

TAMPINES MERIDIAN JUNIOR COLLEGE JC2 PRELIMINARY EXAMINATION

H2 CHEMISTRY

Paper 1 Multiple Choice

9729/01 26 September 2019 1 hour

Additional Materials:

Multiple Choice Answer Sheet Data Booklet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, class and index number on the Answer Sheet in the spaces provided unless this has been done for you.

There are **thirty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

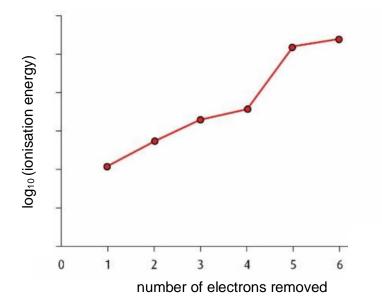
Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

The use of an approved scientific calculator is expected, where appropriate.

This document consists of **18** printed pages.

D²⁻ **E**^{3–} **A**+ Bmass number 21 20 20 21 number of protons _ 11 9 _ number of electrons 9 _ _ 12


2

1 Some data of the ions of four unknown elements are given in the table below.

Which of the following correctly shows pairs of isotopic and isoelectronic species?

	isotopic	isoelectronic
Α	D ^{2–} , E ^{3–}	B [−] , E ^{3−}
В	B ⁻ , D ²⁻	A ⁺, B ⁻
С	B ⁻ , D ²⁻	B [−] , E ^{3−}
D	D ^{2–} , E ^{3–}	A ⁺, B [−]

2 The first six ionisation energies of element **G** are plotted in the graph below.

Which of the following can be deduced from the graph?

- **A** There are 2 quantum shells in element **G**.
- **B** Element **G** is from Group 2 in the Periodic Table.
- **C** The fifth and sixth electrons are removed from the same subshell.
- **D** The identity of element **G** is carbon.

- **3** For which of the following pairs does the first molecule have a higher polarity than the second molecule?
 - 1 CH_3OH, CH_3I
 - 2 CF₄, CC*l*₄
 - 3 cis-CHF=CHF, trans-CHF=CHF
 - A 1 only
 - **B** 1 and 3
 - **C** 2 and 3
 - **D** 1, 2 and 3
- 4 Three substances **H**, **I** and **J** have physical properties shown in the table below.

substance	melting		electrical conductivity		
substance	point/ °C	point/ °C	of solid	of liquid	
н	801	1413	poor	good	
I	2852	3600	poor	good	
J	3500 at very high pressure	unable to determine	poor	unable to determine	

What are the possible identities for substances H, I and J?

	Н		J
A	NaC <i>l</i>	AlCl ₃	C (diamond)
В	MgO	AlCl ₃	C (graphite)
С	NaC <i>l</i>	MgO	C (graphite)
D	NaCl	MgO	C (diamond)

5 Which of the following diagrams correctly describe the behaviour of a fixed mass of an ideal gas at constant temperature?

graph 1 graph 2 graph 3 р с C 4 рV р р Α 2 only В 1 and 2 С 2 and 3 D 1, 2 and 3

6 In which of the following reactions is the underlined reactant acting as a Lewis acid?

$$\mathbf{A} \quad \mathsf{BF}_3 + \mathsf{F}^- \longrightarrow \mathsf{BF}_4^-$$

[c is concentration]

- $\mathbf{B} \quad \mathsf{A}l\mathsf{C}l_3 \, + \, \underline{\mathsf{C}l_2} \longrightarrow \, \mathsf{A}l\mathsf{C}l_4^- \, + \, \mathsf{C}l^+$
- $\mathbf{C} \quad \mathrm{Ag}^{\scriptscriptstyle +} + 2 \underline{\mathrm{NH}}_3 \longrightarrow [\mathrm{Ag}(\mathrm{NH}_3)_2]^{\scriptscriptstyle +}$
- **D** $H_2O + \underline{HSO_3}^- \longrightarrow H_2SO_3 + OH^-$
- 7 Which of the following statements is true of the Period 3 chlorides, NaCl to PCl_5 ?
 - A The melting points of the chlorides show a continuously decreasing trend.
 - **B** The pH of the solutions formed when the chlorides are added to water range from alkaline to acidic.
 - **C** Three of the chlorides have simple molecular structures.
 - **D** The only chlorides which undergo hydrolysis in water are $AlCl_3$ and $MgCl_2$.

8 The relative abundances of the isotopes of a sample of titanium are shown in the table below.

5

relative isotopic mass	46	47	48
relative abundance	11.2	10.1	z

Given that the relative atomic mass of the sample is 47.862, what is the value of *z*?

Α	214.2	В	79.1	С	78.7	D	26.6
---	-------	---	------	---	------	---	------

9 A metallic salt was found to react exactly with sulfite ions in a 2 : 1 ratio.In this reaction, the sulfite ion is oxidised as follows.

 $SO_3^{2-}(aq) + H_2O(I) \longrightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2e^-$

What is the new oxidation number of the metal in the salt if its original oxidation number was +3?

Α	+1	В	+2	С	+4	D	+5

10 The enthalpy changes for the following reactions are given:

$$\begin{aligned} & 2\mathrm{Cr}(\mathrm{s}) + \frac{3}{2}\mathrm{O}_2(\mathrm{g}) \to \mathrm{Cr}_2\mathrm{O}_3(\mathrm{s}) & \Delta H_{\mathrm{f}}(\mathrm{Cr}_2\mathrm{O}_3(\mathrm{s})) = -1120 \text{ kJ mol}^{-1} \\ & \mathrm{C}(\mathrm{s}) + \frac{1}{2}\mathrm{O}_2(\mathrm{g}) \to \mathrm{CO}(\mathrm{g}) & \Delta H_{\mathrm{f}}(\mathrm{CO}(\mathrm{g})) = -110 \text{ kJ mol}^{-1} \end{aligned}$$

What is the enthalpy change of reaction for the following reaction, in terms of kJ mol⁻¹?

$$3C(s) + Cr_2O_3(s) \rightarrow 2Cr(s) + 3CO(g)$$

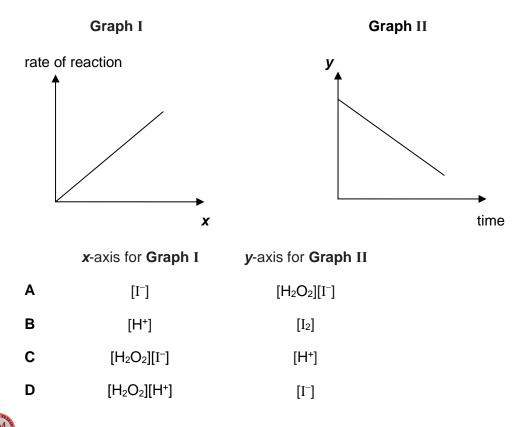
A – 940 **B** – 870 **C** + 590 **D** + 790

11 An experiment was conducted by reacting propyne with hydrogen gas in a shock tube.

$$CH_3C\equiv CH(g) + 2H_2(g) \rightarrow CH_3CH_2CH_3(g)$$

The value of ΔG for the reaction is found to be negative at low temperature.

What is the sign of ΔH and ΔS for the above reaction?


	ΔH	ΔS
Α	_	_
В	+	_
С	_	+
D	+	+

12 The kinetics of the reaction between hydrogen peroxide and acidified iodide ions were investigated.

 $H_2O_2(aq) + 2H^+(aq) + 2I^-(aq) \rightarrow I_2(aq) + 2H_2O(I)$

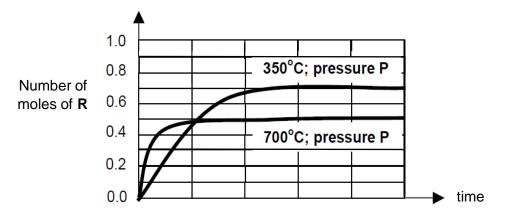
The rate equation was found to be: rate = $k[H_2O_2][I^-]$

Which of the following shows the correct labelling of the *x*-axis for **Graph I** and *y*-axis for **Graph II**?

13 The reaction between HBr and O₂ is thought to occur via a multi-step mechanism:

$HBr \ \textbf{+} \ \textbf{O}_2 \ \rightarrow \ HO_2Br$	(slow)
HO_2Br + $HBr \rightarrow 2HOBr$	(fast)
$HOBr + HBr \rightarrow Br_2 + H_2O$	(fast)

The overall reaction is given to be $4HBr + O_2 \rightarrow 2Br_2 + 2H_2O$.


Which of the following statements are true?

- 1 The overall order of reaction is 2.
- 2 HO₂Br is the only intermediate in the reaction.
- 3 HOBr acts as a catalyst in the reaction.
- **A** 1 only **B** 3 only **C** 1 and 2 **D** 1, 2 and 3

14 L and M can react together to reach equilibrium in the reaction below.

L(g) + M(g) - Q(g) + R(g)

In an experiment, 1.0 mole each of **L** and **M** were reacted at constant pressure P and temperature 350 °C. The amount of **R** present in the mixture at intervals of time was recorded. The experiment was repeated at the same pressure P, but at a temperature of 700 °C. The results for both experiments are shown below.

Which one of the following information cannot be deduced from the graph?

- A The value of K_c decreases with an increase in temperature.
- **B** The equilibrium is achieved at a faster rate at higher temperatures.
- **C** The enthalpy change for the forward reaction is negative.
- **D** The activation energy of the forward reaction is high.

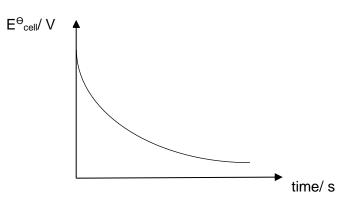
15 The dissociation constants, K_w , for the ionisation of water at different temperatures are given below.

temperature / °C	<i>K</i> _w / mol ² dm ^{−6}
0	1.15 x 10 ⁻¹⁵
25	1.00 x 10 ⁻¹⁴
50	5.50 x 10 ⁻¹⁴

 $H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$

What can be deduced from this information?

- **A** Only at 25 °C are $[H^+]$ and $[OH^-]$ equal.
- **B** K_{w} is not affected by changes in temperature.
- **C** The forward reaction is exothermic.
- **D** The pH of water decreases as temperature increases.
- **16** The following tests were performed on an aqueous solution containing chloride and iodide ions.

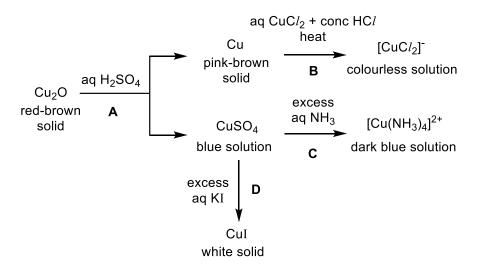

step	test	observations
1	Add excess AgNO₃(aq).	Mixture of white and yellow precipitates is formed.
2	To the mixture from step 1, add excess NH ₃ (aq).	White precipitate dissolves to form a colourless solution. Yellow precipitate is insoluble.
3	Filter the mixture from step 2.	Filtrate was a colourless solution. Residue was a yellow solid.

Which of the following statements are correct?

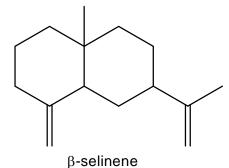
- 1 The K_{sp} for AgCl is lower than that for AgI.
- 2 There are no $Ag^+(aq)$ and $Cl^-(aq)$ present in the filtrate formed in Step 3.
- 3 In step 2, the addition of NH₃(aq) results in the formation of [Ag(NH₃)]₂⁺ that momentarily decreases the ionic product of AgC*l*.
- A 3 only
- **B** 1 and 2
- C 2 and 3
- **D** 1, 2 and 3

17 An experiment is carried out between the Fe^{2+}/Fe and Co^{2+}/Co half cells.

The following graph of cell potential against time was obtained when a change was continuously made to the half-cell.



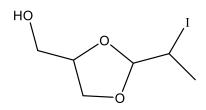
What continuous change could produce this graph?


- A add aqueous cobalt(II) ions to the cobalt half-cell
- **B** add aqueous ammonia to the cobalt half-cell
- **C** add water to the iron half-cell
- D increase the mass of solid iron immersed in the solution
- 18 Which of the following statements about octahedral complexes is correct?
 - A The ratio of hexadentate ligands to the central metal ion is 6:1.
 - **B** The d_{xz} , d_{yz} and d_{xy} orbitals are higher in energy than the $d_{x^2-y^2}$ and d_{z^2} orbitals.
 - **C** The d orbitals are split into different energy levels due to different orientation of the orbitals to the ligands.
 - **D** The same transition metal with different oxidation states displays the same colour with the same ligands.

19 The diagram below shows some reactions involving copper and its compounds.

Which reaction involves ligand exchange only?

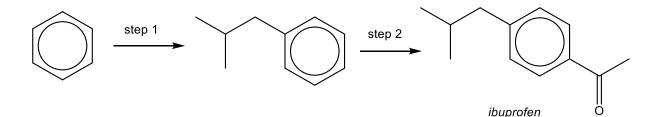
20 β -selinene is a molecule that can be isolated from plants. It has the following structural formula.



Which of the following statements about this molecule is correct?

- A It has a plane of symmetry.
- **B** It does not contain any sp hybridised carbon.
- C It has one chiral centre.
- D It exhibits cis-trans isomerism.

21 Iodinated glycerol is used in the symptomatic treatment of patients with chronic obstructive pulmonary disease.

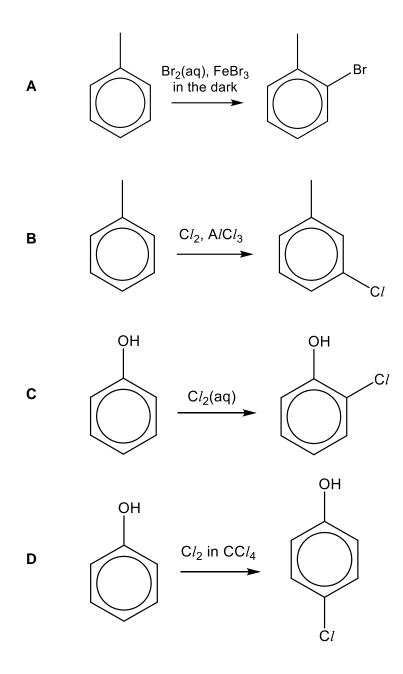

iodinated glycerol

Which of the following correctly shows the product formed when iodinated glycerol is reacted with the given reagents and conditions?

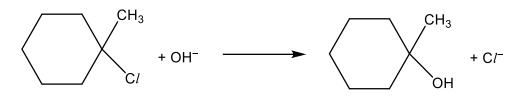
[The C–O–C bond in the structure is inert to the reagents.]

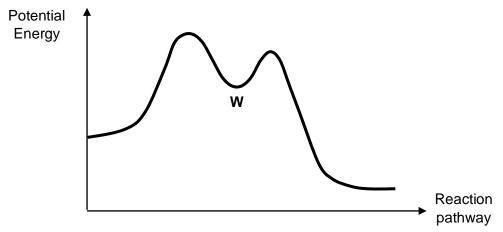
	reagent & conditions	product
A	alcoholic KOH, heat	HO
В	alcoholic KOH, heat	HO OH
с	aqueous KOH, heat	
D	concentrated H ₂ SO ₄ , heat	

- **22** Which of the following compounds react with HBr in an addition reaction to give a major chiral product?
 - 1
 - 2 CH(Br)=CH₂
 - 3 CH₃CH=C(CH₃)CH₂CH₃
 - 4 CH₂=CHCH₂CH₃
 - **A** 1 and 3 **B** 1 and 4 **C** 2 and 3 **D** 4 only
- 23 Two of the steps in the manufacture of the pain-relief drug, *ibuprofen* are shown below.

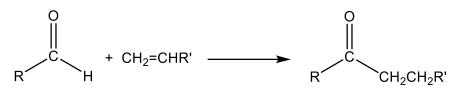


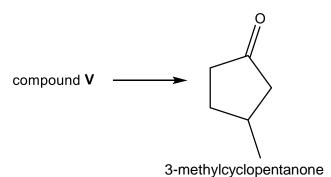
Which statement is correct?


- A Both steps involve the use of catalyst.
- **B** The sequence of the steps are interchangeable.
- **C** Both steps involve different types of reaction.
- **D** Only step 2 involves the use of a halogen-containing reagent.


24 The reaction conditions for four electrophilic substitution reactions are given below. Which reaction would yield the product stated?

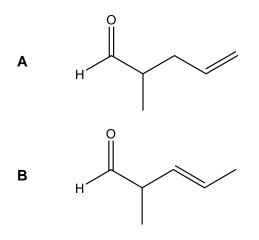
25 1-chloro-1-methylcyclohexane is hydrolysed by heating with NaOH(aq).

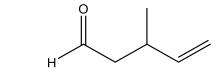

The energy profile diagram for this reaction is shown below.

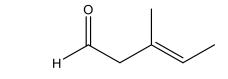

Which statements regarding this reaction are correct?

- 1 The species at point **W** bears a positive charge.
- 2 The reaction proceeds via $S_N 2$ mechanism since it is a two-step mechanism.
- 3 The same energy profile diagram would be obtained if chloromethane undergoes the same reaction.
- A 1 only
- **B** 1 and 2
- **C** 2 and 3
- **D** 1, 2 and 3

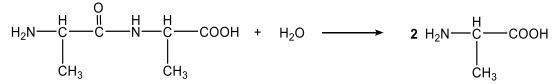
26 Hydroacylation is a reaction in which an alkene is 'inserted' into the C–H bond of an aldehyde to form a ketone.

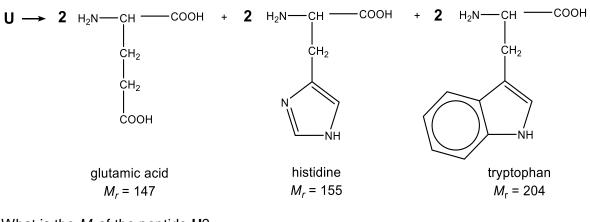

Compound V could be converted to 3-methylcyclopentanone using the above reaction.



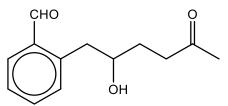

С

D

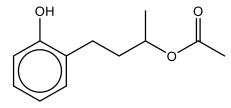

What could compound V be?



27 Peptidases are enzymes that hydrolyse the peptide bonds that bind amino acids together in the polypeptide chain of a protein.

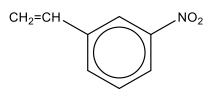

Partial hydrolysis of a small peptide, \mathbf{U} , by a peptidase, produces the following amino acids.

What is the M_r of the peptide **U**?


- **A** 904
- **B** 922
- **C** 1012
- **D** 1102

28 Which of the following reagents could be used to distinguish between compounds S and T?

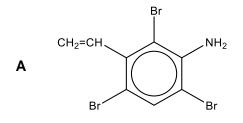
Compound S

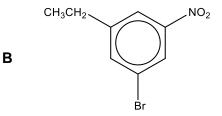

- A I₂ in aqueous NaOH
- **C** aqueous NH₃ with AgNO₃

Compound ${\boldsymbol{\mathsf{T}}}$

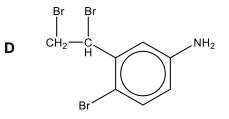
- **B** Cu²⁺ in alkaline solution
- D acidified potassium dichromate

29 3-nitrostyrene is an aromatic organic compound.

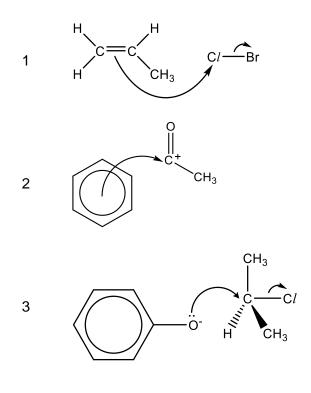



3-nitrostyrene

It is subjected to the following reactions:


- heat with Sn in concentrated HC*l* followed by careful addition of cold NaOH(aq)
- then the addition of Br₂(aq)

What is the product obtained after the above reactions?



30 Which of the following show a correct mechanistic step in the reaction between the reagents?

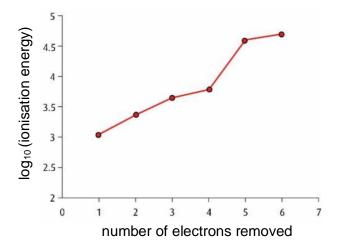
- A 3 only
- **B** 1 and 2
- **C** 2 and 3
- **D** 1, 2 and 3

End of Paper 1

TAMPINES MERIDIAN JUNIOR COLLEGE 2019 JC2 H2 Chemistry Prelim Exam Paper 1

1 Some data of the ions of four unknown elements are given in the table below.

	A +	B⁻	D ^{2–}	E ^{3–}
mass number	21	20	20	21
number of protons	_	11	9	-
number of electrons	9	_	_	12


Which of the following correctly shows pairs of isotopic and isoelectronic species?

	isotopic	isoelectronic
Α	D ^{2–} , E ^{3–}	B ⁻ , E ³⁻
В	B ⁻ , D ²⁻	A ⁺, B ⁻
С	B ⁻ , D ²⁻	B [−] , E ^{3−}
D	D ²⁻ , E ³⁻	A ⁺, B ⁻

Answer: A

	A+	B⁻	D ^{2–}	E ^{3–}	
mass number	21	20	20	21	
number of protono	number of protons 10	11	9	9	
number of protons	10	11	D ²⁻ and E ³⁻ are isotopic		
number of electrone	0	12	11	12	
number of electrons	9	B⁻ a	and E ³⁻ are isoelectronic		

2 The first six ionisation energies of element **G** are plotted in the graph below.

Which of the following can be deduced from the graph?

- **A** There are 2 quantum shells in element **G**.
- **B** Element **G** is from Group 2 in the Periodic Table.
- **C** The fifth and sixth electrons are removed from the same subshell.
- **D** The identity of element **G** is carbon.

Answer: C

With limited information from the graph, it is unclear if the jump from the 4th to the 5th I.E. is a change in subshell or quantum shell. Hence, options A, B and D cannot be concluded using the graph. Then only conclusion which can be made is that the 5th and 6th electrons are in the same subshell.

- **3** For which of the following pairs does the first molecule have a higher polarity than the second molecule?
 - 1 CH₃OH, CH₃I
 - 2 CF₄, CC*l*₄
 - 3 cis-CHF=CHF, trans-CHF=CHF
 - A 1 only
 - **B** 1 and 3
 - **C** 2 and 3
 - **D** 1, 2 and 3

Answer: B

- 1 Although both CH₃OH and CH₃I are polar, CH₃OH has higher polarity because O is more electronegative than I, hence the C–O bond is more polar than the C–I bond.
- 2 Both CF_4 and CCl_4 are non-polar as both have net zero dipole moment.
- 3 *trans*-CHF=CHF is non-polar as both C–F dipole moment cancels out, hence net zero dipole moment. *cis*-CHF=CHF is polar.

aubatanaa	melting	boiling	electrical c	onductivity
substance	point/ °C	point/ °C	of solid	of liquid
н	801	1413	poor	good
I	2852	3600	poor	good
J	3500 at very high pressure	unable to determine	poor	unable to determine

4 Three substances **H**, **I** and **J** have physical properties shown in the table below.

What are the possible identities for substances H, I and J?

	Н	I	J
Α	NaC <i>l</i>	$AlCl_3$	C (diamond)
В	MgO	AlCl ₃	C (graphite)
С	NaC <i>l</i>	MgO	C (graphite)
D	NaC <i>l</i>	MgO	C (diamond)

Answer: D

- Substance **H** should have a **giant ionic structure**, where NaCl or MgO are possible identities.
- Substance I should also have a giant ionic structure but with larger lattice energy compared to substance H. A/Cl₃ cannot be substance H because it is a simple molecule. Hence, H must be MgO.
- Substance J should have a giant molecular structure, which does not conduct electricity. Hence, J must be diamond.

5 Which of the following diagrams correctly describe the behaviour of a fixed mass of an ideal gas at constant temperature?

- A 2 only
- **B** 1 and 2
- **C** 2 and 3
- **D** 1, 2 and 3

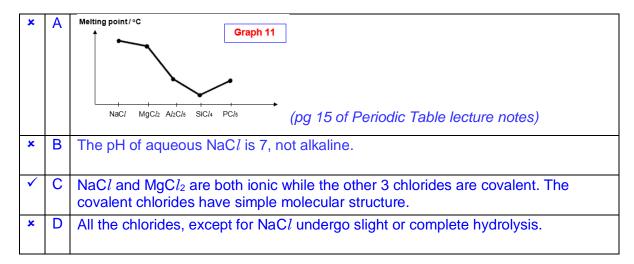
Answer: B

 ✓ 	1	pV = nRT pV = constant (T is constant) pV plotted on horizontal axis \Rightarrow graph resembles "x = constant" graph.
 ✓ 	2	$pV = nRT$ $pV = \frac{m}{M}RT \text{ (where m is mass and M is molar mass)}$ $p = \frac{m}{V} \times \text{ constant (T and M are constant)}$ $p = c \times \text{ constant}$ $\Rightarrow c = p \times \text{ constant} \Rightarrow \text{ graph resembles "} y = \text{ constant} \times x" \text{ graph.}$
×	3	$p = c \times \text{constant}$ $\frac{p}{c} = \text{constant} \Rightarrow \text{graph resembles "}y = \text{constant" graph.}$

[c is concentration] graph 1 graph 2

2019 H2 Chem Prelim P1 Work Solutions

- 6 In which of the following reactions is the underlined reactant acting as a Lewis acid?
 - $\mathbf{A} \quad \mathsf{BF}_3 \ \mathbf{+} \ \mathsf{F}^- \longrightarrow \ \mathsf{BF}_4^-$
 - $\mathbf{B} \quad \mathsf{A}l\mathsf{C}l_3 \ + \ \underline{\mathsf{C}l_2} \longrightarrow \ \mathsf{A}l\mathsf{C}l_4^- \ + \ \mathsf{C}l^+$
 - $\mathbf{C} \quad \mathsf{Ag}^{+} + 2\underline{\mathsf{NH}}_{3} \longrightarrow [\mathsf{Ag}(\mathsf{NH}_{3})_{2}]^{+}$
 - $\mathbf{D} \quad H_2O \ + \ \underline{HSO_3}^{-} \longrightarrow H_2SO_3 \ + \ OH^{-}$


Answer: A

Lewis acid: species (molecule or ion) that can accept a pair of electrons

✓	Α	In the formation of BF_4^- , F^- donates a pair of electrons for dative bond formation to B in BF_3 (B here is electron-deficient, with only 6 electrons around it).
×	В	Cl in Cl_2 donates a pair of electrons for dative bond formation to Al in $AlCl_3$ (Al here is electron-deficient, with only 6 electrons around it) $\Rightarrow AlCl_3$ is the Lewis acid.
×	С	NH ₃ donates a pair of electrons for dative bond formation to Ag ⁺ .
×	D	HSO_3^- donates a pair of electrons for dative bond formation to H ⁺ (from H ₂ O) \Rightarrow H ⁺ is the Lewis acid.

- 7 Which of the following statements is true of the Period 3 chlorides, NaCl to PCl_5 ?
 - **A** The melting points of the chlorides show a continuously decreasing trend.
 - **B** The pH of the solutions formed when the chlorides are added to water range from alkaline to acidic.
 - **C** Three of the chlorides have simple molecular structures.
 - **D** The only chlorides which undergo hydrolysis in water are $AlCl_3$ and $MgCl_2$.

Answer: C

8 The relative abundances of the isotopes of a sample of titanium are shown in the table below.

relative isotopic mass	46	47	48
relative abundance	11.2	10.1	z

Given that the relative atomic mass of the sample is 47.862, what is the value of *z*?

	Α	214.2	В	79.1	С	78.7	D	26.6
--	---	-------	---	------	---	------	---	------

Answer: A

 $\frac{(46 \times 11.2) + (47 \times 10.1) + (48 \times z)}{11.2 + 10.1 + z} = 47.862 \qquad \Rightarrow z = \underline{214.2}$

9 A metallic salt was found to react exactly with sulfite ions in a 2 : 1 ratio.

In this reaction, the sulfite ion is oxidised as follows.

 $SO_3^{2-}(aq) + H_2O(I) \longrightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2e^-$

What is the new oxidation number of the metal in the salt if its original oxidation number was +3?

A +1 **B** +2 **C** +4 **D** +5

Answer: B

Since SO_3^{2-} lost e⁻, the metallic salt gained e⁻.

Let the moles of e^- gained by 1 mole of metallic salt be y

Total moles of e^- gained = Total moles of e^- lost $2 \times y = 1 \times 2$ $\Rightarrow y = 1$

 \Rightarrow new ox. state is <u>+2</u>

10 The enthalpy changes for the following reactions are given:

$$2Cr(s) + \frac{3}{2}O_{2}(g) \rightarrow Cr_{2}O_{3}(s) \qquad \Delta H_{f}(Cr_{2}O_{3}(s)) = -1120 \text{ kJ mol}^{-1}$$

$$C(s) + \frac{1}{2}O_{2}(g) \rightarrow CO(g) \qquad \Delta H_{f}(CO(g)) = -110 \text{ kJ mol}^{-1}$$

What is the enthalpy change of reaction for the following reaction, in terms of kJ mol⁻¹?

 $3C(s) + Cr_2O_3(s) \rightarrow 2Cr(s) + 3CO(g)$

A -940 **B** -870 **C** +590 **D** +790

Answer: D

 $\Delta H_{\rm rxn} = 3(-110) - (-1120) = + 790 \text{ kJ mol}^{-1}$

11 An experiment was conducted by reacting propyne with hydrogen gas in a shock tube.

 $CH_3C \equiv CH(g) + 2H_2(g) \rightarrow CH_3CH_2CH_3(g)$

The value of ΔG for the reaction is found to be negative at low temperature.

What is the sign of ΔH and ΔS for the above reaction?

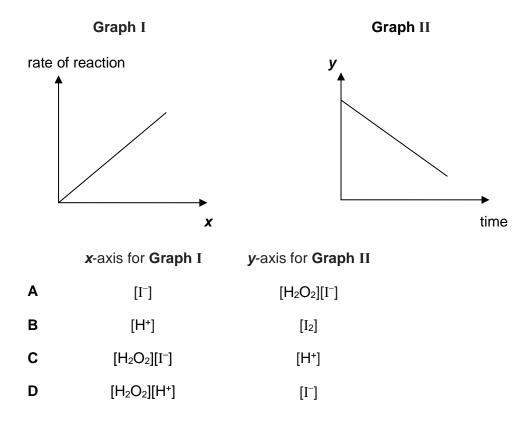
	ΔH	ΔS
Α	_	_
В	+	_
С	-	+
D	+	+

Answer: A

There is a decrease in number of moles of gaseous particles (from 3 moles to 1 mole) after the reaction, thus ΔS is negative.

 $\Delta G = \Delta H - \mathsf{T} \Delta S$

Since ΔG is negative and $-T\Delta S$ is positive, ΔH should be negative.



12 The kinetics of the reaction between hydrogen peroxide and acidified iodide ions were investigated.

$$H_2O_2(aq) + 2H^+(aq) + 2I^-(aq) \rightarrow I_2(aq) + 2H_2O(I)$$

The rate equation was found to be: rate = $k[H_2O_2][I^-]$

Which of the following shows the correct labelling of the *x*-axis for **Graph I** and *y*-axis for **Graph II**?

Answer: C Graph I : Rate = $k[H_2O_2][I^-]$ (similar to y=mx graph)

Graph II : gradient of the graph shows that rate is independent [reactant]

13 The reaction between HBr and O₂ is thought to occur via a multi-step mechanism:

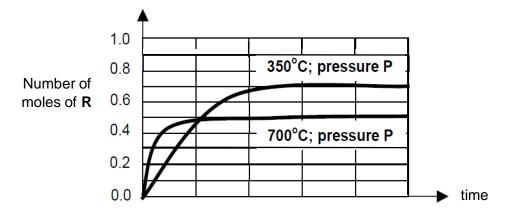
$HBr \ \textbf{+} \ \textbf{O}_2 \ \rightarrow \ \textbf{HO}_2 \textbf{Br}$	(slow)
HO_2Br + $HBr \rightarrow 2HOBr$	(fast)
HOBr + HBr \rightarrow Br ₂ + H ₂ O	(fast)

The overall reaction is given to be $4HBr + O_2 \rightarrow 2Br_2 + 2H_2O$.

Which of the following statements are true?

- 1 The overall order of reaction is 2.
- $2 \quad HO_2Br$ is the only intermediate in the reaction.
- 3 HOBr acts as a catalyst in the reaction.
- A 1 only
- B 3 only
- **C** 1 and 2
- **D** 1, 2 and 3

Answer: A


Rate = $k[HBr][O_2] \Rightarrow$ overall order of reaction is 2

HO₂Br and HOBr are the intermediates in the reaction (they do not appear in the overall equation).

14 L and M can react together to reach equilibrium in the reaction below.

 $L(g) + M(g) \longrightarrow Q(g) + R(g)$

In an experiment, 1.0 mole each of **L** and **M** were reacted at constant pressure P and temperature 350 °C. The amount of **R** present in the mixture at intervals of time was recorded. The experiment was repeated at the same pressure P, but at a temperature of 700 °C. The results for both experiments are shown below.

Which one of the following information cannot be deduced from the graph?

- **A** The value of K_c decreases with an increase in temperature.
- **B** The equilibrium is achieved at a faster rate at higher temperatures.
- **C** The enthalpy change for the forward reaction is negative.
- **D** The activation energy of the forward reaction is high.

Answer: D

From the graph,

Amount of product R decreases when temperature is increased from $350^{\circ}C$ to $700^{\circ}C$ => K_{c} decreases.

Rate of reaction increases with increase in temperature.

By Le Chatelier's Principle, when temperature increases, equilibrium position shifts towards the endothermic reaction to absorb heat. From graph, equilibrium position shifts to the left.

- ⇒ Backward reaction is endothermic
- ⇒ Forward reaction is exothermic.
- \Rightarrow Enthalpy change for the forward reaction is negative.

The graph does not provide any information about the activation energy for the reaction.

15 The dissociation constants, K_w , for the ionisation of water at different temperatures are given below.

temperature / °C	<i>K</i> _w / mol ² dm ⁻⁶
0	1.15 x 10 ⁻¹⁵
25	1.00 x 10 ⁻¹⁴
50	5.50 x 10 ⁻¹⁴

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$$

What can be deduced from this information?

- A Only at 25 °C are $[H^+]$ and $[OH^-]$ equal.
- **B** K_{w} is not affected by changes in temperature.
- **C** The forward reaction is exothermic.
- **D** The pH of water decreases as temperature increases.

Answer: D

- Option A is incorrect. [H⁺] and [OH⁻] are equal at all temperature for pure water.
- Option **B** is incorrect. *K*_w is an equilibrium constant thus it is affected by changes in temperature as shown in the different *K*_w values at various temperatures.
- Option **C** is incorrect. When temperature increases, *K*_w increases. This shows that position of equilibrium shifts to the right towards the forward reaction which is endothermic.
- Option **D** is correct. $K_w = [H^+][OH^-]$. By inspection, when temperature rises, $[H^+]$ increases. Hence, pH of water decreases.

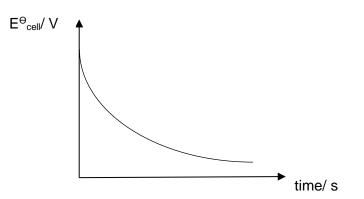
16 The following tests were performed on an aqueous solution containing chloride and iodide ions.

step	test	observations
1	Add excess AgNO₃(aq).	Mixture of white and yellow precipitates is formed.
2	To the mixture from step 1, add excess NH ₃ (aq).	White precipitate dissolves to form a colourless solution. Yellow precipitate is insoluble.
3	Filter the mixture from step 2.	Filtrate was a colourless solution. Residue was a yellow solid.

Which of the following statements are correct?

- 1 The K_{sp} for AgCl is lower than that for AgI.
- 2 There are no $Ag^+(aq)$ and $Cl^-(aq)$ present in the filtrate formed in Step 3.
- 3 In step 2, the addition of $NH_3(aq)$ results in the formation of $[Ag(NH_3)]_2^+$ that momentarily decreases the ionic product of AgCl.
- A 3 only
- **B** 1 and 2
- **C** 2 and 3
- **D** 1, 2 and 3

Answer: A


Statement 1 is incorrect as K_{sp} for AgCl is higher than that for AgI.

Statement 2 is incorrect. The filtrate contains saturated solution of Ag⁺(aq) and Cl⁻(aq) as well as I⁻(aq) that is not precipitated.

Statement 3 is correct. The complex formation $[Ag(NH_3)]^{2+}$ reduces the concentration of $Ag^+(aq)$ which decreases ionic product of AgCl.

17 An experiment is carried out between the Fe^{2+}/Fe and Co^{2+}/Co half cells.

The following graph of cell potential against time was obtained when a change was continuously made to the half-cell.

What continuous change could produce this graph?

- A add aqueous cobalt(II) ions to the cobalt half-cell
- **B** add aqueous ammonia to the cobalt half-cell
- **C** add water to the iron half-cell
- D increase the mass of solid iron immersed in the solution

Answer: **B**

 $E_{cell} = E_{red} - E_{oxd} = E_{Co}^{2+}/Co - E_{Fe/Fe}^{2+}$

Option **A** is incorrect.

 $Co^{2+} + 2e \rightleftharpoons Co \qquad E^{\theta} = -0.28V$ When cobalt (II) ions is added to the cobalt half-cell, $[Co^{2+}]$ increases. Position of eqm shifts right which causes $E_{Co}^{2+}/_{Co}$ (E_{red}) to be more positive. Thus, E_{cell} increases.

Option **B** is correct.

When aqueous ammonia is added to the cobalt half-cell, complex $[Co(CN)_6]^{2+}$ is formed. This complex formation decreases the concentration of aqueous Co^{2+} which causes the position of eqm to shift left leading to $E_{Co}^{2+}/Co}$ (E_{red}) becoming less positive. Thus, E_{cell} decreases.

Option **C** is incorrect.

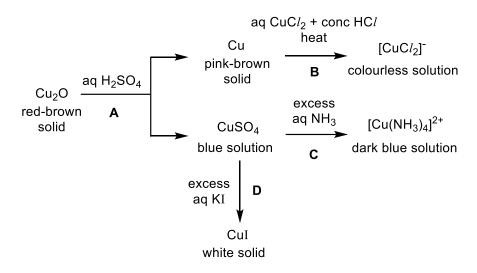
 $Fe^{2+} + 2e \rightleftharpoons Fe \qquad E^{\theta} = -0.44V$ When water is added to the iron half-cell, $[Fe^{2+}]$ decreases. Position of eqm shift left causing $E_{Fe}^{2+}/Fe}$ (E_{oxd}) to be less positive. Thus, E_{cell} increases.

Option **D** is incorrect as an increase in the mass of solid iron does not affect E values.

- 18 Which of the following statements about octahedral complexes is correct?
 - A The ratio of hexadentate ligands to the central metal ion is 6:1.
 - **B** The d_{xz} , d_{yz} and d_{xy} orbitals are higher in energy than the $d_{x^2-y^2}$ and d_{z^2} orbitals.
 - **C** The d orbitals are split into different energy levels due to different orientation of the orbitals to the ligands.
 - **D** The same transition metal with different oxidation states displays the same colour with the same ligands.

Answer: C

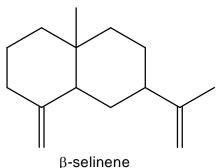
A is not correct as the coordination number of octahedral complexes is 6; as each hexadentate ligands can form 6 dative bonds per ligand, the ratio of hexadentate ligands to complex should thus be 1:1 (not 6:1).


B is not correct as electrons in the d orbitals lying along the bonding axes (ie. x, y and z axes) would experience greater repulsion with the ligands, the $d_x^2 y^2$ and d_z^2 orbitals are higher in energy in octahedral complex.

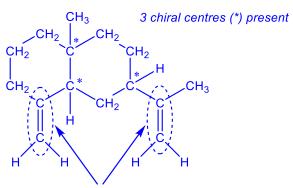
C is correct as the ligand field splitting arises from the repulsion of the electrons in the d orbitals with the ligands and this would be influenced by the orientation of the orbitals and the ligands.

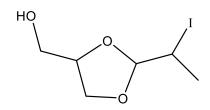
D is not correct as different complexes with the same metal but different oxidation states will have with different d electronic configurations, hence even though the ligands may be same, the colours will be different.

19 The diagram below shows some reactions involving copper and its compounds.


Which reaction involves ligand exchange only?

Answer: C


- **A** is a disproportionation (redox) reaction where Cu₂O (O.S.= +1) forms Cu metal (O.S. = 0) and CuSO₄ (O.S. = +2).
- **B** is a redox (comproportionation) reaction where Cu metal (O.S. = 0) and CuCl₂ (O.S. = +2) forms [CuCl₂]⁻ (O.S. = +1).
- **C** is a <u>ligand exchange</u> where H₂O ligands in [Cu(H₂O)₆]²⁺ complex is replaced with NH₃ ligands to form a new complex [Cu(NH₃)₄]²⁺.
- **D** is a redox reaction involving Cu^{2+} (O.S. = +2) reducing to form CuI in the presence of excess I⁻; $2Cu^{2+} + 4I^- \rightarrow 2CuI + I_2$
- **20** β -selinene is a molecule that can be isolated from plants. It has the following structural formula.

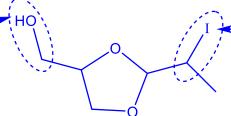

Which of the following statements about this molecule is correct?

- **A** It has a plane of symmetry.
- **B** It does not contain any sp hybridised carbon.
- C It has one chiral centre.
- D It exhibits cis-trans isomerism.

Answer: B

do not exibit cis-trans isomerism Based on the options, only constitutional isomers possible. **21** Iodinated glycerol is used in the symptomatic treatment of patients with chronic obstructive pulmonary disease.

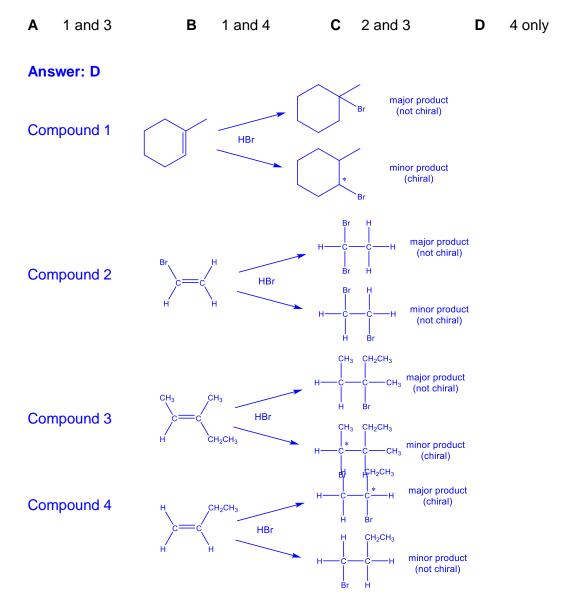
iodinated glycerol


Which of the following correctly shows the product formed when iodinated glycerol is reacted with the given reagents and conditions?

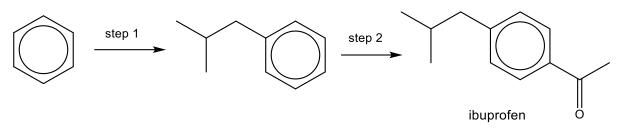
[The C–O–C bond in the structure is inert to the reagents.]

	reagent & conditions	product
A	alcoholic KOH, heat	H
В	alcoholic KOH, heat	HO OH
с	aqueous KOH, heat	
D	concentrated H_2SO_4 , heat	

Answer: A


alcohol, undergoes <u>elimination</u> with <u>conc H₂SO₄, heat</u> to <u>form alkene</u>

halogenoalkane, undergoes <u>elimination</u> with <u>alcoholic</u> base, heat to <u>form alkene</u> / *nucleophilic substitution* with aqueous base, heat to form alcohol



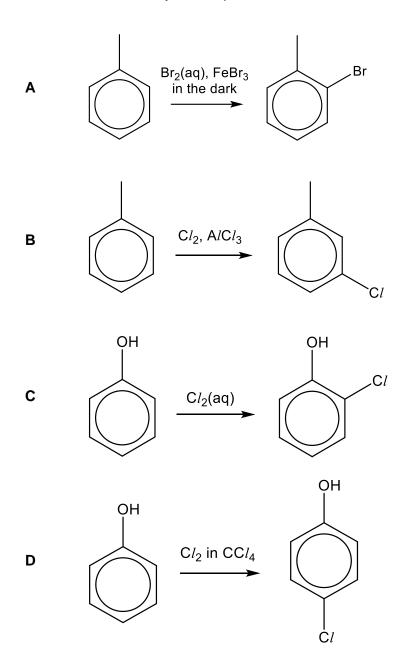
- **22** Which of the following compounds react with HBr in an addition reaction to give a major chiral product?
 - 1
 - 2 CH(Br)=CH₂
 - 3 CH₃CH=C(CH₃)CH₂CH₃
 - 4 CH₂=CHCH₂CH₃

Only Compound 4 gives a major product upon electrophilic addition that is chiral.

23 Two of the steps in the manufacture of the pain-relief drug, ibuprofen are shown below.

Which statement is correct?

- A Both steps involve the use of catalyst.
- **B** The sequence of the steps are interchangeable.
- **C** Both steps involve different types of reaction.
- **D** Only step 2 involves the use of a halogen-containing reagent.

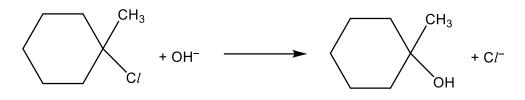

Answer: A

Both reactions are electrophilic substitution (Friedel-Crafts Alkylation and Friedel-Crafts Acylation respectively) and both require the use of A*I*C*I*₃ catalyst.

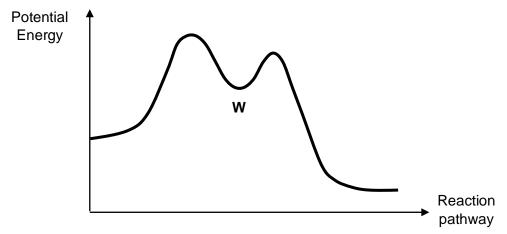
The reagents required for alkylation and acylation are halogenalkane, $CH_3CH(CH_2Cl)CH_3$ and acyl chloride, CH_3COCl respectively and both contain halogen.

As the desired product contains a benzene ring that is 1,4-disubstituted, it is necessary to carry out alkylation first followed by acylation as alkyl group is 2,4-directing whereas $-COCH_3$ group is 3-directing.

24 The reaction conditions for four electrophilic substitution reactions are given below. Which reaction would yield the product stated?



Answer: D

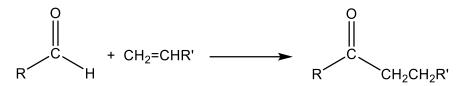

A: As aqueous Br₂ is used, FeBr₃ may not be formed.

- B: as -CH₃ is 2,4-directing thus 3-chloromethylbenzene formed is a minor product
- C: use of aqueous chlorine should result in a multi-substituted product for phenol
- D: use of chlorine in organic solvent will result in a mono-substituted product for phenol

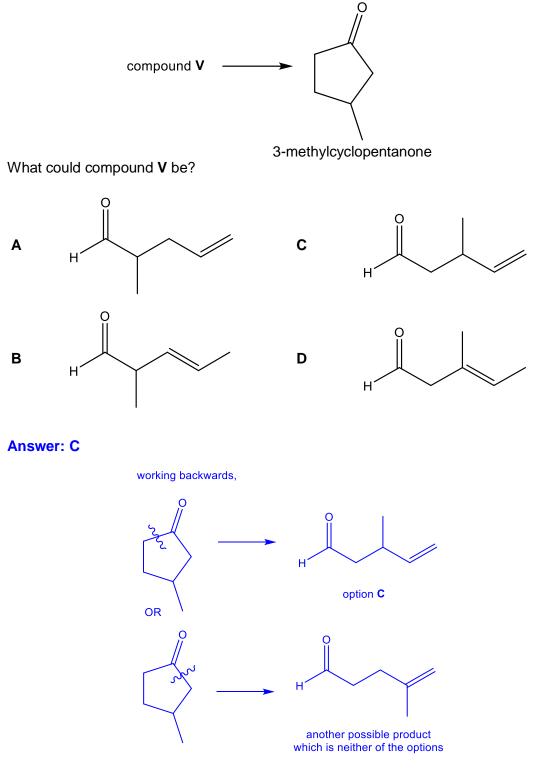
25 1-chloro-1-methylcyclohexane is hydrolysed by heating with NaOH(aq).

The energy profile diagram for this reaction is shown below.

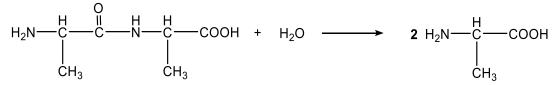
Which statements regarding this reaction are correct?

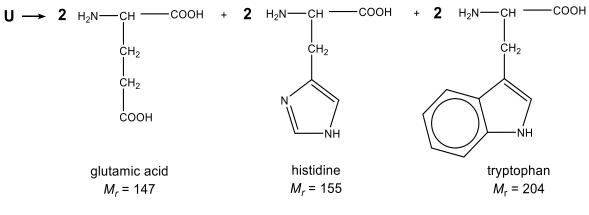

- 1 The species at point **W** bears a positive charge.
- 2 The reaction proceeds via $S_N 2$ mechanism since it is a two-step mechanism.
- 3 The same energy profile diagram would be obtained if chloromethane undergoes the same reaction.
- A 1 only
- **B** 1 and 2
- **C** 2 and 3
- **D** 1, 2 and 3

Answer: A


The mechanism shown is $S_N 1$

- 1 W is an intermediate which is a carbocation.
- 2 The energy profile diagram depicts the S_N1 mechanism which is two-step
- 3 Chloromethane is a primary halogenoalkane and should undergo $S_N 2$ mechanism.

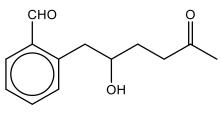

26 Hydroacylation is a reaction in which an alkene is 'inserted' into the C–H bond of an aldehyde to form a ketone.


Compound V could be converted to 3-methylcyclopentanone using the above reaction.

27 Peptidases are enzymes that hydrolyse the peptide bonds that bind amino acids together in the polypeptide chain of a protein.

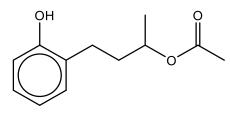
Partial hydrolysis of a small peptide, \mathbf{U} , by a peptidase, produces the following amino acids.

What is the M_r of the peptide **U**?


- **A** 904
- **B** 922
- **C** 1012
- **D** 1102

Answer: B

Since there are 6 amino acids, there are 6 - 1 = 5 amide bonds


 $M_{\rm r}$ of the peptide **U** = (147 x 2) + (155 x 2) + (204 x 2) - ({6-1} x 18) = <u>922</u>

28 Which of the following reagents could be used to distinguish between compounds S and T?

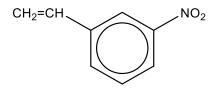
Compound S

- A I₂ in aqueous NaOH
- **C** aqueous NH₃ with AgNO₃

Compound T

- **B** Cu²⁺ in alkaline solution
- D acidified potassium dichromate

Answer: C

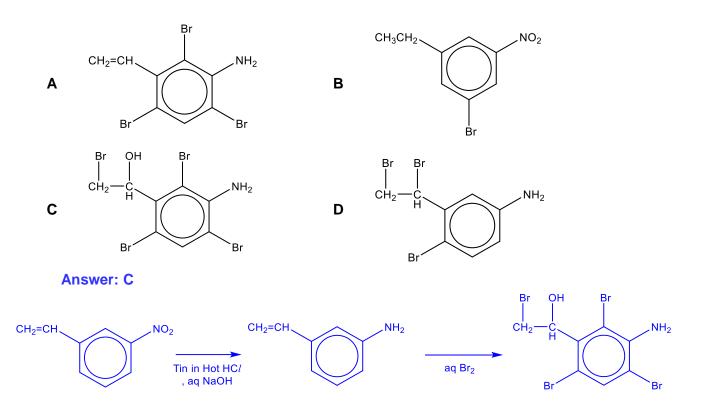

Aromatic aldehyde on compound S – positive test for Tollens' Reagent. (aqueous NH₃ with AgNO₃)

22

Both will give a positive test for iodoform test and oxidation reaction.

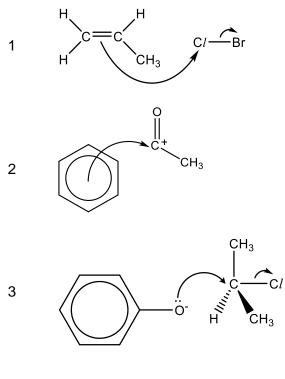
Both will give a negative test Fehling's solution.

29 3-nitrostyrene is an aromatic organic compound.



3-nitrostyrene

It is subjected to the following reactions:


- heat with Sn in concentrated HC*l* followed by careful addition of cold NaOH(aq)
- then the addition of Br₂(aq)

What is the product obtained after the above reactions?

30 Which of the following show a correct mechanistic step in the reaction between the reagents?

- A 3 only
- **B** 1 and 2
- **C** 2 and 3
- **D** 1, 2 and 3

Answer: C

Option 1 is wrong as the alkene should attack the electron poor bromine atom instead.

Answers

1	2	3	4	5	6	7	8	9	10
Α	С	В	D	В	Α	С	Α	В	D
11	12	13	14	15	16	17	18	19	20
Α	С	Α	D	D	Α	В	С	С	В
21	22	23	24	25	26	27	28	29	30
Α	D	Α	D	Α	С	В	С	С	С

TAMPINES MERIDIAN JUNIOR COLLEGE

JC2 PRELIMINARY EXAMINATION

CANDIDATE NAME

CIVICS GROUP

H2 CHEMISTRY

Paper 2 Structured Questions

9729/02 19 September 2019

2 hours

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name and civics group in the spaces at the top of this page.

Write in dark blue or black pen on both sides of the paper.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use paper clips, glue or correction fluid.

Answer **all** questions in the spaces provided on the Question Paper.

The use of an approved scientific calculator is expected, where appropriate.

The number of marks is given in brackets [] at the end of each question or part question.

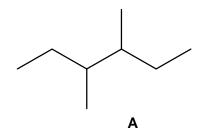
Exa	Examiner's Use				
Paper 1	MCQ	/ 30			
	Q1	/ 14			
	Q2	/ 9			
	Q3	/ 13			
Paper 2	Q4	/ 12			
	Q5	/ 11			
	Q6	/ 16			
		/ 75			
Paper 3		/ 80			
Paper 4		/ 55			
Total		/ 100			
Grade					

This document consists of **19** printed pages.

1 (a) Carbon forms compounds with Group 16 elements such as oxygen, sulfur and selenium. The properties of some of these compounds are given below.

compound	structure	net dipole moment	boiling point / °C
CO ₂	O=C=O	0	sublimes
CS ₂	S=C=S	0	46
COS	S=C=O	0.71	-50
COSe	Se=C=O	0.73	-22

(i) Explain, in terms of structure and bonding, the difference in the boiling points of CS₂ and COS.


(ii) Explain why

- CO₂ has no net dipole moment.
- COSe has a greater net dipole moment than COS.

Tampines Meridian Junior College

Carbon forms the backbone of organic compounds. Hydrocarbons are the simplest organic compounds that contain carbon and hydrogen.

(b) Compound A is an isomer of the hydrocarbon octane, C_8H_{18} .

Controlled chlorination of compound **A** in the presence of UV light produces different mono-chlorinated products with a molecular formula of $C_8H_{17}Cl$.

(i) Suggest the total number of constitutional isomers which can be formed from the possible mono-chlorination of compound **A**. Draw the structural formulae of any **two** of these products.

Total number of possible mono-chlorinated products =

[3]

[1]

(ii) Draw the **skeletal** formula of the isomer of octane which could produce **only one** possible mono-chlorinated product if it undergoes free radical substitution.

(c) Besides reaction of alkanes with halogens, the process of thermal cracking, in which large alkane molecules are broken down into smaller alkanes and alkenes, proceeds via free radical mechanism.

The following are reactions involved when propane undergoes thermal cracking.

$CH_3CH_2CH_3 \longrightarrow \bullet CH_3 + \bullet CH_2CH_3$	(1)
$CH_3CH_2CH_3 \longrightarrow \bullet H + \bullet CH_2CH_2CH_3$	(2)
$\bullet CH_3 + CH_3CH_2CH_3 \longrightarrow CH_4 + \bullet CH_2CH_2CH_3$	(3)
$\bullet CH_2CH_3 \longrightarrow \bullet H + CH_2=CH_2$	(4)
$\bullet CH_3 + CH_2 = CH_2 \longrightarrow \bullet CH_2 CH_2 CH_3$	(5)
$\bullet CH_3 + \bullet CH_3 \longrightarrow CH_3CH_3$	(6)
$2 \bullet CH_2CH_3 \longrightarrow CH_3CH_3 + CH_2 = CH_2$	(7)

(i) Reactions (1) and (2) are termed initiation steps. By quoting relevant data from the *Data Booklet*, deduce which one is more likely to occur.

.....

-[1]
- (ii) From reactions (3) to (7), identify those which may be termed propagation steps in the mechanism.

.....[1]

(iii) Which gas, if detected in the product mixture, would support the occurrence of both reactions (2) and (4)?

.....[1]

(iv) Suggest why reaction (7) may be termed a *disproportionation* reaction.

.....[1]

(d) Methanoic acid, H_2CO_2 , is the simplest carboxylic acid.

Draw a dot-and-cross diagram of methanoic acid. Suggest the shape around the carbon atom in methanoic acid.

Shape around C atom

[2]

[Total: 14]

2 Hydrogen peroxide reacts with acidified iodide ions to liberate iodine, according to the following equation:

 $H_2O_2(aq) \ + \ 2H^{\scriptscriptstyle +}(aq) \ + \ 2I^{\scriptscriptstyle -}(aq) \ \rightarrow \ 2H_2O(I) \ + \ I_2(aq)$

In investigations of this reaction, the following results were obtained by varying the volumes of hydrogen peroxide and iodide ions.

experiment	volume of H ₂ O ₂ / cm ³	volume of I ⁻ / cm ³	volume of H ₂ O / cm ³	initial rate / mol dm ⁻³ s ⁻¹
1	20.0	20.0	20.0	1.2 x 10 ⁻²
2	20.0	30.0	10.0	1.8 x 10 ^{−2}
3	50.0	10.0	0.0	1.5 x 10 ⁻²

(a) Explain why water was added to experiments 1 and 2.

 [1]

- (b) The reaction was determined to be **zero order** with respect to hydrogen ions.
 - (i) Sketch the rate-concentration graph for H⁺ ions.

[1]

(ii) Determine the order of reaction with respect to the other two reactants.Hence, write down the rate equation.

(c) In order to further investigate the kinetics of the reaction, experiments 4 and 5 were conducted. The following results were obtained by varying the concentrations of hydrogen peroxide and iodide ions.

experiment	initial [H ₂ O ₂ (aq)] / mol dm ⁻³	initial [I⁻(aq)] / mol dm⁻³
4	0.020	0.500
5	0.050	1.000

The half-life of hydrogen peroxide was 9.6 min in experiment 4. Explain and predict the half-life of hydrogen peroxide in experiment 5.

(d) An alternative method of investigating the rate of the above reaction is by withdrawing aliquots at specified time intervals and titrating the iodine formed in each aliquot with sodium thiosulfate solution.

Suggest how the reaction can be quenched at specified time intervals.

.....[1]

(e) Hydrogen peroxide decomposes easily. Suggest a method whereby the shelf-life of the hydrogen peroxide solution could be increased.

.....[1] [Total: 9]

- **3** Lithium forms various compounds used for a wide range of purposes. For example, Li₂CO₃ is used as a mood-stabilising drug and LiF is used to record ionising radiation exposure from gamma rays, beta particles and neutrons.
 - (a) Numerical values of the solubility products of some lithium salts at 298 K are given in the table below.

salt	solubility product
LiF	2.68 x 10 ^{−3}
Li ₂ CO ₃	2.14 x 10 ^{−2}
Li ₃ PO ₄	3.20 x 10 ^{−9}

(i) Write an expression for the solubility product, K_{sp} , of lithium phosphate, including its units.

[2]

(ii) Using the data above, calculate a value for the solubility of lithium phosphate.

[2]

[2]

(iii) LiF was precipitated when equal volumes of a solution of 0.050 mol dm⁻³ LiNO₃ and a solution of KF were mixed.

Calculate the minimum concentration of the KF solution required for precipitation to occur.

(iv) Describe and explain how the solubility of Li₂CO₃ is affected by adding solid Na₂CO₃ into the solution.

(b) When a precipitate is formed, ΔG^{e}_{ppt} , in J mol⁻¹, is given by the following expression.

 $\Delta G^{e}_{ppt} = 2.303 \ RT \log K_{sp}$

For lithium sulfate, Li_2SO_4 , $K_{sp} = 128 \text{ mol}^3 \text{ dm}^{-9}$ at 298 K.

Using the above expression, determine whether lithium sulfate is soluble in water at 298 K. Explain your answer.

[2]

[1]

(c) Another use of Li_2CO_3 is in the processing of metal oxides. When Li_2CO_3 decomposes, it forms Li_2O solid and CO_2 gas according to the following equation.

 $Li_2CO_3(s) \rightarrow Li_2O(s) + CO_2(g)$

(i) Calculate the standard enthalpy change of reaction for the decomposition of Li_2CO_3 using the following standard enthalpy changes of formation, ΔH_t° .

compound	Li ₂ CO ₃	Li ₂ O	CO ₂
$\Delta H_{\rm f}^{\rm e}$ / kJ mol ⁻¹	-1216	-596	-394

(ii) The entropy change for the decomposition reaction is positive. Explain the effect on spontaneity of this decomposition reaction as temperature increases.

[2]

[Total: 13]

- 4 Use of the Data Booklet is relevant to this question.
 - (a) Chemical companies manufacture containers filled with liquid butane for use by campers. The complete combustion of butane produces carbon dioxide and water. The enthalpy change of combustion of butane is -3000 kJ mol⁻¹.

A camper estimates that the liquid butane left in a container would give 1.2 dm³ of butane gas (measured at room temperature of 20 °C and pressure of 1 atm).

(i) Calculate the mass of water at room temperature that could be brought to boiling point at 100 °C by completely burning this mass of butane, given that the process is only 80% efficient.

	[0]
(ii)	Suggest a reason why the combustion process is only 80% efficient.
	[1]
	burnt in a limited supply of air, butane forms carbon and water. The enthalpy e of this reaction is –1400 kJ mol ⁻¹ .
(i)	Construct a balanced equation for this reaction.
	[1]
(ii)	Explain why the enthalpy changes of the two combustion reactions in (a) and (b) are different.
	[1]
(iii)	State the quantitative information that can be obtained from this difference in enthalpy changes.
	[1]
	When change (i) (ii)

[3]

(c) The carbon-oxygen *bond energy* in carbon monoxide, CO, is 1077 kJ mol^{-1} .

Carbon monoxide can be formed by the following reaction:

 $C(s) + CO_2(g) \rightarrow 2CO(g)$ $\Delta H^{\circ} = +172.5 \text{ kJ mol}^{-1}$

(i) Explain, with the aid of a suitable equation, what is meant by the term *bond energy* of carbon monoxide.

(ii) Determine the enthalpy change of atomisation of carbon by using relevant bond energy data from the *Data Booklet* to complete the energy cycle below. Include relevant information in your cycle.

$$C(s) + CO_2(g) \xrightarrow{\Delta H = +172.5 \text{ kJ mol}^{-1}} 2CO(g)$$

[3]

[Total: 12]

Tampines Meridian Junior College

5 Use of the Data Booklet is relevant to this question.

A student wanted to study the following reaction.

He first sets up an electrochemical cell which comprises of Au^{3+}/Au and Zn^{2+}/Zn half-cells prepared under standard conditions.

(a) (i) Draw a fully labelled diagram of the electrochemical cell under standard conditions.

[2	

(ii) Given that $E^{\Theta}_{Au^{3+}/Au}$ is +1.50 V, calculate the E^{Θ}_{cell} of this cell.

[1]

(iii) Suggest a replacement transition element ion-ion half-cell for the Zn²⁺/Zn half-cell so that the direction of electron flow is reversed.

.....[1]

(b) When the reaction in (a) begins, [Au³⁺] starts to decrease while [Zn²⁺] increases. In the study of electrochemical cells, the *Nernst equation*, given below, can be applied to determine the cell potential under non-standard conditions.

$$E_{\text{cell}} = E_{\text{cell}}^{\text{e}} - \frac{0.0592}{n} \log_{10} Q$$

where n is the number of moles of electrons transferred and Q is the reaction quotient given by $\frac{[Zn^{2+}]}{[Au^{3+}]}$.

(i) Using your answer in (a)(ii), calculate the new E_{cell} using the Nernst equation, when [Au³⁺] and [Zn²⁺] are 0.02 mol dm⁻³ and 2.47 mol dm⁻³ respectively.

[1]

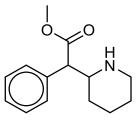
(ii) Suggest the value of E_{cell} when the reaction goes to completion.

[1]

- (c) The redox reaction in (a) is an example of a spontaneous reaction which proceeds as predicted by the cell potential. However, not every chemical reaction agrees with the theoretical prediction. One example is the reaction between acidified $K_2Cr_2O_7$ and water.
 - (i) Using information from the *Data Booklet*, calculate ΔG° for the reaction between acidified K₂Cr₂O₇ and water. Based on your value for ΔG° , comment on the spontaneity of the reaction.

[3]

(ii) The reaction between water and acidified $K_2Cr_2O_7$ has an E^{Θ}_{cell} greater than 0 V under standard conditions, yet the reaction does not proceed. Suggest a reason for this observation.

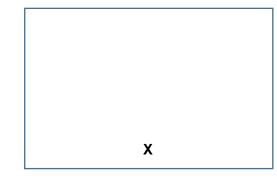

(iii) Another example of a reaction that does not agree with the theoretical prediction is the reaction between Cu^{2+} and I⁻ according to the equation below.

 $2Cu^{2+}(aq) + 4I^{-}(aq) = 2CuI(s) + I_2(aq)$ $E^{e}_{cell} = -0.39 V$

White precipitate of CuI is formed during the reaction. Suggest a reason why the reaction proceeds despite the E^{e}_{cell} being less than 0 V.

.....[1] [Total: 11]

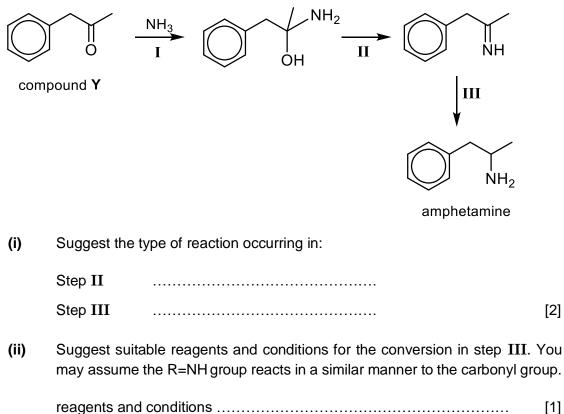
- 6 Adrenaline is a naturally occurring hormone and stimulant released in the body during times of danger or stress. Stimulant drugs that can mimic the effect of adrenaline have been developed for treatment of various conditions.
 - (a) Methylphenidate is a stimulant drug commonly used in the treatment of Attention Deficit Hyperactive Disorder (ADHD).



methylphenidate

(i) Draw the structures of the organic products formed when methylphenidate is heated with dilute hydrochloric acid.

- (ii) An isomer of methylphenidate, compound **X**, is neutral and has the following structural properties:
 - contains one aromatic six-membered ring
 - contains

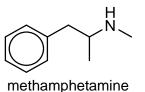

Suggest a structure for compound \mathbf{X} and state its isomeric relationship to methylphenidate.

isomeric relationship to methylphenidate:

[2]

(b) Another stimulant, amphetamine, is prepared commercially from compound **Y** as shown below.

(iii) Reaction I which occurs between compound Y and NH_3 is a nucleophilic addition reaction.

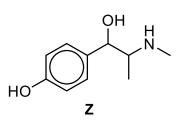

Draw the mechanism for this reaction, given that in the rate-determining step, the nucleophilic attack by NH_3 , results in an intermediate species containing both a positive and negative charge.

(iv) With reference to the mechanism you have drawn in (iii), explain why the product from step I is expected to be optically inactive.

.....[2]

[3]

(c) Methamphetamine is a stimulant which has a structure similar to amphetamine.



(i) The hydrochloride salt of methamphetamine exists as colourless crystals.

Methamphetamine is immiscible with water whereas the salt is soluble in water.

With reference to the interactions formed between each of the compounds and water, explain the difference in the solubility of methamphetamine and its salt in water.

(ii) In the human body, methamphetamine can be converted to compound Z.

Describe a simple chemical test which could be used to distinguish between methamphetamine and compound Z.

You should state the reagents and conditions required, together with the expected observations for each compound.

.....[2]

[Total: 16]

End of Paper 2

TAMPINES MERIDIAN JUNIOR COLLEGE 2019 JC2 H2 Chemistry Prelim Exam Paper 2 (Suggested Answers)

1 (a) Carbon forms compounds with Group 16 elements such as oxygen, sulfur and selenium. The properties of some of these compounds are given below.

compound	structure	net dipole moment	boiling point / °C
CO ₂	O=C=O	0	sublimes
CS ₂	S=C=S	0	46
COS	S=C=O	0.71	-50
COSe	Se=C=O	0.73	-22

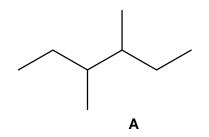
(i) Explain, in terms of structure and bonding, the difference in the boiling points of CS₂ and COS.

 CS_2 has a higher boiling point. Both CS_2 and COS have <u>simple molecular</u> <u>structures</u>.

CS₂ has a <u>larger electron</u> cloud (or larger number of electrons) than COS. More energy is required to overcome the <u>stronger</u> <u>instantaneous dipole-induced dipole interactions</u> (or IMF/Dispersion forces) between CS₂ molecules than the <u>instantaneous dipole-induced dipole interactions</u> between COS molecules.

[2]

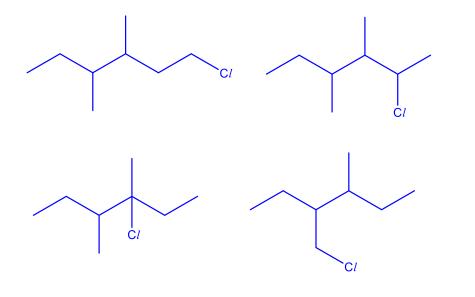
(ii) Explain why


- CO₂ has no net dipole moment.
- COSe has a greater net dipole moment than COS.

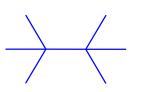
CO₂ has not net dipole moment because it is **linear** and the **<u>dipole moments</u>** <u>cancel out</u>.

COSe has a greater net dipole moment than COS. There is a <u>smaller difference between the dipole moment of C=O and C=S</u> <u>in COS than that between C=O and C=Se in COSe</u> since <u>S is more electronegative than Se</u>. OR <u>polarity of C=S is greater than that of C=Se</u>.

Carbon forms the backbone of organic compounds. Hydrocarbons are the simplest organic compounds that contain carbon and hydrogen.


(b) Compound A is an isomer of the hydrocarbon octane, C_8H_{18} .

Controlled chlorination of compound **A** in the presence of UV light produces different mono-chlorinated products with a molecular formula of $C_8H_{17}Cl$.


 Suggest the total number of constitutional isomers which can be formed from the possible mono-chlorination of compound A. Draw the structural formulae of any two of these products.

Total number of possible mono-chlorinated products = $\frac{4}{2}$

[3]

(ii) Draw the **skeletal** formula of the isomer of octane which could produce **only one** possible mono-chlorinated product if it undergoes free radical substitution.

(c) Besides reaction of alkanes with halogens, the process of thermal cracking, in which large alkane molecules are broken down into smaller alkanes and alkenes, proceeds via free radical mechanism.

The following are reactions involved when propane undergoes thermal cracking.

$CH_3CH_2CH_3 \longrightarrow \bullet CH_3 + \bullet CH_2CH_3$	(1)
$CH_3CH_2CH_3 \longrightarrow \bullet H + \bullet CH_2CH_2CH_3$	(2)
$\bullet CH_3 + CH_3CH_2CH_3 \longrightarrow CH_4 + \bullet CH_2CH_2CH_3$	(3)
$\bullet CH_2CH_3 \longrightarrow \bullet H + CH_2 = CH_2$	(4)
$\bullet CH_3 + CH_2 = CH_2 \longrightarrow \bullet CH_2 CH_3$	(5)
$\bullet CH_3 + \bullet CH_3 \longrightarrow CH_3CH_3$	(6)
$2 \bullet CH_2CH_3 \longrightarrow CH_3CH_3 + CH_2 = CH_2$	(7)

(i) Reactions (1) and (2) are termed initiation steps. By quoting relevant data from the *Data Booklet*, deduce which one is more likely to occur.

<u>Reaction (1)</u> is more likely to occur as it is <u>easier to break a C-C bond</u> (350 kJ mol⁻¹) compared to a C-H bond (410 kJ mol⁻¹).

[1]

[1]

(ii) From reactions (3) to (7), identify those which may be termed propagation steps in the mechanism.

Reactions (3), (4) and (5)

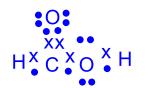
(iii) Which gas, if detected in the product mixture, would support the occurrence of both reactions (2) and (4)?

<u>Hydrogen</u>

(iv) Suggest why reaction (7) may be termed a *disproportionation* reaction.

The <u> \bullet CH₂CH₃ radical loses a hydrogen</u> (is oxidised) to form ethene and gains a hydrogen (is reduced) to form ethane.

OR


The oxidation number of <u>carbon</u> in \bullet CH₂CH₃ increases -3 from to -2 in ethane and decreases from to -3 to form ethane.

[1]

[1]

(d) Methanoic acid, H_2CO_2 , is the simplest carboxylic acid.

Draw a dot-and-cross diagram of methanoic acid. Suggest the shape around the carbon atom in methanoic acid.

Shape around C atom: Trigonal planar

[2]

[Total: 14]

2 Hydrogen peroxide reacts with acidified iodide ions to liberate iodine, according to the following equation:

 $H_2O_2(aq) + 2H^+(aq) + 2I^-(aq) \rightarrow 2H_2O(l) + I_2(aq)$

In investigations of this reaction, the following results were obtained by varying the volumes of hydrogen peroxide and iodide ions.

experiment	volume of H ₂ O ₂ / cm ³	volume of I ⁻ / cm ³	volume of H ₂ O / cm ³	initial rate / mol dm ⁻³ s ⁻¹
1	20.0	20.0	20.0	1.2 x 10 ⁻²
2	20.0	30.0	10.0	1.8 x 10 ⁻²
3	50.0	10.0	0.0	1.5 x 10 ⁻²

(a) Explain why water was added to experiments 1 and 2.

To ensure the <u>total volume of the mixture remains constant</u>, so that <u>volume of</u> <u>reactant is directly proportional to [reactant]</u> in the mixture .

[1]

- (b) The reaction was determined to be **zero order** with respect to hydrogen ions.
 - (i) Sketch the rate-concentration graph for H⁺ ions.
 Rate
 0
 [H⁺]

[1]

(ii) Determine the order of reaction with respect to the other two reactants.

Hence, write down the rate equation.

```
Let rate = k[H_2O_2(aq)]^m[I^-(aq)]^n
Compare experiments 1 & 2, keeping [H<sub>2</sub>O<sub>2</sub>(aq)] and total volume constant
\frac{1.2x10^{-2}}{1.8x10^{-2}} = \frac{k(20.0)^m (20.0)^n}{k(20.0)^m (30.0)^n}
                                   (or use inspection method)
n = 1
Rate of reaction is 1st order with respect to I<sup>-(aq)</sup>.
Or
Compare experiments 1 & 2, keeping [H<sub>2</sub>O<sub>2</sub>(aq)] and total volume constant
when [I<sup>-</sup>] x 3/2, rate of reaction x 3/2
Order of reaction w.r.t. I^- = 1
Compare experiments 1 & 3, keeping total volume constant
\frac{1.2x10^{-2}}{1.5x10^{-2}} = \frac{k(20.0)^m(20.0)^1}{k(50.0)^m(10.0)^1}
m = 1
Rate of reaction is 1st order with respect to H<sub>2</sub>O<sub>2</sub>(aq).
Or
Compare experiments 1 & 3, keeping total volume constant
When [I<sup>-</sup>] x 1/2 and [H<sub>2</sub>O<sub>2</sub>] x 5/2, rate x 5/4 (1/2 x 5/2)
Since the order wrt. I^- is 1, order wrt to H_2O_2 is 1.
```

rate= k[H₂O₂(aq)][I⁻(aq)]

- [3]
- (c) In order to further investigate the kinetics of the reaction, experiments 4 and 5 were conducted. The following results were obtained by varying the concentrations of hydrogen peroxide and iodide ions.

experiment	initial [H ₂ O ₂ (aq)] / mol dm ⁻³	initial [I⁻(aq)] / mol dm⁻³
4	0.020	0.500
5	0.050	1.000

The half-life of hydrogen peroxide was 9.6 min in experiment 4. Explain and predict the half-life of hydrogen peroxide in experiment 5.

For experiment 4 and 5, since $[I^{-}(aq)] >> [H_2O_2(aq)]$, $[I^{-}(aq)]$ is approximately constant. Thus, rate = k'[H_2O_2(aq)] (a pseudo first order reaction) where **k' = k[I^{-}(aq)]** $t_{1/2} = = \frac{ln^2}{k'} = \frac{ln^2}{k[I^{-}]}$ $t_{1/2}$ of H_2O_2 in experiment 4 = 9.6 min (for $[I^{-}(aq)] = 0.500$ mol dm⁻³)

 $t_{1/2}$ of H₂O₂ in experiment 5 = <u>4.8 min</u> (for [I⁻(aq)] = 1.00 mol dm⁻³)

(d) An alternative method of investigating the rate of the above reaction is by withdrawing aliquots at specified time intervals and titrating the iodine formed in each aliquot with sodium thiosulfate solution.

Suggest how the reaction can be quenched at specified time intervals.

Sudden <u>cooling</u> of the reaction mixture or sudden <u>dilution</u> through the addition of large volume of water.

[1]

(e) Hydrogen peroxide decomposes easily. Suggest a method whereby the shelf-life of the hydrogen peroxide solution could be increased.

<u>Keep away from light</u> by storing it in a <u>dark-coloured bottle</u>. or <u>Ensure purity of the solutions</u>, i.e. no contaminants, especially <u>those that hasten</u> <u>the decomposition of peroxide</u>.

[1]

[Total: 9]

- **3** Lithium forms various compounds used for a wide range of purposes. For example, Li₂CO₃ is used as a mood-stabilising drug and LiF is used to record ionising radiation exposure from gamma rays, beta particles and neutrons.
 - (a) Numerical values of the solubility products of some lithium salts at 298 K are given in the table below.

salt	solubility product	
LiF	2.68 x 10 ^{−3}	
Li ₂ CO ₃	2.14 x 10 ⁻²	
Li ₃ PO ₄	3.20 x 10 ^{−9}	

(i) Write an expression for the solubility product, K_{sp} , of lithium phosphate, including its units.

 $K_{sp} = [Li^+]^3 [PO_4^{3-}] mol^4 dm^{-12}$

(ii) Using the data above, calculate a value for the solubility of lithium phosphate.

```
Let solubility of Li<sub>3</sub>PO<sub>4</sub> be s mol dm<sup>-3</sup>

Li<sub>3</sub>PO<sub>4</sub> (s) \implies 3Li<sup>+</sup>(aq) + PO<sub>4</sub><sup>3-</sup>(aq) ----- (1)

s 3s s

K_{sp} = [Li^+]^3 [PO_4^{3^-}]

= (3s)<sup>3</sup>(s)

= 27s<sup>4</sup>

3.20 x 10<sup>-9</sup> = 27s<sup>4</sup>
```

Solubility of $Li_3PO_4 = s = 3.30 \times 10^{-3}$ mol dm⁻³

[2]

(iii) LiF was precipitated when equal volumes of a solution of 0.050 mol dm⁻³ LiNO₃ and a solution of KF were mixed.

Calculate the minimum concentration of the KF solution required for precipitation to occur.

Since equal volumes are mixed, new $[Li^+] = 0.050 / 2 = 0.025 \text{ mol dm}^{-3}$ Precipitation occurs when lonic Product $\geq K_{sp}$ $[Li^+] [F^-] \geq 2.68 \times 10^{-3}$ $0.025 \times [F^-] \geq 2.68 \times 10^{-3}$ $[F^-] \geq 0.1072 \text{ mol dm}^{-3}$ $KF \rightarrow K^+ + F^-$ Original concentration of KF= $0.1072 \times 2 = 0.214 \text{ mol dm}^{-3}$

[2]

(iv) Describe and explain how the solubility of Li₂CO₃ is affected by adding solid Na₂CO₃ into the solution.

 $Li^{+}(aq) + CO_{3}^{2-}(aq) \implies LiCO_{3}(s) ----- (1)$

Due to <u>common ion CO_3^{2-} </u>, when Na_2CO_3 is added into the solution, [CO_3^{2-}] <u>increases</u>. By Le Chatelier's Principle, <u>equilibrium position</u> (1) shifts to the <u>right</u> to <u>decrease</u> [CO_3^{2-}] Hence, <u>solubility</u> of <u>Li₂CO₃ decreases</u>.

(b) When a precipitate is formed, ΔG^{e}_{ppt} , in J mol⁻¹, is given by the following expression.

$$\Delta G^{\rm e}_{\rm ppt} = 2.303 \ RT \log K_{\rm sp}$$

For lithium sulfate, Li_2SO_4 , $K_{sp} = 128 \text{ mol}^3 \text{ dm}^{-9}$ at 298 K.

Using the above expression, determine whether lithium sulfate is soluble in water at 298 K. Explain your answer.

For Li₂SO₄, ΔG^{9}_{ppt} = 2.303*RT* log K_{sp} = 2.303 x 8.31 x 298 x log (128) = +1.20 x 10⁴ J mol⁻¹

Since $\Delta G^{\circ}_{ppt} > 0$, it implies that the <u>precipitation</u> of Li₂SO₄, is <u>not feasible</u>. Hence, Li₂SO₄, is <u>soluble in water at 298K</u>.

[2]

(c) Another use of Li₂CO₃ is in the processing of metal oxides. When Li₂CO₃ decomposes, it forms Li₂O solid and CO₂ gas according to the following equation.

$$Li_2CO_3(s) \rightarrow Li_2O(s) + CO_2(g)$$

(i) Calculate the standard enthalpy change of reaction for the decomposition of Li_2CO_3 using the following standard enthalpy changes of formation, ΔH_f° .

compound	Li ₂ CO ₃	Li ₂ O	CO ₂
$\Delta H_{\rm f}^{\rm e}$ / kJ mol ⁻¹	-1216	-596	-394

 $\Delta H_{\rm r}^{\rm e} = \Sigma \ \Delta H_{\rm f}^{\rm e}({\rm products}) - \Sigma \ \Delta H_{\rm f}^{\rm e}({\rm reactants})$ = $\Delta H_{\rm f}^{\rm e}({\rm CO}_2) + \Delta H_{\rm f}^{\rm e}({\rm Li}_2{\rm O}) - \Delta H_{\rm f}^{\rm e}({\rm Li}_2{\rm CO}_3)$ = -394 -596 - (- 1216) = **+226 kJ mol**⁻¹

[1]

(ii) The entropy change for the decomposition reaction is positive. Explain the effect on spontaneity of this decomposition reaction as temperature increases.

 ΔH° is positive while ΔS° is positive. So $-T \Delta S$ is negative.

As temperature increases, $-\underline{T\Delta S}$ becomes <u>more negative</u> so $\underline{\Delta G}$ becomes <u>more negative</u>. Thus the decomposition becomes <u>more spontaneous</u> as temperature increases.

OR

<u>At low T</u>, $|T\Delta S| < |\Delta H|$ ⇒ Hence, $\Delta G > 0$ (+ve) at low temperatures.

<u>At high *T*,</u>

|*T*<u>∆</u>S| > |<u>∆</u>H|

 \Rightarrow Hence, $\Delta G < 0$ (–ve) at high temperatures.

Thus the decomposition becomes **more spontaneous** as temperature increases.

[2]

[Total: 13]

- 4 Use of the Data Booklet is relevant to this question.
 - (a) Chemical companies manufacture containers filled with liquid butane for use by campers. The complete combustion of butane produces carbon dioxide and water. The enthalpy change of combustion of butane is -3000 kJ mol⁻¹.

A camper estimates that the liquid butane left in a container would give 1.2 dm³ of butane gas (measured at room temperature of 20 °C and pressure of 1 atm).

(i) Calculate the mass of water at room temperature that could be brought to boiling point at 100 °C by completely burning this mass of butane, given that the process is only 80% efficient.

No. of moles of butane present = $\frac{1.2}{24}$ = 0.0500 mol

Quantity of heat released by combustion, q' = $3000 \times 0.0500 = 150 \text{ kJ}$

Quantity of heat absorbed by water, $q = 80\% \times q' = 80\% \times 150 = 120 \text{ kJ}$ $q = m c \Delta T \Rightarrow q = m \times 4.18 \times (100 - 20)$

Mass of water, m =
$$\frac{120}{334.4}$$
 = **0.359 kg (or 359 g)** (3 s.f.)

- (ii) Suggest a reason why the combustion process is only 80% efficient.
 - Heat is lost to surroundings during combustion.
 - Some of the <u>heat is used to vapourise the liquid butane</u>.

[1]

- **(b)** When burnt in a limited supply of air, butane forms carbon and water. The enthalpy change of this reaction is –1400 kJ mol⁻¹.
 - (i) Construct a balanced equation for this reaction.

 $C_4H_{10} + \frac{5}{2}O_2 \rightarrow 4C + 5H_2O$

[1]

(ii) Explain why the enthalpy changes of the two combustion reactions in (a) and (b) are different.

Due to <u>complete combustion in (a)</u>, more energy is released due to the formation of CO_2 (bond formation), compared with only C formed in the <u>incomplete combustion in (b)</u>. (or reverse discussion)

[1]

(iii) State the quantitative information that can be obtained from this difference in enthalpy changes.

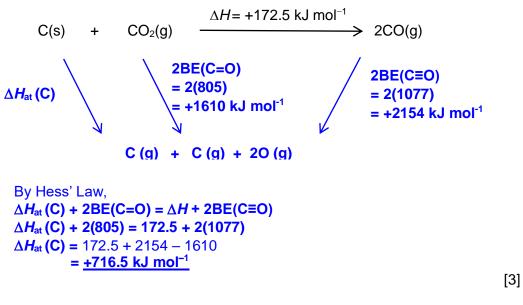
(Standard) Enthalpy change of combustion of carbon / ΔH_c (C)

[1]

(c) The carbon-oxygen *bond energy* in carbon monoxide, CO, is 1077 kJ mol^{-1} .

Carbon monoxide can be formed by the following reaction:

$$C(s) + CO_2(g) \rightarrow 2CO(g)$$
 $\Delta H^{e} = +172.5 \text{ kJ mol}^{-1}$


(i) Explain, with the aid of a suitable equation, what is meant by the term *bond energy* of carbon monoxide.

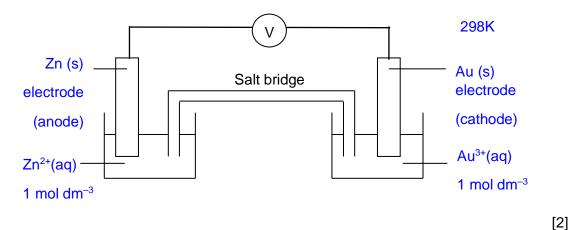
 $C\equiv O(g) \rightarrow C(g) + O(g)$

Bond energy of CO is the <u>energy required</u> to <u>break 1 mole of gaseous CO</u> (triple) <u>bond</u> to form <u>gaseous</u> (C and O) <u>atoms</u>.

[2]

(ii) Determine the enthalpy change of atomisation of carbon by using relevant bond energy data from the *Data Booklet* to complete the energy cycle below. Include relevant information in your cycle.

[Total: 12]



5 Use of the Data Booklet is relevant to this question.

A student wanted to study the following reaction.

He first sets up an electrochemical cell which comprises of Au^{3+}/Au and Zn^{2+}/Zn half-cells prepared under standard conditions.

(a) (i) Draw a fully labelled diagram of the electrochemical cell under standard conditions.

(ii) Given that $E^{\Theta}_{Au^{3+}/Au}$ is +1.50 V, calculate the E^{Θ}_{cell} of this cell.

(iii) Suggest a replacement transition element ion-ion half-cell for the Zn²⁺/Zn half-cell so that the direction of electron flow is reversed.

[1]

[1]

(b) When the reaction in (a) begins, [Au³⁺] starts to decrease while [Zn²⁺] increases. In the study of electrochemical cells, the *Nernst equation*, given below, can be applied to determine the cell potential under non-standard conditions.

$$E_{\text{cell}} = E_{\text{cell}}^{\bullet} - \frac{0.0592}{n} \log_{10} Q$$

where n is the number of moles of electrons transferred and Q is the reaction quotient given by $\frac{[Zn^{2^+}]}{[Au^{3^+}]}$.

(i) Using your answer in (a)(ii), calculate the new E_{cell} using the Nernst equation, when [Au³⁺] and [Zn²⁺] are 0.02 mol dm⁻³ and 2.47 mol dm⁻³ respectively.

$$E_{\text{cell}} = +2.26 - \frac{0.0592}{6} \log_{10} \frac{[2.47]}{[0.02]} = \frac{+2.24 \text{ V}}{1000}$$

- (ii) Suggest the value of E_{cell} when the reaction goes to completion. <u>**0**</u> V
- (c) The redox reaction in (a) is an example of a spontaneous reaction which proceeds as predicted by the cell potential. However, not every chemical reaction agrees with the theoretical prediction. One example is the reaction between acidified $K_2Cr_2O_7$ and water.
 - (i) Using information from the *Data Booklet*, calculate ΔG° for the reaction between acidified K₂Cr₂O₇ and water. Based on your value for ΔG° , comment on the spontaneity of the reaction.
 - $\Delta G^{\bullet} = -nFE^{\bullet}$ = -12 x 96500 x (1.33 - 1.23) = <u>-1.16 x 10⁵ kJ mol⁻¹</u>

 $\Delta G^{\circ} < 0$, the <u>reaction is spontaneous</u>.

(ii) The reaction between water and acidified $K_2Cr_2O_7$ has an E^{\bullet}_{cell} greater than 0 V under standard conditions, yet the reaction does not proceed. Suggest a reason for this observation.

<u>The reaction has high activation energy</u> so it cannot take place under standard condition.

(iii) Another example of a reaction that does not agree with the theoretical prediction is the reaction between Cu^{2+} and I^- according to the equation below.

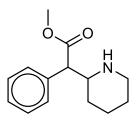
$$2Cu^{2+}(aq) + 4I^{-}(aq) = 2CuI(s) + I_2(aq)$$
 $E^{\Theta}_{cell} = -0.39 V$

White precipitate of CuI is formed during the reaction. Suggest a reason why the reaction proceeds despite the E^{e}_{cell} being less than 0 V.

The continuous **precipitation of CuI** from the solution will **shift the equilibrium position to the right** and drive the reaction forward.

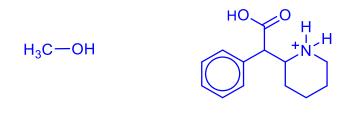
[1]

[Total: 11]


[3]

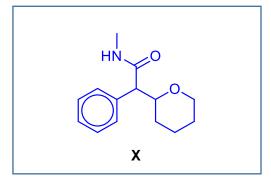
[1]

[1]


[1]

- 6 Adrenaline is a naturally occurring hormone and stimulant released in the body during times of danger or stress. Stimulant drugs that can mimic the effect of adrenaline have been developed for treatment of various conditions.
- (a) Methylphenidate is a stimulant drug commonly used in the treatment of Attention Deficit Hyperactive Disorder (ADHD).

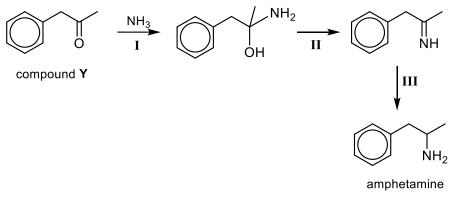
methylphenidate


(i) Draw the structures of the organic products formed when methylphenidate is heated with dilute hydrochloric acid.

[2]

- (ii) An isomer of methylphenidate, compound **X**, is neutral and has the following structural properties:
 - contains one aromatic six-membered ring
 - contains (

Suggest a structure for compound \mathbf{X} and state its isomeric relationship to methylphenidate.



isomeric relationship to methylphenidate:

constitutional isomer (OR structural isomer)

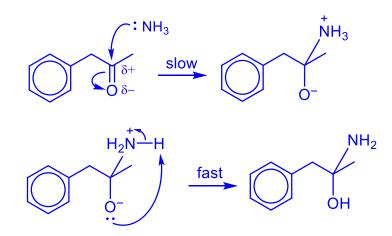
(b) Another stimulant, amphetamine, is prepared commercially from compound Y as shown below.

(i) Suggest the type of reaction occurring in:

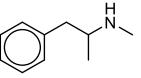
Step II	elimination
Step III	addition / reduction

(ii) Suggest suitable reagents and conditions for the conversion in step III. You may assume the R=NH group reacts in a similar manner to the carbonyl group.
 [1]

reagents and conditions: NaBH₄ in ethanol or H₂(g) with Ni heat / Pt / Pd


(iii) Reaction I which occurs between compound Y and NH_3 is a nucleophilic addition reaction.

Draw the mechanism for this reaction, given that in the rate-determining step, the nucleophilic attack by NH_3 , results in an intermediate species containing both a positive and negative charge.

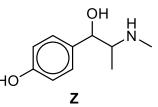

[2]

[2]

(iv) With reference to the mechanism you have drawn in (iii), explain why the product from step I is expected to be optically inactive.

In the slow step, the nucleophile attacks the <u>trigonal planar carbonyl C</u> atom with <u>equal probability from above and below the plane</u>. This results in the formation of a <u>racemic mixture</u> which is optically inactive. (c) Methamphetamine is a stimulant which has a structure similar to amphetamine.

methamphetamine


(i) The hydrochloride salt of methamphetamine exists as colourless crystals. Methamphetamine is immiscible with water whereas the salt is soluble in water. With reference to the interactions formed between each of the compounds and water, explain the difference in the solubility of methamphetamine and its salt in water.

Methamphetamine forms instantaneous dipole-induced dipole interactions with water whereas the salt is able to form ion-dipole interactions with water .

The strong interactions formed between the salt and water release sufficient energy to overcome hydrogen bonding between water molecules OR to cause detachment of ions from the crystal lattice. (OR weak i.d.-i.d. attraction of methamphetamine are not compatible with strong hydrogen bonding between water)

[2]

(ii) In the human body, methamphetamine can be converted to compound Z.

Describe a simple chemical test which could be used to distinguish between methamphetamine and compound Z.

You should state the reagents and conditions required, together with the expected observations for each compound.

Add aqueous Br₂ to each compound

Compound Z will decolourise Br₂ with the formation of a white ppt whereas methamphetamine will give no visible observation.

Other possible test reagents: neutral $FeCl_3$ / Na / PCl_5 / hot acidified $K_2Cr_2O_7$ (not KMnO₄)

[2]

[Total: 16]

End of Paper 2

TAMPINES MERIDIAN JUNIOR COLLEGE

JC2 PRELIMINARY EXAMINATION

H2 CHEMISTRY

Paper 3 Free Response

9729/03 23 September 2019 2 hours

Candidates answer on Answer Booklet.

Additional Materials:	Answer Booklet
	Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name and civics group on all your work you hand in.

Write in dark blue or black pen on both pages in the answer booklet. You may use an HB pencil for any diagrams, graphs or rough working. Do not use paper clips, glue or correction fluid.

Section A Answer all questions.

Section B Answer one question.

A *Data Booklet* is provided. The use of an approved scientific calculator is expected, where appropriate. The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 14 printed pages.

Section A

Answer **all** the questions from this section.

- 1 Hydrocarbons, C_xH_y, are used extensively as sources of fuel in our modern day civilisation.
 - (a) 10 cm³ of a gaseous hydrocarbon C_5H_y was allowed to burn in an excess of oxygen at 300 °C and 1 atm. In the reaction, there was an expansion of volume by 20 cm³.
 - Write a balanced equation, with state symbols, for the reaction at 300 °C and 1 atm. [2]
 - (ii) Determine the value of y. [2]

Methane, CH_4 , is sometimes used in the production of hydrogen via a process known as steam reforming.

$$CH_4(g) + H_2O(g) \implies CO(g) + 3H_2(g)$$

- (b) The steam reforming process is an endothermic reaction.
 - (i) Using data from the *Data Booklet*, calculate a value for the enthalpy change of the forward reaction. [2]
 - (ii) The actual value of the enthalpy change of reaction is found to be +206 kJ mol⁻¹. Suggest a reason why your calculated answer in (i) differs from this value.
- (c) At 600 K, the value of the equilibrium constant, $K_{\rm p}$, for the steam reforming reaction is 7.20 x 10⁻⁴.
 - (i) Write the K_p expression for this reaction, giving its units. [2]
 - (ii) Gaseous CH_4 , H_2O and CO are introduced into a closed container at 600 K and their initial partial pressures are 1.20 atm, 2.10 atm and 1.80 atm respectively.

Determine the partial pressure of H_2 when equilibrium is reached.

(You may assume that the extent of the forward reaction is small.) [3]

(iii) Using information from (b), suggest how the temperature of the reaction can be changed so as to increase the yield of H₂. Explain your answer. [2]

(d) Additional hydrogen can be recovered using the carbon monoxide produced in another reaction known as the water-gas shift reaction.

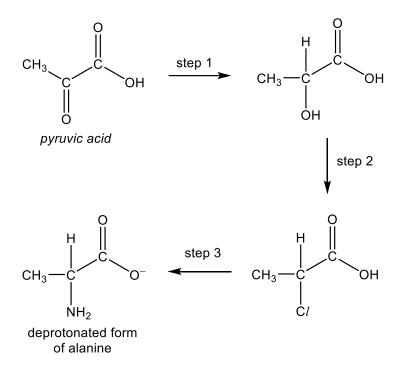
 $CO(g) + H_2O(g) \longrightarrow CO_2(g) + H_2(g)$

- (i) Name the type of hybridisation in the carbon atom in CO. Draw the hybrid orbitals around the carbon atom. [2]
- (ii) Given that the above reaction was conducted at 300 $^{\circ}$ C and 1 atm, calculate the volume of H₂ that can be recovered from 5 kg of CO. [3]
- (iii) The volume of CO₂ collected in the water-shift reaction should be the same as that of H₂. However, the actual volume of CO₂ collected was smaller. Suggest a reason why this is so.

[Total: 20]

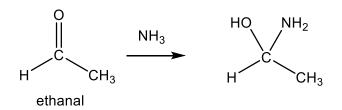
2 Propanoic acid, CH₃CH₂COOH was initially known as propionic acid based on the Greek words, *protos*, meaning 'first' and *pion*, meaning 'fat'.

The p K_a values of CH₃CH₂COOH and CH₃CH(C*l*)COOH are listed below.

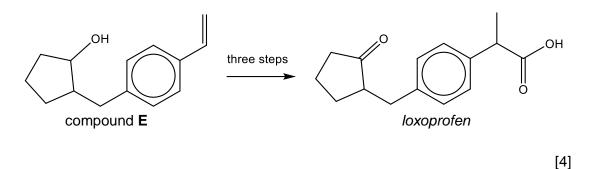

acid	structural formula	р <i>К</i> а
1	CH ₃ CH ₂ COOH	4.9
2	CH ₃ CH(C <i>l</i>)COOH	2.8
3	CH ₂ (Cl)CH ₂ COOH	

- (a) (i) Explain why acid 2 has a lower pK_a than acid 1. [2]
 - (ii) Suggest a pK_a value for acid 3. [1]
- (b) A 25.0 cm³ solution of 0.10 mol dm⁻³ CH₃CH₂COOH was titrated against 0.20 mol dm⁻³ sodium hydroxide, NaOH.
 - (i) Calculate the pH of the 0.10 mol dm⁻³ CH₃CH₂COOH. [1]
 - (ii) Calculate the volume of NaOH required for complete neutralisation. [1]
 - (iii) Write a suitable equation to explain why the pH at equivalence point is greater than 7. [1]
 - (iv) Sketch the expected titration curve for this titration given that a total volume of 25.0 cm³ of NaOH was added. On the titration curve, indicate the initial pH value and the equivalence volume.
 - (v) A buffer involving CH₃CH₂COOH and its salt was formed during the progress of the titration. Circle the buffer region on the sketched curve in (iv) and indicate the corresponding pH value and volume at the maximum buffering capacity.

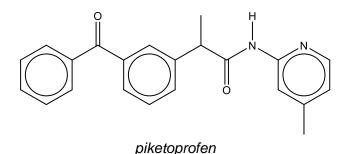
[2]


There are many organic compounds such as amino acids and drug molecules that are derivatives of propanoic acid.

- (c) The starting material to synthesise 2-aminopropanoic acid, also known as alanine can be either *pyruvic acid* or ethanal.
 - (i) The proposed synthesis for the deprotonated form of alanine from *pyruvic acid* is shown below.


Suggest the reagents and conditions for steps 1, 2 and 3. [3]

- (ii) State the **two** types of reaction that had occurred in step 3 of the above proposed synthesis. [2]
- (iii) Write an equation to show how the zwitterion form of *alanine* can act as a buffer when a small amount of base is added. [1]
- (iv) The first step to synthesise alanine from ethanal is shown below.



Explain whether ammonia can be considered as a Lewis base in the context of this synthesis. [1]

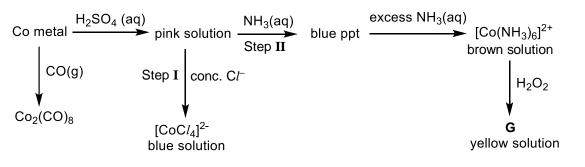
- (d) Non-steroidal anti-inflammatory drugs are used for the relief of pain. One example is *loxoprofen* that is considered as a propanoic acid derivative based on its chemical structure.
 - (i) Suggest a three-step synthesis of *loxoprofen* starting from compound **E**.

(ii) *Piketoprofen* is produced by the reaction between an acyl chloride and a suitable organic compound. Suggest the structures of the acyl chloride and the organic compound.

[1]

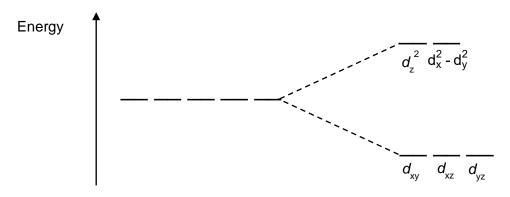
(iii) The use of acyl chloride requires anhydrous conditions. Explain why acyl chloride undergoes hydrolysis more readily than chloroalkane. [2]

[Total: 24]



3 Cobalt is a transition element that plays an important role in hybrid electric vehicles and is also an essential part of vitamin B12. The common oxidation states of cobalt are +2 and +3.

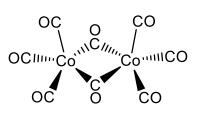
- (b) Write the electronic configuration of cobalt(II) ion. [1]
- (c) State one **physical** characteristic property of transition elements that is different from the main group metals. Briefly explain why transition elements exhibit this property.


[2]

(d) The following sequence of reactions involving cobalt illustrates many of the characteristic properties of transition elements.

- (i) State the types of reaction occurring in steps I and II. [2]
- (ii) Suggest the formula of the cobalt-containing species **G**. [1]
- (iii) Cobalt is said to be a d-block element.

The five degenerate orbitals in the 3d subshell are split into two energy levels in the presence of ligands in an octahedral environment as shown.



Explain why the splitting occurs.

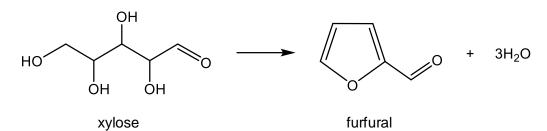
(iv) Given the fact in (iii) that d orbitals split into 2 energy levels in the presence of ligands, explain why [CoCl₄]²⁻ solution is blue. [2]

[2]

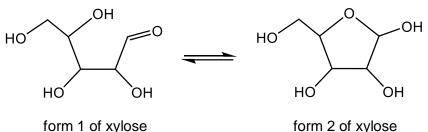
(v) Cobalt can react with carbon monoxide to form $Co_2(CO)_8$, a commonly used reagent and catalyst in organic synthesis.

Suggest the co-ordination number and the oxidation state of cobalt in the complex, $Co_2(CO)_8$. [1]

- (vi) With the aid of *Data Booklet* and given that E^e [Co(NH₃)₆]^{3+/} [Co(NH₃)₆]²⁺ is +0.10 V, predict the stability of an alkaline solution of [Co(NH₃)₆]²⁺ when left exposed to air.
 [2]
- (e) A radioactive form of cobalt, ⁶⁰Co, is used in the inspection of materials to reveal internal structure, flaws, or foreign objects.
 - (i) State the number of protons, neutrons and electrons present in the isotopic species, ⁶⁰Co. [1]
 - (ii) The radioactive decay of 60 Co produces beta (β) particles. A simplified balanced decay equation is provided below.

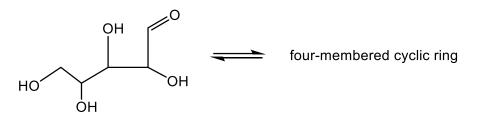

$${}^{60}\text{Co} \rightarrow \text{L} + \beta$$

Given that β is $_{-1}^{0}e$, deduce the identity of the element **L**. [1]


[Total: 16]

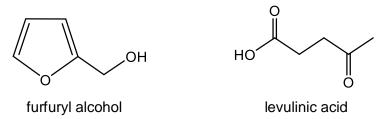
Section B Answer **one** question from this section.

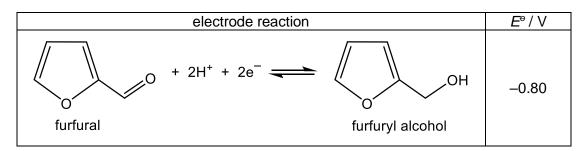
4 Furfural is an aromatic compound with all its carbon atoms lying on the same plane. Today, one of the ways to manufacture furfural is by the acid catalysed dehydration of xylose.



(a) Xylose exists in more than one form, one of which is the non-cyclic form shown below (i.e. form 1). Form 2 is a five-membered cyclic ring produced as follows.

form 1 of xylose

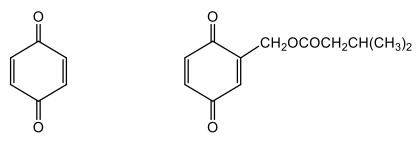

It is theoretically possible to produce a four-membered cyclic ring by following a similar pattern of reaction.


- Draw the structure of the theoretical four-membered cyclic ring. (i) [1]
- (ii) The four-membered cyclic ring is **not** actually produced because it is unstable. Suggest why it is unstable. [1]

(b) Furfural can be reduced into furfuryl alcohol. Furfuryl alcohol can then be used to synthesise levulinic acid.

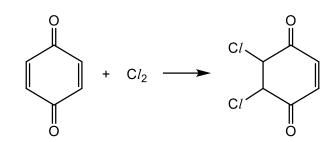
- (i) Using the **molecular** formulae of furfuryl alcohol and levulinic acid, write a balanced equation for the synthesis of furfuryl alcohol into levulinic acid. [2]
- (ii) Using your answer in (i), state the type of reaction that has taken place. [1]
- (c) The standard reduction potential involving furfural, C₅H₄O₂ measured against the standard hydrogen electrode (S.H.E.) is shown below.

A neutral aqueous solution of furfural is prepared. Electrolysis of this solution is performed using copper at both electrodes to increase the percentage yield of the reaction.


When 0.030 A was passed through the cell for 2.0 hours, the *actual* mass of the product formed at the cathode was found to be 0.060 g. Copper is reacted at the anode but not the cathode.

- (i) Using the E^e values given above as well as that from the Data Booklet, deduce the products formed at the anode and the cathode.
 (In your deduction, you may use name or molecular formula to represent the structures of the respective organic compounds.) [3]
- (ii) Write the overall balanced equation for the reaction. [1]
- (iii) Calculate the *expected* mass of the product formed at the cathode. [2]
- (iv) Calculate the percentage yield of the product formed at the cathode. [1]
- (v) Besides the S.H.E., another standard electrode that can be used is the standard calomel electrode (S.C.E.). When the S.C.E. is compared against the S.H.E., the E° of the S.C.E. is +0.24 V.

Calculate the E° of the furfural / furfuryl alcohol half-cell when measured against the S.C.E. [1]


Another compound with all its carbon atoms lying on the same plane is paraquinone, with a characteristic irritating odour of hot plastic. One derivative of paraquinone is blattellaquinone which is a pheromone in cockroaches.

paraquinone

blattellaquinone

(d) Paraquinone and limited chlorine react as follows.

Name and draw the mechanism of this reaction.

(e) Draw the major products formed when **blattellaquinone** is separately reacted under suitable conditions with each of the following:

(i)	hydrogen gas	[1]
(ii)	gaseous hydrogen bromide	[1]
(iii)	hot acidified potassium manganate(VII)	[2]

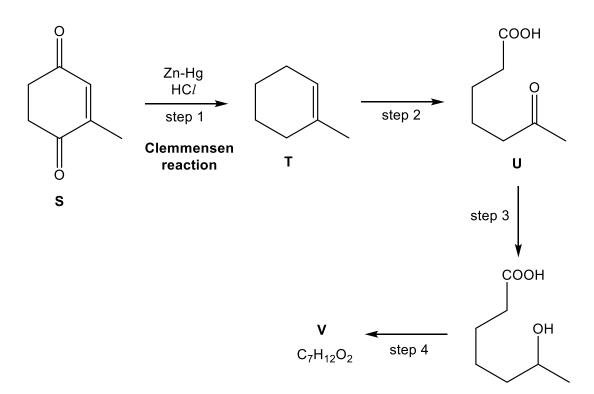
[Total: 20]

[3]

- 5 This question concerns the compounds of Period 3 elements.
 - (a) Properties of the oxides of some Period 3 elements, **P**, **Q** and **R**, are given below.

12

oxide	physical state at room conditions	electrical conductivity when molten
Р	gas	nil
Q	solid	high
R	solid	low


These three oxides, in no particular order, are Al_2O_3 , SiO₂ and SO₃.

(i)	Identify P, Q and R.	[1]
(ii)	Account for your answer, in terms of their structure and bonding.	[4]
(iii)	Al_2O_3 is described as an amphoteric oxide. Write two equations to show the amphoteric nature of Al_2O_3 .	[2]

(b) Hydrogen chloride is a colourless gas commonly used in organic synthesis.

In the Clemmensen reaction, carbonyl compounds are reduced to alkanes using zincmercury and hydrogen chloride dissolved in an organic solvent.

A reaction scheme involving the Clemmensen reaction is shown below.

- (i) Write the balanced equation for the reduction of compound S to T. Use [H] to represent the formula of the reducing agent. [1]
- (ii) Suggest a reagent which can determine if the reaction in step 3 is complete. [1]
- (iii) Given that compound V is neutral, state the type of reaction occurring in step 4 and suggest the structure of compound V.
 [2]
- (iv) Compound **U** is more soluble in water than compound **S**.
 - 1. Suggest a reason why this is so. [1]
 - Draw a labelled diagram to show how compound U dissolves in water.
 [1]

(c) HC*l* is stable to heat while HBr and HI, can undergo thermal decomposition. At 700 K, HBr is approximately 10% decomposed but HI, is approximately 20% decomposed.

Explain these differences with reference to relevant data in the *Data Booklet* and the factors that affect them. [3]

(d) Compound \mathbf{W} , C₆H₁₀O₂ is an ester which decolourises Br₂ in CCl₄ to form C₆H₁₀Br₂O₂.

Upon prolonged heating with excess acidified KMnO₄, 1 mol of **W** produces 1 mol of **X**, $C_4H_6O_3$ and 2 mol of CO₂.

X gives a yellow precipitate **Y** when warmed with aqueous alkaline iodine. **X** also undergoes the Clemmensen reaction to give **Z**, $C_4H_8O_2$. Both **X** and **Z** produce effervescence when reacted with aqueous sodium carbonate.

Suggest structures for the identity of **W**, **X**, **Y** and **Z**. [4]

[Total: 20]

End of Paper 3

TAMPINES MERIDIAN JUNIOR COLLEGE 2019 JC2 H2 Chemistry Prelim Exam Paper 3 (Suggested Answers)

Section A

Answer **all** the questions from this section.

- 1 Hydrocarbons, C_xH_y, are used extensively as sources of fuel in our modern day civilisation.
 - (a) 10 cm³ of a gaseous hydrocarbon C_5H_y was allowed to burn in an excess of oxygen at 300 °C and 1 atm. In the reaction, there was an expansion of volume by 20 cm³.
 - Write a balanced equation, with state symbols, for the reaction at 300 °C and 1 atm. [2]

$$C_5H_y(g) + \left(5 + \frac{y}{4}\right)O_2(g) \longrightarrow 5 CO_2(g) + \frac{y}{2} H_2O(g)$$

(ii) Determine the value of **y**.

Using Avogadro's Law, mole ratio = volume ratio

Equation:
$$C_5H_y(g) + \left(5 + \frac{y}{4}\right)O_2(g) \longrightarrow 5 CO_2(g) + \frac{y}{2} H_2O(g)$$

Vol of gases: 10 cm³ ($\left(5 + \frac{y}{4}\right)x$ 10) cm³ 50 cm³ ($\frac{y}{2}x$ 10) cm³

Volume of gases used up in the reaction = $10 + (50 + \frac{10y}{4}) = (60 + \frac{10y}{4}) \text{ cm}^3$ Volume of gases produced in the reaction = $50 + (\frac{y}{2}) \times 10 = (50 + 5y) \text{ cm}^3$

Volume of gas produced – Volume of gas used up = 10 cm^3

$$\left(50+5y\right) - \left(60+\frac{10y}{4}\right) = 20$$
$$y = \underline{12}$$

Tampines Meridian Junior College

Methane, CH₄, is sometimes used in the production of hydrogen via a process known as steam reforming.

2

$$CH_4(g) + H_2O(g) \implies CO(g) + 3H_2(g)$$

- (b) The steam reforming process is an endothermic reaction.
 - (i) Using data from the *Data Booklet*, calculate a value for the enthalpy change of the forward reaction. [2]
 - $\Delta H_r = \Sigma BE (reactants) \Sigma BE (products)$ = 410 x 4 + 460 x 2 - (1077 + 436 x 3)= +175 kJ mol⁻¹
 - (ii) The actual value of the enthalpy change of reaction is found to be +206 kJ mol⁻¹. Suggest a reason why your calculated answer in (i) differs from this value.

The bond energy calculation is an approximation method as the **bond energy** values given in the *Data Booklet* are average values.

- (c) At 600 K, the value of the equilibrium constant, K_p , for the steam reforming reaction is 7.20 x 10⁻⁴.
 - (i) Write the K_p expression for this reaction, giving its units. [2]

$$K_{\rm p} = \frac{({\rm P}_{\rm CO})({\rm P}_{\rm H_2})^3}{({\rm P}_{\rm CH_4})({\rm P}_{\rm H_2O})} \quad \text{atm}^2 \text{ (accept Pa}^2)$$

(ii) Gaseous CH_4 , H_2O and CO are introduced into a closed container at 600 K and their initial partial pressures are 1.20 atm, 2.10 atm and 1.80 atm respectively.

Determine the partial pressure of H_2 when equilibrium is reached.

(You may assume that the extent of the forward reaction is small.) [3]

	CH ₄ (g)	+ H₂O(g) ←	CO(g)	+ 3H ₂ (g)
Initial pp/atm	1.20	2.10	1.80	0
Change pp/atm	- x	-x	+x	+3x
Eqm pp/atm	1.20 – x	2.10 – x	1.80 + x	3x

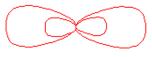
$$K_{\rm P} = \frac{({\rm P}_{\rm CO})({\rm P}_{\rm H_2})^3}{({\rm P}_{\rm CH_4})({\rm P}_{\rm H_2O})}$$

$$7.20 \times 10^{-4} = \frac{(1.80 + x)(3x)^3}{(1.20 - x)(2.10 - x)}$$

Assuming x is small, 7.20 x $10^{-4} = \frac{(1.80)(3x)^3}{(1.20)(2.10)}$

Solving for x, x = 0.0334Partial pressure of H₂ at equilibrium = 3 x 0.0334 = 0.100 atm

(iii) Using information from (b), suggest how the temperature of the reaction can be changed so as to increase the yield of H₂. Explain your answer. [2]


The temperature should be raised to increase the yield of H₂.

When the temperature is raised, by Le Chartelier's Principle, the <u>equilibrium</u> position shifts to the right towards the endothermic reaction to absorb <u>heat</u>, increasing the yield of H_2 .

(d) Additional hydrogen can be recovered using the carbon monoxide produced in another reaction known as the water–gas shift reaction.

 $CO(g) + H_2O(g) \longrightarrow CO_2(g) + H_2(g)$

(i) Name the type of hybridisation in the carbon atom in CO. Draw the hybrid orbitals around the carbon atom. [2]

sp hybridisation

(ii) Given that the above reaction was conducted at 300 $^{\circ}$ C and 1 atm, calculate the volume of H₂ that can be recovered from 5 kg of CO. [3]

Amount of H_2 that can be recovered = 5000/28 = **178.6 mol**

$$pV = nRT$$

$$V = \frac{nRT}{p}$$

$$V = \frac{178.6 \times 8.31 \times (300 + 273)}{101325}$$

$$= 8.39 \text{ m}^{3}$$

(iii) The volume of CO₂ collected in the water-shift reaction should be the same as that of H₂. However, the actual volume of CO₂ collected was smaller. Suggest a reason why this is so.

 $\underline{CO_2}$ deviates more from ideal gas behaviour as it has more significant intermolecular instantaneous dipole-induced dipole interaction . Hence it will occupy a smaller volume than H₂.

[Total: 20]

2 Propanoic acid, CH₃CH₂COOH was initially known as propionic acid based on the Greek words, *protos*, meaning 'first' and *pion*, meaning 'fat'.

The p K_a values of CH₃CH₂COOH and CH₃CH(Cl)COOH are listed below.

acid	structural formula	р <i>К</i> а
1	CH ₃ CH ₂ COOH	4.9
2	CH ₃ CH(C <i>l</i>)COOH	2.8
3	CH ₂ (Cl)CH ₂ COOH	

(a) (i) Explain why acid 2 has a lower pK_a than acid 1.

The <u>electron-withdrawing Cl group</u> in <u>acid 2</u> (OR <u>CH₃CH(Cl)COOH</u>) further <u>reduces the intensity of the negative charge</u> on <u>CH₃CH(Cl)COO⁻</u> to a <u>greater extent</u>.

<u>CH₃CH(C*l*)COO⁻</u> is <u>more stable</u> and <u>CH₃CH(C*l*)COOH</u> has a <u>greater</u> tendency to <u>dissociate</u> and therefore a <u>stronger acid</u>.

(ii) Suggest a pK_a value for acid 3.

[1]

[2]

Accept value between 2.8 to 4.9

- (b) A 25.0 cm³ solution of 0.10 mol dm⁻³ CH₃CH₂COOH was titrated against 0.20 mol dm⁻³ sodium hydroxide, NaOH.
 - (i) Calculate the pH of the 0.10 mol dm⁻³ CH₃CH₂COOH. [1]

 $[H^+] = \sqrt{0.10 \times 10^{-4.9}} = 0.00112 \text{ mol dm}^{-3}$

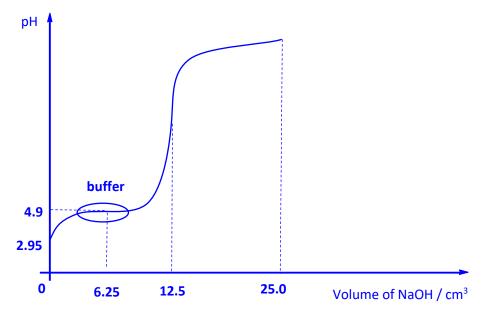
pH = -log₁₀(0.00112) = <u>2.95</u>

(ii) Calculate the volume of NaOH required for complete neutralisation. [1]

Amount of $CH_3CH_2COOH = (25 \div 1000) \times 0.1 = 2.50 \times 10^{-3} \text{ mol}$

 $CH_3CH_2COOH \equiv NaOH$

Amount of NaOH required = 2.50 x 10⁻³ mol


Volume of NaOH required = $2.50 \times 10^{-3} \div 0.20$ = <u>0.0125 dm³</u> OR <u>12.5 cm³</u> (iii) Write a suitable equation to explain why the pH at equivalence point is greater than 7. [1]

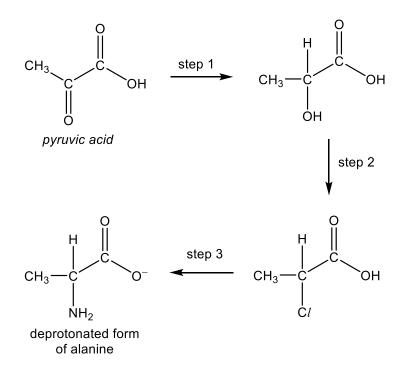
 $CH_3CH_2COO^- + H_2O \rightleftharpoons CH_3CH_2COOH + OH^-$

Concept:

 $CH_3CH_2COO^-$ undergoes hydrolysis to form OH^- . At equilibrium, $[OH^-] > [H^+]$ pH at equivalence point is basic (> 7).

(iv) Sketch the expected titration curve for this titration given that a total volume of 25.0 cm³ of NaOH was added. On the titration curve, indicate the initial pH value and the equivalence volume.

(v) A buffer involving CH₃CH₂COOH and its salt was formed during the progress of the titration. Circle the buffer region on the sketched curve in (iv) and indicate the corresponding pH value and volume at the maximum buffering capacity.


[2]

There are many organic compounds such as amino acids and drug molecules that are derivatives of propanoic acid.

6

- (c) The starting material to synthesise 2-aminopropanoic acid, also known as alanine can be either *pyruvic acid* or ethanal.
 - (i) The proposed synthesis for the deprotonated form of alanine from *pyruvic acid* is shown below.

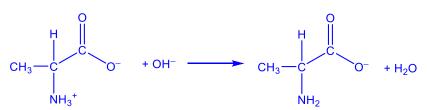
Suggest the reagents and conditions for steps 1, 2 and 3.

[3]

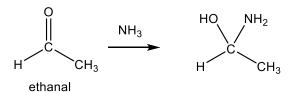
Step 1: <u>NaBH₄ in ethanol</u>

Step 2: <u>HCl (g)</u>, <u>heat</u>

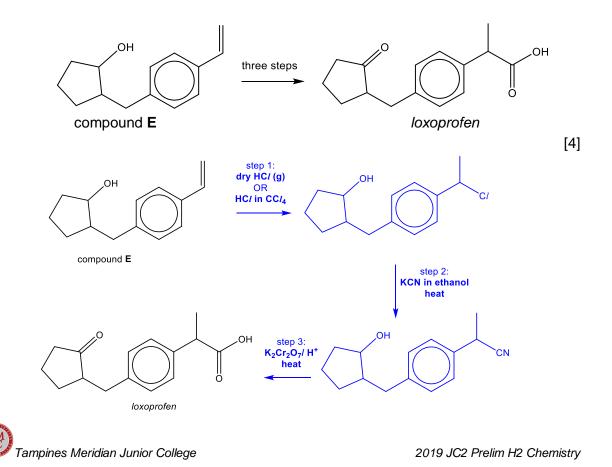
Step 3: excess conc. NH₃ in ethanol, heat in sealed tube

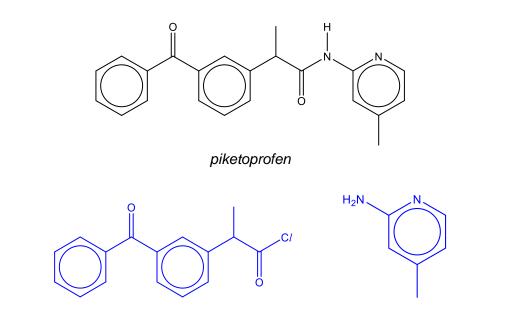

(ii) State the **two** types of reaction that had occurred in step 3 of the above proposed synthesis. [2]

Nucleophilic substitution


Acid-base reaction (OR neutralisation)

(iii) Write an equation to show how the zwitterion form of *alanine* can act as a buffer when a small amount of base is added. [1]


(iv) The first step to synthesise alanine from ethanal is shown below.


Explain whether ammonia can be considered as a Lewis base in the context of this synthesis. [1]

<u>NH₃</u> uses its <u>lone pair to form a</u> dative <u>bond with the carbonyl carbon</u> therefore it <u>is considered</u> as a Lewis base.

- (d) Non-steroidal anti-inflammatory drugs are used for the relief of pain. One example is *loxoprofen* that is considered as a propanoic acid derivative based on its chemical structure.
 - (i) Suggest a three-step synthesis of *loxoprofen* starting from compound E.

(ii) *Piketoprofen* is produced by the reaction between an acyl chloride and a suitable organic compound. Suggest the structures of the acyl chloride and the organic compound.

(iii) The use of acyl chloride requires anhydrous conditions. Explain why acyl chloride undergoes hydrolysis more readily than chloroalkane. [2]

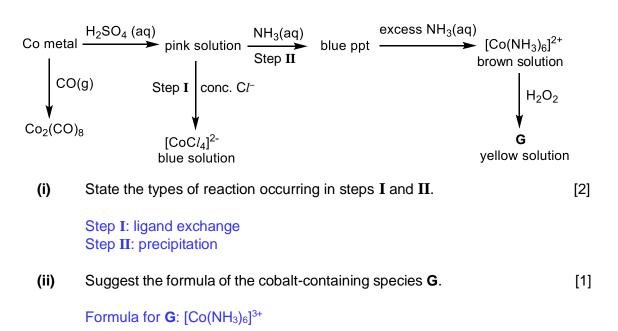
The <u>carboxyl C</u> (OR carbonyl C) is bonded to <u>two</u> (OR <u>more</u>) <u>electronegative atoms</u>, <u>O and C</u> compared to <u>chloroalkane where the alkyl</u> <u>C is only bonded to one C</u> resulting in a <u>highly electron-deficient</u> the carboxyl <u>C atom</u> and making the C atom highly susceptible to hydrolysis.

Hence, it undergoes hydrolysis more readily than chloroalkane.

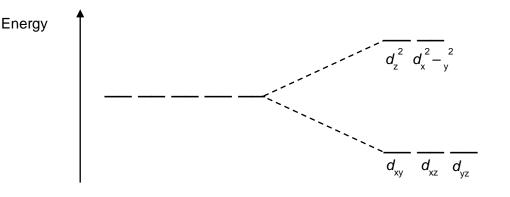
[Total: 24]

[1]

- **3** Cobalt is a transition element that plays an important role in hybrid electric vehicles and is also an essential part of vitamin B12. The common oxidation states of cobalt are +2 and +3.
 - (a) Define *transition element*. [1]
 A transition element is a *d* block element that <u>forms at least one stable ion with</u> <u>partially-filled *d* subshell</u>
 (b) Write the electronic configuration of cobalt(II) ion. [1]


 $1s^22s^22p^63s^23p^63d^7 \ {\rm Or} \ [Ar]3d^7$

(c) State one **physical** characteristic property of transition elements that is different from the main group metals. Briefly explain why transition elements exhibit this property.

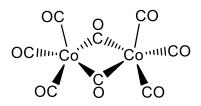

[2]

- 1 Transition metals are <u>harder/denser</u>. It has relatively <u>smaller atomic radius</u> and <u>higher relative atomic mass</u>. Thus it has have <u>higher mass per unit</u> volume.
- 2 Transition metals have <u>higher</u> melting points. In transition metals, <u>both the</u> <u>3d and 4s electrons</u> are involved in delocalization. For s-block metals, <u>only</u> <u>the s electrons are involved in the delocalization.</u> Thus there is <u>stronger</u> <u>electrostatic forces of attraction</u> is present <u>between the transition metals</u> <u>cations and the sea of delocalised electrons.</u>
- (d) The following sequence of reactions involving cobalt illustrates many of the characteristic properties of transition elements.

(iii) Cobalt is said to be a d-block element.

The five degenerate orbitals in the 3d subshell are split into two energy levels in the presence of ligands in an octahedral environment as shown.

Explain why the splitting occurs.


[2]

The <u>upper energy level d orbitals</u> (d_{x2-y2} and d_{z2} orbitals) have their <u>lobes</u> pointing at the ligands along the coordinate axes. Hence, the electron pairs in these orbitals will be repelled by the ligands to a greater extent than those in lower energy d orbitals.

(iv) Given the fact in (iii) that d orbitals split into 2 energy levels in the presence of ligands, explain why $[CoCl_4]^{2-}$ solution is blue. [2]

The Co <u>d electrons in lower energy d orbital is promoted to the higher d</u> <u>orbital by d-d transition</u>. During the transition, <u>the d electron absorbs</u> <u>orange wavelength from the visible region of the electromagnetic</u> <u>spectrum</u> and <u>the remaining wavelengths not absorbed appear as blue</u>.

(v) Cobalt can react with carbon monoxide to form Co₂(CO)₈, a commonly used reagent and catalyst in organic synthesis.

Suggest the co-ordination number and the oxidation state of cobalt in the complex, $Co_2(CO)_8$. [1]

Co-ordination number: <u>5</u> Oxidation state of cobalt: <u>0</u> (vi) With the aid of *Data Booklet* and given that E^o [Co(NH₃)₆]^{3+/} [Co(NH₃)₆]²⁺ is +0.10 V, predict the stability of an alkaline solution of [Co(NH₃)₆]²⁺ when left exposed to air.

 $\begin{array}{ll} [Co(NH_3)_6]^{3+} + e \rightleftharpoons [Co(NH_3)_6]^{2+} & E^{\Theta} = + \ 0.10 \ V \ E_{oxid} \\ O_2 + 2H_2O + 4e \rightleftharpoons 4OH^- & E^{\Theta} = + \ 0.40 \ V \ E_{red} \end{array}$

Ecell = 0.40 - 0.10 = +0.30 V > 0

 $[Co(NH_3)_6]^{2+}$ is **oxidised to form [Co(NH_3)_6]^{3+}** in open air.

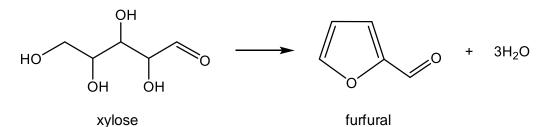
- (e) A radioactive form of cobalt, ⁶⁰Co, is used in the inspection of materials to reveal internal structure, flaws, or foreign objects.
 - (i) State the number of protons, neutrons and electrons present in the isotopic species, ⁶⁰Co. [1]

Protons = 27 Electrons= 27 Neutrons = 33

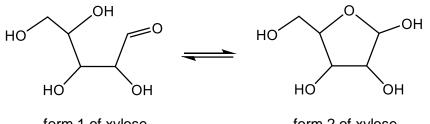
(ii) The radioactive decay of 60 Co produces beta (β) particles. A simplified balanced decay equation is provided below.

$${}^{60}\text{Co} \rightarrow \text{L} + \beta$$

Given that β is $_{-1}^{0}e$, deduce the identity of the element **L**. [1]

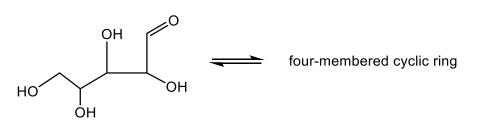

Final proton number = 27 + 1 = 28Identity = <u>Ni or nickel</u>

[Total: 16]



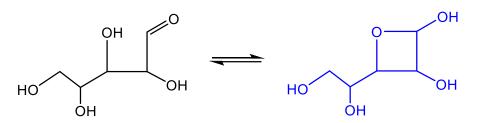
Section B Answer one question from this section.

4 Furfural is an aromatic compound with all its carbon atoms lying on the same plane. Today, one of the ways to manufacture furfural is by the acid catalysed dehydration of xylose.

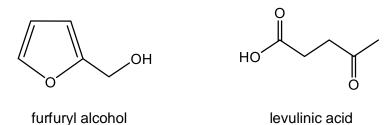

(a) Xylose exists in more than one form, one of which is the non-cyclic form shown below (i.e. form 1). Form 2 is a five-membered cyclic ring produced as follows.

form 1 of xylose

form 2 of xylose


It is theoretically possible to produce a four-membered cyclic ring by following a similar pattern of reaction.

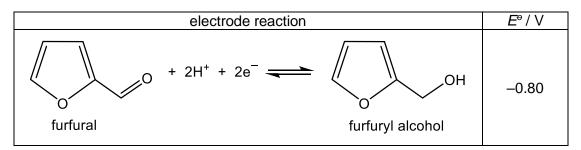
(i)


Draw the structure of the theoretical four-membered cyclic ring.

[1]

- (ii) The four-membered cyclic ring is **not** actually produced because it is unstable. Suggest why it is unstable. [1]
 - (greater) ring / angle strain in the four-membered-ring
 - smaller bond angle than ideal
 - compression of bond pair in ring

(b) Furfural can be reduced into furfuryl alcohol. Furfuryl alcohol can then be used to synthesise levulinic acid.


(i) Using the **molecular** formulae of furfuryl alcohol and levulinic acid, write a balanced equation for the synthesis of furfuryl alcohol into levulinic acid. [2]

 $\underline{\mathsf{C}_5\mathsf{H}_6\mathsf{O}_2} + \underline{\mathsf{H}_2\mathsf{O}} \longrightarrow \underline{\mathsf{C}_5\mathsf{H}_8\mathsf{O}_3}$

(ii) Using your answer in (i), state the type of reaction that has taken place. [1]

hydrolysis

(c) The standard reduction potential involving furfural, C₅H₄O₂ measured against the standard hydrogen electrode (S.H.E.) is shown below.

A neutral aqueous solution of furfural is prepared. Electrolysis of this solution is performed using copper at both electrodes to increase the percentage yield of the reaction.

When 0.030 A was passed through the cell for 2.0 hours, the *actual* mass of the product formed at the cathode was found to be 0.060 g. Copper is reacted at the anode but not the cathode.

(i) Using the E^e values given above as well as that from the Data Booklet, deduce the products formed at the anode and the cathode.
 (In your deduction, you may use name or molecular formula to represent the structures of the respective organic compounds.) [3]

At the <u>anode</u>: <u> $E^{e}_{Cu2+/Cu}$ </u> (+0.34 V) is <u>less positive / smaller</u> <u>than $E^{e}_{O2/H2O}$ </u> (+1.23 V). Hence, Cu is preferentially oxidised to <u>produce Cu²⁺</u>.

At the cathode:

<u> $E^{e_{furfural / furfuryl alcohol}}$ </u> (-0.80 V) <u>is more positive / less negative / larger</u> <u>than</u> <u>and $E^{e_{H2O/H2}}$ </u> (-0.83 V). Hence, furfural is preferentially reduce to **produce furfuryl alcohol**.

(ii) Write the overall balanced equation for the reaction.

anode: $Cu \longrightarrow Cu^{2+} + 2e^{-}$ cathode: $C_6H_4O_2 + 2H^+ + 2e^{-} \longrightarrow C_6H_6O_2$ overall: $C_6H_4O_2 + 2H^+ + Cu \longrightarrow C_6H_6O_2 + Cu^{2+}$

(iii) Calculate the *expected* mass of the product formed at the cathode. [2]

$$\begin{split} n_{\text{furfuryl alcohol}} &= \frac{m_{\text{furfuryl alcohol}}}{M_{\text{r, furfuryl alcohol}}} = \frac{\text{It}}{z\text{F}} \\ \frac{m_{\text{furfuryl alcohol}}}{5(12) + 6(1) + 2(16)} &= \frac{0.030 \text{ x} (2 \text{ x} 60 \text{ x} 60)}{2 \text{ x} 96500} \\ m_{\text{furfuryl alcohol}} &= \frac{0.110 \text{ g}}{z\text{ g}} \end{split}$$

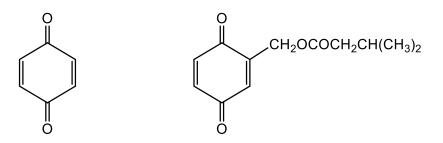
If H₂ gas produced: $\frac{m_{H_2}}{2} = \frac{0.030 \text{ x} (2 \text{ x} 60 \text{ x} 60)}{2 \text{ x} 96500}$ $m_{H2} = 2.24 \text{ x} 10^{-3} \text{ g}$

(iv) Calculate the percentage yield of the product formed at the cathode. [1]

percentage yield

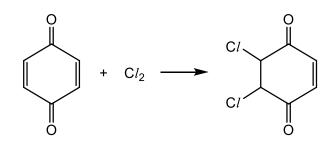
$$= \frac{0.060}{0.110} \times 100\%$$
$$= \frac{54.5\%}{0.5\%}$$

(v) Besides the S.H.E., another standard electrode that can be used is the standard calomel electrode (S.C.E.). When the S.C.E. is compared against the S.H.E., the E° of the S.C.E. is +0.24 V.

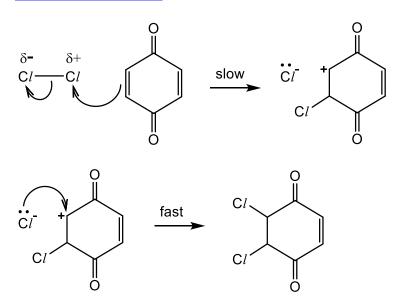

Calculate the E° of the furfural / furfuryl alcohol half-cell when measured against the S.C.E.

 $E^{\Theta}_{\text{furfural / furfuryl alcohol}}$ against SCE = -0.80 - (+0.24) = -1.04 V

[1]

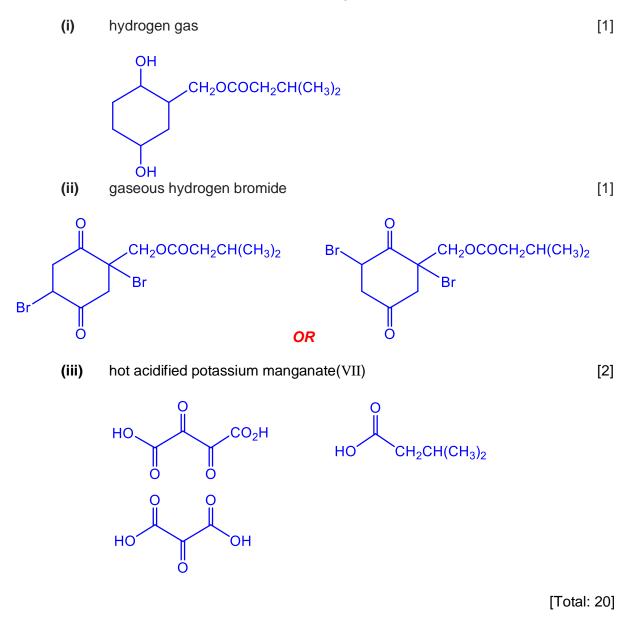

Another compound with all its carbon atoms lying on the same plane is paraquinone, with a characteristic irritating odour of hot plastic. One derivative of paraquinone is blattellaquinone which is a pheromone in cockroaches.

paraquinone


blattellaquinone

(d) Paraquinone and limited chlorine react as follows.

Name and draw the mechanism of this reaction.


electrophilic addition

Tampines Meridian Junior College

[3]

(e) Draw the major products formed when **blattellaquinone** is separately reacted under suitable conditions with each of the following:

- 5 This question concerns the compounds of Period 3 elements.
 - (a) Properties of the oxides of some Period 3 elements, **P**, **Q** and **R**, are given below.

oxide	physical state at room conditions	electrical conductivity when molten
Р	gas	nil
Q	solid	high
R	solid	low

These three oxides, in no particular order, are Al_2O_3 , SiO₂ and SO₃.

(i) Identify **P**, **Q** and **R**.

[1]

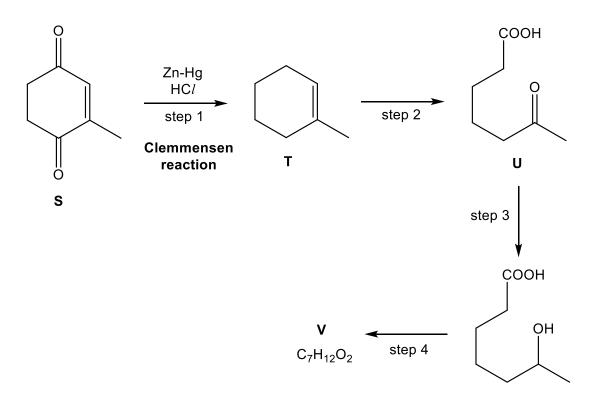
P is SO₃, **Q** is AI_2O_3 and **R** is SiO₂.

(ii) Account for your answer, in terms of their structure and bonding. [4]

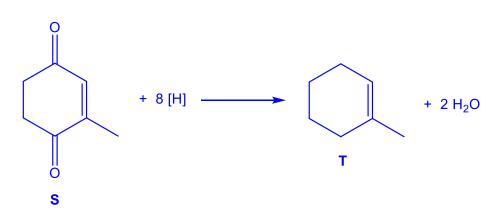
P (SO₃) has a <u>simple molecular structure with weak instantaneous dipole</u> <u>– induced dipole interactions</u> resulting in its **low melting point**. It does not conduct electricity as there are no charged particles in the molten state.

Q (A/₂O₃) has <u>giant ionic lattice structure</u> with strong ionic bonds between its cations and anions resulting in its high melting point. It <u>conducts electricity in</u> <u>the molten state as its ions become mobile</u>.

R (SiO₂) has a <u>giant molecular structure</u> with <u>strong and extensive</u> <u>covalent bonds between Si and O atoms</u> resulting in its <u>high melting point</u>. It <u>conducts electricity poorly</u> as there are <u>no charged particles in the</u> <u>molten state</u>.

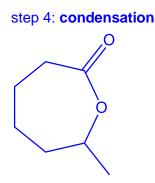

(iii) Al₂O₃ is described as an amphoteric oxide.
 Write two equations to show the amphoteric nature of Al₂O₃.
 [2]

 $\begin{array}{l} \mathsf{Al}_2\mathsf{O}_3 + \mathsf{6HCl} \rightarrow \mathsf{2AlCl}_3 + \mathsf{3H}_2\mathsf{O} \\ \mathsf{Al}_2\mathsf{O}_3 + \mathsf{2NaOH} + \mathsf{3H}_2\mathsf{O} \rightarrow \mathsf{2NaAl}(\mathsf{OH})_4 \end{array}$


(b) Hydrogen chloride is a colourless gas commonly used in organic synthesis.

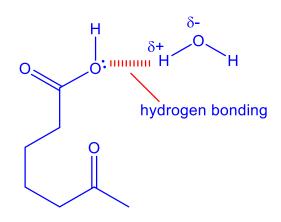
In the Clemmensen reaction, carbonyl compounds are reduced to alkanes using zincmercury and hydrogen chloride dissolved in an organic solvent.

A reaction scheme involving the Clemmensen reaction is shown below.


(i) Write the balanced equation for the reduction of compound S to T. Use [H] to represent the formula of the reducing agent. [1]

(ii) Suggest a reagent which can determine if the reaction in step 3 is complete. [1]

Brady's reagent/ 2,4-DNPH


(iii) Given that compound V is neutral, state the type of reaction occurring in step 4, and suggest the structure of compound V. [2]

- (iv) Compound **U** is more soluble in water than compound **S**.
 - 1. Suggest a reason why this is so. [1]

Compound **U** has more functional groups which <u>form hydrogen</u> <u>bonding with water to a greater extent</u>, hence it is more soluble in water than compound **S**.

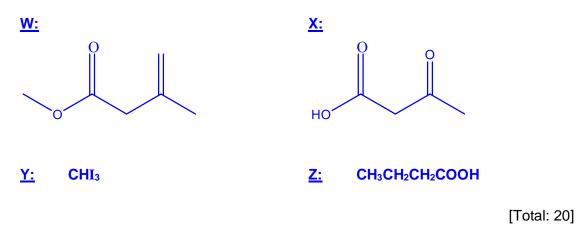
Draw a labelled diagram to show how compound U dissolves in water.
 [1]

(c) HC*l* is stable to heat while HBr and HI, can undergo thermal decomposition. At 700 K, HBr is approximately 10% decomposed but HI, is approximately 20% decomposed.

Explain these differences with reference to relevant data in the *Data Booklet* and the factors that affect them. [3]

Bond energies (kJ mol⁻¹): H-C*l* (431), H-Br (366), H-I (299) Down Group 17, <u>extent of thermal decomposition of HX increases</u>/ thermal stability of HX decreases as <u>less energy is needed to break H-X bond</u>/ H-X bond strength decreases.

This is due to an **<u>increase in size of halogen atom</u>** down group 17, resulting in <u>less</u> <u>effective orbital overlap between H and halogen atom</u>.



(d) Compound **W**, $C_6H_{10}O_2$ is an ester which decolourises Br_2 in CCl_4 to form $C_6H_{10}Br_2O_2$.

Upon prolonged heating with excess acidified KMnO₄, 1 mol of **W** produces 1 mol of **X**, $C_4H_6O_3$ and 2 mol of CO_2 .

X gives a yellow precipitate **Y** when warmed with aqueous alkaline iodine. **X** also undergoes the Clemmensen reaction to give **Z**, $C_4H_8O_2$. Both **X** and **Z** produce effervescence when reacted with aqueous sodium carbonate.

Suggest structures for the identity of **W**, **X**, **Y** and **Z**. [4]

TAMPINES MERIDIAN JUNIOR COLLEGE

JC2 PRELIMINARY EXAMINATION

CANDIDATE NAME

CIVICS GROUP

H2 CHEMISTRY

Paper 4 Practical

4 September 2019 2 hours 30 minutes

9729/04

Candidates answer on the Question Paper.

Additional materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your name and Civics Group in the spaces at the top of the page.

Give details of the practical shift and laboratory where appropriate, in the boxes provided. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer **all** questions in the spaces provided on the Question Paper.

The use of an approved scientific calculator is expected, where appropriate. You may lose marks if you do not show your working or if you do not use appropriate units.

Qualitative Analysis Notes are printed on pages 17 and 18.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Shift	
Laboratory	

For Exam	iner's Use
1	
2	
3	
Total	

This document consists of **18** printed pages.

Answer **all** the questions in the spaces provided.

1 Determination of the concentration of a base and the enthalpy change of the neutralisation reaction

FA 1 is 2.0 mol dm⁻³ sulfuric acid, H₂SO₄. **FA 2** is aqueous sodium hydroxide, NaOH.

The reaction of sulfuric acid and sodium hydroxide is exothermic.

In separate experiments, you will add increasing volumes of **FA 2** to a fixed volume of **FA 1**. In each experiment you will measure the maximum temperature rise, ΔT . As the volume of **FA 2** is increased, this maximum temperature rise, ΔT , will increase and then decrease.

By measuring the maximum temperature rise for different mixtures of the two reagents, you are to determine the following:

- the concentration of sodium hydroxide, NaOH, in FA 2
- the enthalpy change when 1 mol of H₂SO₄ is neutralised by NaOH

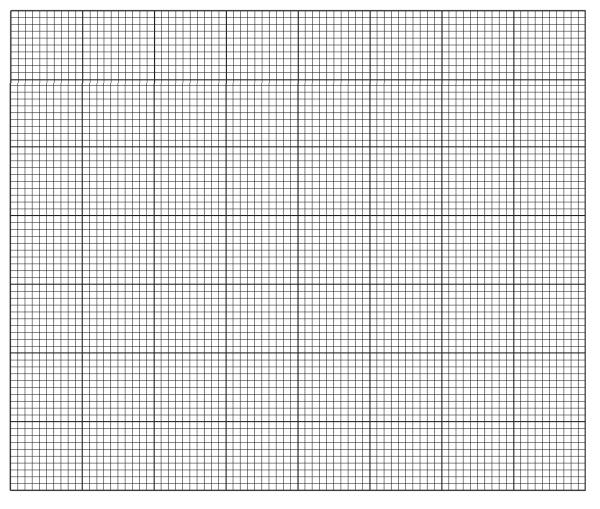
(a) Method

- Fill the labelled burette with **FA1**.
- Support a styrofoam cup in the 250 cm³ beaker.
- Run 10.00 cm³ of **FA1** from the burette into the styrofoam cup.
- Measure 20.0 cm³ of **FA 2** using a measuring cylinder.
- Place the thermometer in the **FA 2** in the measuring cylinder and record the steady temperature of the solution.
- Pour the **FA 2** into the styrofoam cup, stir and record the maximum temperature obtained in the reaction.
- Empty and rinse the styrofoam cup; shake dry the styrofoam cup. Rinse the thermometer.
- Carry out the experiment three more times. Each time use 10.00 cm³ of **FA 1**.
- Use 30.0 cm³, 40.0 cm³ and 50.0 cm³ of **FA 2** in these different experiments.

Carry out two further experiments.

Choose volumes of **FA 2** which will allow you to investigate more precisely the volume of **FA 2** that produces the highest temperature rise when added to 10.00 cm³ of **FA 1**.

Results


Record your results below in an appropriate form showing, for each experiment, the volumes of solutions used, temperature measurements and the temperature rise, ΔT .

(b) Plot a graph of temperature rise, ΔT , on the y-axis against the volume of **FA 2** added on the x-axis.

Draw a line of best fit through the points where the temperature rise is increasing and another line through the points where the temperature rise is decreasing.

The intersection of these lines represents the temperature rise for the volume of **FA 2** that exactly neutralises the sulfuric acid present in 10.00 cm³ of **FA 1**.

[3]

(c) Read from the graph the volume of **FA 2** that gives the maximum temperature rise.

Volume of **FA 2** giving the maximum temperature rise = \dots cm³ [1]

(d) (i) Calculate the amount of NaOH required to neutralise the amount of H_2SO_4 at the maximum temperature rise.

Amount of NaOH required = _____ mol [1]

(ii) Hence, calculate the concentration of NaOH in FA 2.

Concentration of NaOH in **FA 2** = _____ mol dm⁻³ [1]

(e) Read the maximum temperature rise from the graph and use this to calculate the enthalpy change when 1 mol of H_2SO_4 is neutralised by NaOH. Give your answer in kJ mol⁻¹.

[4.18 J are absorbed or released when the temperature of 1 cm³ of solution changes by 1 °C.]

Enthalpy change = $kJ mol^{-1}$ [2]

(f) The enthalpy change of neutralisation, ΔH_{neut} , between a strong acid and a strong base is -57 kJ mol^{-1} .

5

Explain why the enthalpy change calculated in (e) is significantly more exothermic than ΔH_{neut} .

.....[1]

(g) A student suggested that the experiments carried out in (a) would be more accurate if volumes of 20.00 cm³ of 1.0 mol dm⁻³ H₂SO₄ were used instead.

State and explain whether you agree or disagree with the student's suggestion.

evaluation of student's suggestion	
explanation	
	[1]
	[Total: 14]

2 Determination of the percentage by mass of sodium carbonate in a mixture of sodium hydroxide and sodium carbonate

Sodium carbonate is neutralised by hydrochloric acid in two steps:

 $Na_2CO_3 + HCl \rightarrow NaCl + NaHCO_3$ $NaHCO_3 + HCl \rightarrow NaCl + H_2O + CO_2$

This step-wise neutralisation can be observed when the acid is added slowly to the sodium carbonate.

The percentage by mass of sodium carbonate in a mixture of sodium hydroxide and sodium carbonate can be determined by carrying out titrations using two different indicators. Since both sodium hydroxide and sodium carbonate react with acids, through careful selection of the indicators used for the titration, the volume of acid required to react with only the sodium carbonate can be found.

FA 3 is 0.125 mol dm⁻³ hydrochloric acid, HC*l*. **FA 4** is an aqueous solution containing sodium hydroxide, NaOH, and sodium carbonate, Na₂CO₃.

You are also provided with bromophenol blue indicator.

In this question, you will carry out titrations to determine the percentage by mass of sodium carbonate in the mixture of sodium hydroxide and sodium carbonate in solution **FA 4**.

(a) (i) Titration of FA 4 against FA 3 using bromophenol blue

- 1. Fill a burette with **FA 3**.
- 2. Pipette 25.0 cm^3 of **FA 4** into a conical flask.
- 3. Add four to five drops of bromophenol blue indicator.
- 4. Titrate the mixture in the flask with **FA 3** until the blue-violet colour of the solution changes to yellow.
- 5. Record your titration results, to an appropriate level of precision, in the space provided.

Repeat steps 2 to 5 to obtain consistent results.

Titration results

(ii) From your titration results, obtain a suitable volume of **FA 3**, $V_{FA 3}$, to be used in your calculations. Show clearly how you obtained this volume.

(b) When the titrations in (a) were repeated using **phenolphthalein** as the indicator, 25.0 cm³ of **FA 4** required 15.00 cm³ of **FA 3**.

8

The following explains why different results are obtained using two different indicators.

• When phenolphthalein is used as the indicator, the following reactions have taken place at the end-point of the titration.

Reaction 1NaOH+HCl \rightarrow NaCl+H_2OReaction 2Na₂CO₃+HCl \rightarrow NaCl+NaHCO₃

• When bromophenol blue is used as the indicator in **(a)**, the following reactions have taken place at the end-point of the titration.

Reaction 1	NaOH	+	HC <i>l</i>	\rightarrow	NaC <i>l</i>	+	H ₂ O
Reaction 2	Na ₂ CO ₃	+	HC <i>l</i>	\rightarrow	NaC <i>l</i>	+	NaHCO ₃
Reaction 3	NaHCO ₃	. +	HC1	\rightarrow	NaC <i>l</i>	+	$H_2O + CO_2$

For the titration using **bromophenol blue**, the amount of Na_2CO_3 reacted in *Reaction 2* is equal to the amount of sodium bicarbonate, $NaHCO_3$, reacted in *Reaction 3*. Both the amounts of Na_2CO_3 reacted in *Reaction 2* using **phenolphthalein or bromophenol blue** are the **same**.

Show your working and use appropriate significant figures in the final answers to all steps of your calculations.

(i) Calculate the amount of HCl in the volume of FA 3, V_{FA 3}, determined in (a)(ii).

Amount of HCl in $V_{FA3} =$

(ii) Calculate the amount of HCl, in 15.00 cm³ of **FA 3**.

Amount of HCl in 15.00 cm³ of **FA 3** = _____

[1]

(iii) With reference to the information given in (b) and your answers to (b)(i) and (b)(ii), calculate the amount of HC*l* that reacted with Na₂CO₃ in *Reaction 2* using **phenolphthalein** indicator.

(iv) Use your answer to (b)(iii) to calculate the mass of Na₂CO₃ present in 25.0 cm³ of FA 4.
 [A_r : C, 12.0; O, 16.0; Na, 23.0]

Mass of Na₂CO₃ in 25.0 cm³ of **FA 4** = _____[1]

(v) The overall equation for the reaction of Na_2CO_3 with HC*l* when bromophenol blue is used as indicator is given below.

$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 + H_2O$$

Calculate the amount of HC*l* that reacted with Na₂CO₃ in the above equation in 25.0 cm³ of **FA 4**.

Amount of HCl reacted with Na_2CO_3 using bromophenol blue = _____

[1]

(vi) Use your answers to (b)(i) and (b)(v) to calculate the mass of NaOH in 25.0 cm³ of FA 4.
 [A_r: H, 1.0; O, 16.0; Na, 23.0]

Mass of NaOH in 25.0 cm³ of **FA 4** = _____

(vii) Calculate the percentage by mass of Na₂CO₃ in the mixture of NaOH and Na₂CO₃ in **FA 4**.

FA 4 contains _____% by mass of Na₂CO₃ [2]

[1]

(c) The error (uncertainty) associated with **each reading** is given as follows: 50.00 cm³ burette: +0.05 cm³

50.00 cm ² burelle.	±0.05 Cm ²
25.0 cm ³ pipette:	±0.06 cm ³

Calculate the percentage error (uncertainty) when a

- 50.00 cm³ burette
- 25.0 cm³ pipette

is used to measure 25 cm³ of **FA 4** into the conical flask.

Hence explain whether the 50.00 cm³ burette or the 25.0 cm³ pipette will be a more precise apparatus to measure 25 cm³ of **FA 4**.

	percentage error (uncertainty) of burette =	%
	of pipette =	%
explanation		
		[2]

(d) Planning

You are to plan an experiment to determine the percentage by mass of sodium carbonate in an unknown solid sample by measuring the volume of carbon dioxide gas evolved on reaction with excess acid at room temperature and pressure.

$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 + H_2O$$

You may assume that you are provided with:

- 0.5 mol dm⁻³ hydrochloric acid, HC*l*;
- 0.5 g impure solid sample containing sodium carbonate, Na₂CO₃. Other impurities present are assumed to have no reaction with acid;
- 100 cm³ gas syringe for gas collection;
- apparatus normally found in a school laboratory.

Your plan should include:

- calculations of suitable mass of impure sample and volume of excess hydrochloric acid to be used, based on a 100 cm³ gas syringe;
- a fully-labelled diagram of the experimental set-up;
- practical details of how you would
 - ensure a known mass of solid sample and volume of acid are measured;
 - determine the volume of carbon dioxide evolved, including the measurements to be made;
 - ensure that an **accurate** and **reliable** volume of gas is obtained.

[*M*_r : Na₂CO₃, 106.0]

Diagram

_____ _____ _____ _____ _____ _____[7] _____

3 Qualitative Analysis

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

Unless otherwise stated, the volumes given below are approximate and should be estimated rather than measured.

You should indicate clearly at what stage in a test a change occurs. If there is no observable change, write **no observable change**.

Rinse and reuse test-tubes and boiling tubes where possible.

- (a) **FA 5** contains **two** cations and **two** anions from the lists on pages 17 and 18.
 - To approximately half a boiling tube of distilled water, add all the **FA 5**.
 - Stopper and shake the boiling tube thoroughly for one minute to make sure that no more of the solid will dissolve.
 - Filter the mixture into a clean boiling tube.
 - Place the filter funnel in a conical flask and wash the residue well with distilled water.
 - Keep both filtrate and residue for (a)(i) and (a)(ii) respectively.

While you are waiting for the mixture to filter, continue with (b) or (c).

(i) Tests on the filtrate

Carry out the following tests and record your observations in Table 3.1 below.

	test	observations
1.	To a 1 cm depth of the filtrate in a test-tube, add aqueous ammonia, slowly with shaking until no further change is seen;	
		[1]
	then add aqueous hydrogen peroxide.	
		[1]

Table 3.1

(ii) Tests on the residue

Carry out the following tests and record your observations in Table 3.2 below.

Table	3.2
-------	-----

	test	observations
2.	Place the funnel containing the residue into a clean test-tube.	
	Pour approximately 5 cm ³ of dilute nitric acid onto the residue.	
	Collect the resultant filtrate.	
	Discard the first 1 cm depth of this resultant filtrate and collect the remaining filtrate in another clean test-	
	tube for test 3.	[1]
3.	To 1 cm depth of the solution in a test- tube, add aqueous sodium hydroxide, slowly with shaking until no further change is seen.	
		[1]

(iii) Identify the two cations present in FA 5. Use evidence from your observations in (a)(i) and (a)(ii) to support your deduction.

cations present _____ and _____

evidence _____ _____ ------[2]

(iv) The tests you have carried out in (i) and (ii) would have enabled you to identify only one of the two anions present in FA 5. Identify this anion.

anion present

14

[1]

(v) Suggest what type of reaction is happening when hydrogen peroxide is added in test (a)(i).

.....[1]

(vi) In test 1 of (a)(i), aqueous ammonia behaved as an Arrhenius base:

 $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$

In a separate experiment, an equal volume of aqueous ammonium chloride, NH_4Cl was added to a second portion of the filtrate that was used in **(a)(i)**. When aqueous ammonia was then added to this resultant solution, no precipitate formed.

Suggest an explanation for the results of this experiment.

(b) FA 6 is an aqueous solution containing nickel(II) ion.

Carry out the following tests on **FA 6** and record your observations in Table 3.3 below.

Table 3.3

	test	observations
(i)	To a 1 cm depth of FA 6 in a test-tube, add aqueous ammonia, slowly with shaking, until no further change is seen.	
		[1]
(ii)	To a 1 cm depth of FA 6 in a test-tube, add aqueous sodium hydroxide, slowly with shaking, until no further change is seen.	
		[1]

(iii) Nickel(II) ions form complexes with ligands such as ammonia and ethylenediamine as shown:

 $[\text{Ni}(\text{H}_2\text{O})_6]^{2+}(\text{aq}) + 6\text{NH}_3(\text{aq}) \rightleftharpoons [\text{Ni}(\text{NH}_3)_6]^{2+}(\text{aq}) + 6\text{H}_2\text{O}(\text{I}) \qquad \mathcal{K}_c = 4.8 \times 10^7 \text{ mol}^{-6} \text{ dm}^{18}$ $[\text{Ni}(\text{H}_2\text{O})_6]^{2+}(\text{aq}) + 3\text{en}(\text{aq}) \rightleftharpoons [\text{Ni}(\text{en})_3]^{2+}(\text{aq}) + 6\text{H}_2\text{O}(\text{I}) \qquad \mathcal{K}_c = 2.0 \times 10^{18} \text{ mol}^{-3} \text{ dm}^9$ purple

[en = ethylenediamine]

The observation in (b)(i) is due to the formation of the nickel-ammonia complex.

Suggest, with reason, what might be observed if aqueous ammonia were added to a solution containing $[Ni(en)_3]^{2+}$ ions instead of $Ni^{2+}(aq)$.

[2]

(c) FA 7, FA 8 and FA 9 are 1.0 mol dm⁻³ sulfuric acid, 0.1 mol dm⁻³ sulfuric acid and 1.0 mol dm⁻³ hydrochloric acid, but not necessarily in that order.

You are to plan and carry out **two** simple tests, using only the bench reagents provided, which will enable you to determine the identities of **FA 7**, **FA 8** and **FA 9**.

You should record, in a suitable form in the space below, your tests and observations. You should show clearly the observations for each of **FA 7**, **FA 8** and **FA 9** with all test reagents.

FA 7	is
FA 8	is
FA 9	is

Qualitative Analysis Notes

[ppt. = precipitate]

(a) Reactions of aqueous cations

ootion	reaction with			
cation	NaOH(aq)	NH₃(aq)		
aluminium, A <i>l</i> ³+(aq)	white ppt. soluble in excess	white ppt. insoluble in excess		
ammonium, NH₄⁺(aq)	ammonia produced on heating	-		
barium, Ba²+(aq)	no ppt. (if reagents are pure)	no ppt.		
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.		
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess		
copper(II) Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution		
iron(II) Fe²+(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess		
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess		
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess		
manganese(II), Mn ²⁺ (aq)	off-white ppt., rapidly turning brown on contact with air insoluble in excess	off-white ppt., rapidly turning brown on contact with air insoluble in excess		
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess		

(b) Reactions of anions

anion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in $NH_3(aq)$)
bromide, Br⁻(aq)	gives pale cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))
iodide, I⁻(aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in $NH_3(aq)$)
nitrate, NO₃⁻(aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
nitrite, NO₂⁻(aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil; NO liberated by dilute acids (colourless NO \rightarrow (pale) brown NO ₂ in air)
sulfate, SO₄²⁻(aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻(aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in dilute strong acids)

(c) Test for gases

gas	test and test result		
ammonia, NH ₃	turns damp red litmus paper blue		
carbon dioxide, CO ₂	gives a white ppt. with limewater		
	(ppt. dissolves with excess CO ₂)		
chlorine, Cl ₂	bleaches damp litmus paper		
hydrogen, H ₂	"pops" with a lighted splint		
oxygen, O ₂	relights a glowing splint		
sulfur dioxide, SO ₂	turns aqueous acidified potassium manganate(VII) from purple to colourless		

(d) Colour of halogens

halogen	colour of element	colour in aqueous solution	colour in hexane
chlorine, Cl ₂	greenish yellow gas	pale yellow	pale yellow
bromine, Br ₂	reddish brown gas / liquid	orange	orange-red
iodine, I ₂	black solid / purple gas	brown	purple

TAMPINES MERIDIAN JUNIOR COLLEGE 2019 JC2 H2 Chemistry Prelim Exam Paper 4 (Suggested Answers)

1 Determination of the concentration of a base and the enthalpy change of the neutralisation reaction

FA 1 is 2.0 mol dm⁻³ sulfuric acid, H₂SO₄. **FA 2** is aqueous sodium hydroxide, NaOH.

The reaction of sulfuric acid and sodium hydroxide is exothermic.

In separate experiments, you will add increasing volumes of **FA 2** to a fixed volume of **FA 1**. In each experiment you will measure the maximum temperature rise, ΔT . As the volume of **FA 2** is increased, this maximum temperature rise, ΔT , will increase and then decrease.

By measuring the maximum temperature rise for different mixtures of the two reagents, you are to determine the following:

- the concentration of sodium hydroxide, NaOH, in FA 2
- the enthalpy change when 1 mol of H₂SO₄ is neutralised by NaOH

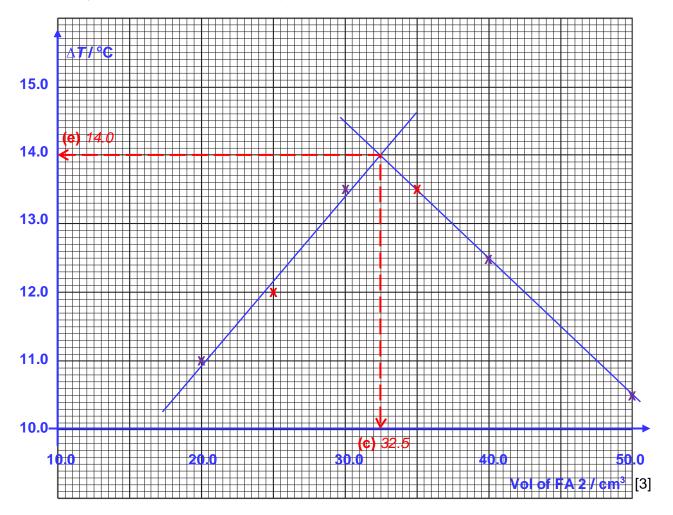
(a) Method

- Fill the labelled burette with **FA 1**.
- Support a styrofoam cup in the 250 cm³ beaker.
- Run 10.00 cm³ of **FA 1** from the burette into the styrofoam cup.
- Measure 20.0 cm³ of **FA 2** using a measuring cylinder.
- Place the thermometer in the **FA 2** in the measuring cylinder and record the steady temperature of the solution.
- Pour the **FA 2** into the styrofoam cup, stir and record the maximum temperature obtained in the reaction.
- Empty and rinse the styrofoam cup; shake dry the styrofoam cup. Rinse the thermometer.
- Carry out the experiment three more times. Each time use 10.00 cm³ of FA 1.
- Use 30.0 cm³, 40.0 cm³ and 50.0 cm³ of **FA 2** in these different experiments.

Carry out two further experiments.

Choose volumes of **FA 2** which will allow you to investigate more precisely the volume of **FA 2** that produces the highest temperature rise when added to 10.00 cm^3 of **FA 1**.

Results


Record your results below in an appropriate form showing, for each experiment, the volumes of solutions used, temperature measurements and the temperature rise, ΔT .

Expt	Volume of FA 1 / cm ³	Volume of FA 2 / cm ³	<i>T</i> i/ °C	T₁/ °C	∆ 7 / °C
1	10.00	20.0	31.5	42.5	11.0
2	10.00	30.0	31.5	45.0	13.5
3	10.00	40.0	31.5	44.0	12.5
4	10.00	50.0	31.5	42.0	10.5
5	10.00	25.0	31.5	43.5	12.0
6	10.00	35.0	31.5	45.0	13.5
					·

(b) Plot a graph of temperature rise, ΔT , on the y-axis against the volume of **FA 2** added on the x-axis.

Draw a line of best fit through the points where the temperature rise is increasing and another line through the points where the temperature rise is decreasing.

The intersection of these lines represents the temperature rise for the volume of **FA 2** that exactly neutralises the sulfuric acid present in 10.00 cm³ of **FA 1**.

(c) Read from the graph the volume of **FA 2** that gives the maximum temperature rise.

Volume of **FA 2** giving the maximum temperature rise = 32.5 cm³ [1]

(d) (i) Calculate the amount of NaOH required to neutralise the amount of H_2SO_4 at the maximum temperature rise.

Amount of $H_2SO_4 = 2.0 \times 0.010$ = 0.0200 mol

 $H_2SO_4 \equiv 2 NaOH$

Amount of NaOH = 2×0.020 = <u>0.0400</u> mol

Amount of NaOH required = 0.0400 mol [1]

(ii) Hence, calculate the concentration of NaOH in FA 2.

Concentration of NaOH in **FA 2** = $0.0400 \div \frac{32.5}{1000}$ = **1.23** mol dm⁻³

Concentration of NaOH in FA 2 = 1.23 mol dm⁻³ [1]

(e) Read the maximum temperature rise from the graph and use this to calculate the enthalpy change when 1 mol of H₂SO₄ is neutralised by NaOH. Give your answer in kJ mol⁻¹.

[4.18 J are absorbed or released when the temperature of 1 cm³ of solution changes by 1 °C.]

Quantity of heat absorbed by solution = $(32.5+10.0) \times 4.18 \times 14.0$ = 2487 J OR 2.487 kJ

Enthalpy change = $-\frac{2.487}{0.0200}$ = -124 kJ mol⁻¹

Enthalpy change = -124 kJ mol⁻¹ [2]

(f) The enthalpy change of neutralisation, ΔH_{neut} , between a strong acid and a strong base is -57 kJ mol^{-1} .

Explain why the enthalpy change calculated in (e) is significantly more exothermic than ΔH_{neut} .

Enthalpy change in (e) is based on 1 mol of H_2SO_4 (or <u>2 mol of water</u> formed) while the enthalpy change of neutralisation, ΔH_{neut} (-57 kJ mol⁻¹), is based on <u>1 mol of water</u> formed.

(g) A student suggested that the experiments carried out in (a) would be more accurate if volumes of 20.00 cm³ of 1.0 mol dm⁻³ H₂SO₄ were used instead.

State and explain whether you agree or disagree with the student's suggestion.

Accept any of the following:

• Agree –

Lower (percentage) error as: acid spray is reduced (since reaction will be slower) *OR* smaller temperature rise so less heat loss *OR* larger volume used (accept other reasons) • Disagree –

Higher (percentage) error as: smaller temperature change, so higher (percentage) error of reading *OR* reaction slower so more heat loss (accept other reasons)

[1]

[Total: 14]

2 Determination of the percentage by mass of sodium carbonate in a mixture of sodium hydroxide and sodium carbonate

Sodium carbonate is neutralised by hydrochloric acid in two steps:

 $Na_2CO_3 + HCl \rightarrow NaCl + NaHCO_3$ $NaHCO_3 + HCl \rightarrow NaCl + H_2O + CO_2$

This step-wise neutralisation can be observed when the acid is added slowly to the sodium carbonate.

The percentage by mass of sodium carbonate in a mixture of sodium hydroxide and sodium carbonate can be determined by carrying out titrations using two different indicators. Since both sodium hydroxide and sodium carbonate react with acids, through careful selection of the indicators used for the titration, the volume of acid required to react with only the sodium carbonate can be found.

FA 3 is 0.125 mol dm⁻³ hydrochloric acid, HC*l*. **FA 4** is an aqueous solution containing sodium hydroxide, NaOH, and sodium carbonate, Na₂CO₃.

You are also provided with bromophenol blue indicator.

In this question, you will carry out titrations to determine the percentage by mass of sodium carbonate in the mixture of sodium hydroxide and sodium carbonate in solution **FA 4**.

(a) (i) Titration of FA 4 against FA 3 using bromophenol blue

- 1. Fill a burette with **FA 3**.
- 2. Pipette 25.0 cm^3 of **FA 4** into a conical flask.
- 3. Add four to five drops of bromophenol blue indicator.
- 4. Titrate the mixture in the flask with **FA 3** until the blue-violet colour of the solution changes to yellow.
- 5. Record your titration results, to an appropriate level of precision, in the space provided.

Repeat steps 2 to 5 to obtain consistent results.

Titration results

	1	2	3]
Final burette reading / cm ³	20.70	30.55	20.45	
Initial burette reading / cm ³	0.00	10.00	0.00	
Volume of FA 3 / cm ³	20.70	20.55	20.45	
	·	✓	✓	[6]

(ii) From your titration results, obtain a suitable volume of **FA 3**, $V_{FA 3}$, to be used in your calculations. Show clearly how you obtained this volume.

```
Volume of FA 3, V_{FA 3} = \frac{20.55 + 20.45}{2}
= <u>20.50 cm<sup>3</sup></u> (2 d.p.)
```

 $V_{FA3} = \frac{20.50 \text{ cm}^3}{[1]}$

(b) When the titrations in (a) were repeated using **phenolphthalein** as the indicator, 25.0 cm³ of **FA 4** required 15.00 cm³ of **FA 3**.

The following explains why different results are obtained using two different indicators.

• When phenolphthalein is used as the indicator, the following reactions have taken place at the end-point of the titration.

Reaction 1NaOH+HCl \rightarrow NaCl+H2OReaction 2Na2CO3+HCl \rightarrow NaCl+NaHCO3

• When bromophenol blue is used as the indicator in (a), the following reactions have taken place at the end-point of the titration.

Reaction 1	NaOH	+	HC1	\rightarrow	NaCl	+	H₂O
Reaction 2	Na_2CO_3	+	HC <i>l</i>	\rightarrow	NaCl	+	NaHCO ₃
Reaction 3	NaHCO₃	+	HC <i>l</i>	\rightarrow	NaC <i>l</i>	+	$H_2O + CO_2$

For the titration using **bromophenol blue**, the amount of Na_2CO_3 reacted in *Reaction 2* is equal to the amount of sodium bicarbonate, $NaHCO_3$, reacted in *Reaction 3*. Both the amounts of Na_2CO_3 reacted in *Reaction 2* using **phenolphthalein or bromophenol blue** are the same.

Show your working and use appropriate significant figures in the final answers to all steps of your calculations.

(i) Calculate the amount of HCl in the volume of FA 3, V_{FA 3}, determined in (a)(ii).

Amount of HCl = $0.125 \times (V_{FA3} \text{ in } dm^3) \text{ mol}$ = $0.125 \times \frac{20.50}{1000}$ mol = $2.56 \times 10^{-3} \text{ mol}$ Amount of HCl in V_{FA3} = $2.56 \times 10^{-3} \text{ mol}$

(ii) Calculate the amount of HCl in 15.00 cm³ of **FA 3**.

Amount of HCl = $0.125 \times \frac{15.00}{1000} = \frac{1.88 \times 10^{-3} \text{ mol}}{1000}$ Amount of HCl in 15.00 cm³ of FA 3 = $\frac{1.88 \times 10^{-3} \text{ mol}}{1.88 \times 10^{-3} \text{ mol}}$ (iii) With reference to the information given in (b) and your answers to (b)(i) and (b)(ii), calculate the amount of HC*l* that reacted with Na₂CO₃ in *Reaction 2* using **phenolphthalein** indicator.

Amount of HCl reacted with Na₂CO₃ = **ans** (**b**)(**i**) – (**1.88** × **10**⁻³) **mol** = 2.56×10^{-3} – 1.88×10^{-3} = **6.83** × **10**⁻⁴ **mol**

Amount of HC*l* reacted with Na₂CO₃ in *Reaction 2* using phenolphthalein = 6.83×10^{-4} mol [1]

(iv) Use your answer to (b)(iii) to calculate the mass of Na₂CO₃ present in 25.0 cm³ of FA 4.
 [A_r: C, 12.0; O, 16.0; Na, 23.0]

Mass of Na₂CO₃ = **ans** (**b**)(iii) × 106.0 g = $6.83 \times 10^{-4} \times 106.0 = 0.0723$ g

Mass of Na₂CO₃ in 25.0 cm³ of **FA 4** = [1]

(v) The overall equation for the reaction of Na₂CO₃ with HC*l* when bromophenol blue is used as indicator is given below.

 $Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 + H_2O$

Calculate the amount of HCl that reacted with Na₂CO₃ in the above equation in 25.0 cm³ of **FA 4**.

Amount of HCl = **ans (b)(iii)** × 2 mol = $6.83 \times 10^{-4} \times 2 = 1.37 \times 10^{-3}$ mol

Amount of HC*l* reacted with Na₂CO₃ using bromophenol blue = 1.37×10^{-3} mol [1]

(vi) Use your answers to (b)(i) and (b)(v) to calculate the mass of NaOH in 25.0 cm³ of FA 4.
 [A_r: H, 1.0; O, 16.0; Na, 23.0]

Amount of HCl reacted with NaOH = (ans (b)(i)) - (ans (b)(v)) mol

Mass of NaOH = [(ans (b)(i)) – (ans (b)(v))] × 40.0 g = $(2.56 \times 10^{-3} - 1.37 \times 10^{-3}) \times 40.0 = 1.20 \times 10^{-3} \times 40.0 = 0.0478 \text{ g}$

Mass of NaOH in 25.0 cm³ of **FA 4** = 0.0478 g

(vii) Calculate the percentage by mass of Na₂CO₃ in the mixture of NaOH and Na₂CO₃ in **FA 4**.

% by mass of Na₂CO₃ = (ans (b)(iv)) ÷ [(ans (b)(iv)) + (ans (b)(vi))] × 100 % $= \frac{0.0723}{0.0723 + 0.0478} \times 100 = \frac{0.0723}{0.1201} \times 100 = \underline{60.2\%}$ FA 4 contains 60.2 % by mass of Na₂CO₃

(c) The error (uncertainty) associated with each reading is given as follows:

50.00 cm ³ burette:	±0.05 cm ³
25.0 cm ³ pipette:	±0.06 cm ³

Calculate the percentage error (uncertainty) when a

- 50.00 cm³ burette
- 25.0 cm³ pipette •

is used to measure 25 cm³ of **FA 4** into the conical flask.

Hence explain whether the 50.00 cm³ burette or the 25.0 cm³ pipette will be a more accurate apparatus to measure 25 cm³ of FA 4.

% error (uncertainty) of burette = $(2 \times 0.05)/25 \times 100\% = 0.40\%$ % error (uncertainty) of pipette = $0.06/25 \times 100\% = 0.24\%$ A 25.0 cm³ pipette has a lower % error/uncertainty and hence is more accurate to measure 25 cm³ of **FA 2**.

[2]

[2]

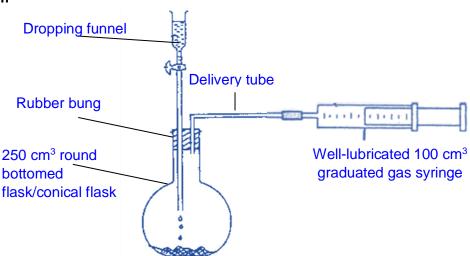
(d) Planning

You are to plan an experiment to determine the percentage by mass of sodium carbonate in an unknown solid sample by measuring the volume of carbon dioxide gas evolved on reaction with excess acid at room temperature and pressure.

$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 + H_2O$$

You may assume that you are provided with:

- 0.5 mol dm⁻³ hydrochloric acid, HC*l*;
- 0.5 g impure solid sample containing sodium carbonate, Na₂CO₃. Other impurities present are assumed to have no reaction with acid;
- 100 cm³ gas syringe for gas collection;
- apparatus normally found in a school laboratory.


Your plan should include:

- calculations of suitable mass of impure sample and volume of excess hydrochloric acid to be used, based on a 100 cm³ gas syringe;
- a fully-labelled diagram of the experimental set-up;
- practical details of how you would
 - ensure a known mass of solid sample and volume of acid are measured;
 - determine the volume of carbon dioxide evolved, including the measurements to be made;

[7]

- ensure that an **accurate** and **reliable** volume of gas is obtained.

[*M*_r : Na₂CO₃, 106.0]

Diagram

Pre-calculations

Assuming conditions of r.t.p. and 50 to 100 cm³ of gas collected, eg. 80 cm³ of CO₂ gas to be collected:

No of mole of $CO_2 = \frac{80}{24000} = 3.33 \times 10^{-3} \text{ mol}$

 $Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 + H_2O$

 $Na_2CO_3 \equiv CO_2$

Mass of $Na_2CO_3 = 3.33 \times 10^{-3} \times 106 = 0.353$ g

Assuming that impure sample is 100% pure, mass of sample required = $\underline{0.353 \text{ g}}$ (about 0.35g) Na₂CO₃ = 2HCl

Minimum volume of HCl = $\frac{3.33 \times 10^{-3} \times 2}{0.5}$ = $\frac{13.32 \text{ cm}^3}{0.5}$ (excess acid; any vol > 13.32 cm³)

Procedure

Weighing by difference

- 1. Weigh about **0.35 g** of impure solid sample in a weighing bottle using a mass balance.
- 2. Transfer the impure sample to a 250 cm³ round bottom flask/conical flask.
- 3. Re-weigh the weighing bottle to obtain mass of residual solid.

Alternative

1. Weigh about **0.35 g** of impure solid sample and transfer into a 250 cm³ round bottom flask/conical flask.

Gas collection

- 2. Using a **25 cm³** measuring cylinder, transfer **20** cm³ of solution into a dry dropping funnel.
- 3. Read the initial reading of the 100 cm³ gas syringe (or other appropriate apparatus).
- 4. Run the solution from the dropping funnel into the 250 cm³ conical flask. Close the tap when all the solution has flowed into the conical flask.
- 5. Swirl the flask once and leave it to stand.
- 6. Read the final reading of the **gas syringe** after the reaction is completed, <u>when there is no</u> <u>further change to the reading of the gas syringe</u>.

[Total: 23]

3 Qualitative Analysis

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

Unless otherwise stated, the volumes given below are approximate and should be estimated rather than measured.

You should indicate clearly at what stage in a test a change occurs. If there is no observable change, write **no observable change**.

Rinse and reuse test-tubes and boiling tubes where possible.

- (a) FA 5 contains two cations and two anion from the lists on pages 17 and 18.
 - To approximately half a boiling tube of distilled water, add all the **FA 5**.
 - Stopper and shake the boiling tube thoroughly for one minute to make sure that no more of the solid will dissolve.
 - Filter the mixture into a clean boiling tube.
 - Place the filter funnel in a conical flask and wash the residue well with distilled water.
 - Keep both filtrate and residue for (a)(i) and (a)(ii) respectively.

While you are waiting for the mixture to filter, continue with (b) or (c).

(i) Tests on the filtrate

Carry out the following tests and record your observations in Table 3.1 below.

	test	observations
1.	To a 1 cm depth of the filtrate in a test-tube, add aqueous ammonia, slowly with shaking until no further change is seen;	 Off-white / beige / pale or light brown (not cream) ppt Ppt rapidly <u>turns brown on</u> contact with air / darkens on standing OR Ppt insoluble in excess NH₃
		[1]
	then add aqueous hydrogen peroxide.	 Ppt / solid turns <u>brown / darker</u> brown / brown-black
		 <u>Effervescence / bubbling</u> OR <u>Gas evolved relights glowing</u> <u>splint</u>
		[1]

Table 3.1

(ii) Tests on the residue

Carry out the following tests and record your observations in Table 3.2 below.

Table	3.2
-------	-----

	test	observations
2.	Place the funnel containing the residue into a clean test-tube.	
	Pour approximately 5 cm ³ of dilute nitric acid onto the residue.	• <u>Effervescence</u> observed when acid is poured onto the residue
	Collect the resultant filtrate.	Colourless filtrate obtained
	Discard the first 1 cm depth of this resultant filtrate and collect the remaining filtrate in another clean test-tube for test 3.	
3.	To 1 cm depth of the solution in a test- tube, add aqueous sodium hydroxide, slowly with shaking until no further	
	change is seen.	[1]

(iii) Identify the two cations present in FA 5. Use evidence from your observations in (a)(i) and (a)(ii) to support your deduction.

cations present Mn²⁺ and Mg²⁺

evidence

In test <u>1</u>, <u>addition of NH₃ formed off-white ppt which turned brown / insoluble in</u> <u>excess</u>, indicating presence of <u>Mn²⁺</u>.

In test <u>3</u>, <u>addition of NaOH formed white ppt which was insoluble in excess</u>, indicating presence of <u>Mg²⁺</u>.

[2]

[1]

(iv) The tests you have carried out in (i) and (ii) would have enabled you to identify only one of the two anions present in **FA 5**. Identify this anion.

(v) Suggest what type of reaction is happening when hydrogen peroxide is added in test (b)(i).

<u>**Redox / decomposition of H**₂O₂ / disproportionation of H₂O₂ [1] (allow oxidation of Mn^{2+} / oxidation or reduction of H₂O₂)</u> (vi) In test 1 of (a)(i), aqueous ammonia behaved as an Arrhenius base:

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

In a separate experiment, an equal volume of aqueous ammonium chloride, NH_4Cl was added to a second portion of the filtrate that was used in **(a)(i)**. When aqueous ammonia was then added to this resultant solution, no precipitate formed.

Suggest an explanation for the results of this experiment.

Presence of ammonium chloride increased [NH₄⁺] and <u>shifted position of</u> equilibrium to the left, decreasing [OH⁻].

[OH⁻] insufficient to cause precipitation of the metal hydroxide, (MnOH)₂.

[2]

(b) FA 6 is an aqueous solution containing nickel(II) ion.

Carry out the following tests on FA 6 and record your observations in Table 3.3 below.

Table	3.3
-------	-----

	test	observations
(i)	To a 1 cm depth of FA 6 in a test-tube, add aqueous ammonia, slowly with shaking, until no further change is seen.	 Solution (FA 6) turns from green to blue (not dark blue) (Ignore any ppt)
		[1]
(ii)	To a 1 cm depth of FA 6 in a test-tube, add aqueous sodium hydroxide, slowly with shaking, until no further change is seen.	 <u>Green ppt</u> <u>Ppt insoluble in excess</u>
		[1]

(iii) Nickel(II) ions form complexes with ligands such as ammonia and ethylenediamine as shown:

 $[\text{Ni}(\text{H}_2\text{O})_6]^{2+}(\text{aq}) + 6\text{NH}_3(\text{aq}) \rightleftharpoons [\text{Ni}(\text{NH}_3)_6]^{2+}(\text{aq}) + 6\text{H}_2\text{O}(\text{I}) \qquad \mathcal{K}_c = 4.8 \times 10^7 \text{ mol}^{-6} \text{ dm}^{18}$ $[\text{Ni}(\text{H}_2\text{O})_6]^{2+}(\text{aq}) + 3\text{en}(\text{aq}) \rightleftharpoons [\text{Ni}(\text{en})_3]^{2+}(\text{aq}) + 6\text{H}_2\text{O}(\text{I}) \qquad \mathcal{K}_c = 2.0 \times 10^{18} \text{ mol}^{-3} \text{ dm}^9$

$$[en = ethylenediamine]$$

The observation in (b)(i) is due to the formation of the nickel-ammonia complex.

purple

Suggest, with reason, what might be observed if aqueous ammonia were added to a solution containing $[Ni(en)_3]^{2+}$ ions instead of Ni²⁺(aq).

No observable change / no colour change / purple solution remained.

Any one of the following:

- [Ni(en)₃]²⁺(aq) complex is more stable
- [Ni(NH₃)₆]²⁺(aq) complex is less stable
- en is a stronger ligand (and so unable to be displaced by NH₃)
- NH₃ is a weaker ligand (and so unable to displace en)

[2]

(c) FA 7, FA 8 and FA 9 are 1.0 mol dm⁻³ sulfuric acid, 0.1 mol dm⁻³ sulfuric acid and 1.0 mol dm⁻³ hydrochloric acid, but not necessarily in that order.

You are to plan and carry out **two** simple tests, using only the bench reagents provided, which will enable you to determine the identities of **FA 7**, **FA 8** and **FA 9**.

You should record, in a suitable form in the space below, your tests and observations. You should show clearly the observations for each of **FA 7**, **FA 8** and **FA 9** with all test reagents.

TWO tests only	Test	FA7	FA 8	FA 9
EITHER (allow identification by	Add aqueous BaNO ₃	No ppt	White ppt	White ppt
elimination, sequence may be swapped)	Add aqueous AgNO ₃	White ppt	No ppt	No ppt
AND (accept other correct simple tests)	Add Mg strip	Strong / fast effervescence	Strong / fast effervescence	Weak / slow effervescence

- FA 8 is ... 1.0 mol dm⁻³ sulfuric acid
- FA 9 is 0.1 mol dm⁻³ sulfuric acid

[4] [Total: 18]