2019 Raffles Institution H2 Further Math Prelim Exam Paper 1 Solution

Qn	Suggested Solution	Comment
1(a) [1]	Consider $a = 2$ and $n = 1$, $a^{2n+2} - (a^2 - 1)n - a^2 = 2^4 - 3(1) - 4 = 9$ and this is clearly not divisible by 576.	A handful of students consider the case when $a = 1$, i.e. the expression will take the value of 0, however, 0 is divisible by 576.
(b) [5]	Let P_n be the statement $a^{2n+2}-(a^2-1)n-a^2=576m_n$, $m_n\in\mathbb{Z}$ and $n\in\mathbb{Z}^+$. When $n=1$, $a^{2n+2}-(a^2-1)n-a^2=a^4-(a^2-1)-a^2=a^4-2a^2+1=(a^2-1)^2$ which is divisible by 576 (additional condition). Thus, P_1 is true. Assume that P_k is true for some $k\in\mathbb{Z}^+$. i.e. assume $a^{2k+2}-(a^2-1)k-a^2=576m_k$, $m_k\in\mathbb{Z}$ To prove that P_{k+1} is true, i.e. to prove $a^{2(k+1)+2}-(a^2-1)(k+1)-a^2=576m_{k+1}$, $m_{k+1}\in\mathbb{Z}$ Consider $a^{2(k+1)+2}-(a^2-1)(k+1)-a^2=576m_ka^2+(a^2-1)(a^2k-k-1)+a^2(a^2-1)=576m_ka^2+(a^2-1)(a^2k-k-1)+a^2(a^2-1)=576m_ka^2+(a^2-1)(a^2(k+1)-(k+1))=576m_ka^2+(a^2-1)^2(k+1)=576m_ka^2+576m_1(k+1)=576(m_ka^2+m_1(k+1))$ Since $m_1, m_k, a, k\in\mathbb{Z}$, $m_ka^2+m_1(k+1)\in\mathbb{Z}$. Alternatively, $\begin{bmatrix} a^{2(k+1)+2}-(a^2-1)(k+1)-a^2 \end{bmatrix}-\begin{bmatrix} a^{2k+2}-(a^2-1)k-a^2 \end{bmatrix}=a^{2k+2}(a^2-1)-(a^2-1)=(a^2-1)(576m_k+(a^2-1)k+a^2-1)=(a^2-1)(576m_k+a^2-1)=(a^2-1)(576m_k+a^2-1)=(a^2-1)(576m_k+a^2-1)=(a^2-1)(576m_k$	Students are reminded to make use of the assumption made in the proof.

Hence

$$[a^{2(k+1)+2} - (a^2 - 1)(k+1) - a^2]$$

$$= 576((a^2 - 1)m_k + (k+1)m_1 + m_k) = 576(a^2 m_k + (k+1)m_1)$$

Hence P_k is true $\Rightarrow P_{k+1}$ is true and since P_1 is true, by Mathematical Induction, P_n is true for **all** $n \in \mathbb{Z}^+$. \square

Qn	Suggested Solution	Comment
2(i)	Using linear interpolation, an approximation to α	A few students
[2]	$= \frac{(-1.1)f(-1.3) - (-1.3)f(-1.1)}{f(-1.3) - f(-1.1)}$	could not recall the
	$=\frac{f(-1.3)-f(-1.1)}{f(-1.1)}$	correct formula.
	≈ -1.138023472	
	=-1.138 (3 dp).	
(ii)	Using the Newton-Raphson method,	Most students
[3]	$\alpha_{n+1} = \alpha_n - \frac{f(\alpha_n)}{f'(\alpha_n)}$	manage to get the proof right, though not in the most
	$= \alpha_n - \frac{\alpha_n - \frac{1}{2} \tan \alpha_n}{1 - \frac{1}{2} \sec^2 \alpha_n}$	efficient way.
	$= \frac{2\alpha_n - \alpha_n \sec^2 \alpha_n - 2\alpha_n + \tan \alpha_n}{2 - \sec^2 \alpha_n}$	
	$= \frac{\tan \alpha_n - \alpha_n \sec^2 \alpha_n}{2 - \sec^2 \alpha_n}$	
	$= \frac{\sin \alpha_n \cos \alpha_n - \alpha_n}{2\cos^2 \alpha_n - 1} \tag{*}$	
	$=\frac{\frac{1}{2}\sin 2\alpha_n - \alpha_n}{\cos 2\alpha_n}$	
	$= \frac{1}{2} \tan 2\alpha_n - \alpha_n \sec 2\alpha_n$	
(iii)	Using part (ii) with $\alpha_1 = -1.1380235$ (7 dp), we have	Some students did
[2]	$\alpha_2 = \frac{1}{2} \tan(2\alpha_1) - (\alpha_1) \sec(2\alpha_1) = -1.16827 $ (5 dp).	not give the answers to 5 d.p.
	$\alpha_3 = \frac{1}{2} \tan(2\alpha_2) - (\alpha_2) \sec(2\alpha_2) = -1.16559 \text{ (5 dp)}.$	For this question, students do not
	$\alpha_4 = \frac{1}{2} \tan(2\alpha_3) - (\alpha_3) \sec(2\alpha_3) = -1.16556 $ (5 dp).	need to do checking for α .
	$\alpha_5 = \frac{1}{2} \tan(2\alpha_4) - (\alpha_4) \sec(2\alpha_4) = -1.16556 $ (5 dp).	
	Hence, $\alpha = -1.16556$ (5 dp).	

Qn	Suggested Solution	Comment
3(i)	$u_{r+1} = 2v_r - 6u_r (1)$	
[2]	$v_{r+1} = 2v_r - 14u_r (2)$	
	$(1) - (2): u_{r+1} - v_{r+1} = 8u_r$	
	From (1), $u_{r+1} - \frac{1}{2} (u_{r+2} + 6u_{r+1}) = 8u_r$	
	$2u_{r+1} - u_{r+2} - 6u_{r+1} = 16u_r$	
	$u_{r+2} + 4u_{r+1} + 16u_r = 0$	
(ii) [5]	The characteristic equation for $u_{r+2} + 4u_{r+1} + 16u_r = 0$ is $\lambda^2 + 4\lambda + 16 = 0$	Students should note that
		$-2 \pm 2\sqrt{3} i = 4e^{\pm \frac{2\pi}{3}i}$
	$\lambda = \frac{-4 \pm \sqrt{16 - 4(16)}}{2} = -2 \pm 2\sqrt{3} i$	A couple of
	$u_r = 4^r \left(A \cos \frac{2r\pi}{3} + B \sin \frac{2r\pi}{3} \right)$	students missed out the \pm sign.
	Put $r = 0$, $2 = A$	
	From equation (1) in part (i), $u_1 = 2(10) - 6(2) = 8$	
	Put $r = 1$ into u_r , $8 = 4\left(-1 + B\frac{\sqrt{3}}{2}\right) \implies B = 2\sqrt{3}$	
	$u_r = 4^r \left(2\cos\frac{2r\pi}{3} + 2\sqrt{3}\sin\frac{2r\pi}{3} \right)$	A number of students left the
	$=4^{r}\sqrt{4+12}\cos\left(\frac{2r\pi}{3} - \frac{\pi}{3}\right) \text{or} 4^{r}\sqrt{4+12}\sin\left(\frac{2r\pi}{3} + \frac{\pi}{6}\right)$	answer in terms of <i>n</i> instead.
	$=4^{r+1}\cos\frac{(2r-1)\pi}{3}$ or $4^{r+1}\sin\frac{(4r+1)\pi}{6}$	Some of them
	3 6	did not use <i>R</i> -formula to
		express the
		answer as a
		single trigo function.
(iii) [1]	For integer r , $\cos \frac{(2r-1)\pi}{3} = \frac{1}{2}$ or -1 .	The possible values of
[1]		
	$ u_{r+1} = \left \cos\frac{(2r+1)\pi}{2}\right $ (1)	$\cos\frac{(2r-1)\pi}{3}$
	So $\frac{ u_{r+1} }{ u_r } = 4 \frac{\cos\frac{(2r+1)\pi}{3}}{\cos\frac{(2r-1)\pi}{2}} \ge 4\left(\frac{1}{2}\right) = 2 \implies u_{r+1} \ge 2 u_r $	could be
	$\left \frac{\cos\frac{1}{3}}{3}\right $	observed from GC.
	Thus, the sequence is strictly increasing.	

Qn	Suggested Solution	Comment
4(i)	For $a \in \mathbb{R}$,	This question is
[1]	$\mathbf{A}(\mathbf{x}_1 + a\mathbf{x}_2) = \mathbf{A}\mathbf{x}_1 + \mathbf{A}(a\mathbf{x}_2)$	well done.
	$= \mathbf{A}\mathbf{x}_1 + a\mathbf{A}\mathbf{x}_2$	
	$= \mathbf{b}_1 + a\mathbf{b}_2$ (Shown).	
(ii)	Using GC,	
[3]		
	$\mathbf{A}\mathbf{x}_1 = \mathbf{b}_2 \Rightarrow \mathbf{x}_2 = \begin{vmatrix} 3 \\ \frac{1}{2} \end{vmatrix}$, $\mathbf{A}\mathbf{x}_2 = \mathbf{b}_2 \Rightarrow \mathbf{x}_3 = \begin{vmatrix} 3 \\ \frac{3}{2} \end{vmatrix}$ and	
	$\mathbf{A}\mathbf{x}_1 = \mathbf{b}_1 \Rightarrow \mathbf{x}_1 = \begin{pmatrix} \frac{1}{5} \\ \frac{1}{5} \\ \frac{1}{5} \end{pmatrix}, \mathbf{A}\mathbf{x}_2 = \mathbf{b}_2 \Rightarrow \mathbf{x}_2 = \begin{pmatrix} \frac{3}{5} \\ \frac{3}{5} \\ -\frac{2}{5} \end{pmatrix} \text{ and }$	
	$\mathbf{A}\mathbf{x}_3 = \mathbf{b}_1 \Longrightarrow \mathbf{x}_3 = \begin{pmatrix} -1 \\ -\frac{1}{2} \\ \frac{5}{2} \end{pmatrix}.$	
	$\mathbf{A}\mathbf{x}_3 = \mathbf{b}_1 \Rightarrow \mathbf{x}_3 = \begin{bmatrix} -\frac{1}{2} \end{bmatrix}$.	
	$\left(\begin{array}{c} \frac{5}{2} \end{array}\right)$	
(iii)	Using part (i), we have	
[3]	$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$	
	$\mathbf{A}(\mathbf{x}_2 - 2\mathbf{x}_1) = \mathbf{b}_2 - 2\mathbf{b}_1 = \begin{pmatrix} 2\\1\\0 \end{pmatrix} - 2\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\0 \end{pmatrix},$	
	$\begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$	
	$\left(\frac{3}{5}\right)$ $\left(\frac{1}{5}\right)$ $\left(\frac{1}{5}\right)$	
	so the solution is $\mathbf{x}_2 - 2\mathbf{x}_1 = \begin{pmatrix} \frac{3}{5} \\ \frac{3}{5} \\ 2 \end{pmatrix} - 2 \begin{pmatrix} \frac{1}{5} \\ \frac{1}{5} \\ \frac{1}{5} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{5} \\ \frac{1}{5} \\ \frac{1}{5} \\ 4 \end{pmatrix}$.	
	$\begin{bmatrix} 3 & 2 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 2 \end{bmatrix}$	
	(5) (5) (5)	
	Similarly, we have	
	•	
	$\mathbf{A}[\mathbf{x}_{2} + 3(\mathbf{x}_{2} - 2\mathbf{x}_{2})] = \mathbf{b}_{2} + 3 \begin{vmatrix} 1 \\ 1 \end{vmatrix} = \begin{vmatrix} -3 \\ -3 \end{vmatrix} + 3 \begin{vmatrix} 1 \\ 1 \end{vmatrix} = \begin{vmatrix} 0 \\ 1 \end{vmatrix}$	
	$\mathbf{A} \begin{bmatrix} \mathbf{x}_3 + 3(\mathbf{x}_2 - 2\mathbf{x}_1) \end{bmatrix} = \mathbf{b}_3 + 3 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \\ 1 \end{pmatrix} + 3 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$	
	$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$	
	so the solution is $\mathbf{x}_3 + 3(\mathbf{x}_2 - 2\mathbf{x}_1) = \begin{pmatrix} -1 \\ -\frac{1}{2} \\ \frac{5}{2} \end{pmatrix} + 3\begin{pmatrix} \frac{1}{5} \\ \frac{1}{5} \\ -\frac{4}{5} \end{pmatrix} = \begin{pmatrix} -\frac{2}{5} \\ \frac{1}{10} \\ \frac{1}{10} \end{pmatrix}$.	
	so the solution is $\mathbf{x}_3 + 3(\mathbf{x}_2 - 2\mathbf{x}_1) = \begin{vmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{vmatrix} + 3 \begin{vmatrix} \frac{1}{2} \\ \frac{1}{2} \end{vmatrix} = \begin{vmatrix} \frac{1}{10} \\ \frac{1}{2} \end{vmatrix}$.	
	(2) (3) (10)	
(iv)	Since $\mathbf{A} \begin{pmatrix} \frac{1}{5} \\ \frac{1}{5} \\ \frac{1}{5} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{1}{5} \\ \frac{1}{5} \\ \frac{1}{5} \end{pmatrix} = \mathbf{A}^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{1}{5} \\ \frac{1}{5} \\ \frac{1}{5} \end{pmatrix}$ is the first column of \mathbf{A}^{-1} .	
[2]	Since $\mathbf{A} \begin{vmatrix} \frac{1}{5} \end{vmatrix} = \begin{vmatrix} 0 \end{vmatrix} \Rightarrow \begin{vmatrix} \frac{1}{5} \end{vmatrix} = \mathbf{A}^{-1} \begin{vmatrix} 0 \end{vmatrix}, \begin{vmatrix} \frac{1}{5} \end{vmatrix}$ is the first column of \mathbf{A}^{-1} .	
	$\left(\frac{1}{5}\right) \left(0\right) \left(\frac{1}{5}\right) \left(0\right) \left(\frac{1}{5}\right)$	
	Similarly,	
	$\left(\begin{array}{c} \frac{1}{5} \end{array}\right) \left(\begin{array}{c} 0 \end{array}\right) \left(\begin{array}{c} \frac{1}{5} \end{array}\right) \left(\begin{array}{c} 0 \end{array}\right) \left(\begin{array}{c} \frac{1}{5} \end{array}\right)$	
	$\mathbf{A} \begin{pmatrix} \frac{1}{5} \\ \frac{1}{5} \\ \frac{1}{4} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{1}{5} \\ \frac{1}{5} \\ \frac{1}{4} \end{pmatrix} = \mathbf{A}^{-1} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{1}{5} \\ \frac{1}{5} \\ \frac{1}{5} \end{pmatrix} \text{ is the second column of } \mathbf{A}^{-1}$	
	$\begin{pmatrix} -\frac{4}{5} \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} -\frac{4}{5} \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} -\frac{4}{5} \end{pmatrix}$	
	and	
	$\left(-\frac{2}{5}\right)$ $\left(0\right)$ $\left(-\frac{2}{5}\right)$ $\left(0\right)$ $\left(-\frac{2}{5}\right)$	
	$\mathbf{A} \begin{pmatrix} -\frac{2}{5} \\ \frac{1}{10} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} -\frac{2}{5} \\ \frac{1}{10} \\ \frac{1}{1} \end{pmatrix} = \mathbf{A}^{-1} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -\frac{2}{5} \\ \frac{1}{10} \\ \frac{1}{1} \end{pmatrix} \text{ is the third column of } \mathbf{A}^{-1}.$	
	$\begin{pmatrix} 10 \\ \frac{1}{10} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 10 \\ \frac{1}{10} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 10 \\ \frac{1}{10} \end{pmatrix}$	
	$(\frac{1}{5} \frac{1}{5} -\frac{2}{5})$ (2 2 -4)	
	Hence, $\mathbf{A}^{-1} = \begin{vmatrix} 3 & 3 & 3 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{12} \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 2 & 2 & 1 \end{vmatrix}$ where $k = 10$.	
	Hence, $\mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{5} & \frac{1}{5} & -\frac{2}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{10} \\ \frac{1}{5} & -\frac{4}{5} & \frac{1}{10} \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 2 & 2 & -4 \\ 2 & 2 & 1 \\ 2 & -8 & 1 \end{pmatrix}$, where $k = 10$.	
	(5 5 10 / (2 0 1)	

Qn	Suggested Solution	Comment
5(i)	Consider the intersection of the line $y = mx + d$ and the ellipse, the x-	Most students
[4]	coordinates of the two points on the end of the chord satisfy the	applied the
	$x^2 (mx+d)^2$	Vieta's formula
	equation $\frac{x^2}{a^2} + \frac{(mx+d)^2}{b^2} = 1$	to find x_M ,
	Simplifying, we get $(a^2m^2 + b^2)x^2 + 2a^2mdx + a^2(d^2 - b^2) = 0$	while some solved for the
	Let the midpoint be (x_M, y_M) , we have	two roots before finding the
	$-\frac{2a^2md}{a^2}$	midpoint. Some
	$x_{M} = \frac{-\frac{1}{a^{2}m^{2} + b^{2}}}{2} = -\frac{a^{2}md}{a^{2}m^{2} + b^{2}}$	solved for y_M
		by equating the
	$y_{M} = m\left(-\frac{a^{2}md}{a^{2}m^{2} + b^{2}}\right) + d = \frac{-a^{2}m^{2}d + a^{2}m^{2}d + b^{2}d}{a^{2}m^{2} + b^{2}} = \frac{b^{2}d}{a^{2}m^{2} + b^{2}}$	equations of line
	$(a^2m^2+b^2)$ $a^2m^2+b^2$ $a^2m^2+b^2$	and ellipse
	So $(x_M, y_M) = \left(-\frac{a^2md}{a^2m^2 + b^2}, \frac{b^2d}{a^2m^2 + b^2}\right)$. (shown).	again, instead of using
	$(x_M, y_M) - (-\frac{1}{a^2m^2 + b^2}, \frac{1}{a^2m^2 + b^2})$. (Shown).	$y_M = mx_M + d.$
(ii)	By the definition and part (i), the midpoints have coordinates	This part was
[2]		not well done.
	$\left(-\frac{a^2md}{a^2m^2+b^2}, \frac{b^2d}{a^2m^2+b^2}\right).$	Many students
		assumed that the
	$x = -\frac{a^2md}{a^2m^2 + b^2}$, $y = \frac{b^2d}{a^2m^2 + b^2}$, so by eliminating d,	locus is a
		straight line in their proofs.
	we have $\frac{y}{x} = \frac{b^2 d}{-a^2 m d} = \frac{b^2}{-a^2 m}$, hence $y = -\frac{b^2}{a^2 m} x$. (shown).	then proofs.
	$x -a^2md -a^2m$ a^2m	
(iii)	5 2 5	Majority of
[3]	Given $c = 2\sqrt{3}$ and $e = \frac{\sqrt{3}}{2}$, we have $b = \frac{c}{e} = \frac{2\sqrt{3}}{\sqrt{3}} = 4$.	students failed
. ,	$\frac{2}{\sqrt{3}}$	to check the
	2	orientation of
	Using $c^2 = b^2 - a^2$, we have $a = \sqrt{4^2 - (2\sqrt{3})^2} = 2$	the ellipse and
		used $c = ea$ instead of
	Hence the equation is $y = -\frac{4^2}{2^2(5)}x = -\frac{4}{5}x$.	c = eb, leading
	2 (3) 3	to wrong
		answer.
		answer.

Qn	Suggested Solution	Comment
6(i)	$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$	This question is
[2]	$\mathbf{A}^{n}\mathbf{x} = \mathbf{A}^{n-1}(\mathbf{A}\mathbf{x})$	well done.
	$=A^{n-1}(\lambda x)$	
	$=\lambda A^{n-1}x$	
	=	
	$=\lambda^n \mathbf{x}$	

	$(\mathbf{A} + \mathbf{A}^2 + \mathbf{A}^3 + \mathbf{A}^4)\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{A}^2\mathbf{x} + \mathbf{A}^3\mathbf{x} + \mathbf{A}^4\mathbf{x}$
	$= \lambda \mathbf{x} + \lambda^2 \mathbf{x} + \lambda^3 \mathbf{x} + \lambda^4 \mathbf{x}$
	$= \left(\lambda + \lambda^2 + \lambda^3 + \lambda^4\right)\mathbf{x}$
(ii) [6]	$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} 1 & 3 & 4 \\ 0 & 2 & 8 \\ 0 & 0 & -3 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 - \lambda & 3 & 4 \\ 0 & 2 - \lambda & 8 \\ 0 & 0 & -3 - \lambda \end{pmatrix}$
	The characteristic equation of A is $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$ $\begin{vmatrix} 1 - \lambda & 3 & 4 \\ 0 & 2 - \lambda & 8 \\ 0 & 0 & -3 - \lambda \end{vmatrix} = 0$
	$\begin{vmatrix} 0 & 0 & -3 - \lambda \\ \Rightarrow (1 - \lambda)(2 - \lambda)(-3 - \lambda) = 0 \end{vmatrix}$
	$\Rightarrow \lambda = 1.23$
	The eigenvalues of A are 1, 2, and -3 .
	$ (\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} = \begin{pmatrix} 1 - \lambda & 3 & 4 \\ 0 & 2 - \lambda & 8 \\ 0 & 0 & -3 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} $
	$\begin{pmatrix} (1-\lambda)x_1 + 3x_2 + 4x_3 \\ (2-\lambda)x_2 + 8x_3 \\ (-3-\lambda)x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
	Thus, $(1-\lambda)x_1 + 3x_2 + 4x_3 = 0$
	$(2-\lambda)x_2 + 8x_3 = 0$
	$(-3-\lambda)x_3=0$
	When $\lambda = 1$, $3x_2 + 4x_3 = 0$
	$2x_2 + 8x_3 = 0$
	$-4x_3 = 0$
	An eigenvector corresponding to the eigenvalue $\lambda=1$ is $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.
	When $\lambda = 2$, $-x_1 + 3x_2 + 4x_3 = 0$
	$8x_3 = 0$
	$-5x_3 = 0$
	An eigenvector corresponding to the eigenvalue $\lambda=2$ is $\begin{pmatrix} 3\\1\\0 \end{pmatrix}$.
	When $\lambda = -3$, $4x_1 + 3x_2 + 4x_3 = 0$
	$5x_2 + 8x_3 = 0$
	An eigenvector corresponding to the eigenvalue $\lambda=-3$ is $\begin{pmatrix} 1 \\ -8 \\ 5 \end{pmatrix}$.

	By result in part (i), the eigenvalues are 4, 30, and 60 with corresponding eigenvectors $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -8 \\ 5 \end{pmatrix}$ respectively.	
(iii) [2]	$\mathbf{D} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 30 & 0 \\ 0 & 0 & 60 \end{pmatrix}, \ \mathbf{Q} = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & -8 \\ 0 & 0 & 5 \end{pmatrix}$	The question explicitly asks for the matrix Q and matrix D . So, one should not leave your answer as $\mathbf{Q}\mathbf{D}\mathbf{Q}^{-1}$

Quadrilateral OPQR is a kite such that OP = PQ = 1, OR = QR = 2, and $\angle POR = \angle OMR = \angle PQR = 90^{\circ}$, where M is the point where the diagonals PR and OQ intersect.

$$\angle QOR = 90^{\circ} - \angle POQ = \angle OPM$$
.

Thus, the value of $\arg z = \angle QOR = \angle OPR = \tan^{-1} \frac{OR}{OP} = \tan^{-1} 2$.

$$OM = OR\cos \angle MOR = 2\left(\frac{1}{\sqrt{5}}\right) = \frac{2}{\sqrt{5}}$$

Then, $z = OQ(\cos \angle QOR + i\sin \angle QOR)$

$$=\frac{4}{\sqrt{5}}\left(\frac{1}{\sqrt{5}}+i\frac{2}{\sqrt{5}}\right)=\frac{4}{5}+\frac{8}{5}i$$

Algebraic Method

Solving for the two points of intersection, from the 2 circles we have $(x-2)^2 + y^2 = 4$, $x^2 + (y-1)^2 = 1$.

Thus we have

$$(x-2)^2 + y^2 - 4 = x^2 + (y-1)^2 - 1$$

$$\Rightarrow x^2 - 4x + y^2 = x^2 + y^2 - 2y$$

$$\Rightarrow y = 2x$$

Hence maximum $\arg z = \tan^{-1} 2$.

Substituting this into the original equation, we have $5x^2 - 4x = 0 \Rightarrow x = \frac{4}{5}$. Hence $z = \frac{4}{5} + \frac{8}{5}i$.

- (iv) We note that the points representing the complex numbers -2 + 2i, i
- and 2 are collinear. In addition, the point representing the complex number -2 + 2i lies on the common tangent of the 2 circles. Thus the maximum $\left| \arg(z+2-2i) \right|$ occurs on the other common tangent to

both circles. We have $\tan \alpha = \frac{1}{2} \Rightarrow d = \tan 2\alpha = \frac{1}{1 - \frac{1}{4}} = \frac{4}{3}$. Therefore,

$$\max |\arg(z+2-2i)| = \tan^{-1}\frac{4}{3}$$
.

Many thought the angle is found using the line that passes through the pole.

Qn	Suggested Solution	Comment
8(i)	$\sqrt{(x-c)^2+y^2} + vt = \sqrt{(x+c)^2+y^2}$	Students to note that
[3]		they are required to
	$(x-c)^{2} + y^{2} + 2vt\sqrt{(x-c)^{2} + y^{2} + v^{2}t^{2}} = (x+c)^{2} + y^{2}$	show that (x, y) lies
	$4v^2t^2(x^2-2cx+c^2+y^2) = v^4t^4 - 8cv^2t^2x + 16c^2x^2$	on a hyperbola. Those who used
	$4x^{2}(v^{2}t^{2}-4c^{2})+4y^{2}(v^{2}t^{2})=v^{2}t^{2}(v^{2}t^{2}-4c^{2})$	properties of
	$\frac{1}{4} \left(v t + \frac{1}{4} v \right) + \frac{1}{4} \left(v t + \frac{1}{4} v \right)$	hyperbola in their
	$\frac{4x^2}{v^2t^2} - \frac{4y^2}{4c^2 - v^2t^2} = 1 \text{(shown)}$	proofs were not
(;;)	-	awarded. This part was well
(ii) [3]	$c = 75, \ e = \frac{5}{3} \implies a = \frac{c}{c} = 45$	done.
[-]	3	
	Since $a^2 = \frac{v^2 t^2}{4}$ $\Rightarrow \frac{(300,000)^2 t^2}{4} = 45^2$	
	So $t = 0.0003$.	
(iii)	_	Some common
[3]	$p = ea - \frac{a}{e} = \frac{5}{3}(45) - \frac{45}{\left(\frac{5}{2}\right)} = 48$, so $ep = \frac{5}{3}(48) = 80$	mistakes seen in
	(3)	equation of H_2 were
	$H_{\text{A}} = 80$ $H_{\text{A}} = 80$ (and 240	$r = \frac{80}{1+\frac{5}}1+\frac{5}{1+\frac{5}{1+\frac{5}{1+\frac{5}{1+\frac{5}}1+\frac{5}{1+\frac{5}}1+\frac{5}1+\frac$
	$H_1: r = \frac{5}{1-\frac{5}{3}\cos\theta}$ $H_2: r = \frac{5}{1+\frac{5}{3}\cos(\theta+\frac{\pi}{4})}$ (or $r = \frac{3-5\cos(\theta-3\pi)}{3-5\cos(\theta-3\pi)}$)	$\frac{1}{3}\cos\left(\frac{b-4}{4}\right)$
	$H_1: r = \frac{80}{1 - \frac{5}{3}\cos\theta}$ $H_2: r = \frac{80}{1 + \frac{5}{3}\cos(\theta + \frac{\pi}{4})}$ (or $r = \frac{240}{3 - 5\cos(\theta - \frac{3\pi}{4})}$)	$r = \frac{5}{1 - \frac{5}{3}\cos\left(\theta + \frac{\pi}{4}\right)}.$
		Students should use
		GC to double check
(iv)	T. C. 14b. interesting technique II and II	their graphs. Most who arrived
(iv) [3]	To find the intersection between H_1 and H_2 ,	here were able to
[-]	$\frac{80}{1-\frac{5}{3}\cos\theta} = \frac{80}{1+\frac{5}{2}\cos\left(\theta+\frac{\pi}{4}\right)}$	simplify the equation
	$5 \left[\begin{array}{c} \pi \end{array} \right]$	using either factor
	$\frac{5}{3} \left \cos \left(\theta + \frac{\pi}{4} \right) + \cos \theta \right = 0$	formula or addition formula, although
		some did not account
	$\frac{5}{3} \left 2 \cos \left(\theta + \frac{\pi}{8} \right) \cos \frac{\pi}{8} \right = 0$ by factor formula	for $\theta \neq \frac{11\pi}{8}$ before
		o
	$\cos\left(\theta + \frac{\pi}{8}\right) = 0$	concluding the final
		value of θ .
	$\theta + \frac{\pi}{8} = \frac{\pi}{2}$ or $\theta + \frac{\pi}{8} = \frac{3\pi}{2}$	
	3π 11π	
	$\theta = \frac{3\pi}{8}$ or $\theta = \frac{11\pi}{8}$ (rej. since this lies in $[\pi, 2\pi]$)	
	When $\theta = \frac{3\pi}{8}$, $r = 220.876$ (to 6s.f.)	
	Hence polar coordinates of the location of the ship is	
	$\left(220.876, \frac{3\pi}{8}\right)$.	
	\	

Qn	Suggested Solution	Comment
9	Differential equation:	Most students
[7]	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 20 \frac{\mathrm{d}x}{\mathrm{d}t} + 64 x = 0$	were able to
	di di	tackle this question.
	Auxiliary equation: $\lambda^2 + 20\lambda + 64 = 0$	question.
	$\lambda = -4 \text{ or } \lambda = -16$	
	General solution: $x = c_1 e^{-4t} + c_2 e^{-16t}$	
	When $t = 0$, $x = 0$, then $c_1 + c_2 = 0$	
	$c_1 = -c_2$	
	$x = c_1 e^{-4t} + c_2 e^{-16t} \qquad \Rightarrow \qquad \frac{dx}{dt} = -4c_1 e^{-4t} - 16c_2 e^{-16t}$	
	When $t = 0$, $\frac{dx}{dt} = 1.2$, then $1.2 = -4c_1 - 16c_2$	
	$1.2 = -4(-c_2) - 16c_2$	
	$-12c_2 = 1.2$	
	$c_2 = -0.1$	
	$c_1 = 0.1$	
	So, $x = 0.1e^{-4t} - 0.1e^{-16t} = 0.1(e^{-4t} - e^{-16t})$	
[2]	$x = 0.1(e^{-4t} - e^{-16t})$	Students are reminded to
	$\frac{dx}{dt} = 0.1(-4e^{-4t} + 16e^{-16t})$	give the answer
	$\frac{1}{dt} = 0.1(-4e^{-t} + 10e^{-t})$	in exact form.
	The particle changes direction when $\frac{dx}{dt} = 0$	
	$-4e^{-4t} + 16e^{-16t} = 0$	
	$e^{12t} = 4$	
	$12t = \ln 4$	
	$t = \frac{1}{12} \ln 4 = \frac{1}{6} \ln 2$	
	The particle changes direction at $t = \frac{1}{6} \ln 2s$	
[3]	· ·	A handful of
	x 0.05 ↑	students lack
		detail in the
		description of the motion of <i>P</i> .
		the motion of T.
	0 0.5 1 1.5	
	P moves away from its equilibrium position quickly and at	
	$t = \frac{1}{6} \ln 2 \mathrm{s}$, P changes direction and moves back towards the	
	equilibrium position.	

Qn	Suggested Solution	Comment
10(i)	Ţ	Symmetry and/or
[1]		labelling is not observed in a
	-1 1	number of scripts.
	-1	_
	+	
(ii)	$x = (1 + 2\sin^2\theta)\cos\theta$	
[2]		
	$\Rightarrow \frac{dx}{d\theta} = -\sin\theta(1 + 2\sin^2\theta) + \cos\theta(4\sin\theta\cos\theta)$	
	$=-\sin\theta-2\sin^3\theta+4\sin\theta(1-\sin^2\theta)$	
	$=3\sin\theta-6\sin^3\theta$	
	$=3\sin\theta(1-2\sin^2\theta)=3\sin\theta\cos2\theta$	
(iii)	$y = (-3 + 2\sin^2\theta)\sin\theta = -3\sin\theta + 2\sin^3\theta$	
[5]	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}\theta} = -3\cos\theta + 6\sin^2\theta\cos\theta$	
	$= 3\cos\theta(2\sin^2\theta - 1) = -3\cos\theta\cos2\theta$	
	$(1)^2 (1)^2$	
	$\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2$	
	$=9\sin^2\theta(\cos 2\theta)^2+9\cos^2\theta(\cos 2\theta)^2$	
	$=9(\cos 2\theta)^2$	
	Distance travelled	T
	$\sigma^{\frac{\pi}{2}} \left(\left(\frac{dx}{dx} \right)^2 + \left(\frac{dy}{dx} \right)^2 \right)$	Important to note: $\int_{a}^{\pi} (dx)^2 (dy)^2$
	$= \int_0^{\frac{\pi}{6}} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2} \ \mathrm{d}\theta$	$\int_0^{\frac{\pi}{6}} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2} \ \mathrm{d}\theta$
	$= \int_0^{\frac{\pi}{6}} 3 \cos 2\theta d\theta$	$= \int_0^{\frac{\pi}{6}} 3 \cos 2\theta \mathrm{d}\theta$
	•	In this case, for
	$=3\int_0^{\frac{\pi}{6}}\cos 2\theta \ d\theta$	$0 \le \theta \le \frac{\pi}{6},$
	$=3\left[\frac{\sin 2\theta}{2}\right]^{\frac{\pi}{6}}$	$\cos 2\theta > 0$, thus
	$=3\left[{2}\right]_{0}$	$\int_0^{\frac{\pi}{6}} 3 \cos 2\theta d\theta$
	$=\frac{3\sqrt{3}}{4}$	
	$=\frac{\sqrt{4}}{4}$	$=3\int_0^{\frac{\pi}{6}}\cos 2\theta \ d\theta$
(iv)	Surface area	Some students
[3]		could not recall
	$= \int_0^{\frac{\pi}{2}} 2\pi x \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2} \ \mathrm{d}\theta$	the correct formula.
	$= \int_0^{\frac{\pi}{2}} 2\pi \cos \theta (1 + 2\sin^2 \theta) 3\cos 2\theta d\theta$	In this question,
	$=17.6 \text{unit}^2 (3 \text{s.f.})$	the modulus is
	()	crucial.

(v)	Volume of the solid	Students should
[3]	$= 2\left(\pi \int_{0}^{\sqrt{2}} y^{2} dx - \pi \int_{1}^{\sqrt{2}} y^{2} dx\right)$	note that the
	$= 2\left(n \int_0^{\infty} y dx - n \int_1^{\infty} y dx\right)$	interval has to be split to be able to
	$\int_{0}^{\pi} \left(\int_{0}^{\frac{\pi}{4}} dx dx dx dx dx dx dx dx$	find the required
	$= 2 \left(\pi \int_{\frac{\pi}{2}}^{\frac{\pi}{4}} y^2 \frac{dx}{d\theta} d\theta - \pi \int_{0}^{\frac{\pi}{4}} y^2 \frac{dx}{d\theta} d\theta \right)$	volume.
	$= 2 \left[\pi \int_{\frac{\pi}{2}}^{\frac{\pi}{4}} \left((-3 + 2\sin^2 \theta) \sin \theta \right)^2 3\sin \theta \cos 2\theta \right] d\theta$	
	$-\pi \int_0^{\frac{\pi}{4}} \left((-3 + 2\sin^2\theta)\sin\theta \right)^2 3\sin\theta\cos2\theta \ d\theta$	
	$\approx 2\pi (1.80481 - 0.45243)$	
	≈ 8.4973	
	$= 8.50 \mathrm{units}^3 (3 \mathrm{s.f.})$	

2019 Raffles Institution H2 Further Math Prelim Exam Paper 2 Solution

Qn	Suggested Solution	Comment
1 [6]	$C = \sum_{k=1}^{n} \cos^2(2k-1)\theta$ $= \frac{1}{2} \sum_{k=1}^{n} (1 + \cos(4k-2)\theta)$	There are a few who not able to start this question.
	$= \frac{n}{2} + \frac{1}{2} \operatorname{Re} \sum_{k=1}^{n} e^{(4k-2)i\theta}$ $= \frac{n}{2} + \frac{1}{2} \operatorname{Re} \frac{e^{2i\theta} (e^{4ni\theta} - 1)}{e^{4i\theta} - 1}$ $= \frac{n}{2} + \frac{1}{2} \operatorname{Re} \frac{e^{4ni\theta} - 1}{e^{2i\theta} - e^{-2i\theta}}$	Note that this is a "show" question. So, do not skip step in your proof.
	$= \frac{n}{2} + \frac{1}{2} \operatorname{Re} \frac{\cos 4n\theta + i \sin 4n\theta - 1}{2i \sin 2\theta}$ $= \frac{n}{2} + \frac{\sin 4n\theta}{4 \sin 2\theta} \text{ (shown)}$	
	Note that $\cos^2 A + \sin^2 A = 1$, hence $C + S = n$ $\Rightarrow S = \frac{n}{2} - \frac{\sin 4n\theta}{4\sin 2\theta}$	
	Alternative solution:	
	Let P_n be the statement: $\sum_{r=1}^{n} \cos^2(2r-1)\theta = \frac{n}{2} + \frac{\sin 4n\theta}{4\sin 2\theta}$ where n is a positive integer.	
	When $n = 1$: $\frac{n}{2} + \frac{\sin 4n\theta}{4\sin 2\theta} = \frac{1}{2} + \frac{\sin 4\theta}{4\sin 2\theta} = \frac{1}{2} + \frac{\cos 2\theta}{2} = \cos^2 \theta$ $\therefore P_1 \text{ is true}$	
	Assume that P_k is true for some $k \in \mathbb{Z}^+$,	
	When $n = k + 1$: $\sum_{r=1}^{k+1} \cos^{2}(2r - 1)\theta$ $= \frac{k}{2} + \frac{\sin 4k\theta}{4\sin 2\theta} + \cos^{2}(2k + 1)\theta$ $= \frac{k}{2} + \frac{\sin 4k\theta}{4\sin 2\theta} + \frac{1}{2} + \frac{\cos 2(2k + 1)\theta}{2}$	
	$= \frac{k+1}{2} + \frac{\sin 4k\theta}{4\sin 2\theta} + \frac{2\cos(4k+2)\theta\sin 2\theta}{4\sin 2\theta}$	

$$= \frac{k+1}{2} + \frac{\sin 4k\theta}{4\sin 2\theta} + \frac{\sin (4k+4)\theta - \sin 4k\theta}{4\sin 2\theta}$$

$$= \frac{k+1}{2} + \frac{\sin 4(k+1)\theta}{4\sin 2\theta}$$

$$\therefore P_{k+1} \text{ is true if } P_k \text{ is true}$$
Hence P_n is true for all positive integer n ,
i.e. $C = \frac{n}{2} + \frac{\sin 4n\theta}{4\sin 2\theta}$

Note that $\cos^2 A + \sin^2 A = 1$, hence $C + S = n$

$$\Rightarrow S = \frac{n}{2} - \frac{\sin 4n\theta}{4\sin 2\theta}$$

Qn	Suggested Solution	Comment
2(i) [2]	Using GC, $ \begin{pmatrix} 1 & 2 & 2 & 0 \\ -2 & 1 & 0 & -4 \\ 1 & -2 & 2 & 5 \\ 0 & 1 & 4 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{11}{8} \\ 0 & 1 & 0 & -\frac{5}{4} \\ 0 & 0 & 1 & \frac{9}{16} \\ 0 & 0 & 0 & 0 \end{pmatrix} $: rank of $\mathbf{A} = 3$.	This question is well done.
(ii) [1]	Basis of column space of $\mathbf{A} = \left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 2 \\ 4 \end{pmatrix} \right\}$	
(iii) [2]	Consider $ \begin{pmatrix} 1 & 2 & 2 & 0 \\ -2 & 1 & 0 & -4 \\ 1 & -2 & 2 & 5 \\ 0 & 1 & 4 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} $ $ \begin{pmatrix} 1 & 0 & 0 & \frac{11}{8} \\ 0 & 1 & 0 & -\frac{5}{4} \\ 0 & 0 & 1 & \frac{9}{16} \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} $	

$$\begin{vmatrix} x \\ y \\ z \\ t \end{vmatrix} = \begin{pmatrix} -\frac{11}{8}t \\ \frac{5}{4}t \\ -\frac{9}{16}t \\ t \end{pmatrix} = t \begin{vmatrix} -\frac{11}{8} \\ \frac{5}{4} \\ -\frac{9}{16} \\ 1 \end{vmatrix}$$
 \therefore Basis of null space $= \begin{cases} \begin{pmatrix} -\frac{11}{8} \\ \frac{5}{4} \\ -\frac{9}{16} \\ 1 \end{pmatrix}$
$$\begin{vmatrix} (iv) \\ 13| \end{vmatrix} = \begin{pmatrix} 1 & 2 & 2 & 0 \\ -2 & 1 & 0 & -4 \\ 1 & -2 & 2 & 5 \\ 0 & 1 & 4 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 2 \\ 8 \end{pmatrix}$$
 Using GC,
$$\begin{pmatrix} -\frac{21}{8} \\ -\frac{1}{4} \\ +t \\ \frac{33}{16} \\ 0 \end{pmatrix} + t \begin{pmatrix} -\frac{11}{8} \\ \frac{5}{4} \\ -\frac{9}{16} \\ 1 \end{pmatrix} = \begin{pmatrix} p \\ q \\ r \\ -1 \end{pmatrix}$$
 So $t = -1 \Rightarrow p = -\frac{5}{4}$, $q = -\frac{3}{2}$, $r = \frac{21}{8}$.

Qn	Suggested Solution	Comment
3(i)	$1(\ldots,2)$	This part is well
[2]	$y_{n+1} = \frac{1}{3} \left(y_n + \frac{2}{y_n} \right)$	done.
	As $n \to \infty$, $x_n \to L$.	
	$L = \frac{1}{3} \left(L + \frac{2}{L} \right) \Rightarrow 2L^2 = 2$	
	$L=1$ since $y_n > 0$ for all n .	
(ii) [6]	$y_{n+1} - L = \frac{1}{3} \left(y_n + \frac{2}{y_n} \right) - L = \frac{1}{3y_n} \left(y_n^2 - 3Ly_n + 2 \right)$	
	$= \frac{1}{3y_n} (y_n^2 - 3y_n + 2), \text{ since } L = 1$	
	$= \frac{1}{3y_n} (y_n - 2)(y_n - 1) < 0 \text{ since } 1 = L < y_n < 2$	
	Therefore $y_{n+1} < L$ for $y_n > L$.	
	$y_{n+2} - L = \frac{1}{3y_{n+1}} (y_{n+1} - 2)(y_{n+1} - 1) > 0 \text{ since } 0 < y_{n+1} < L = 1$	
	Therefore $y_{n+2} > L$.	

To prove that $y_{n+2} < y_n$.

Method 1

$$y_{n+2} - y_n$$

$$= \frac{1}{3} \left(y_{n+1} + \frac{2}{y_{n+1}} \right) - y_n = \frac{1}{3} \left[\frac{1}{3} \left(y_n + \frac{2}{y_n} \right) + \frac{2}{\frac{1}{3} \left(y_n + \frac{2}{y_n} \right)} \right] - y_n$$

$$= \frac{1}{9} \left(\frac{y_n^2 + 2}{y_n} \right) + \frac{2y_n}{y_n^2 + 2} - y_n$$

$$= \frac{\left(y_n^2 + 2 \right)^2 + 18y_n^2 - 9y_n^2 \left(y_n^2 + 2 \right)}{9y_n \left(y_n^2 + 2 \right)}$$

$$= \frac{-8y_n^4 + 4y_n^2 + 4}{9y_n \left(y_n^2 + 2 \right)} = -4 \frac{\left(2y_n^2 + 1 \right) \left(y_n^2 - 1 \right)}{9y_n \left(y_n^2 + 2 \right)} < 0, \text{ since } y_n > 1$$

Therefore $y_{n+2} < y_n$.

Method 2

$$\begin{aligned} y_{n+2} - y_n \\ &= y_{n+2} - y_{n+1} + y_{n+1} - y_n \\ &= \frac{1}{3} \left(y_{n+1} + \frac{2}{y_{n+1}} \right) - \frac{1}{3} \left(y_n + \frac{2}{y_n} \right) + y_{n+1} - y_n \\ &= \frac{4}{3} (y_{n+1} - y_n) + \frac{2}{3} \left(\frac{1}{y_{n+1}} - \frac{1}{y_n} \right) = \frac{4}{3} (y_{n+1} - y_n) + \frac{2}{3} \left(\frac{y_n - y_{n+1}}{y_n y_{n+1}} \right) \\ &= \frac{2}{3} (y_{n+1} - y_n) \left(2 - \frac{1}{y_n y_{n+1}} \right) = \frac{2}{3} (y_{n+1} - y_n) \left(2 - \frac{1}{\frac{y_n}{3} \left(y_n + \frac{2}{y_n} \right)} \right) \\ &= \frac{2}{3} (y_{n+1} - y_n) \left(2 - \frac{3}{y_n^2 + 2} \right) \\ &= \frac{2}{3} (y_{n+1} - y_n) \left(\frac{2y_n^2 + 1}{y_n^2 + 2} \right) < 0, \text{ since } y_{n+1} < L < y_n \end{aligned}$$
Therefore $y_{n+2} < y_n$.

So,
$$y_{n+1} < L < y_{n+2} < y_n$$

Qn	Suggested Solution	Comment
4(i)		A handful of
[3]	$\theta = \frac{3\pi}{4}$ $\theta = \frac{\pi}{4}$	students were
	4 4	penalized for not including
		the two tangent
		lines. Note that
	$\theta = 0$	it can be seen
	$ \frac{\theta = 0}{(3, 0)} $	from the GC that there is a
	(3,0)	vertical
		asymptote
		located at $x = -3$.
	<u> </u>	x = -3.
	$x = -3$ $r = 3\cos 2\theta \sec \theta$	
	-1	
(ii)	At the pole, $\cos 2\theta = 0 \Rightarrow \theta = \frac{\pi}{4}, \frac{3\pi}{4}$. The curve is also symmetrical	This part was
[4]	about the initial line.	well done.
	T .	
	Area = $2\int_0^{\frac{\pi}{4}} \frac{1}{2} (3\cos 2\theta \sec \theta)^2 d\theta = 9\int_0^{\frac{\pi}{4}} \cos^2 2\theta \sec^2 \theta d\theta$	
	$=9\int_{0}^{\frac{\pi}{4}}(2\cos\theta-\sec\theta)^{2}d\theta=9\int_{0}^{\frac{\pi}{4}}4\cos^{2}\theta-4+\sec^{2}\theta d\theta$	
	$=9\int_0^1 (2\cos\theta - \sec\theta) d\theta = 9\int_0^1 4\cos\theta - 4 + \sec\theta d\theta$	
	$=9\int_0^{\frac{\pi}{4}}2\cos 2\theta - 2 + \sec^2\theta d\theta = 9\left[\sin 2\theta - 2\theta + \tan\theta\right]_0^{\frac{\pi}{4}}$	
	$=\frac{9}{2}(4-\pi).$	
	$-\frac{1}{2}(4-n)$.	
(;;;)	$r = 3\cos 2\theta \sec \theta$	This part was
(iii) [3]		well done.
[-]	$\frac{dr}{d\theta} = 3(-2\sin 2\theta)\sec \theta + 3\cos 2\theta \sec \theta \tan \theta$	
	$= 3\sec\theta(\cos 2\theta\tan\theta - 2\sin 2\theta)$	
	$= 3\sec\theta \left(2\sin\theta\cos\theta - \tan\theta - 2\sin2\theta\right)$	
	$= -3\sec\theta(\sin 2\theta + \tan\theta)$	
	Arc length = $2\int_0^{\frac{\pi}{4}} \sqrt{(3\cos 2\theta \sec \theta)^2 + [-3\sec \theta (\sin 2\theta + \tan \theta)]^2} d\theta$	
	$=6\int_0^{\frac{\pi}{4}} \sqrt{\sec^2\theta \left(\cos^2 2\theta + (\sin 2\theta + \tan \theta)^2\right)} d\theta$	
	$=6\int_0^{\frac{\pi}{4}} \sqrt{\sec^2\theta \left(1+2\sin 2\theta \tan \theta + \tan^2\theta\right)} d\theta$	
	$=6\int_0^{\frac{\pi}{4}} \sqrt{\sec^2\theta \left(\sec^2\theta + 4\sin^2\theta\right)} d\theta = 7.47 (3.s.f)$	

(iv)	Cartesian equation of $r = 3\cos 2\theta \sec \theta$	This part was
	<u> </u>	-
[4]	$r\cos\theta = 3\cos 2\theta$	well done.
	$x = 3\left(2\left(\frac{x}{r}\right)^2 - 1\right) = \frac{6x^2}{r^2} - 3$	
	$xr^2 = 6x^2 - 3r^2$	
	$r^2(x+3) = 6x^2$	
	$x^2 + y^2 = \frac{6x^2}{x+3}$	
	$r^{2}(x+3) = 6x^{2}$ $x^{2} + y^{2} = \frac{6x^{2}}{x+3}$ $y^{2} = \frac{6x^{2}}{x+3} - x^{2}$	
	$\overline{x} = \frac{\int_a^b xy^2 \mathrm{d}x}{\int_a^b y^2 \mathrm{d}x}$	
	$= \frac{\int_0^3 \frac{6x^3}{x+3} - x^3 dx}{\int_0^3 \frac{6x^2}{x+3} - x^2 dx} = \frac{2.46016}{1.42995} = 1.72 \text{ (3.s.f)}$	
	$\int_0^3 \frac{6x^2}{x+3} - x^2 \mathrm{d}x \qquad 1.42995$	

Qn	Suggested Solution	Comment
5(i) [4]	$\frac{\mathrm{d}y}{\mathrm{d}t} = t - ty \Rightarrow \int \frac{1}{1 - y} \mathrm{d}y = \int t \mathrm{d}t$	There were still minor mistakes
	$\Rightarrow -\ln 1-y = \frac{t^2}{2} + C, \text{ where } C \text{ is an arbitratry constant}$ $\Rightarrow \ln 1-y = -\frac{t^2}{2} - C$	seen, especially in not accounting for the modulus in $\ln 1-y $.
	$\Rightarrow 1 - y = Ae^{-\frac{t^2}{2}}, \text{ where } A = \pm e^{-C}$	
	When $t = 0$, $y = 0$, we have $A = 1$. Hence, $y = 1 - e^{-\frac{t^2}{2}}$. When $t = 1$, $y = 0.39347$ (5 sf). Alternatively, $\frac{dy}{dt} = t - ty \Rightarrow \frac{dy}{dt} + ty = t$.	
	Integrating factor, $e^{\int t dt} = e^{\frac{t^2}{2}}$.	
	So $ye^{\frac{t^2}{2}} = \int te^{\frac{t^2}{2}} dt = e^{\frac{t^2}{2}} + C$, where C is an arbitratry constant.	
	When $t=0$, $y=0$, we have $C=-1$.	
	Hence, $ye^{\frac{t^2}{2}} = e^{\frac{t^2}{2}} - 1 \Rightarrow y = 1 - e^{-\frac{t^2}{2}}$.	

(ii) [4]	$\frac{\mathrm{d}y}{\mathrm{d}t} = t - ty \cdot \text{Let } f(t, y) = t - ty .$	This part was generally well done. Students
	Improved Euler method with step size <i>h</i> :	are required to
	$u_{n+1} = y_n + hf(t_n, y_n)$	keep their intermediate
	$y_{n+1} = y_n + \frac{h}{2} \Big[f(t_n, y_n) + f(t_{n+1}, u_{n+1}) \Big]$	answers all to 7s.f. as final answer is to be
	Given: $y_2 = 0.1182861$ (7 sf), we have	in 5s.f.
	$u_3 = 0.1182861 + (0.25)(0.4408569) = 0.2285003$	
	$y_3 = 0.1182861 + \frac{0.25}{2}(0.4408569 + 0.5786247) = 0.2457213$	
	$u_4 = 0.2457213 + (0.25)(0.5657090) = 0.3871486$	
	$y_4 = 0.2457213 + \frac{0.25}{2}(0.5657090 + 0.6128514) = 0.3930414$	
	= 0.39304 (5 sf).	
(iii) [4]	$y_3(t) = y_0 + \int_0^t f(x, y_2(x)) dx$ = 0 + \int_0^t x - xy_2(x) dx	Most students scored full mark for this part, except some
	$= \int_0^t x - x \left(\frac{x^2}{2} - \frac{x^4}{8}\right) dx$	who committed careless mistakes.
	$= \int_0^t x - \frac{x^3}{2} + \frac{x^5}{8} \mathrm{d}x$	
	$= \left[\frac{x^2}{2} - \frac{x^4}{8} + \frac{x^6}{48}\right]_0^t = \frac{t^2}{2} - \frac{t^4}{8} + \frac{t^6}{48}.$	
	$y_4(t) = y_0 + \int_0^t f(x, y_3(x)) dx$	
	$=0+\int_0^t x-xy_3(x) dx$	
	$= \int_0^t x - x \left(\frac{x^2}{2} - \frac{x^4}{8} + \frac{x^6}{48} \right) dx$	
	$= \int_0^t x - \frac{x^3}{2} + \frac{x^5}{8} - \frac{x^7}{48} \mathrm{d}x$	
	$= \left[\frac{x^2}{2} - \frac{x^4}{8} + \frac{x^6}{48} - \frac{x^8}{384}\right]_0^t = \frac{t^2}{2} - \frac{t^4}{8} + \frac{t^6}{48} - \frac{t^8}{384}.$	

Hence, $y_4(1) = \frac{1}{2} - \frac{1}{8} + \frac{1}{48} - \frac{1}{384} = \frac{151}{384} = 0.39323$ (5 sf).

(iv) [2]	 (i) gives y=0.39347 (5 sf), (ii) gives y₄ = 0.39304 (5 sf), while (iii) gives y₄(1)=0.39323 (5 sf). Though (ii) and (iii) give very good approximation to (i) when correct to 3 significant figures, (iii) seems to give a better approximation to (i) than (ii) at a higher level of significance. (ii) can be improved by reducing the step size. (iii) can be improved by having more iterations. 	Note that (iii) CANNOT be improved by reducing step size as there is no step size for t involved. Picard's iteration uses a sequence of functions, instead of numbers, to
		approximate the solution upon substituting in <i>t</i> of interest.

Qn	Suggested Solution	Comment
6(i)	Let X be the number of students who clocked at least $10,000$ steps	Students are
[2]	daily, out of 300 students.	reminded of the
	$X \sim B(300, p)$	need to state the
	Since u = 200 in lower	distribution.
	Since $n = 300$ is large,	Common
	$X \sim N(300p, 300pq)$ approximately where $q = 1 - p$.	mistake:
	$X \qquad (pa)$	students used \hat{p}
	So $P = \frac{X}{300} \sim N\left(p, \frac{pq}{300}\right)$ approximately	in place of p
	, 78	when they
	$\hat{p} = \frac{78}{300} = 0.26$	stated the
	From GC, a 95% confidence interval for p is (0.210, 0.310) (3sf)	distribution.
(ii)	Let the number of PE teachers that conducted the survey be <i>k</i> .	Mostly well
[2]	$\hat{p} = \frac{0.146 + 0.254}{2} = 0.2$	done.
	$p = \frac{1}{2} = 0.2$	
	$\frac{\hat{n}(1-\hat{n})}{\hat{n}}$	
	$\hat{p} + 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{30k}} = 0.254 \qquad \Rightarrow k = 7$	
(iii)	Note that \hat{p} remains as 0.2 with the inclusion of the missing results.	Most are able to
[2]		take note that \hat{p}
	Interval width = $2 \times 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	remains
	Since n is now larger, the interval width becomes smaller.	unchanged and
	Since n is now larger, the interval width occomes smaller.	so the width of
		interval will
		become smaller.

	Suggested Solution					Comment
]	H_0 : "Type of car"	and "age of	f car owner	" are indepe	ndent.	Mostly well
	H_1 : "Type of car"	done for				
	1 11	8			1	calculating the
Ţ	Perform a χ^2 test of	n indenender	nce at the 5	% significar	ice level	expected
1	criorin a χ test o	frequencies and the				
Į	Under H_0 , Expect	contributions to				
	Tr. C	Ag	e of car ow	ner	TD 4 1	$\chi^2_{ m cal}$.
	Type of car	Under 30	30 - 50	Above 50	Total	77 cui
	Saloon	25.6667	66.3667	39.9666	132	However, when
	Coupe	7.1944	18.6028	11.2028	37	it comes to the
	Hatchback	21.1944	54.8028	33.0028	109	conclusion,
	MPV	15.9445	41.2277	24.8278	82	students need to
	Total	70	181	109	360	use some
						suitable levels
(Observed Frequen	cies (O_{ii}) :				of significance
			e of car ow	ner		to provide the
	Type of car	Under 30	30 - 50	Above 50	Total	appropriate
	Saloon	25	67	40	132	conclusions.
	Coupe	15	12	10	37	Г 4
	Hatchback	22	55	32	109	For the
	MPV	8	47	27	82	discussion on the association,
	Total	70	181	109	360	students need to
(Contributions to χ					touch on the strength of the evidence and how the
	Type of car	r	Age of course $30-5$	ar owner		contributions
	Турс от са.	Under 30			ove 50	may provide
	Saloon	0.017316			0027801	some evidence as hinted by the
	Coupe	8.4686	2.343		2914	question.
	Hatchback		-		30469	question.
	MPV	3.9584	0.808	16 0.1	9005	
τ	The degrees of free Using the GC, χ^2_{cal} and p – value = 0.	= 15.983	-1)×(3-1)=6		
s	Since p – value = 0. Here is sufficient association between	0.01384 < 0	the 5% sign	nificance lev	el, that there	

[2]	However if the test is performed at 1% significance level, H_0 will be barely accepted. Thus, there is some but not strong evidence to suppose that there is association between the type of car and age of car owner.
	The strongest evidence for association is in the under 30 - coupe cell, where the observed frequencies is much greater than expected under H_0 , making the greatest contribution to the χ^2 test statistic.

Qn	Suggested Solution	Comment
8(i)	Firstly, note that for a pair of dice to land on the same score of 1, the	Some
[2]	probability is $\frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$. This is similar for 2, 3 and 4.	explanations need to be
	Hence for a pair of dice to obtain a score of 0 (i.e. no score), the probability is $1 - \frac{1}{16} \times 4 = \frac{3}{4}$.	given on how the probability is calculated as
	$\int_{0}^{100a0 \text{mey is } 1-16} \int_{0}^{100a0 \text{mey is } 1-4} \cdot$	it is a "show"
	A score of 2 for the four dice may come from a score of $0 + 2$, $1 + 1$ or $2 + 0$.	question.
	$\therefore \text{ Required probability} = \frac{1}{16} \times \frac{3}{4} \times 2 + \frac{1}{16} \times \frac{1}{16} = \frac{25}{256} \text{ (shown)}.$	
(ii) [3]	$X \sim \text{Geo}(p) \text{ where } p = \frac{25}{256}$	Very well done.
	Var $(X) = \frac{1-p}{p^2} = \frac{59136}{625}$ or 94.6176 (accept 94.6)	
	$P(X=7) = (1-p)^6 p = 0.0527 $ (3 s.f)	
(iii)	$P(X = 7) = (1 - p)^6 p = 0.0527 (3 \text{ s.f})$ Assumptions:	All 4
[3]	• The visits to the booth occur randomly and independently.	assumptions
	• The average rate of visits to the booth is a constant.	("RIUS") must
	• The probability of two or more visitors to the booth occurring within	be stated. For singly, students
	a very short interval is negligible.	need to explain
	In practice this may not hold. For example, the decision to play a game	what it means
	might be affected by a friend who has already played the game.	in the context.
(iv)	Let the random variable <i>Y</i> denote the number of visitors at the booth in	Take note of the
(a)	10 minutes. $Y \sim Po\left(\frac{13}{3}\right)$	interval being
[1]	P(Y=0) = 0.0131 (3 s.f.)	10 minutes.
(b)		Common
[1]	$P(Y > 3) = 1 - P(Y \le 3) = 0.629 (3 \text{ s.f.})$	mistake:
		P(Y > 3) = 1 -
		$P(Y \le 2)$

Qn	Suggested Solution	Comment
9(i)	$\int y$	Students are
[2]	0.3	reminded to
	02	extend the
	y = f(x)	graph beyond
	0.1	the end-points
	-2 0 2 4 6 8 10 12 14	and also to give
		the value of the
		maximum point
(ii)	$P(X \le 6) = \frac{1}{2}(6)(0.2)$	Most students
[1]	$2^{(0)(0.2)}$	only stated that
	=0.6>0.5	the area under
	Therefore, median demand is less than 6 tonnes.	the graph from
		x = 0 to $x = 6$ is
		larger and
		hence the
		conclusion,
		which is not sufficient. The
		best way is to give the area.
(iii)	16	Poorly done as
[3]	$P(X \ge 8) = \frac{16}{135}$	students didn't
[2]	135	see the need to
	$F(X) = \int_{-\infty}^{\infty} \frac{1}{r^2} dr + \int_{-\infty}^{\infty} \frac{1}{r(12-r)^2} dr + 8 \times P(X > 8)$	find
	$E(X) = \int_{0}^{6} \frac{1}{30} x^{2} dx + \int_{6}^{8} \frac{1}{180} x (12 - x)^{2} dx + 8 \times P(X \ge 8)$	
		$P(X \ge 8) = \frac{16}{135}$
	$=\frac{713}{135}$	and hence
	The expected amount of rice sold each month is 5.28 tonnes (3.s.f.)	$8 \times P(X \ge 8)$
		which
		contributed to
		$\mathrm{E}(X)$.
(iv)	$P(X \le k) \ge 0.95$	Students are
[2]	c^k 1 \sim 2	reminded that
	$0.6 + \int_{6}^{k} \frac{1}{180} (12 - x)^{2} dx \ge 0.95$	they should
	Using GC, $k \ge 9$	work with
	$\therefore \text{ The least value of } k \text{ is 9.}$	inequality so as
	The least value of k is 9.	to conclude the
		least value of <i>k</i> .
(v)	If the storage is extended to 12 tonnes, expected amount of rice sold	Answer to this
[2]	would be	was affected by
	$E(X) = \int_{0}^{6} \frac{1}{30} x^{2} dx + \int_{6}^{12} \frac{1}{180} x (12 - x)^{2} dx$	their attempt in
	$\int_{0}^{2} 30^{3} dt + \int_{0}^{2} 180^{3} (12^{-3})^{2} dt$	(iii). As such,
	= 5.4	this was poorly
	Therefore,	done as well.
	expected increase in profit = $\left(5.4 - \frac{713}{135}\right) \times 480 = 56.8889 \approx 56.89$	
	The expected increase in monthly profit will be \$56.89.	

(vi) [2]	$\frac{20000}{56.8889} \approx 351.56 \text{ months } \approx 29.3 \text{ years}$	Most students attempted to
	Since it would take about 29.3 years for the merchant to break even, it does not seem feasible to extend the storage.	look at how long it will take for the merchant to "break even", but was not given full credit due to mistake in part (v).

Qn	S	uggeste	d Soluti	ion								Comment				
10	ı	Let X and								_	-	Mostly well				
(i)										done for (i) and						
[5]	$D = Y - X$ be the difference in LDL levels, and m_D be the									(ii), except						
	population median difference.								some who needed to							
		Pair	1	2	3	4	5	6	7	8	9	improve in their				
	•	d	-0.10	0.85	0.45	0.86	0.6	0	0.16	0.25	-0.41	presentation				
	•	sign	-	+	+	+	+		+	+	-	like defining random				
	T L F U P S til c	Fign Test H to test H to test H be from the H and H there ere all die evels for	$f_0: m_D = 0$ the number table, s_0 , $S_+ \sim 0$ $P(S_+ \ge 0)$ alue = 0 is insufit is more	mber of $a_{+} = 6$, $a_{+} = 6$, $a_{-} = 6$. The effective effective of $a_{-} = 6$, $a_{-} = 6$, $a_{-} = 6$, $a_{-} = 6$.	f + sign	3.s.f) we do note, at 5 an a con	not rej % sig m flak	nifi	cance,	that an	oat bran	variables and using median for sign tests.				
(ii) [3]	V	Vilcoxon matched-pair signed rank test:														
		Pair	1	2	3	4	5	6	7	8	9					
		d	-0.10	0.85	0.45	0.86	0.6	0	0.16	0.25	-0.41					
		Rank	1	7	5	8	6		2	3	4					
	To test $H_0: m_D = 0$ vs $H_1: m_D > 0$															
	The sum of the positive ranks, $P = 2 + 3 + 5 + 6 + 7 + 8 = 31$ and the sum of the negative ranks, $Q = 1 + 4 = 5$ So $T = \min(P, Q) = 5$ From table, since $T \le 5$ we reject H_0 and conclude that there is sufficient evidence at 5% significance, that an oat bran cereal diet is more effective than a corn flakes diet in reducing LDL levels for hypercholesterolemic males.															

(iii) [4]	Assuming that the data are samples from normal distributions, and D follows a normal distribution. For a paired sample t -test, $H_0: \mu_D = 0$ vs $H_1: \mu_D > 0$ Under H_0 , $T = \frac{\overline{D}}{S/\sqrt{n}} \sim t(n-1)$ From the sample, $\overline{d} = 0.29556$, $s^2 = \frac{1}{8} \left(2.2908 - \frac{2.66^2}{9} \right) = 0.18808$, $n = 9$. Using a paired sample t -test, p -value = 0.0376 Since p -value = $0.0376 < 0.05$. Hence we reject H_0 and conclude that there is sufficient evidence at 5% significance level, that an oat	Mostly managed to use the right test except a few who opted for 2 sample t-test and it cost them dearly. Students should take note that the question stated "each member of the
	bran cereal diet is more effective than a corn flakes diet in reducing LDL levels for hypercholesterolemic males.	pair having similar low- density lipoprotein (LDL) levels in January" as justification to use paired sample t-test.
(iv) [2]	The conclusion of the two non-parametric tests are different. The Wilcoxon test made use of the magnitude of the differences between matched pairs of the LDL levels, and is hence a better test compared to the sign test as it incorporates more information about the data. Hence the conclusion of the Wilcoxon matched-pair signed rank test is more reliable. The paired sample <i>t</i> -test requires the assumption that the data comes from normal distributions and it depends on whether the parameters of the normal distributions can be found. In this research context it is unlikely for them to be found. Hence using the non-parametric tests would not require the researcher to assume that the data comes from normal distributions.	Most students were able to point out the advantages of using the Wilcoxon test over the sign test, but miss out on the comparison between the paired sample t- test and Wilcoxon test.