cool in a chiller such that its temperature, 7 °C, t minutes after removing
the heat, is given by 7 = Ke™ , where ¢ 1s a constant.

Measured values of t and 7 are given in the following table.

! (minutes) 2 4 7 10 12

¢ 71.1 57.0 40.8 209:3 23.4

(i) Usingascale of 1 ¢m to 1 unit on the ~axis and 4 cm to 1 unit on the In 7- axis, plot
In T against 7 and draw a straight line graph. [2]

(ii) Use the graph to estimate the value of K and of 4. (4]

/
(iii) Estimate the temperature of the liquid 8 minutes after it was left to cool. [2]



5 (@ ()

Prove that

sin x

SIN X

secx+1

secx—1

10

= 2cot.x.



)

11

Hence find, for 0 < x <4, the exact solutions of the equation

(3]
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(b) Given that @ is obtuse and that sinf = E S

g

in the form Va —+/b where a and b are integers.

express, without the use of a calculator,

sin@ —cosé
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: = [4)
0 The equation of a curve is y =—+bx 1, where ¢ and b are constants. The normal to the
X

curve at the point Q(l,~1) is parallel to the line 4y —x = 20. This normal meets the curve
again at point P.

(i) Find the value of @ and of b. [5]
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(i) Find the coordinates of point P. [3]
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2

. . . X
7  The equation of a curve is y = , Where x # 1.
e ]

(i)  Obtain an expression for o and dﬁ_'r. (4]

dx dx




16

(i) Find the coordinates of the stationary points of the curve and determine their nature. [4]
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8 (a) Differentiate cot” (2—2_.\'] with respect to x. 3]

(b) Given that a curve has the equation y =3sin2x—cosx, find the gradient of the curve

T ; .
when x = 3’ leaving your answer in exact form. [3]
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The diagram shows the top view of a rectangular desk, PORS, in a corner of a room.
The desk has a length of 1.5 m and width 0.8 m, ZPOS = ZSTR =90° and LOPS =8.

(i) Show that OT =(1.5sin@+0.8cos @) m.

(ii) Express OT in the form Rsin(9+ a), where R >0 and « is acute.

[3]
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(iii) Given that @ can vary, find the maximum value of OT and the corresponding value
of 8. (3]

/ End of paper
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2(i)

2019 Additional Mathematics Paper 1 Sec 4 MYE (Solutions) 3 | Theequationof acurveis y = 2xe* ¥ where k is a constant. The curve passes through the

1 A triangle has an area of (58 + 8v/5) cm? and a height of (7 + 3v/5) cm. Without using a point (5, 10).

:i:l?tl;;;a:;or, find the exact length of its base, expressing in the form +bv/5 , where a and b[:xie @) Find the value of k. 2]
1 Length 6r the base (0] For what values of x is y an increasing function of x. [3]

_2(58 +8V5) 3(i) |y = 2xex*

BTN Whenx:ﬁ,y=1,

116 + 16( 7-3V5

“T7+36 7-3v8

_ 812 — 3485 + 112V5 - 240

B 49 — 45

_ 572 -236V5

- 4

= 143 - 59V5 cm '
2 (i) On the same diagram, sketch the curves y = 9x~ 3 and y* = 4x 9(5}\

(ii)  Find the coordinates of the poini(s) of i :ntersectlon of the two %

2. L
4 Ex %%bin partial fractions. [5]
\

=

16%* —9x+18 = Ax(x+3)+B(x+3)+C¢

Letx=-3, 16(-3)"~9(-3)+18=9C

Q@Q‘* 1@@31%;6&-9“13

'ﬂ +35° K (x+3)

’ " @Q“@w‘a" sl a5 c
\\N

. ~ 9¢ =189
() |y = 9x7 (1) \) 0 \\ c=21
P AR, e @) 06 Letx=0, 18=3B
Sub (1) into (2): (9x*i 2= 4y B=6
: E!I::c‘2 = 4x \68 Comparing x2 Ilarm,“!lfxc2 =1464x2 + Cx?
2 __a_l =
s 9 (\ A+21=16
) x j Elor -5 (reject) \6\‘3, A=os
Whenx ==,y = 9(5); 16x2—9x+18H—_5_+_§_+ 21
=9+?‘; _ 430 x ¥ x+3
=3J§

The coordinates of the point of intersection is

4%, 3v2).




The function f is given by f(x) = =3 SmE +2,
(i) State the amplitude and period of f.

(ii) Sketch the graph of y = f(x) for 0 < x < 4m. By drawing a suitable straight line on
the same axes, state the number of solutions to the equation 4w —x — 67 sin%E =0

for 0 < x < 4m.

(2]

[5]

5(i)

Amplitude =3
Period = 27 +§
= 4r

(i)

x
==3sin-+2
y sing

x
4 — x — Em‘sin; =0
q-rr—x—srrstnf 0

2n n

x X
Z—E—Ssmz—ﬂ

Isini4 2=
TR T

Since there are 3 points of intersection betwee th graphs y =
there are 3 solutions.

(i)  Given that cos(A + B) = 3 cos(4/— )andta A'x — =\ fifd the
value of cot B.
(i)  Prove that 2% LA’y sec2

6(i)

cos(A+B)=3 cns(A B)
cos Acos B —sin Asin B = 3 (cos A Cos +smAs1
cosAcosB —sinAsinB = 3 cosAcos'd + smAsmB
—4sinAsinB =2cosAcosB
—4sinAsin8 _ 2cosAcosB
cosAcosB - cosAcosB \66
—4tanAtanB =2 (\
_ 5

SubtanA=->, \@.

5 \S
—4(—5) tanB =2

10tanB =2
tanB =

1
5
cotB =5

e\\\\

-
@@
>

(i)

sin? 2
1+tan® x 1+—sz—,
1-tan? x s!ni x

cos! x

LHS =

sin? x
4oty o COs 2

= 1_S|Bi x X

cos°x

cos? x

__ cos® x+sin? x

(1
[3]

or 8x*—-35x+216=10

\P5

An antique grandfather clock manufactured using the finest wood in 1850 was valued at $2000.
The clock appreciated in its value such that its value $¥ can be modelled by the equation
V = 20000 — Ae*t, where ¢ was the number of years after its manufacture date.

(i) Find the value of A. [2]
(i)  Inthe year 1880, the clock reached five times its initial value. Show that
k = —0.01959 correct to 4 significant figures. [3]

(iii)  Explain why the value of the clock will not exceed $20000. [2]

8(i)

When t =0, V= 2000
2000 = 20000 — Aek®)
A = 20000 — 2000
= 18000

(ii)

V = 20000 — 18000e*
In the year 1880, t =30, V =5(2000)
20000 — 180002%% = 10000

—18000e3° = —10000
g30k — 5

<]




)

In ek = In% 10 A cimlcppasscs through the points P(0, 8) and Q(8, 12). The y-axisis a tangent to the circle at
=] s ’
M=o ()  Find the equation of the circle. (5]
k= Ing The tangent to the circle at Q intersects the x-axis and y-axis at A and B respectively.
= 20.019592 ... or3 (i) Find the ratio of AQ:QB. [3]
= —0.01959 (4 sf)(shown) 10(i | y — coordinate of centre of circle = 8
(ili) | Forall valuesoft >0, e %01%% >
—18000e™901%5% < ¢
20000 — 18000e~%0%5% < 20000
¥V < 20000
Hence the value of the clock will not exceed $20000.
9 The diagram shows the graph of y = |6 — 2x| - 1.
/‘ y
X_\
0 \/ 5
B ' (i) |g t of lin k@{o centre of circle= _s
(i) Find the coordinates of 4 and [2] \% = .;.‘.
u 0RO
(ii) By solving the equati Q v\ ng;nt altzo(ﬂ_l_zgx _8)
the point(s) of intersgction betwe 'a:Q< G -x 18
and y = g ) (a’h\% Wheny =0, x = 24
(iii)  State the range o <I to haverio @Y\ .‘4751124;0) g -
. en x =0, y=18.
solution. (\\) {\ \ B(0,18)
9() | When x =0, y = |6—2(0)] \B .
® y= I © \ \\Qe' For the points A(24,0), Q(8,12) and B(0, 18),
A(O, 5) 0@ AQ:QB =24—8: 8—0 (Comparing difference in
AtB, y is minimum when 6 — 2x = e =2:1 x or y-coordinates)
i _ =3 6
= 1 \ 11 | (i) Expand (1 — 2x)? in ascending powers of x up to the term in x°, [2]
| | B(3,-1) (i) Find thc value of k, given that the coefficient of x in the expansion of
(ii) 6—2x|=3x+1 — 9 -
6—2x=3x+1 or 6—2x=—(3x+1)\6\ T (3x+ )(1 2% % -5 5 (3]
—5x=—5 x = —7 (reject) O 1a-22)2= (D] (—22)° + G )20t + (5) (2072
x=1 9
(iii) : +(3) -2+
For |6 — 2x| = mx + 1 to have no solutions

P 1
—Z=m 3

=1-18x + 144x? — 672x +




(i)

1 9
(3x+k*—‘x'52 (1-2x)
s (Bx + W) (1~ 18x + 144x? — 6722 + )

Termin x = 3x(1) + ;?:(—672::3)

coefficient of x =—53
672
=-=53

ke
k=12

12

The equation of a curve is'given by y =In .‘gji $

] Find :—i , expressing it as a single fraction. [3]
(ii)  Find the rate at which x is changing when the graph crosses the x-axis, given that
yis increasing at a rate of 0.3 units per second. [4]

()

- 5x
Y= lox 14

=~ [In5x — In(9x + 4)]
dy 1[5 9 ]
dx~ 215x 9x+4

9x +

e 2
T x(9x+4) ™ N

(i)

Let y =0, In |=X

x=-1
dy_d_yxdx
dt  dx " dt

03= < de
' _x(9x+4)ddt O
When x = -1, 5—0.3 = . 3 6

o \\
. (\6\‘\\

w

oxia 0 \> v
~[In5x —In(9x +4)} = 0
In5x — In(9x +4) = 670
In5x = In(9x + 4) (
Sx=9x+4

13

x is increasing at a rate of -:- units per second. .

Solutions to this question by accurate drawing will mof\bo/accepted.

The diagram, which is not/drawn to scale, shows a triangle PQR in which PQ = QR.
The coordinates of!the points P and R are (—4,0) and (12, 4) respectively.

(i) Find the equation of the perpendicular bisector of PR. [3]
The equation of the line QR is 2y = 9x — 100.
(ii)  Find the coordinates of Q. [2]

(iii)  Find the coordinates of § if PORS forms a rhombus.

Hence, or otherwise, find the area of thombus PORS. [4]

6
- a6=9x—100

x=8
Thegop tes of Q are (8,—14).

@
Q)

(iii) |

7
>

he’coordinates of S be (xs, ¥s). If PORS forms a rhombus, then
point of Q5 = Midpoint of PR
8+ xs —14+}‘5) .
g~2—.~——2— = (4,2)
+ xg =
e 4
Xg = 0
=14 +ys
o 2
ys =18
The coordinates of S are (0, 18).
Area of the thombus PORS
_1‘ -4 8 12 0 ~4‘
20 -14 4 1B 0
=-;—|(56+32+216+0) —-(0—168+0-72)|
1
— 5]544| y
= 272 unit sq
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2019 Mid-Year Sec 4 AM Paper 2 Solution

The polynomial f(x) =2x" +ax’ +bx+8, where a and b are constants, has a Factor
{x+2) and leaves a remainder of 10 when divided by ( 2x-1).
(i)  Find the value of @ and of b. [4]
(i)  Using the values of @ and of b found in part (i), explain why the equation f(x)=0
has only one real root. Find this root. [4]

(iii)  Hence, solve x* +3x’ +4x+32=0. 2]

1 | f(x)=2x" +ax +bx+8

O | f(-2)=2(-2)" +a(-2)" +b(-2)+8=0
4a-2b=8  —meeme Eqn (1)

e /._.__\
Solving the equations, b=2, a=7—2(2]=3 ( (V

(] f(x)=2x"+3x" +2x+8
=(x+2)(2x2+bx+4)
Terminx®: 3x° =bx’ +4x°, b=-1 b

f(x)= 250 +3x" +2x+8
= (x+2)(2x" - x £4)_[Gefting Quadratig factor by lo g division &

For the factor 2x* —x +
Discriminant =1-4(2)(4

=-31<0

Hence, the equation 2x° —x+ 4= (\has no real roots. m has only 1
real root. The rootis x=-2 L

2 +32° +2x+32=0 j}b

3 "5
{8)(5] e
(i 2 2 2 : 6

X Y (x

=+2|2|=| =|=|+4|=0 <\

[2 J[ (2] [2]+ J \5\9‘

x=-4

2019 Mid-Year Sec 4 AM Paper 2 Solution

(a)  Find the range of values of k for which (k —3)x* + 4x+k isalways posilive
for all real values of x. [4]
(b)  Show that the roots of the equation 6x” -+4(m—1)=2(x+m) are real
e 1
ifmg2—.
2 (3]
(k-3)x* 0 for all values of x
Discrimifiant <0
16—
- k-1
-8k-4>0,
kAR k+1)
kg4 orkg-1
Smice k-3> 0]
(b) (m-1)

A\
2x+2ff - 0"5
riminant =100 - %)Q
ems %6

A
=0
mce discriminant = 0,

6x* +4(m—1)=2(x+m) has real roots if m < 2]%

(2)

(b)

(c)

9“l +18(3°)

Simplify —— 227 without the use of a calculator, 4]
Solve the equation 4**' =18(2*) -8, [4]
Solve the equation log,(2x—1)— %iogj(xz +2)=log.s 5. [51




2019 Mid-Year Sec 4 AM Paper 2 Solution

3 @)

9 + 18(3*)

32-x " 27.«4

3 31(#441 + 18(32r)

- 32-, 5 3.1:."”

_3T@ +18) '

3!.\4—5

_ 3!x (31}
32.i (35 )

(b)

Let 2" =4,
44 ~184+8=0
247 -94+4=0
(24=1)(A-4)=0
A=l or 4=4
2
2":1 2::
2
-1 or x=2 ()

(©

log,(2x - 1)——193‘(;: )\Ll;;g,\ \)V//_/\\

T-4x-5=0
(x=35)x+1)=0

x=5 or x=-1/(rej)

2log,(2x~1)- log, (x* +Z“ “\>

@x-17%) :
oS53 ) @ oet
(2x -1 =3(x* +2) . 6@
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In a Science experiment, a container of liquid was heated to a temperature of K °C.
1t was then left to cool in a chiller such that its temperature, 7' °C, ¢ minutes after removing
the heat, is given by T'= Ke™ , where g is a consiant.

Measured values of, ‘e given in the following table.

{ (minutes) 4 7 10 12
40.8 29.3 234 _J
the t-axis and 4 ¢m to | unit on the In7- axis, plot
ine graph [2]
3.71 3.38 315
7 10 12
the value 0 (4]
muies aﬁ.cr it was left to cool. 2]

Iot a stra1ghg,].u€g&}ng all the points with correct scale etc
G
(} L3, 15 445
0

dient =

InK =4.475
K = o4t
~87.8

T =87.8¢

~36.9
Temperature is 36.9°.

Alternatively from graph,
1=8,In7=3.6

T=¢" 2366
Temperature is 36.6°,

(iii)




5 (@ @

(i1)

: . |
(b) Given that @ is obtuse and that sin =
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sin x sin x
Prove that =2cotx.

(4]

secx+1 secx—1

Hence find, for 0 < x <4, the exact solution of the equation
sin x siny  2tanx
secx—1 3

[3]

secx+1

express, without the use of a calculator,

—

ﬁ\
I—l-— in the form & —+/b where @ and b are integers. 4
sin@—cos @
LHS = SmnX sin x
secx+1 secx—1
_ sin x(sec x—1)+sin x(secx +1)
sec’ x—1
_ tanx—sinx+tan x+sinx <
’ sec’ x—1
S(@)( 2tanx
sec’ x—1
_2tanx
tan® x
=2cotx
= RHS (proved) ~ (\ \ <v
sin x sinx _2tanx V- —
secx+1  secx—1 3 (
2tanx
2cotx=
tan‘x=3
tanx = i\.G
. b3 .
ii B le =—

(ii) asic angle 3 @ 6\\\
ForO0<x<4, 0
s O°

373 6}‘\\\
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5b.

1’ +x° =(~J‘§):

x=42

V2

cosf=-——
J3

Find &h; ?\\1{?&1

]
sinf—cosh 4

(5]

(3]

Q

6 (i)

%of point £.
1

Equation of line : y= Ex+ 5

At x =1, gradient of normal =%

Gradient of tangent = —4

dy a

“=——4b

dx x°

—a+b=-4 - Egn(l)

sub(1,-1) intoy=3+bx—l
x

Solving:a=2,b=-2
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(ii)

y=g—~2x—l
X

Equation of normal is: y+1= %(x—l)

a2
=G

2, 1.5
x 4
8-8x"—dx=x"-5x
9x* -x-8=0
(9x+8)x-1)=0

8
x=—— or x=1

9

9 8

22 == [=2| == | =]
g (8] (9)
=53
36

Coordinates of P is [—5 . —]

@Q i
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7 The equation of a curve is =—x—1, where x# 1.

2
(i) Obtain an expression for % and l—f (4]

(i) Find the coordinatgssef the stationary points of the curve and determine their nature. [4]

-1
¢ 0%
A
For staﬂﬁ%}){nt, i—y =0

x-0

xP-2x=0
x(x=2)=0
x=0 or2

whenx=0,y=0
dly 2
a (0-1)°
=-2<0
(0,0) is a maximum point.

whenx=2,y=4
dy 2
o -y
=2>0
(2,4) is a minimum point.
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9
8 (a) Differentiate cot® [%—23:) with respect to x. (31 0 P
, 0.8 m
(b) Given that the curve has the equation y =3sin2x ~cosx, find the gradient of the curve
0
when x= % leaving your answer in exact form. [3]
8 (a) | Let y=cot® (—%— 2x]
_ 1
e . The diagram.sho paiew of a rectangular desk, PORS, in a corner of a room.
a5 =ex skoiffas agfhg : 0.8m, ZPOS = ZSTR=90" and LOPS = 0.
1
= 8§€0s4) m.
cot’(2x) : 0s@) m. . (3]
il for sin(@+a),where R>0 and « is acute. [3]
= X
by . a : e maximum value of OT and the corresponding value
= = 4tan’ (2x)| 2560’ (21) | [3)
=8 tan’ (2x)sec? (2x) A
OR _ \‘> 1 b N

oS =1. 531:16
OS+ST

=(1.58in8 +0.8cosf) m (Shown)

@\5':9(%' " | OT=1.55in6+0.8cos0 = Rsin(0+a)

CD
=‘*‘““[5‘2") b O
b (i
(55 @ @

=8t —-2 :
an” I {[\X\ \V\\(\ where R =+/1.5* +0.8% =1.7
8(b) | y =3sin2x—cosx, \ | m“%.:m:zsmz'

@ N
—-=6c032x+smx \\\\e( s OT =l.75in(8+28.1') (correct to 1 d.p.)
AtesZ Grdisnte 6cos-—+s ﬁg 06 Maximum value of OT = 1.7m

@iii) when sin(6+28.072°) =1

‘\‘\68 6+28.072" =90

8=61.9" (1dp)
\6\@<\

A







	SA1 Maris Stella High Answer

