| Name: | Index Number: | | Class: | |
| :--- | :--- | :--- | :--- | :--- | :--- |

DUNMAN HIGH SCHOOL
 Preliminary Examination 2019
 Year 6

H2 CHEMISTRY

Paper 1 Multiple Choice
30 September 2019
1 hour
Additional Materials: Data Booklet
Optical Mark Sheet

INSTRUCTIONS TO CANDIDATES

1 Write your name, index number and class on this question paper and the OTAS Mark Sheet.
2 There are thirty questions on this paper. Answer all questions. For each question there are four possible answers $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}.
Choose the one you consider correct and record your choice in soft pencil on the separate Optical Mark Sheet.

3 Each correct answer will score one mark. A mark will not be deducted for wrong answer.
4 Any rough working should be done in this booklet.
5 The use of an approved scientific calculator is expected, where appropriate.
6 On the OTAS Mark Sheet, please shade the code as "Class/Index number".

For illustration only:
A student from class 6C38, with index number 02, should shade "3802".

WRITE		SHADE APPROPRIATE BOXES									
1	3	0	$\stackrel{1}{\square}$	$\stackrel{2}{\square}$	3	$\stackrel{4}{\square}$	$\stackrel{5}{5}$	$\stackrel{6}{\square}$	7	$\stackrel{8}{\square}$	$\stackrel{9}{\square}$
\%	8	0	$\stackrel{1}{\square}$	$\stackrel{2}{\square}$	$\stackrel{3}{\square}$	$\stackrel{4}{\square}$	$\stackrel{5}{\square}$	$\stackrel{6}{\square}$	7	8	$\stackrel{9}{\square}$
x	0	-	$\stackrel{1}{\square}$	$\stackrel{2}{\square}$	$\stackrel{3}{\square}$	$\stackrel{4}{\square}$	$\stackrel{5}{5}$	$\stackrel{6}{\square}$	7	$\stackrel{8}{\square}$	$\stackrel{9}{\square}$
N	2		$\stackrel{1}{\square}$	2	$\stackrel{3}{\square}$	$\stackrel{4}{\square}$	$\stackrel{5}{\square}$	$\stackrel{6}{\square}$	7	$\stackrel{8}{\square}$	$\stackrel{9}{\square}$
${ }_{\text {M }}^{\text {M }}$		0	1	$\stackrel{2}{\square}$	$\stackrel{3}{\square}$	$\stackrel{4}{\square}$	$\stackrel{5}{\square}$	$\stackrel{6}{\square}$	7	$\stackrel{8}{\square}$	$\stackrel{9}{\square}$
${ }_{\text {R }}$		A	$\stackrel{8}{\square}$	$\stackrel{\square}{\square}$	-	E	F	$\stackrel{G}{\square}$	$\stackrel{H}{\square}$	$\stackrel{1}{\square}$	

1 Sodium azide, NaN_{3}, and potassium nitrate, KNO_{3}, are both present in the airbags of some cars.

When the airbag is activated, sodium azide first decomposes to give sodium and nitrogen.

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

The sodium then reacts with potassium nitrate to produce more nitrogen.

$$
10 \mathrm{Na}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{~s}) \rightarrow \mathrm{K}_{2} \mathrm{O}(\mathrm{~s})+5 \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g})
$$

The nitrogen produced in these two reactions inflates the airbag.
2.00 mol of gas is needed to inflate the airbag.

What is the amount of sodium azide needed to inflate the airbag?
A $\quad 0.625 \mathrm{~mol}$
B $\quad 1.00 \mathrm{~mol}$
C $\quad 1.25 \mathrm{~mol}$
D $\quad 1.33 \mathrm{~mol}$

2 Use of the Data Booklet is relevant to this question.
Sodium percarbonate, $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right) \times \cdot \mathrm{y}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ is an oxidising agent in some home and laundry cleaning products.
$10.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium percarbonate releases $48.0 \mathrm{~cm}^{3}$ of carbon dioxide at room conditions on acidification.

An identical sample reacts with $24.0 \mathrm{~cm}^{3}$ of $0.0500 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KMnO}_{4}$ before the first pink colour appears.

Given that $5 \mathrm{H}_{2} \mathrm{O}_{2} \equiv 2 \mathrm{KMnO}_{4}$, what is the ratio of $\frac{y}{x}$?
A $\frac{1}{3}$
B $\frac{2}{3}$
C $\quad \frac{3}{2}$
D $\frac{3}{1}$

3 Use of the Data Booklet is relevant to this question.
A compound is made up from two elements, \mathbf{Y} and \mathbf{Z}. Each separate atom of \mathbf{Y} and of \mathbf{Z} in their ground states has exactly 2 unpaired electrons.

What could the compound be?
$1 \mathrm{TiCl}_{4}$
$2 \quad \mathrm{SiO}_{2}$
3 NiS
A 1,2 and 3
B 2 and 3 only
C 1 and 3 only
D 2 only

4 Which graph correctly describes the behaviour of fixed masses of the ideal gases I and \mathbf{J}, where I has a higher M_{r} than J ?
A

B

C

D

5 Which feature is present in the carbonate, ethanoate, nitrate and phenoxide ions?
A All bond angles are 120°
B Dative covalent bonds
C Delocalised electrons
D Hydrogen bonds

6 When an equilibrium is established in a reversible reaction, the standard Gibbs free energy, ΔG^{\ominus}, is related to the equilibrium constant, K_{c}, by the following equation.

$$
\Delta G^{\ominus}=-\mathrm{RT} \ln K_{\mathrm{c}}
$$

where R is the gas constant and T is the temperature in Kelvin.
Which of the following statement is correct?

1 At constant temperature, a shift in position of equilibrium to the right results in the same value of ΔG^{\ominus}.

2 The forward reaction is spontaneous for all values of K_{c}.
3 Adding a catalyst makes ΔG^{\ominus} more negative.
A 1,2 and 3 only
B 2 and 3 only
C 1 and 3 only
D 1 only

7 Three equilibrium reactions are shown below. All three reactions have an equilibrium constant, K_{c}, that is greater than one.

$$
\begin{aligned}
\mathrm{N}_{2} \mathrm{H}_{5}^{+}+\mathrm{NH}_{3} & \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{N}_{2} \mathrm{H}_{4} \\
\mathrm{NH}_{3}+\mathrm{HBr} & \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{Br} \\
\mathrm{~N}_{2} \mathrm{H}_{4}+\mathrm{HBr} & \rightleftharpoons \mathrm{~N}_{2} \mathrm{H}_{5}^{+}+\mathrm{Br}^{-}
\end{aligned}
$$

Assuming that all solutions have the same concentration, which correctly lists the three solutions in order of decreasing pH ?
A $\mathrm{HBr}>\mathrm{N}_{2} \mathrm{H}_{5}^{+}>\mathrm{NH}_{4}{ }^{+}$
B $\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}>\mathrm{NH}_{4}{ }^{+}>\mathrm{HBr}$
C $\mathrm{NH}_{4}{ }^{+}>\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}>\mathrm{HBr}$
D $\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}>\mathrm{HBr}>\mathrm{NH}_{4}{ }^{+}$

8 Which of the following resultant solutions will have the lowest pH ?
A $15 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$ added to $15 \mathrm{~cm}^{3}$ of $0.050 \mathrm{~mol} \mathrm{dm}^{-3}$ benzoic acid
B $\quad 50 \mathrm{~cm}^{3}$ of $0.050 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$ added to $25 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ benzoic acid
C $25 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$ added to $50 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ benzoic acid
D $\quad 5 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$ added to $50 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ benzoic acid

9 The graph below shows how the solubility of two salts, KClO_{3} and KCl , varies with temperature.

10 g of KClO_{3} and 50 g of KCl was added to 100 g of water at $90^{\circ} \mathrm{C}$.
Which statement is correct as the mixture is cooled to $10^{\circ} \mathrm{C}$?
1 The first trace of precipitate occurs at about $76^{\circ} \mathrm{C}$.
2 The aqueous solution is saturated with KClO_{3} and KCl at $10^{\circ} \mathrm{C}$.
3 The maximum mass of KCl that can be precipitated without any trace of solid KClO_{3} is approximately 13 g .
A 1,2 and 3
B 2 and 3 only
C 1 and 2 only
D 3 only

10 Hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, used in rocket fuels can be obtained by the reaction of ammonia and hydrogen peroxide according to the following equation.

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow \mathrm{N}_{2} \mathrm{H}_{4}(l)+2 \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta H_{\text {reaction }}{ }^{\ominus}=-241 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Using the value of $\Delta H_{\text {reaction }}{ }^{\ominus}$ given above and the data below, calculate the ΔH^{\ominus} (in $\mathrm{kJ} \mathrm{mol}^{-1}$) for decomposition of hydrazine into $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$.

compound	$\Delta H_{\mathrm{f}}^{\ominus} / \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{NH}_{3}(\mathrm{~g})$	-46
$\mathrm{H}_{2} \mathrm{O}_{2}(l)$	-188
$\mathrm{H}_{2} \mathrm{O}(l)$	-286

A +189
B $\quad+51$
C -189
D $\quad-51$

11 Methanol can be synthesised from carbon monoxide and hydrogen according to the equation

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

Higher yield of methanol can be achieved at a lower temperature. Which graph corresponds to the forward process?
A

B

C

D

12 The table below shows the results of three experiments conducted for the following reaction.

$$
\mathbf{P}+\mathbf{Q} \rightarrow \text { products }
$$

experiment	$[\mathbf{P}] / \mathrm{mol} \mathrm{dm}^{-3}$	$[\mathbf{Q}] / \mathrm{mol} \mathrm{dm}^{-3}$	rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
1	0.012	0.005	1.0×10^{-4}
2	0.024	0.010	2.0×10^{-4}
3	0.048	0.010	4.0×10^{-4}

Another three experiments were carried out at different temperatures and the results obtained are shown below.

experiment	$[\mathbf{P}] / \mathrm{mol} \mathrm{dm}^{-3}$	$[\mathbf{Q}] / \mathrm{mol} \mathrm{dm}^{-3}$	temperature $/{ }^{\circ} \mathrm{C}$
4	0.10	0.20	40
5	0.20	0.20	30
6	0.30	0.30	20

If the rate constant doubles for each $10^{\circ} \mathrm{C}$ rise in temperature, which statements regarding experiments 4 to 6 are correct?

1 rate of reaction of experiments 4 and 5 are the same.
2 rate of reaction of experiment 4 is two times faster than experiment 6.
3 rate of reaction of experiment 6 is the slowest.
A 1,2 and 3
B 1 and 2 only
C 1 and 3 only
D 2 and 3 only
$13 \mathbf{X}, \mathbf{Y}$ and \mathbf{Z} are elements in Period 3 of the Periodic Table. The results of some experiments carried out with compounds of these elements are shown.

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
result of reacting the oxide of the element with $\mathrm{HC} l(\mathrm{aq})$	salt solution	salt solution	mixture of acids
result of adding the oxide of the element to $\mathrm{H}_{2} \mathrm{O}(l)$	no reaction	alkaline solution	acid solution
result of adding the chloride of the element to $\mathrm{H}_{2} \mathrm{O}(l)$	hydrolyses	dissolves	hydrolyses

What could be the identities of \mathbf{X}, \mathbf{Y} and \mathbf{Z} ?

	\mathbf{X}	\mathbf{Y}	Z
A	Al	P	S
\mathbf{B}	$\mathrm{A} l$	Na	P
\mathbf{C}	Si	Mg	P
\mathbf{D}	Si	Na	Al

14 The table shows the results of experiments in which the halogens, $\mathbf{K}_{2}, \mathbf{L}_{2}$ and \mathbf{M}_{2} were added to separate aqueous solutions containing $\mathbf{K}^{-}, \mathbf{L}^{-}$and \mathbf{M}^{-}ions.

	$\mathbf{K}^{-}(\mathrm{aq})$	$\mathbf{L}^{-}(\mathrm{aq})$	$\mathbf{M}^{-}(\mathrm{aq})$
\mathbf{K}_{2}	no reaction	\mathbf{L}_{2} formed	no reaction
\mathbf{L}_{2}	no reaction	no reaction	no reaction
\mathbf{M}_{2}	\mathbf{K}_{2} formed	\mathbf{L}_{2} formed	no reaction

Which statements are correct?
1 When \mathbf{L}_{2} reacts with thiosulfate ions, the oxidation state of sulfur increases the most compared to the reaction between \mathbf{M}_{2} and thiosulfate ions.
$2 \quad \mathbf{L}^{-}(\mathrm{aq})$ forms a precipitate with aqueous silver nitrate that is insoluble in excess aqueous ammonia.
$3 \quad \mathbf{K}^{-}$and \mathbf{M}^{-}solutions can be distinguished by adding hexane.
A 2 only
B 1 and 2 only
C 1 and 3 only
D 2 and 3 only

15 Which hydrocarbon, when reacted with chlorine in the presence of sunlight, will form a monochlorinated product which shows both cis-trans isomerism and enantiomerism?

A $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
B $\quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$
C $\quad \mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$
D $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$

16 Which statement regarding compound \mathbf{K} is correct?

Compound K
A 1 mol of \mathbf{K} reacts with excess gaseous HBr to yield a major product with 7 chiral centres.
B $\quad 1$ mol of \mathbf{K} reacts with hot acidified KMnO_{4} to give a dicarboxylic acid as one of the products.
C $\quad 1 \mathrm{~mol}$ of \mathbf{K} reacts with 4 mol of H_{2} in the presence of nickel catalyst to yield a saturated compound.
D $\quad 1 \mathrm{~mol}$ of \mathbf{K} reacts with sodium to give $24.0 \mathrm{dm}^{3}$ of hydrogen gas at room temperature and pressure.

17 A comparison is made of the rate of electrophilic addition of Br_{2} (in CCl_{4}) to the following compounds:

S

T

U

V

How will the reaction rate vary for each compound?

	Fastest		Slowest			
\mathbf{A}	\mathbf{T}	\mathbf{S}	\mathbf{U}	\mathbf{V}		
\mathbf{B}	\mathbf{U}	\mathbf{V}	\mathbf{S}	\mathbf{T}		
\mathbf{C}	\mathbf{T}	\mathbf{S}	\mathbf{V}	\mathbf{U}		
\mathbf{D}	\mathbf{S}	\mathbf{T}	\mathbf{V}	\mathbf{U}		

18 Consider all benzene-containing isomers with molecular formula $\mathrm{C}_{9} \mathrm{H}_{10}$.
How many isomers will produce benzene-1,2-dicarboxylic acid on heating with acidified manganate(VII) ions?
A 1
B 2
C 3
D 4

19 The Hunsdiecker reaction can be used to prepare alkyl bromides. Its mechanism is believed to involve the following steps.
step 1

step 2

step 3

step $4 \quad \mathrm{R} \bullet+\mathrm{Br} \bullet \longrightarrow \mathrm{RBr}$

Which statement about the mechanism is correct?
$1 \quad \mathrm{RCO}_{2}^{-}$attacks the $\delta+$ bromine atom of Br_{2} in step 1.
2 Homolytic fission of $\mathrm{O}-\mathrm{Br}$ bond occurs in step 2.

3 The curly arrows show the movement of electrons in step 3:

$4 \quad$ Heat energy is absorbed in step 4.
A 1, 2 and 3 only
B 2 and 3 only
C 1 and 4 only
D 1 and 2 only

20 The structure of sorbitol is as shown.

How many moles of gas is produced when one mole of sorbitol reacts with an excess of thionyl chloride, SOCl_{2} ?
A 0
B 3
C 6
D 12

21 Compound \mathbf{X} gives orange precipitate with 2,4-DNPH but does not react with Fehling's solution. When heated with alkaline aqueous iodine, \mathbf{X} gives pale yellow precipitate.

What could compound \mathbf{X} be?
A

B

C $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
D $\mathrm{CH}_{3} \mathrm{COCOCH}_{3}$

22 What are the products when ammonium N -phenyloxamate is heated with $\mathrm{NaOH}(\mathrm{aq})$?

ammonium N -phenyloxamate

A

B

C

D

23 The table below shows three common amino acids in the human body.

Amino acid	3-letter abbreviation	Formula of side chain (R group)
Glutamine	gln	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2}$
Lysine	lys	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
Serine	ser	$-\mathrm{CH}_{2} \mathrm{OH}$

A tripeptide is formed from the three amino acids above. What is the structure of this tripeptide when hydrochloric acid is added to it at room temperature?

A

B

C

D

24 Which reagent and condition will not give an observable change with compound \mathbf{Z} ?

compound \mathbf{Z}
A Alkaline aqueous iodine, heat
B Anhydrous phosphorus pentachloride
C Lithium aluminium hydride in dry ether
D Cold dilute alkaline potassium manganate(VII)

25 Which sequence will achieve the conversion below?

	Step 1	Step 2	Step 3
A	$\mathrm{NaOH}(\mathrm{aq})$, heat	Hot acidified KMnO_{4}	H_{2} gas, nickel catalyst, heat
B	Hot ethanolic KOH	Hot acidified KMnO_{4}	NaBH_{4} in methanol
C	Hot acidified KMnO	KCN in ethanol, heat	$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, heat
D	Excess conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat	Hot acidified KMnO_{4}	Excess $\mathrm{NaOH}(\mathrm{aq})$, heat

Use of the Data Booklet is relevant to questions 26-29.
26 When a dilute $\mathbf{X}\left(\mathrm{NO}_{3}\right)_{2}$ solution undergoes electrolysis, the metal \mathbf{X} and gas \mathbf{Y} are produced at the cathode and the anode respectively.

What could be the identities of metal \mathbf{X} and gas \mathbf{Y} ?

	\mathbf{X}	\mathbf{Y}
A	Cu	NO_{2}
B	Fe	NO_{2}
C	Mg	O_{2}
D	Zn	O_{2}

27 Zinc plating is frequently used to protect metals such as iron from corrosion.
A piece of iron was immersed into a solution of zinc nitrate and a current of 0.5 A was passed through it. How many minutes must the piece of iron be immersed in the solution to achieve an electroplated coating that weighs 0.4 g ?
A 46.1
B $\quad 39.3$
C $\quad 19.7$
D $\quad 9.8$

28 Quinone can be formed by oxidising quinol.

Which aqueous reagent will give a good yield of quinone when added to quinol?
A $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{H}^{+}$
B $\quad \mathrm{Br}_{2}$
C Cu^{2+}
D NaCl

29 The following reaction scheme shows the chemistry of some iron-containing species in aqueous solution.

Which statement is false regarding the reaction scheme above?
A Precipitates \mathbf{X} and \mathbf{Y} are different compounds.
B A ligand exchange reaction happens in step 7.
C A redox reaction happens in step 2.
D The E^{\ominus} cell for step 4 is +1.00 V .
$30 \mathbf{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x} \mathrm{C} l_{\boldsymbol{y}}$ is an ionic compound which contains a metal complex cation, where \boldsymbol{x} and \boldsymbol{y} are integers.

When excess $\mathrm{AgNO}_{3}(\mathrm{aq})$ was added to 1 mol of aqueous $\mathbf{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x} \mathrm{C} l_{y}$, 2 mol of AgCl was precipitated. What is the possible identity of the complex cation?
A $\quad\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B $\quad\left[\mathbf{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]^{2+}$
C $\quad\left[\mathbf{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
D $\quad\left[\mathbf{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{4}\right]^{+}$

Answer Key

1	2	3	4	5
\mathbf{C}	\mathbf{C}	\mathbf{B}	\mathbf{C}	\mathbf{C}

6	7	8	9	10
\mathbf{D}	\mathbf{C}	\mathbf{D}	\mathbf{A}	\mathbf{D}

11	12	13	14	15
\mathbf{C}	\mathbf{C}	\mathbf{B}	\mathbf{A}	\mathbf{D}

16	17	18	19	20
\mathbf{C}	\mathbf{A}	\mathbf{B}	\mathbf{A}	\mathbf{D}

21	22	23	24	25
\mathbf{D}	\mathbf{C}	\mathbf{C}	\mathbf{C}	\mathbf{B}

26	27	28	29	30
\mathbf{D}	\mathbf{B}	\mathbf{A}	\mathbf{A}	\mathbf{B}

1	C
	From Reaction (1)
	$2 \mathrm{NaN}_{3} \equiv 2 \mathrm{Na} \equiv 3 \mathrm{~N}_{2}$
	From Reaction (2)
	$\begin{aligned} & 10 \mathrm{Na}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{~s}) \rightarrow \mathrm{K}_{2} \mathrm{O}(\mathrm{~s})+5 \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g}) \\ & 10 \mathrm{Na} \equiv 1 \mathrm{~N}_{2} \end{aligned}$
	Combining reactions (1) and (2), $2 \mathrm{NaN}_{3}$ gives $3 \mathrm{~N}_{2}$ directly, while 2 Na gives $1 / 5 \mathrm{~N}_{2}$ Hence, $2 \mathrm{NaN}_{3}$ gives a total of $16 / 5 \mathrm{~N}_{2}$ $1.25 \mathrm{NaN}_{3} \equiv 2 \mathrm{~N}_{2}$

2	C
	$\begin{aligned} & \text { Moles of sodium percarbonate }=10 / 1000 \times 0.1 \\ & =0.001 \mathrm{~mol} \\ & \text { Moles of } \mathrm{CO}_{2}=(48 / 1000) / 24 \\ & =0.002 \mathrm{~mol} \\ & \text { Since }\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)_{\mathrm{x}} \cdot \mathrm{y}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right) \equiv \mathrm{xCO} 2 \\ & x=2 \\ & \text { Moles of } \mathrm{KMnO}_{4}=24 / 1000 \times 0.05 \\ & =0.0012 \mathrm{~mol} \\ & 2 \mathrm{KMnO}_{4} \equiv 5 \mathrm{H}_{2} \mathrm{O}_{2}, \\ & \text { Moles of } \mathrm{H}_{2} \mathrm{O}_{2}=5 / 2 \times 0.00120 \\ & =0.003 \mathrm{~mol} \\ & \text { Since }\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)_{\times} \cdot \mathrm{y}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right) \equiv \mathrm{y} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2} \\ & \mathrm{y}=3 \end{aligned}$

3	B Note that elements in the same group (e.g. O and S) will have the same number of unpaired electrons in their ground state. Group 17 elements have only 1 unpaired electron. Hence, option 1 is incorrect.	
\times	1	Electronic configuration of Ti: $[\mathrm{Ar}] 3 \mathrm{~d}^{2} 4 \mathrm{~s}^{2}$ (2 unpaired electrons) Cl : [$\mathrm{Ne} \mathrm{e} 3 \mathrm{~s}^{2} 3 p^{5}$ (1 unpaired electron)
\checkmark	2	Electronic configuration of Si: [Ne$] 3 s^{2} 3 \mathrm{p}^{2}$ (2 unpaired electrons) O: $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$ (2 unpaired electron)
\checkmark	3	Electronic configuration of Ni: $[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$ (2 unpaired electrons) S : $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{4}$ (2 unpaired electron)

4	C
	$\mathrm{pV}=\mathrm{nRT}$
	For Graphs A and B,
	For a fixed mass of gas at constant T , $\mathrm{pV}=$ constant. Since we are plotting a p against pV graph, the graph should be a vertical line instead (i.e. $\mathrm{x}=$ constant graph)
	For Graphs C and D, For a fixed mass of gas at constant $\mathrm{p}, \mathrm{V}=(\mathrm{nR} / \mathrm{p})^{\top}$
	The graph should be $\mathrm{y}=\mathrm{mx}$ graph (upward sloping straight line that passes through origin), with gradient $=(n R / p)$
	Since \mathbf{I} has a higher M_{r} than \mathbf{J}, number of moles of \mathbf{I} will be smaller than \mathbf{J} and hence graph of I should have a smaller gradient.

In ethanoate ion, the shape with respect to the methyl carbon is tetrahedral.

The common feature is the delocalization of electrons.

$\mathbf{6}$	D	
\checkmark	$\mathbf{1}$	At constant temperature, K_{c} remains unchanged. Hence ΔG^{\ominus} remains unchanged.
\mathbf{x}	$\mathbf{2}$	Reaction is spontaneous when $\Delta G^{\ominus}<0$. For $0<K_{c}<1, \operatorname{In} K_{\mathrm{c}}$ is negative and hence ΔG^{\ominus} >0 (non-spontaneous)
\mathbf{x}	\mathbf{l}Adding a catalyst increases rate of both forward and backward reaction to the same extent, hence the position of the equilibrium remains unchanged. K_{c} remains unchanged and hence ΔG^{\ominus} remains unchanged.	

8	D	
\times	A	KOH (strong base) is in excess and resultant solution will have $\mathrm{pH}>7$
\times	B	This happens at equivalence point where KOH exactly neutralises benzoic acid. Salt hydrolysis occurs and basic salt will be formed. Resultant solution will have $\mathrm{pH}>7$.
\times	C	Benzoic acid is in excess and acidic buffer will be formed. Since volume of KOH added is half the equivalence volume, this is at maximum buffer capacity. Resultant solution will have $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$.
\checkmark	D	Benzoic acid is in excess and acidic buffer will be formed. Resultant solution will have $\mathrm{pH}<7$. Since volume of KOH added is less than half the equivalence volume, pH will be less than that at maximum buffer capacity. Hence pH < pKa and option \mathbf{D} will have the lowest pH.

9	A	
\checkmark	1	Precipitate will start to occur when mass of solute dissolved exceed its solubility. For 10 g of KCl , first trace of ppt will start to appear at $30^{\circ} \mathrm{C}$. For 50 g of KClO_{3}, first trace of ppt will start to appear at about $76{ }^{\circ} \mathrm{C}$.
\checkmark	2	At $10^{\circ} \mathrm{C}$, both solutes have exceeded its solubility and hence a saturated solution of KCl and KClO_{3} is formed.
\checkmark	3	At temperatures between $30^{\circ} \mathrm{C}$ and $76^{\circ} \mathrm{C}$, KClO_{3} ppt will be formed but not KCl . $\text { Mass of } \mathrm{KClO}_{3} \mathrm{ppt}=50-37$ $=13 \mathrm{~g}$

10	D
	$2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow \mathrm{N}_{2} \mathrm{H}_{4}(l)+2 \mathrm{H}_{2} \mathrm{O}(l)$
	$\Delta H_{\text {reaction }}{ }^{\ominus}=-241 \mathrm{~kJ} \mathrm{~mol}^{-1}$
	$\begin{aligned} \Delta H_{\text {reaction }}{ }^{\ominus}= & {\left[\Delta H_{\mathrm{f}}^{\ominus}\left(\mathrm{N}_{2} \mathrm{H}_{4}(l)\right)+2 \Delta H_{\mathrm{f}}^{\ominus}\left(\mathrm{H}_{2} \mathrm{O}(l)\right)\right]-} \\ & {\left[2 \Delta H_{\mathrm{f}}^{\ominus}\left(\mathrm{NH}_{3}(g)\right)+\Delta H_{\mathrm{f}}^{\ominus}\left(\mathrm{H}_{2} \mathrm{O}_{2}(l)\right)\right] } \end{aligned}$
	$\begin{aligned} & -241=\left[\Delta H_{f}^{\ominus}\left(\mathrm{N}_{2} \mathrm{H}_{4}(l)\right) \quad+2(-286)\right]-[2(-46)+ \\ & (-188)] \end{aligned}$
	$\Delta H_{\mathrm{f}}^{\ominus}\left(\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l}) \mathrm{)}=+51 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$
	Decomposition of $\mathrm{N}_{2} \mathrm{H}_{4}(l)$ is
	$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})$
	The reverse of formation of hydrazine, therefore, ΔH^{\ominus} for decomposition of hydrazine is $\mathbf{- 5 1} \mathrm{kJ} \mathrm{mol}^{-1}$

11 C
 $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})=\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$

For the forward reaction, ΔS is negative as there is a decrease in the number of moles of gaseous molecules (resulting in a less disordered system).
ΔH is negative as "higher yield of methanol can be achieved at a lower temperature." That is, at lower temperature, position of equilibrium is shifted to the right, favouring an exothermic reaction.
$\Delta G=\Delta H-T \Delta S$
At $\mathrm{T}=0 \mathrm{~K}, \Delta \mathrm{G}=\Delta H$
ΔG is negative.
Gradient is $-\Delta S$. Since ΔS is negative, gradient is positive.

12 C

From the first table, comparing expt 2\&3, [P] x2, rate also $\times 2$, order of reaction with respect to $[P]$ is 1 .

Comparing expt 1\&2, [P] x2, [Q] x2, rate x2. Since rate $\alpha[\mathrm{P}]$, two times increase in [Q] has no effect on rate. Order of reaction with respect to $[Q]$ is 0 .

Therefore, rate equation is
rate $=k[P]$
From the second table, if we disregard the temperatures,
rate $_{4}=k(0.10)$
rate $_{5}=\mathrm{k}(0.20)$
rate $_{6}=\mathrm{k}(0.30)$
Taking temperatures into consideration, relative rates are as follows. (Using $20^{\circ} \mathrm{C}$ of expt 6 as the reference)
rate $_{4}=k(0.10) \times 2 \times 2=0.40 \mathrm{k}$
rate $_{5}=k(0.20) \times 2=0.40 \mathrm{k}$
rate $_{6}=\mathrm{k}(0.30) \times 1$ (reference expt) $=0.30 \mathrm{k}$
Hence, only statements 1 and 3 are correct.

13	B			
	Element	$\mathbf{X}(=\mathrm{Al})$	Y (=Na)	\mathbf{Z} (=P)
	Oxide of the element	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{P}_{4} \mathrm{O}_{10}$
	Chloride of the element	AlCl_{3}	NaCl	PCl_{5}

Oxides with $\mathrm{HCl}(\mathrm{aq})$

$\mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl} l_{3}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Na}_{2} \mathrm{O}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
PCl_{5} merely hydrolyses in aqueous solution of hydrochloric acid to give $\mathrm{H}_{3} \mathrm{PO}_{4}+5 \mathrm{HCl}$
SiO_{2} is acidic and does not react with HCl .

Oxides with water:

$\mathrm{Al}_{2} \mathrm{O}_{3}$ has very exothermic lattice energy. Does not dissolve in water.
$\mathrm{Na}_{2} \mathrm{O}$ forms NaOH in water.
$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$
$\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$
Chlorides with water:
$\overline{\mathrm{AlCl} l_{3}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})+3 \mathrm{Cl}^{-}(\mathrm{aq})}$
$\mathrm{A} l^{3+}(\mathrm{aq})$ has high charge density, it undergoes partial hydrolysis in water.
$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
NaCl simply dissolves in water.
PCl_{5} undergoes complete hydrolysis in water.
$\mathrm{PCl}_{5}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+5 \mathrm{HCl}$

From the table, since \mathbf{M}_{2} displaces \mathbf{K}_{2} and $\mathbf{L}_{2}, \mathbf{M}_{2}$ is the strongest oxidising agent. If we consider the more common halogens (for convenience) $-\mathrm{Cl}_{2}, \mathrm{Br}_{2}$ and l_{2}, then \mathbf{M}_{2} is Cl_{2}.
$\times \quad 1 \quad$ Since \mathbf{L}_{2} cannot displace other halogens, \mathbf{L}_{2} is the weakest oxidising agent. \mathbf{L}_{2} is I_{2}.

So, when L_{2} (ie. I_{2}), the weakest oxidizing agent reacts with thiosulfate ions, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, oxidation state of sulfur changes from +2 in $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ to +2.5 in $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
On the other hand, when \mathbf{M}_{2} (ie. Cl_{2} reacts with $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, oxidation state of sulfur changes from +2 in $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ to +6 in $\mathrm{SO}_{4}{ }^{2-}$. Statement 1 is not correct.
L^{-}is I^{-}which forms AgI with silver nitrate. AgI is insoluble in excess aq. ammonia.
\mathbf{K}^{-}is Br^{-}while \mathbf{M}^{-}is Cl^{-}. They are halides, not halogens. Hexane can be used to distinguish between bromine and iodine but not bromide and iodide.

15	D	
	Note that all hydrogens atoms on the carbons of the $\mathrm{C}=\mathrm{C}$ are unlikely to undergo free radical substitution. In order to form a chiral carbon, the substitution must happen on a $-\mathrm{CH}_{2}-$, not on a $-\mathrm{CH}_{3}$.	
x	A	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$ (a) (b) (c) There are three types of hydrogen atoms. Only (a) tends to undergo FRS, but it will not generate a chiral centre. The monochlorinated product will not show cis-trans isomerism or enantiomerism.
\times	B	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ (a) (b) There are two types of hydrogen atoms. Only (a) tends to undergo FRS, but it will not generate a chiral centre. The monochlorinated product will not show cis-trans isomerism or enantiomerism.
x	C	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ (a) (b) (c) There are three types of hydrogen atoms. Only (a) and (c) tend to undergo FRS, but no substitution will generate a chiral centre. The monochlorinated product will not show enantiomerism. Cis-trans isomerism is possible if (c) is substituted.
\checkmark	D	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$ (a) (b) (c) (d) (e) There are five types of hydrogen atoms. Only (a), (d) and (e) tend to undergo FRS. A chiral centre is formed when (d) is substituted. All products will show cis-trans isomerism.

The product has five chiral centres.
(Need to apply Markovnikov's rule to obtain the major product)

Alkene and ketone groups are reduced by H_{2} to give the product above. 4 mol of H_{2} for the three carbon-carbon double bonds and one ketone group.
$\mathbf{x} \quad \mathbf{D} \quad$ The -OH group in \mathbf{K} reacts with Na according to: $\mathrm{ROH}+\mathrm{Na} \rightarrow \mathrm{RO}^{-} \mathrm{Na}^{+}+1 / 2 \mathrm{H}_{2}$ 1 mol of \mathbf{K} produces $1 / 2 \mathrm{~mol}$ of H_{2}. $\left(=1 / 2(24.0) \mathrm{dm}^{3}\right)$

17	A

carbocation $\mathbf{S} \quad$ carbocation \mathbf{T}

carbocation U
carbocation V

The above corresponding carbocations are formed when electrophilic end of bromine molecule is attached to the C atom of the double bond with more H atoms (follow Markovnikov's rule).

Carbocation \mathbf{T} is most stable as there is an electrondonating $-\mathrm{CH}_{3}$ substituent attached to the carbocation, dispersing the positive charge, stabilising the carbocation to the largest extent. Rate of bromination is the fastest.

I and Br atoms are both electronegative. Br is more electronegative than I . Br atom therefore, destabilises the carbocation \mathbf{V} to the largest extent.

Rate of addition of $\mathrm{Br}_{2} / \mathrm{CCl}_{4}$ to \mathbf{V} will be the slowest as carbocation intermediate \mathbf{V} is the least stable.

18 B
There are 8 possible benzene-containing isomers.
A
B
C

D

F
E

G

Only A and H will produce benzene-1,2-dicarboxylic acid on heating with acidified manganate(VII) ions.

$\mathbf{1 9}$	A	
\checkmark	$\mathbf{1}$	RCO_{2}^{-} bromine atom to form $\mathrm{RCO}_{2} \mathrm{Br}$.
\checkmark	$\mathbf{2}$	Homolytic fission of $\mathrm{O}-\mathrm{Br}$ bond occurs to form RCOO \bullet and Br• radicals.
\checkmark	$\mathbf{3}$	Correct movement of electrons showing the formation of C-O pi bond and the cleavage of R-C sigma bond.
\mathbf{x}	$\mathbf{4}$	Formation of R-Br bond releases energy.

Since 1 mol of ROH produces 2 mol of gas (HCl and SO_{2}), 1 mol of sorbitol has 6 mol of alcohol which will produce a total of 12 mol of gas.

21	D	
\mathbf{x}	A	Benzaldehyde does not give a positive iodoform test with alkaline aqueous iodine.
\mathbf{x}	B	The ester functional group does not give orange ppt with 2,4-DNPH.
\mathbf{x}	\mathbf{C}	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$ does not give a positive iodoform test with alkaline aqueous iodine.
\boldsymbol{x}	\mathbf{D}	The ketone functional groups can give orange ppt with 2,4-DNPH and do not react with Fehling's solution. The presence of $-\mathrm{COCH}_{3}$ groups give a positive iodoform test with alkaline aqueous iodine.

$\mathbf{2 2}$	C
	The amide functional group is hydrolysed when heated with $\mathrm{NaOH}($ aq $)$. Ammonia gas is also liberated when $\mathrm{NH}_{4}+$ is heated in the presence of hydroxide ions.

The correct structure must have

1. Peptide bonds ($\quad \mathrm{H}$) between each amino acid
2. Basic groups will be protonated (i.e. all amines will be protonated)
3. Amide and alcohol groups are neutral and hence do not get protonated.
4. Carboxylic acid group is acidic and hence remains protonated.

$\mathbf{2 4}$	\mathbf{C}	
\mathbf{x}	\mathbf{A}	Ester group undergoes alkaline hydrolysis to give the following products. One of them contains the $-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ group which will give the yellow ppt of CHI_{3}.
\mathbf{X}	\mathbf{B}	PCl_{5} reacts with alcohol and carboxylic acid groups to give white fumes of $\mathrm{HC} l$
\mathbf{V}	\mathbf{C}	Ester and carboxylic acid groups are reduced to alcohols but there is no observable change.
\mathbf{D}	Mild oxidation of alkene to diol occurs. Purple KMnO decolourises and brown ppt of MnO2 is formed.	

25 (

26 D

Anode

$\mathrm{NO}_{3}{ }^{-}$cannot be oxidised at the anode as nitrogen is in its highest oxidation state. Hence, water must have been oxidised at the anode.
$2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
The gas produced at the anode is O_{2}.

Cathode

$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}=\mathrm{H}_{2}+2 \mathrm{OH}^{-} \mathrm{E}^{\ominus}=-0.83 \mathrm{~V}$
For the metal to be discharged at the cathode, the E^{\ominus} must be more positive than -0.83 V .
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-}=\mathrm{Zn} \quad \mathrm{E}^{\ominus}=-0.76 \mathrm{~V}$
Hence, Zn^{2+} is reduced at the cathode to Zn metal.

27	\mathbf{B}
	Amt of $\mathrm{Zn}=0.4 \div 65.4=0.0061162 \mathrm{~mol}$
	$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}$
	No. of moles of $\mathrm{e}^{-}=2 \times 0.0061162=0.012232 \mathrm{~mol}$
	Charge required $=0.012232 \times 96500=1180.4 \mathrm{C}$
	Time required $=1180.4 \div 0.5$ $=2360.9 \mathrm{~s}$ $=39.3 \mathrm{~min}$ (3 s.f. $)$

28	A	
\checkmark	A	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}-2 \mathrm{H}_{2} \mathrm{O} \mathrm{E}^{\ominus}=+1.77 \mathrm{~V} \\ & \mathrm{E}_{\text {cell }}^{\ominus}=+1.77-(+0.70)=+1.07 \mathrm{~V} \\ & \text { Since } \mathrm{E}^{\ominus} \text { cell }>0 \text {, reaction is spontaneous. } \end{aligned}$
x	B	$\mathrm{Br}_{2}+2 \mathrm{e}^{-}-2 \mathrm{Br}^{-} \mathrm{E}^{\ominus}=+1.07 \mathrm{~V}$ $\mathrm{E}_{\text {cell }}^{\ominus}=+1.07-(+0.70)=+0.37 \mathrm{~V}$ Since E^{\ominus} cell >0, reaction is spontaneous. However, aq Br_{2} will undergo an electrophilic substitution with quinol (due to the presence of the phenol grp). Hence, quinone will not be produced in good yield.
x	C	$\begin{aligned} & \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}=\mathrm{Cu} \mathrm{E}^{\ominus}=+0.34 \mathrm{~V} \\ & \mathrm{E}^{\ominus} \text { cell }=+0.34-(+0.70)=-0.36 \mathrm{~V} \\ & \text { Since } \mathrm{E}_{\text {cell }}^{\ominus}<0, \text { reaction is not spontaneous. } \end{aligned}$
\times	D	Cl^{-}is a reducing agent and hence will not be able to oxidise quniol to quinone.

30 B

Since 2 mol of AgCl is formed from 1 mol of the ionic compound, there are 2 mol of free Cl^{-}ions that are not ligands. Hence, the charge of the complex cation must be $2+$ for the ionic compound to be uncharged.

Note that the other chloride anion is a ligand. It has already formed a dative bond with the central metal cation and hence, this chloride does not form a precipitate when AgNO_{3} is added to the ionic compound.

DUNMAN HIGH SCHOOL

Prelims Examination 2019

Year 6

H2 CHEMISTRY

Paper 2 Structured Questions

Additional Materials: Data Booklet

INSTRUCTIONS TO CANDIDATES

1 Write your name, index number and class on this cover page.
2 Write in dark blue or black pen.
3 You may use an HB pencil for any diagrams or graphs.
4 Do not use staples, paper clips, glue or correction fluid.
5 Write your answers in the spaces provided on this question paper.

The number of marks is given in brackets [] at the end of each question or part question.
You are advised to show all workings in calculations.
You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use	
Question No.	Section A Marks
1	
2	
3	
4	12
5	
Total	

Answer all questions in the spaces provided.

1 This question explores the chemistry of transition metal complexes.
(a) Cobalt cations readily form complexes with ligands. Some of the cobalt complexes with their absorption frequencies are shown in Table 1.1. The absorption frequency is the frequency of light absorbed for each complex, and is proportional to the energy of light absorbed.

Table 1.1

Complex	Absorption Frequency $/ \mathbf{c m}^{-1}$
$\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{4-}$	15300
$\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$	33500
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	9300
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	18200
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$	22870

(i) State the electronic configuration of the cobalt cation in $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$.
(ii) Using the information in Table 1.1, state the relationship between the oxidation state of the metal cation and the absorption frequency of its complex.
\qquad
\qquad
(iii) Stronger field ligands generate a d orbital splitting pattern with a larger energy gap when bonded to transition metal cations.

Using the information in Table 1.1, rank $\mathrm{CN}^{-}, \mathrm{H}_{2} \mathrm{O}$ and NH_{3} in order of increasing ligand field strength.
\qquad
(iv) Hence, predict a value for the absorption frequency of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$.
(b) In the presence of an octahedral ligand field, the $3 d$ orbitals of cobalt are split into two energy levels.
(i) Using the axes below, draw the shape of a 3d orbital of cobalt of

- a higher energy level,
- a lower energy level, in the presence of an octahedral ligand field.

(ii) Hence, explain why the 3d orbitals of cobalt are split into two energy levels in the presence of an octahedral ligand field.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) In the presence of a tetrahedral ligand field, the ligands approach in between the axes.

Complete Fig 1.1 to show how the degenerate $3 d$ orbitals of cobalt will split in a tetrahedral ligand field. Label all the orbitals in your diagram.

Energy

Fig 1.1
(c) Another cobalt complex, $\left[\mathrm{CoCl}_{6}\right]^{3-}$ undergoes ligand exchange with CN^{-}ligands to form $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ according to the following equilibrium.

$$
\left[\mathrm{CoCl}_{6}\right]^{3-}(\mathrm{aq})+6 \mathrm{CN}^{-}(\mathrm{aq})=\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}(\mathrm{aq})+6 \mathrm{Cl}^{-}(\mathrm{aq})
$$

The effect of pH on the concentration of $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ formed is shown in the graph in Fig 1.2 .

Fig 1.2
(i) Write an equation that describes the dissociation of the weak acid, HCN , in water.
\qquad
(ii) Hence, using Le Chatelier's Principle, explain the shape of the graph in Fig 1.2.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Explain why the Gibbs free energy change and enthalpy change for the forward reaction are approximately equal.
\qquad
\qquad
\qquad
\qquad
(iv) Hence deduce the sign of the enthalpy change of the forward reaction given that it is spontaneous.
\qquad
\qquad
(d) Similar to organic compounds, transition metal complexes may exhibit stereoisomerism.
(i) For square planar complexes, cis-trans isomerism can be exhibited for $\mathbf{M A}_{2} \mathbf{B}_{2}$ type complexes (where \mathbf{M} is the metal cation, and \mathbf{A} and \mathbf{B} are different ligands).
cis and trans isomers are differentiated in the following way:

cis:	Both \mathbf{A} ligands next to one another
trans:	Both \mathbf{A} ligands are separated by a \mathbf{B} ligand

$\left[\mathrm{Pt}(\mathrm{Cl})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ is a square planar complex. Complete the diagrams below to show the structures of its cis and trans isomers.
Cis isomer

(ii) For any transition metal complex, enantiomerism is exhibited if it has:

- Mirror images that are non-superimposable and
- No internal plane of symmetry

Deduce if the trans isomer of $\left[\mathrm{Pt}(\mathrm{Cl})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ can exhibit enantiomerism.
\qquad
\qquad
\qquad
\qquad
(e) The cyclopentadienyl anion is a common ligand in transition metal complexes. This anion can be generated via the following reaction between tert-butoxide anion and cyclopentadiene.

Cyclopentadiene
tert-butoxide
cyclopentadienyl anion
An organic compound is considered aromatic if all of the following three criteria are met:

- it is a cyclic planar compound,
- it has a delocalised π electron system, and
- it has $(4 n+2) \pi$ electrons, where n is an integer.

One such example is benzene.
(i) State the type of reaction that generates the cyclopentadienyl anion from cyclopentadiene.
\qquad
(ii) Given that the cyclopentadienyl anion is aromatic, explain fully how it meets the three criteria stated above.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2 Halogenoalkanes are widely used commercially as they are important precursors for many organic synthesis.
(a) One method of synthesising halogenoalkanes is the free radical substitution of alkanes. For example, butane can be chlorinated in the presence of UV light.

However, this is not a preferred method of synthesising halogenoalkanes as there are multiple by-products. For example, one by-product of the monochlorination of butane is shown below.

3,4-dimethylhexane
(i) Draw the mechanism of the reaction between butane and chlorine that would result in the formation of 3,4-dimethylhexane. Show the movement of electrons by using suitable curly arrows and indicate any unpaired electron using a dot (\bullet).
(ii) State the number of chiral centre(s) present on 3,4-dimethylhexane and the number of stereoisomers that are optically active.

Number of chiral centre(s)
Number of stereoisomers that are optically active
(b) One application of halogenoalkanes was the use of chlorofluorocarbons (CFCs) as refrigerants in the $20^{\text {th }}$ century. However, CFCs have been replaced with hydrofluorocarbons (HFCs) due to their detrimental impact on the ozone.

CFCs produce radicals in the presence of UV light. For example, chlorodifluoromethane, CHClF_{2}, readily produces chlorine radicals in the stratosphere. These radicals speed up the depletion of the ozone layer.

HFCs, such as fluoroform, CHF_{3}, do not produce radicals in the presence of UV light.

With reference to the Data Booklet, explain why CHF_{3} does not deplete the ozone layer whereas CHClF_{2} does.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Halogenoalkanes also find their application as precursors in the synthesis of nitrogen-containing organic compounds. One such synthesis involving bromomethane is shown below.

(i) Draw a dot-and-cross diagram to show the bonding in $\mathrm{CH}_{3} \mathrm{CN}$ and state the types of orbitals used to form the carbon-carbon bond in the molecule.

Types of orbitals used \qquad
(ii) State the type of reaction occurring in step 4 and the reagent(s) and condition(s) needed.

Type of reaction ... [1]
Reagent(s) and condition(s) .. [1]
(iii) Explain why ethanoic acid cannot be used in step 3 to form intermediate \mathbf{Y}.
\qquad
\qquad
\qquad
(iv) Compare and explain the basicity of intermediate \mathbf{X} and compound \mathbf{Z}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3 Brown iodine water is decolourised when warmed with ethanol in an alkaline medium. A series of 'clock' experiments were conducted to study the kinetics of this reaction. The time taken for the decolourisation of iodine in each experiment is found in Table 3.1.

Table 3.1

Expt	Volume of $\mathrm{I}_{2}(\mathrm{aq})$ $/ \mathrm{cm}^{3}$	Volume of ethanol $/ \mathrm{cm}^{3}$	Volume of $\mathrm{NaOH}(\mathrm{aq})$ $/ \mathrm{cm}^{3}$	Volume of deionised water $/ \mathrm{cm}^{3}$	Time taken, t $/ \mathrm{s}$
1	5	20	20	10	42
2	5	30	20	0	28
3	10	20	20	5	42

(a) (i) Describe another observable change that occurs as the reaction proceeds.
\qquad
\qquad
(ii) Explain why the total volume of reaction mixture is kept constant.
\qquad
\qquad
(iii) Given relative rate $\propto \frac{\text { volume of } \mathrm{I}_{2}}{t}$, use this relationship to deduce the order of reaction with respect to [ethanol] and [iodine]. Explain your answer.
(b) The clock method can also be used to study the comproportionation reaction between bromate (V) and bromide ions in acidic medium.

$$
\mathrm{BrO}_{3}^{-}+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

A small, fixed amount of phenol and a few drops of litmus are used in every experiment. The time taken for the disappearance of the pink colouration is measured.
(i) Comment if the reaction is expected to occur via an elementary step.
\qquad
\qquad
\qquad
(ii) Using a suitable equation, explain the purpose of adding a small, fixed amount of phenol in every experiment.
\qquad
\qquad
\qquad
\qquad
(c) The pH of a reaction mixture can be kept constant in a kinetics experiment using a suitable buffer. Phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, can be used to prepare buffers of varying pH values as it has three $\mathrm{p} K_{\mathrm{a}}$ values of 2.14, 7.20 and 12.37.
(i) State the components present in a phosphate buffer of pH 7.50 .
\qquad
(ii) Write a suitable equation to show how the buffer system outlined in (c)(i) can resist change in pH when a small amount of OH^{-}is added.
(d) Two physical properties of two substituted phenols are shown in Table 3.2.

Table 3.2

	p-cresol	4-hydroxybenzyl alcohol
Structure		
$\mathrm{p} K_{\mathrm{a}}$	10.3	9.82
Boiling point $/{ }^{\circ} \mathrm{C}$	202	252

Suggest a reason for the difference in each property.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4 Methanal reacts with propene to form an organic product \mathbf{A}.
(a) The mechanism for the formation of \mathbf{A} is shown in Fig 4.1.

Fig. 4.1
(i) Deduce whether propene is acting as an electrophile or a nucleophile in step 2. Explain your answer.
\qquad
\qquad
\qquad
(ii) Complete Fig 4.2 using curly arrow(s) to show the movement of electron pair(s) for step 2.

Fig. 4.2
(iii) In step 2, intermediate \mathbf{B} is produced rather than \mathbf{C}.

Suggest an explanation for the preferential production of intermediate B.

Fig. 4.3
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iv) Step 3 may result in three isomeric organic products. Draw the displayed formula of the organic product which is a constitutional isomer of \mathbf{A}.
(b) The reaction between methanal and propene under a different set of conditions gives molecule \mathbf{D} with the following structure.

It can also be made from propene in the 4-step process shown in Fig 4.4.

Fig. 4.4
(i) Name the product formed in step 1.
\qquad
(ii) State the reagents and conditions needed for steps 2 and 3.
step 2
step 3
(iii) Step 4 is a reduction reaction. Write an equation for step 4 using $[\mathrm{H}]$ to represent the reducing agent.
(c) Molecule \mathbf{E} has molecular formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$.

It is an asymmetrical molecule comprising a 6-membered ring. It does not contain any $\mathrm{O}-\mathrm{O}$ bond and has no reaction with phosphorus pentachloride.
(i) Suggest two structures of \mathbf{E} that are consistent with the information provided.
(ii) The formation of \mathbf{E} involves the nucleophilic attack of methanal on intermediate B.

Complete Fig 4.5 using curly arrow(s) to show the movement of electron pair(s) for this nucleophilic attack.

Fig. 4.5

Hence deduce the likely structure of \mathbf{E} from your answer in (c)(i). Explain your reasoning.

\qquad
\qquad
\qquad
[Total: 13]

5 (a) R, T, U and V are consecutive elements in the third period of the Periodic Table. Among these four elements, \mathbf{T} has the highest melting point and \mathbf{U} has the highest first ionisation energy.
(i) Identify element \mathbf{T}.
\qquad
(ii) The oxides of elements \mathbf{T} and \mathbf{U} can be obtained when the elements are burned in excess oxygen. The oxides of \mathbf{T} and \mathbf{U} have melting points of $1710^{\circ} \mathrm{C}$ and $340^{\circ} \mathrm{C}$ respectively.

Explain briefly the difference in melting points between these oxides.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Describe the reactions, if any, of the oxides of elements \mathbf{R} and \mathbf{V} with water. Include the approximate pH value of any resulting solution formed.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Barium and magnesium form iodate(V) compounds, $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ and $\mathrm{Mg}\left(\mathrm{IO}_{3}\right)_{2}$. Upon heating, each of the iodates decomposes to give a solid residue. Purple fumes and a gas that relights a glowing splint are also observed.
(i) Write a balanced equation, with state symbols, for the thermal decomposition of $\mathrm{Mg}\left(\mathrm{IO}_{3}\right)_{2}$.

The graph below shows the total volume of gas collected over time when 0.1 mol of $\mathrm{Mg}\left(\mathrm{IO}_{3}\right)_{2}$ is heated.

(ii) Sketch, on the same axes above, the graph that would be obtained when 0.1 mol of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ was heated at the same temperature till no further change was observed.
(iii) Explain the shape of the graph that you have drawn for (b)(ii).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Grignard reagents, RMgX , are organo-magnesium halides derived from an alkyl halide, $R X$, and magnesium.

The use of a Grignard reagent in the conversion of 3-bromopropene to compound \mathbf{Z} is given below.

(i) The alkyl group in RMgX behaves like an anion, R^{-}, and is a strong Lewis base.

Explain why propene is formed as a side product in both steps I and II if both reactions are not carried out under anhydrous conditions.
\qquad
\qquad
\qquad
(ii) Suggest the type of reaction occurring in steps II and III.

Step II
Step III
(iii) A small amount of 3-bromopropene, propanone and \mathbf{Z} was introduced into three separate test tubes. Describe a simple chemical test you could carry
out to distinguish 3-bromopropene from the other two compounds. State what you would observe.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

Name:	Answers	Index Number:		Class:	

DUNMAN HIGH SCHOOL

 Prelims Examination 2019Year 6

H2 CHEMISTRY

9729/02
Paper 2 Structured Questions

Additional Materials: Data Booklet

INSTRUCTIONS TO CANDIDATES

1 Write your name, index number and class on this cover page.
2 Write in dark blue or black pen.
3 You may use an HB pencil for any diagrams or graphs.
4 Do not use staples, paper clips, glue or correction fluid.
5 Write your answers in the spaces provided on this question paper.

The number of marks is given in brackets [] at the end of each question or part question.
You are advised to show all workings in calculations.
You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use	
Question No.	Section A Marks
1	
2	
3	14
4	12
Total	

Answer all questions in the spaces provided.

1 This question explores the chemistry of transition metal complexes.
(a) Cobalt cations readily form complexes with ligands. Some of the cobalt complexes with their absorption frequencies are shown in Table 1.1. The absorption frequency is the frequency of light absorbed for each complex, and is proportional to the energy of light absorbed.

Table 1.1

Complex	Absorption Frequency $/ \mathbf{c m}^{-1}$
$\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{4-}$	15300
$\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$	33500
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	9300
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	18200
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$	22870

(i) State the electronic configuration of the cobalt cation in $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$.

Electronic configuration: $\mathbf{1 s}^{\mathbf{2}} \mathbf{2} s^{2} \mathbf{2} p^{6} \mathbf{3} s^{2} \mathbf{3} p^{6} \mathbf{3} d^{6}$
(ii) Using the information in Table 1.1, state the relationship between the oxidation state of the metal cation and the absorption frequency of its complex.

A higher oxidation state of the metal cation will result in a higher absorption frequency of the complex.
(iii) Stronger field ligands generate a d orbital splitting pattern with a larger energy gap when bonded to transition metal cations.

Using the information in Table 1.1, rank $\mathrm{CN}^{-}, \mathrm{H}_{2} \mathrm{O}$ and NH_{3} in order of increasing ligand field strength.

Ligand field strength: ${\underline{\mathrm{H}_{2} \mathrm{O}}<\mathrm{NH}_{3}<\mathrm{CN}^{-}}^{\mathbf{O}}$
(iv) Hence, predict a value for the absorption frequency of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$.

Any value between 9300 and 15300 (excluding boundaries)
(b) In the presence of an octahedral ligand field, the 3d orbitals of cobalt are split into two energy levels.
(i) Using the axes below, draw the shape of a 3d orbital of cobalt of

- a higher energy level,
- a lower energy level, in the presence of an octahedral ligand field.

Higher energy level (accept $d_{x}^{2}-y^{2}$)

Lower energy level (accept $d_{x y}, d_{y z}$)
(ii) Hence, explain why the 3d orbitals of cobalt are split into two energy levels in the presence of an octahedral ligand field.

The $\mathrm{d}_{z}{ }^{2}$ and $\mathrm{d}_{x}{ }^{2}-y^{2}$ orbitals have lobes that are in the region of the lone pairs of the ligands. There is greater repulsion between these orbitals and the incoming ligands. As a result, these orbitals are more destabilised and higher in energy.

The $d_{x y}, d_{y z}$ and $d_{x z}$ orbitals have lobes that project between the lone pairs of the ligands. There is less repulsion between these orbitals and the negative charges (lone pairs of the ligands). As a result, these orbitals are less destabilised and lower in energy.
(iii) In the presence of a tetrahedral ligand field, the ligands approach in between the axes.

Complete Fig 1.1 to show how the degenerate $3 d$ orbitals of cobalt will split in a tetrahedral ligand field. Label all the orbitals in your diagram.

Fig 1.1
(c) Another cobalt complex, $\left[\mathrm{CoCl}_{6}\right]^{3-}$ undergoes ligand exchange with CN^{-}ligands to form $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ according to the following equilibrium.

$$
\left[\mathrm{CoCl}_{6}\right]^{3-}(\mathrm{aq})+6 \mathrm{CN}^{-}(\mathrm{aq})=\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}(\mathrm{aq})+6 \mathrm{Cl}^{-}(\mathrm{aq})
$$

The effect of pH on the concentration of $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ formed is shown in the graph below.

(i) Write an equation that describes the dissociation of the weak acid, HCN , in water.
$\mathrm{HCN}(\mathrm{aq})=\mathrm{H}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})$
(ii) Hence, using Le Chatelier's Principle, explain the shape of the graph above.
$\mathrm{HCN}(\mathrm{aq})=\mathrm{H}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})-----(1)$
$\left[\mathrm{CoCl}_{6}\right]^{3-}(\mathrm{aq})+6 \mathrm{CN}^{-}(\mathrm{aq})=\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}(\mathrm{aq})+6 \mathrm{Cl}^{-}(\mathrm{aq})-----(2)$
When pH increases, the $\left[\mathrm{H}^{+}\right]$decreases. This shifts the position of equilibrium (1) to the right to produce more H^{+}. This also increases the concentration of CN^{-}.

The increase in CN^{-}causes the position of equilibrium (2) to shift to the right to decrease the concentration of CN^{-}. This results in an increase in concentration of $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ as pH increases.
(iii) Explain why the Gibbs free energy change and enthalpy change for the forward reaction are approximately equal.

Since there is no change of state or number of moles of particles from reactants to products, the entropy change is approximately zero. Hence, $\Delta G \approx \Delta H$.
(iv) Hence deduce the sign of the enthalpy change of the forward reaction given that it is spontaneous.

Since reaction is spontaneous, $\underline{\Delta G}$ is negative. Hence, given $\Delta G \approx \Delta H$, must be negative.
(d) Similar to organic compounds, transition metal complexes may exhibit stereoisomerism.
(i) For square planar complexes, cis-trans isomerism can be exhibited for $\mathbf{M A}_{2} \mathbf{B}_{2}$ type complexes (where \mathbf{M} is the metal cation, and \mathbf{A} and \mathbf{B} are different ligands).
cis and trans isomers are differentiated in the following way:

cis:	Both \mathbf{A} ligands next to one another
trans:	Both \mathbf{A} ligands are separated by a \mathbf{B} ligand

$\left[\mathrm{Pt}(\mathrm{Cl})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ is a square planar complex. Complete the diagrams below to show the structures of its cis and trans isomers.

Cisplatin

trans isomer
(ii) For any transition metal complex, enantiomerism is exhibited if it has:

- Mirror images that are non-superimposable and
- No internal plane of symmetry

Deduce if the trans isomer of $\left[\mathrm{Pt}(\mathrm{Cl})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ can exhibit enantiomerism.

It cannot exhibit enantiomerism as it has an internal plane of symmetry and / or has mirror images that are superimposable.
(e) The cyclopentadienyl anion is a common ligand in transition metal complexes. This anion can be generated via the following reaction between tert-butoxide anion and cyclopentadiene.

An organic compound is considered aromatic if all of the following three criteria are met:

- it is a cyclic planar compound,
- it has a delocalised π electron system, and
- it has $(4 n+2) \pi$ electrons, where n is an integer.

One such example is benzene.
(i) State the type of reaction that generates the cyclopentadienyl anion from cyclopentadiene.

Acid-Base

(ii) Given that the cyclopentadienyl anion is aromatic, explain fully how it meets the three criteria stated above.

All the carbon atoms in the anion are $\mathbf{s p}^{\mathbf{2}}$ hybridised and have trigonal planar geometry. Hence, the anion is a cyclic planar anion.

The lone pair of electrons on the carbon is in a p-orbital which is overlapping with the $\boldsymbol{\pi}$ bonds of the $2 \mathrm{C}=\mathrm{C}$ bonds.

Hence, there is a delocalised π electron system with $\underline{\mathbf{6} \pi}$ electrons.
[Total: 21]

2 Halogenoalkanes are widely used commercially as they are important precursors for many organic synthesis.
(a) One method of synthesising halogenoalkanes is the free radical substitution of alkanes. For example, butane can be chlorinated in the presence of UV light.

However, this is not a preferred method of synthesising halogenoalkanes as there are multiple by-products. For example, one by-product of the monochlorination of butane is shown below.

3,4-dimethylhexane
(i) Draw the mechanism of the reaction between butane and chlorine that would result in the formation of 3,4 -dimethylhexane. Show the movement of electrons by using suitable curly arrows and indicate any unpaired electron using a dot (\bullet).

Initiation:

Propagation:

Termination:

(ii) State the number of chiral centre(s) present on 3,4-dimethylhexane and the number of stereoisomers that are optically active.

No. of chiral centres: $\underline{\mathbf{2}}$
No. of stereoisomers that are optically active: $\underline{\mathbf{2}}$
(b) One application of halogenoalkanes was the use of chlorofluorocarbons (CFCs) as refrigerants in the $20^{\text {th }}$ century. However, CFCs have been replaced with hydrofluorocarbons (HFCs) due to their detrimental impact on the ozone.

CFCs produce radicals in the presence of UV light. For example, chlorodifluoromethane, CHClF_{2}, readily produces chlorine radicals in the stratosphere. These radicals speed up the depletion of the ozone layer.

HFCs, such as fluoroform, CHF_{3}, do not produce radicals in the presence of UV light.

With reference to the Data Booklet, explain why CHF_{3} does not deplete the ozone layer whereas CHClF_{2} does.
B.E. $(C-F)=485 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B.E. $(\mathrm{C}-\mathrm{Cl})=340 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Since the bond energy of the $\mathrm{C}-\mathrm{F}$ bond is higher than that of the $\mathrm{C}-\mathrm{Cl}$ bond, the $\mathbf{C}-\mathbf{F}$ bond is stronger than the $\mathbf{C - C l}$ bond. Hence, the UV light does not provide sufficient energy to break the C-F bond to produce fluorine radicals.
(c) Halogenoalkanes also find their application as precursors in the synthesis of nitrogen-containing organic compounds. One such synthesis involving bromomethane is shown below.

Orbitals used: $\mathbf{2 s p}$ and 2sp ${ }^{\mathbf{3}}$
(ii) State the type of reaction occurring in step 4 and the reagent(s) and condition(s) needed.

Type of reaction: Reduction
Reagent(s) and condition(s): LiAlH_{4} in dry ether
(iii) Explain why ethanoic acid cannot be used in step 3 to form intermediate \mathbf{Y}.

Ethanoic acid will undergo an acid-base / neutralisation reaction with the amine in intermediate \mathbf{X} instead.
(iv) Compare and explain the basicity of intermediate \mathbf{X} and compound \mathbf{Z}.

Compound $\underline{\mathbf{Z}}$ is more basic than intermediate \mathbf{X}.

The N atom of \mathbf{Z} has $\mathbf{2}$ (or more) electron-donating alkyl groups attached to it, while that in \mathbf{X} only has 1 . Hence, there is a greater electron density of
the N atom of Z and the lone pair of electrons on N is more available for donation to form a dative bond with H^{+}.
[Total: 14]

3 Brown iodine water is decolourised when warmed with ethanol in an alkaline medium. A series of 'clock' experiments were conducted to study the kinetics of this reaction. The time taken for the decolourisation of iodine in each experiment is found in Table 3.1.

Table 3.1

Expt	Volume of $\mathrm{I}_{2}(\mathrm{aq})$ $/ \mathrm{cm}^{3}$	Volume of ethanol $/ \mathrm{cm}^{3}$	Volume of $\mathrm{NaOH}(\mathrm{aq})$ $/ \mathrm{cm}^{3}$	Volume of deionised water $/ \mathrm{cm}^{3}$	Time taken, t $/ \mathrm{s}$
1	5	20	20	10	42
2	5	30	20	0	28
3	10	20	20	5	42

(a) (i) Describe another observable change that occurs as the reaction proceeds.

Yellow ppt of CHI_{3} forms

(ii) Explain why the total volume of reaction mixture is kept constant.

So that the initial concentration of each reactant (in the reaction mixture) is directly proportional to the volume used.
(iii) Given relative rate $\propto \frac{\text { volume of } \mathrm{I}_{2}}{t}$, use this relationship to deduce the order of reaction with respect to [ethanol] and [iodine]. Explain your answer.
Comparing experiments 1 and 2 , when [iodine] is constant and [ethanol] $\times \frac{3}{2}$, time required $\times \frac{2}{3}$ OR relative rate $\times \frac{3}{2}$.
\therefore first-order wrt [ethanol]
Comparing experiments 1 and 3, when [ethanol] is constant and [iodine] doubles, relative rate doubles.
\therefore first-order wrt [iodine]
(b) The clock method can also be used to study the comproportionation reaction between bromate (V) and bromide ions in acidic medium.

$$
\mathrm{BrO}_{3}^{-}+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

A small, fixed amount of phenol and a few drops of litmus are used in every experiment. The time taken for the disappearance of the pink colouration is measured.
(i) Comment if the reaction is expected to occur via an elementary step.

No, it is extremely unlikely for so many (12) reactant species to collide at the appropriate geometry.
(ii) Using a suitable equation, explain the purpose of adding a small, fixed amount of phenol in every experiment.

It ensures that the extent of reaction for every experiment is kept constant / A fixed amount of Br_{2} will react with phenol before the colour change occurs.
[2]
(c) The pH of a reaction mixture can be kept constant in a kinetics experiment using a suitable buffer. Phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, can be used to prepare buffers of varying pH values as it has three $\mathrm{p} K_{\mathrm{a}}$ values of 2.14, 7.20 and 12.37.
(i) State the components present in a phosphate buffer of pH 7.50 .

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \text {and } \mathrm{HPO}_{4}{ }^{2-} \tag{1}
\end{equation*}
$$

(ii) Write a suitable equation to show how the buffer system outlined in (c)(i) can resist change in pH when a small amount of OH^{-}is added.
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$
(d) Two physical properties of two substituted phenols are shown in Table 3.2.

Table 3.2

	p-cresol	4-hydroxybenzyl alcohol
Structure		
$\mathrm{p} K_{\mathrm{a}}$	10.3	9.82
Boiling point $/{ }^{\circ} \mathrm{C}$	202	252

Suggest a reason for the difference in each property.

- $\mathrm{p} K_{\mathrm{a}}$

The electronegative \mathbf{O} atom / the additional electron withdrawing - OH group on 4-hydroxylbenzyl alcohol disperses the negative charge on the phenoxide ion.

This stabilises the conjugate base. Hence, 4-hydroxylbenzyl alcohol dissociates to a larger extent and is a stronger acid than p -cresol.

- Boiling point

4-hydroxylbenzyl alcohol forms more extensive hydrogen bonds with other 4hydroxylbenzyl alcohol molecules (due to the presence of the additional -OH group). Hence, more energy is require to overcome these bonds in boiling.

4 Methanal reacts with propene to form an organic product \mathbf{A}.
(a) The mechanism for the formation of \mathbf{A} is shown in Fig 4.1.

Fig. 4.1
(i) Deduce whether propene is acting as an electrophile or a nucleophile in step 2. Explain your answer.
Propene acts as a nucleophile because it donates an electron pair to the electron deficient carbon of the protonated carbonyl group.
(ii) Complete Fig 4.2 using curly arrow(s) to show the movement of electron pair(s) for step 2.

Fig. 4.2
Mechanism

(iii) In step 2, intermediate \mathbf{B} is produced rather than \mathbf{C}.

Suggest an explanation for the preferential production of intermediate B.

Fig. 4.3

Intermediate \mathbf{B} is a secondary carbocation which is more stable than \mathbf{C}, a primary carbocation, as there are more electron-donating alkyl groups to disperse its positive charge.
(iv) Step 3 may result in three isomeric organic products. Draw the displayed formula of the organic product which is a constitutional isomer of \mathbf{A}.

(b) The reaction between methanal and propene under a different set of conditions gives molecule \mathbf{D} with the following structure.

It can also be made from propene in the 4 -step process shown in Fig 4.4.

Fig. 4.4
(i) Name the product formed in step 1.

1-bromopropan-2-ol
(ii) State the reagents and conditions needed for steps 2 and 3.
step 2: KCN in ethanol, heat under reflux
step 3: dilute HCl , heat under reflux
[2]
(iii) Step 4 is a reduction reaction. Write an equation for step 4 using $[\mathrm{H}]$ to represent the reducing agent.

(c) Molecule E has molecular formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$.

It is an asymmetrical molecule comprising a 6 -membered ring. It does not contain any $\mathrm{O}-\mathrm{O}$ bond and has no reaction with phosphorus pentachloride.
(i) Suggest two structures of \mathbf{E} that are consistent with the information provided.

(ii) The formation of \mathbf{E} involves the nucleophilic attack of methanal on intermediate B.

Complete Fig 4.5 using curly arrow(s) to show the movement of electron pair(s) for this nucleophilic attack.

$+$

B
Fig. 4.5
Hence deduce the likely structure of \mathbf{E} from your answer in (c)(i). Explain your reasoning.

B
The nucleophilic attack using the lone pair of electrons on O atom of methanal on the positively charged carbon atom in intermediate \mathbf{B} will result in the two \mathbf{O} atoms in the product \mathbf{E} being $\mathbf{3}$ carbon atoms apart. Hence the likely structure of \mathbf{E} is as follows.

[2]
[Total: 13]

5 (a) R, T, U and \mathbf{V} are consecutive elements in the third period of the Periodic Table. Among these four elements, \mathbf{T} has the highest melting point and \mathbf{U} has the highest first ionisation energy.
(i) Identify element \mathbf{T}.

Silicon
(ii) The oxides of elements \mathbf{T} and \mathbf{U} can be obtained when the elements are burned in excess oxygen. The oxides of \mathbf{T} and \mathbf{U} have melting points of $1710{ }^{\circ} \mathrm{C}$ and $340^{\circ} \mathrm{C}$ respectively.

Explain briefly the difference in melting points between these oxides.
The oxide of $\mathbf{T}\left(\mathrm{SiO}_{2}\right)$ has a giant molecular structure. Large amount of energy is required to break the strong and extensive covalent bonds between Si and O atoms and hence oxide of T has a higher melting point. [1]

The oxide of $\mathbf{U}\left(\mathrm{P}_{4} \mathrm{O}_{10}\right)$ has a simple molecular structure. Less energy is required to break the weak intermolecular forces of attraction between the molecules and hence oxide of \mathbf{U} has a lower melting point.
[2]
(iii) Describe the reactions, if any, of the oxides of elements \mathbf{R} and \mathbf{V} with water. Include the approximate pH value of any resulting solution formed.

The oxide of $\mathbf{R}\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ is insoluble in water. Hence, the pH of the resulting solution is 7 .

The oxide of $\mathbf{V}\left(\mathrm{SO}_{3}\right)$ reacts readily with water to produce a strongly acidic solution of pH 2 .
(b) Barium and magnesium form iodate(V) compounds, $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ and $\mathrm{Mg}\left(\mathrm{IO}_{3}\right)_{2}$. Upon heating, each of the iodates decomposes to give a solid residue. Purple fumes and a gas that relights a glowing splint are also observed.
(i) Write a balanced equation, with state symbols, for the thermal decomposition of $\mathrm{Mg}\left(\mathrm{IO}_{3}\right)_{2}$.
$\mathrm{Mg}\left(\mathrm{IO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow \mathrm{MgO}(\mathrm{s})+\mathrm{I}_{2}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g})[1]$

The graph below shows the total volume of gas collected over time when 0.1 mol of $\mathrm{Mg}\left(\mathrm{IO}_{3}\right)_{2}$ is heated.

(ii) Sketch, on the same axes above, the graph that would be obtained when 0.1 mol of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ was heated at the same temperature till no further change was observed.

Gentler gradient with same total volume
(iii) Explain the shape of the graph that you have drawn for (b)(ii).
Ba^{2+} has a larger ionic radius and hence a smaller charge density. The polarising power of Ba^{2+} is smaller and the electron cloud of iodate ion is being polarised to a smaller extent. $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ is hence more thermally stable and requires a longer time to decompose.

Since the initial number of moles of iodates remains the same and the number of moles of gas produced are the same, the total volume of gas collected remains unchanged for $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$.
(c) Grignard reagents, RMgX , are organo-magnesium halides derived from an alkyl halide, $R X$, and magnesium.

The use of a Grignard reagent in the conversion of 3-bromopropene to compound \mathbf{Z} is given below.

(i) The alkyl group in RMgX behaves like an anion, R^{-}, and is a strong Lewis base.

Explain why propene is formed as a side product in both steps I and II if both reactions are not carried out under anhydrous conditions.

The nucleophilic carbon from $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}{ }^{-}$will accept a \mathbf{H}^{+}from water / undergoes acid-base reaction with water.
(ii) Suggest the type of reaction occurring in steps II and III.

Step II: Nucleophilic Addition

Step III: Hydrolysis
(iii) A small amount of 3-bromopropene, propanone and \mathbf{Z} was introduced into three separate test tubes. Describe a simple chemical test you could carry out to distinguish 3 -bromopropene from the other two compounds. State what you would observe.

Add $\mathrm{NaOH}(\mathrm{aq})$ and heat, followed by excess $\mathrm{HNO}_{3}(\mathrm{aq})$ and then $\mathrm{AgNO}_{3}(\mathrm{aq})$.
Cream ppt is seen in the test tube containing 3-bromopropene.
No ppt seen for the other two test-tubes.
[Total: 15]

DUNMAN HIGH SCHOOL

 Preliminary Examination 2019 Year 6
H2 CHEMISTRY

9729/03

Paper 3 Free Response
25 September 2019 2 hours

Additional Materials: Data Booklet
Answer Booklet

INSTRUCTIONS TO CANDIDATES

1 Write your name, index number and class on this cover page.
2 Write your answers on the separate answer booklet provided.
3 Write in dark blue or black pen.
4 You may use an HB pencil for any diagrams or graphs.
5 Start each question on a fresh page.
*[Marks will be deducted if you fail to do so.]
6 Do not use staples, paper clips, glue or correction fluid.

Section A

7 Answer all questions.

Section B

8 Answer one question.

The number of marks is given in brackets [] at the end of each question or part question.
You are advised to show all workings in calculations.
You are reminded of the need for good English and clear presentation in your answers.

Section A

Answer all the questions from this section.
1 To facilitate better plant growth, there is widespread use of fertilisers and soil additives in the agricultural sector.
(a) Agricultural lime is a soil additive used to increase soil pH so as to facilitate uptake of plant nutrients such as nitrogen and phosphorous. It is usually made up of a combination of calcium carbonate and magnesium carbonate.

A manufacturer claims that a 2.00 g sample of agricultural lime contains 92% calcium carbonate ($M_{r}=100.1$) and 8% magnesium carbonate ($M_{r}=84.3$) by mass.

To verify the manufacturer's claim, the following steps were carried out:
Step 1 The solid carbonate mixture was dissolved in $250 \mathrm{~cm}^{3}$ of $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid.

Step 2 A $25 \mathrm{~cm}^{3}$ aliquot of this resultant solution was titrated with $0.14 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium hydroxide.

It was found that $12.50 \mathrm{~cm}^{3}$ of potassium hydroxide was required for complete neutralisation.
(i) Based on the manufacturer's claim of 92% calcium carbonate and 8% magnesium carbonate by mass, calculate the theoretical amount, in moles, of each carbonate present in the sample of agricultural lime.
(ii) Use the information above to calculate the amount of HCl that reacted with the carbonate mixture in step 1 .
(iii) The manufacturer's claim is considered valid if the difference between the actual and theoretical total amount of carbonate present in the sample is less than 0.0010 mol .

Using your answers in (a)(i) and (a)(ii), determine if the manufacturer's claim is valid.
(iv) When solid magnesium chloride is dissolved in water, it produces a slightly acidic solution of pH 6.5 .

Using appropriate equation(s), explain the above observation.
(v) However, the resultant solution is neutral when solid calcium chloride is dissolved in water.

By quoting relevant values from the Data Booklet, explain why a solution of calcium chloride is neutral while a solution of magnesium chloride is slightly acidic.
(b) Nitrogen fertilisers are also important in enhancing the growth of plants. Almost all nitrogen fertilisers are produced from ammonia, which in turn, is manufactured in the Haber Process. This process combines nitrogen and hydrogen gas to form ammonia according to the following equilibrium.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})=2 \mathrm{NH}_{3}(\mathrm{~g})
$$

(i) State how the percentage yield of ammonia will change with increasing pressure.
(ii) $\quad \mathrm{N}_{2}$ and H_{2} was introduced into an enclosed vessel at $300^{\circ} \mathrm{C}$. The initial partial pressures of N_{2} and H_{2} were 2 atm and 3 atm respectively. After an equilibrium has been established, the total pressure in the vessel was 4.7 atm.

Calculate the value of K_{p} at $300^{\circ} \mathrm{C}$, stating its units.
(iii) 1 atm of N_{2} was added to the equilibrium mixture in (b)(ii) at $300^{\circ} \mathrm{C}$ and time was allowed for a new equilibrium to be established. State and explain how the K_{p} value at this point will compare to that in (b)(ii).
[Total: 15]

2 Mandelic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$, is a white crystalline solid that is soluble in water.
(a) Benzaldehyde is a useful starting material for the preparation of mandelic acid.

Suggest a two-step synthesis of mandelic acid from benzaldehyde, stating clearly the reagents and conditions used and the structure of the intermediate.
(b) Suggest how you would distinguish between aqueous solutions of mandelic acid and nitric acid of the same concentration by means of a physical method.

Explain your reasoning.
(c) (i) $20 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ mandelic acid solution was titrated with $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide. Calculate the concentration of the salt, sodium mandelate, formed at equivalence point.
(ii) Hence calculate the pH of the solution at equivalence point, given $\mathrm{p} K_{\mathrm{a}}$ of mandelic acid is 3.41 .
(iii) Use your answer in (c)(ii) to identify a suitable indicator from Table 2.1 for the titration. Explain your choice.

Table 2.1

Indicator	pH range
Methyl red	$4.2-6.3$
Phenolphthalein	$8.2-10.0$
Titan yellow	$12.0-13.0$

(d) (i) To another $20 \mathrm{~cm}^{3}$ sample of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ mandelic acid solution, excess sodium carbonate was added and the gas liberated was collected in a gas syringe at $50^{\circ} \mathrm{C}$ and atmospheric pressure.

Calculate the volume of gas you would expect to obtain at the end of the reaction.
(ii) The volume of gas collected was found to be smaller than the calculated value in (d)(i). Assuming that no gas escaped in the experiment, suggest two reasons for the discrepancy.
[Total: 15]

3 (a) High levels of acrylamide, which is harmful to human health, are produced when starchy foods are heated at high temperature.

The formation of acrylamide begins with the reaction between an aldehyde and asparagine, $\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{2} \mathrm{CONH}_{2}\right) \mathrm{COOH}$. This process involves the formation of carbinolamine and a Schiff base.

(i) State the type of reaction occurring in stages 1 and 2 respectively.

The mechanism for stage 1 is thought to involve the following three steps.
step 1 Nucleophilic attack of $\alpha-\mathrm{NH}_{2}$ of asparagine on carbonyl carbon atom to form the following intermediate where R_{1} is $-\mathrm{CH}_{2} \mathrm{CONH}_{2}$.

step 2 The intermediate is deprotonated by a water molecule, breaking the $\mathrm{N}-\mathrm{H}$ bond.
step 3 The protonated water molecule from step 2 then transfers the proton to the negatively charged oxygen to form carbinolamine.
(ii) Using the information above, draw the mechanism for stage 1 by showing relevant lone pairs of electrons, dipoles and curly arrows to represent the movement of electron pairs.
(iii) The experiment was repeated with the use of an aparaginase enzyme which hydrolyses asparagine, $\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{2} \mathrm{CONH}_{2}\right) \mathrm{COOH}$ to aspartic acid, $\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{2} \mathrm{COOH}\right) \mathrm{COOH}$. The level of acrylamide, $\mathrm{CH}_{2}=\mathrm{CHCONH}_{2}$ in food products is reduced by 99%. Suggest a reason why this is so.
(b) Several aldehydes can be found in starchy foods. Fixed amount of each aldehyde was heated with asparagine. The mass of acrylamide formed from each aldehyde is shown in Table 3.1 below.

Table 3.1

Aldehyde	Structure	Mass of acrylamide ($\mu \mathrm{g}$)
glucose		1454
ribose		2425
glyceraldehye		2669
glyoxal		3936

(i) In solution, glucose molecules can exist in an isomeric cyclic form. The oxygen of the hydroxyl group on carbon number 5 joins to the carbonyl carbon atom and the total number of hydroxyl groups remain unchanged. The mechanism for the formation of the isomeric cyclic form is similar to that for stage 1 in (a).

Draw the structural formula of glucose in the isomeric cyclic form.
(ii) Using the data in Table 3.1, state the relationship between the mass of acrylamide formed and the length of carbon chain of the aldehydes. Suggest a reason for it.
(c) The structures of two amino acids, asparagine and aspartic acid, are given below.

asparagine

aspartic acid
(i) Suggest a simple chemical test to distinguish between asparagine and aspartic acid.
(ii) The three $\mathrm{p} K_{\mathrm{a}}$ values associated with aspartic acid are 1.88, 3.65 and 9.60.

Suggest the major species present in solutions of aspartic acid with the following pH values.

- pH 3
- pH 7
(iii) The following equilibrium exists in an aqueous solution of asparagine at pH 2.02.

Calculate the ratio of the concentration of asparagine zwitterion to the concentration of the protonated cation when the pH of the solution is 3.10 .

You may represent the cation as HA and the zwitterion as A^{-}in your working.
[Total: 15]

4 (a) Prilocaine is a local anaesthesia used in dentistry.

It can be synthesised by reacting propylamine, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$, with a suitable alkyl halide.
(i) Draw the structure of the alkyl halide.

Propylamine can be formed from bromoethane in 2 steps.
(ii) Suggest the reagents and conditions needed for each step.
(b) Halothane is a general anaesthetic given by inhalation.

halothane
0.1 mol of (+)-halothane is warmed with 0.1 mol of aqueous sodium hydroxide.
(i) State which halogen atom reacts. Give a reason for your answer.

The progress of the reaction can be followed using a polarimeter as the reactant rotates plane-polarised light while the resulting mixture is optically inactive.
(ii) Draw the mechanism for the reaction between halothane and sodium hydroxide.
(iii) Considering your answer to (b)(ii), suggest a reason why it is unexpected for halothane to undergo substitution via the mechanism drawn.
(c) The presence of alkyl halides can be verified by warming the sample with aqueous sodium hydroxide, followed by addition of nitric acid and lastly silver nitrate.

A student used sulfuric acid instead of nitric acid, leading to the formation of silver(I) sulfate precipitate, $\mathrm{Ag}_{2} \mathrm{SO}_{4}$.
(i) Explain how the formation of silver(I) sulfate affects the test.
(ii) Calculate the solubility of silver(I) sulfate given that its K_{sp} value is 1.2×10^{-5}.
(iii) State and explain how the solubility of silver(I) sulfate is affected by the addition of aqueous ammonia.
(d) Table 4.1 contains thermochemical information related to silver(I) sulfate.

Table 4.1

Enthalpy change of formation of silver(I) sulfate	$-717 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy change of formation of gaseous sulfate anions	$+126 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy change of atomisation of silver	$+284 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy change of hydration of silver cations	$-473 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy change of hydration of sulfate anions	$-1035 \mathrm{~kJ} \mathrm{~mol}^{-1}$

(i) Using relevant information from the Data Booklet and Table 4.1, draw an energy cycle to determine the lattice energy of silver(I) sulfate.
(ii) Using your answer to (d)(i) and appropriate data in Table 4.1, calculate the standard enthalpy change of solution for silver(I) sulfate.
[Total: 15]

Section B

Answer one question from this section.
5 (a) Fig 5.1 shows a sequence of reactions involving acrylic acid, the simplest unsaturated carboxylic acid.

Fig. 5.1
(i) Compound \mathbf{H} effervesces with sodium and compound \mathbf{J} reacts with 2,4-dinitrophenylhydrazine.

Suggest structures for compounds \mathbf{H} and \mathbf{J}.
(ii) Suggest reagents and conditions for steps 1 and 2 in Fig.5.1.
(iii) Compound G, an isomer of acrylic acid, is neutral and does not react with Tollens' reagent. Deduce the structure of \mathbf{G}.
(b) α-hydroxyacrylic acid undergoes addition polymerisation to give a polymer, PHA.

(i) Suggest and explain the relative acidities of α-hydroxyacrylic acid and acrylic acid, $\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{H}$.
(ii) Studies suggests that PHA interacts with divalent metal cations such as calcium and magnesium under alkaline conditions.

Suggest and explain the type of interaction that is likely to exist between PHA and the metal cations in alkaline medium.
(c) PHA can form intramolecular lactone rings between -COOH and -OH groups on adjacent repeat units. Part of the structure of PHA with an intramolecular ring is shown below.

(i) State the type of reaction occurring in the formation of the lactone ring.

A series of experiments were carried out to investigate the rate of the lactone ring build-up of PHA as a function of pH at constant temperature.

The rate equation for the reaction is given as follows.

$$
\text { rate }=k[\mathrm{PHA}]^{m}\left[\mathrm{H}^{+}\right]^{n}
$$

The reaction was observed to follow pseudo first order kinetics with respect to PHA and the following graph of the observed rate constant against pH was obtained.

(ii) Suggest how the pseudo first order kinetics with respect to PHA was achieved experimentally.
(iii) From the graph, identify the pH range for which the value of n, order of reaction with respect to H^{+}, is zero.

Explain your reasoning.
(iv) At a certain pH that lies within the range identified in (c)(iii), the observed rate constant was found to be $1.14 \times 10^{-4} \mathrm{~s}^{-1}$. Calculate the time taken for 75% of lactone rings to be formed at this pH .
(v) Hence sketch a graph of percentage of lactone ring formation against time, assuming that the reaction goes to completion. Label clearly how the percentage of lactone changes with time.
(d) The PHA samples used in the kinetic study was prepared by dilution of the reagent solution with heavy water, $\mathrm{D}_{2} \mathrm{O}$.
[Deuterium, $\mathrm{D}={ }^{2} \mathrm{H}$]
(i) Suggest, with reasoning, how the first ionisation energy of deuterium would compare with that of hydrogen.
(ii) Beams of D^{+}and H^{+}particles, at the same speed, were passed through an electric field.

Explain, qualitatively, how the angle and direction of deflection of the two beams would compare.
(iii) Water enriched in heavier oxygen-18 isotope, $\mathrm{H}_{2}{ }^{18} \mathrm{O}$, is also commercially available.

Draw the orbital from which the electron is removed in the third ionisation energy of an oxygen-18 isotope.
[Total: 20]

6 (a) The direct oxidation of alcohols in a fuel cell represents potentially the most efficient method of obtaining useful energy from a renewable fuel.

Direct-ethanol fuel cell or DEFC is one common example of fuel cells where ethanol is fed directly into the cell to produce carbon dioxide. Hydrogen ions travel through the polymer electrolyte membrane (PEM) to the electrode to react with oxygen to produce water, while the electrons travel through the external electrical circuit to generate electrical power.

(i) Write the ion-electron half-equations for the reactions which take place at the electrodes of the DEFC, and hence an overall equation for the cell reaction.
(ii) The cell is capable of producing an e.m.f. of +1.62 V . By using suitable data from the Data Booklet, suggest a value for the E^{\ominus} of the $\mathrm{CO}_{2} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ electrode reaction.
(iii) Pyrogallol solution is an organic compound that absorbs oxygen efficiently. Explain, qualitatively, the change in the overall $E_{\text {cell }}$ value measured when the electrodes are contaminated with pyrogallol solution.
(iv) Suggest a possible advantage of using the DEFC compared to a hydrogen fuel cell.
(b) One method for the construction of the fuel cell involves electroplating a layer of platinum onto the surface of the PEM. The electrolyte used for this process is an aqueous solution of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ and the PEM is the cathode in the electrolytic cell.
(i) Write the half-equation for the reaction occurring at the cathode.
(ii) Calculate the mass of platinum deposited onto a PEM with surface area of $25 \mathrm{~cm}^{2}$ if a current with density of $3.5 \times 10^{-3} \mathrm{~A} \mathrm{~cm}^{-2}$ was passed through the circuit for 75 minutes.
(c) Selective oxidation of alcohols to aldehydes and ketones is a key reaction in organic synthesis, both for fundamental research and industrial manufacturing.

When alkaline potassium manganate(VII) is added to a primary alcohol, the purple solution first becomes dark green and then produces a brown precipitate.
(i) State the identities of the dark green solution and the brown precipitate. You may find the use of Data Booklet to be relevant.

When acidified potassium manganate(VII) is added to a secondary alcohol, the purple solution decolourises. Propan-2-ol reacts with acidified potassium manganate(VII) to yield propanone, according to the unbalanced equation as shown below.

$$
\mathrm{CH}_{3}{ }^{a} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{CH}_{3}{ }^{b} \mathrm{COCH}_{3}+\mathrm{Mn}^{2+}
$$

(ii) State the oxidation number of ${ }^{a} \mathrm{C}$ and ${ }^{b} \mathrm{C}$ respectively.
(iii) Hence, or otherwise, determine the reacting mole ratio of propan-2-ol to potassium manganate(VII).
(iv) Predict the organic products of the following reactions with $\mathrm{KMnO}_{4}(\mathrm{aq})$.

(d) Devise a synthetic pathway (in no more than 3 steps) for the following conversion.

In your answer, state the reagents and conditions required for each step as well as the structure of any intermediates formed.

Name:	Answers	Index Number:		Class:

H2 CHEMISTRY

9729/03
Paper 3 Free Response

Additional Materials: Data Booklet
Answer Booklet

INSTRUCTIONS TO CANDIDATES

1 Write your name, index number and class on this cover page.
2 Write your answers on the separate answer booklet provided.
3 Write in dark blue or black pen.
4 You may use an HB pencil for any diagrams or graphs.
5 Start each question on a fresh sheet of paper.
*[Marks will be deducted if you fail to do so.]
6 Do not use staples, paper clips, glue or correction fluid.

Section A

7 Answer all questions

Section B

8 Answer one question.

The number of marks is given in brackets [] at the end of each question or part question.
You are advised to show all workings in calculations.
You are reminded of the need for good English and clear presentation in your answers.

Section A

1 To facilitate better plant growth, there is widespread use of fertilisers and soil additives in the agricultural sector.
(a) Agricultural lime is a soil additive used to increase soil pH so as to facilitate uptake of plant nutrients such as nitrogen and phosphorous. It is usually made up of a combination of calcium carbonate and magnesium carbonate.

A manufacturer claims that a 2.00 g sample of agricultural lime contains 92% calcium carbonate ($M_{r}=100.1$) and 8% magnesium carbonate ($M_{r}=84.3$) by mass.

To verify the manufacturer's claim, the following steps were carried out:
Step 1 The solid carbonate mixture was dissolved in $250 \mathrm{~cm}^{3}$ of $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid.

Step 2 A $25 \mathrm{~cm}^{3}$ aliquot of this resultant solution was titrated with $0.14 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium hydroxide.

It was found that $12.50 \mathrm{~cm}^{3}$ of potassium hydroxide was required for complete neutralisation.
(i) Based on the manufacturer's claim of 92% calcium carbonate and 8% magnesium carbonate by mass, calculate the amount, in moles, of each carbonate present in the sample of agricultural lime.

Mass of CaCO_{3} present $=92 \% \times 2.00 \mathrm{~g}=1.84 \mathrm{~g}$
Mass of MgCO_{3} present $=8 \% \times 2.00 \mathrm{~g}=0.16 \mathrm{~g}$
Moles of CaCO_{3} present
$=1.84 \mathrm{~g} \div 100.1 \mathrm{~g} \mathrm{~mol}^{-1}=0.018382=\underline{\mathbf{0 . 0 1 8 4} \mathrm{mol}}$
Moles of MgCO_{3} present
$=0.16 \mathrm{~g} \div 84.3 \mathrm{~g} \mathrm{~mol}^{-1}=0.0018980=\underline{\mathbf{0 . 0 0 1 9 0} \mathbf{~ m o l}}$
(ii) Use the information above to calculate the amount of HCl that reacted with the carbonate mixture in Step 1.

Moles of KOH reacted with excess $\mathrm{HCl}=\frac{12.50}{1000} \times 0.14=0.00175 \mathrm{~mol}$
Moles of HCl present in $25 \mathrm{~cm}^{3}$ aliquot $=0.00175 \mathrm{~mol}$
Moles of excess HCl present in $250 \mathrm{~cm}^{3}$ solution
$=0.00175 \times \frac{250}{25}=\underline{\mathbf{0 . 0 1 7 5 ~ m o l}}$
Total moles of HCl used $=\frac{250}{1000} \times 0.25=0.0625 \mathrm{~mol}$
Moles of HCl reacted with carbonates $=0.0625-0.0175=\underline{\mathbf{0 . 0 4 5} \mathbf{~ m o l}}$
(iii) The manufacturer's claim is considered valid if the difference between the actual and theoretical total amount of carbonate present in the sample is less than 0.0010 mol .

Using your answers in (a)(i) and (a)(ii), determine if the manufacturer's claim is valid.
$2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Total moles of carbonates present $=0.045 \div 2=\underline{\mathbf{0 . 0 2 2 5} \mathbf{~ m o l}}$
Total moles of carbonates based on manufacturer's claim
$=0.0184+0.00190=\underline{0.0203 \mathrm{~mol}}$
Since the difference between the calculated moles and theoretical moles of carbonates is more than $\mathbf{0 . 0 0 1 0 \mathrm { mol } , \text { , the manufacturer's claim is false. }}$
(iii) When solid magnesium chloride is dissolved in water, it produces a slightly acidic solution of pH 6.5 .

Using appropriate equation(s), explain the above observation.
$\mathrm{MgCl}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{Cl}^{-}$
$\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{H}_{2} \mathrm{O}=\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{+}+\mathrm{H}_{3} \mathrm{O}^{+}[1]$
MgCl_{2} dissolves in water and $\mathbf{M g}^{\mathbf{2 +}}$ undergoes partial hydrolysis in water to produce $\mathrm{H}_{3} \mathrm{O}^{+}$, giving a slightly acidic solution.
(iv) However, the resultant solution is neutral when solid calcium chloride is dissolved in water.

By quoting relevant values from the Data Booklet, explain why a solution of calcium chloride is neutral while a solution of magnesium chloride is slightly acidic.

Cationic radius of $\mathrm{Mg}^{2+}=0.065 \mathrm{mn}$
Cationic radius of $\mathrm{Ca}^{2+}=0.099 \mathrm{mn}$
Since the cationic radius of Ca^{2+} is larger than that of $\mathrm{Mg}^{2+}, \underline{\mathbf{C a}^{2+}}$ has a lower charge density.

As such, it polarises the O-H bond of the water molecule to a lesser extent and no H^{+}ions are produced. OR Ca^{2+} does not hydrolyse in water to produce H^{+}ions. Hence, the solution is neutral.
(b) Nitrogen fertilisers are important in enhancing the growth of plants. Almost all nitrogen fertilisers are produced from ammonia, which in turn, is manufactured in the Haber Process. This process combines nitrogen and hydrogen gas to form ammonia according to the following equilibrium.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad-2 \mathrm{NH}_{3}(\mathrm{~g})
$$

(i) State how the percentage yield of ammonia will change with increasing pressure.

Percentage yield of ammonia will increase with increasing pressure.
(ii) $\quad \mathrm{N}_{2}$ and H_{2} was introduced into an enclosed vessel at $300^{\circ} \mathrm{C}$. The initial partial pressures of N_{2} and H_{2} were 2 atm and 3 atm respectively. After an equilibrium has been established, the total pressure in the vessel was 4.7 atm .

Calculate the value of K_{p} at $300^{\circ} \mathrm{C}$, stating its units.

	$\mathrm{N}_{2}(\mathrm{~g})+$	$3 \mathrm{H}_{2}(\mathrm{~g})$	-	$2 \mathrm{NH}_{3}(\mathrm{~g})$
Initial partial pressure / atm	2	3		0
Change / atm	-x	-3 x		+2 x
Eqm partial pressure $/$ atm	$2-\mathrm{x}$	$3-3 \mathrm{x}$		2 x

Total pressure $=4.7 \mathrm{~atm}$
Hence, $2-x+3-3 x+2 x=4.7$
$\mathrm{x}=\underline{0.15 \mathrm{~atm}}$

	$\mathrm{N}_{2}(\mathrm{~g})+$	$3 \mathrm{H}_{2}(\mathrm{~g})$	-	$2 \mathrm{NH}_{3}(\mathrm{~g})$
Eqm partial pressure atm	1.85	2.55		0.30

$K_{\mathrm{p}}=\frac{P_{\mathrm{NH}_{3}}{ }^{2}}{P_{N_{2}}\left[H_{2}\right]^{3}}=\frac{(0.30)^{2}}{(1.85)(2.55)^{3}}=0.0029339=\underline{\mathbf{0 . 0 0 2 9 3} \mathrm{atm}^{-2}}$
(iii) 1 atm of N_{2} was added to the equilibrium mixture in (b)(ii) at $300^{\circ} \mathrm{C}$ and time was allowed for a new equilibrium to be established. State and explain how the K_{p} value at this point will compare to that in (b)(ii).

The K_{p} value will remain constant / be the same as K_{p} is only dependent on temperature.
[Total: 15]

2 Mandelic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$, is a white crystalline solid that is soluble in water.
(a) Benzaldehyde is a useful starting material for the preparation of mandelic acid.

Suggest a two-step synthesis of mandelic acid from benzaldehyde, stating clearly the reagents and conditions used and the structure of the intermediate.

(b) Suggest how you would distinguish between aqueous solutions of mandelic acid and nitric acid of the same concentration by means of a physical method.

Explain your reasoning.
Measure the $\mathbf{p H}$ of the aqueous solutions using $\mathbf{p H}$ paper / meter. The solution of a lower pH is that of nitric acid.

Nitric acid is a strong acid while mandelic acid is a weak acid. Nitric acid dissociates to a greater extent in water to produce a higher concentration of \mathbf{H}^{+} ions which results in a lower pH for its aqueous solution.
(c) (i) $20 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ mandelic acid solution was titrated with $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide. Calculate the concentration of the salt, sodium mandelate, formed at equivalence point.

Let mandelic acid be HA.
$H A \equiv A^{-}$
moles of $\mathrm{A}^{-}=0.020 \times 1.0=0.0200 \mathrm{~mol}$ total volume at equivalence point $=20+10=30 \mathrm{~cm}^{3}$
$[\mathrm{NaA}]=\left[\mathrm{A}^{-}\right]=0.0200 / 0.030=\underline{\mathbf{0 . 6 6 7} \mathrm{mol} \mathrm{dm}^{-3}}$
(ii) Hence calculate the pH of the solution at equivalence point, given $\mathrm{p} K_{\mathrm{a}}$ of mandelic acid is 3.41 .

At equivalence point, salt hydrolysis occurs:

$K_{b}\left(\mathrm{~A}^{-}\right)=10^{-14} / 10^{-3.41}=2.5704 \times 10^{-11} \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{OH}^{-}\right]=\sqrt{\left(2.5704 \times 10^{-11}\right)(0.66667)}=4.1396 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{pH}=14-\mathrm{pOH}=14+\lg \left(4.1396 \times 10^{-6}\right)=\underline{8.62}$
(iii) Use your answer in (c)(ii) to identify a suitable indicator from Table 2.1 for the titration. Explain your choice.

Table 2.1

Indicator	pH range
Methyl red	$4.2-6.3$
Phenolphthalein	$8.2-10.0$
Titan yellow	$12.0-13.0$

Phenolphthalein

The pH range of phenolphthalein lies within the region of rapid pH change (around 8.62).
(d) (i) To another $20 \mathrm{~cm}^{3}$ sample of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ mandelic acid solution, excess sodium carbonate was added and the gas liberated was collected in a gas syringe at $50^{\circ} \mathrm{C}$ and atmospheric pressure.

Calculate the volume of gas you would expect to obtain at the end of the reaction.

$$
\begin{aligned}
& 2 \mathrm{HA} \equiv \mathrm{CO}_{2} \\
& \text { moles of } \mathrm{CO}_{2}=1 / 2 \times 0.0200=0.0100 \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V} & =\mathrm{nRT} / \mathrm{p} \\
& =[(0.0100)(8.31)(323)] / 101325 \\
& =2.65 \times 10^{-4} \mathrm{~m}^{3} \\
& =\underline{\mathbf{2 6 5} \mathrm{cm}^{3}}
\end{aligned}
$$

(ii) The volume of gas collected was found to be smaller than the calculated value in (d)(i). Assuming that no gas escaped in the experiment, suggest two reasons for the discrepancy.

The volume of gas was measured after the gas has cooled (at constant pressure) from $50^{\circ} \mathrm{C}$.

The gas particles have significant intermolecular forces of attraction that result in them being closer together and hence occupy a smaller than expected volume.
[Total: 15]

3 (a) High levels of acrylamide, which is harmful to human health, are produced when starchy foods are heated at high temperature.

The formation of acrylamide begins with the reaction between an aldehyde and asparagine, $\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{2} \mathrm{CONH}_{2}\right) \mathrm{COOH}$. This process involves the formation of carbinolamine and a Schiff Base.

(i) State the type of reaction for stages 1 and 2 respectively.

Stage 1: Nucleophilic Addition
Stage 2: Elimination
The mechanism for stage 1 is thought to involve the following three steps.
step 1 Nucleophilic attack of $\alpha-\mathrm{NH}_{2}$ of asparagine on carbonyl carbon atom to form the following intermediate where R_{1} is $-\mathrm{CH}_{2} \mathrm{CONH}_{2}$.

step 2 The intermediate is deprotonated by a water molecule, breaking the $\mathrm{N}-\mathrm{H}$ bond.
step 3 The protonated water molecule from step 2 then transfers the proton to the negatively charged oxygen to form carbinolamine.
(ii) Use the information above, draw the mechanism for stage 1 by showing relevant lone pairs of electrons, dipoles and curly arrows to represent the movement of electron pairs.

Step 1: Nucleophilic addition

Step 2: $\mathrm{N}-\mathrm{H}$ bond breaks in the presence of water solvent.

where R_{1} is $-\mathrm{CH}_{2} \mathrm{CONH}_{2}$
Step 3: The protonated water transfers the proton to the negatively charged oxygen to form carbinolamine.

where R_{1} is $-\mathrm{CH}_{2} \mathrm{CONH}_{2}$
(iii) The experiment was repeated with the use of an aparaginase enzyme which hydrolyses asparagine, $\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{2} \mathrm{CONH}_{2}\right) \mathrm{COOH}$ to aspartic acid, $\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{2} \mathrm{COOH}\right) \mathrm{COOH}$. The level of acrylamide, $\mathrm{CH}_{2}=\mathrm{CHCONH}_{2}$ in food products is reduced by 99%. Suggest a reason why this is so.

Amide group of acrylamide comes from the side chain amide group of asparagine. (During the reaction, the side chain amide group of asparagine is incorporated into acrylamide as the amide bond.) Asparaginase hydrolyses the side chain amide group of asparagine, forming aspartic acid and ammonia, and hence acrylamide is no longer produced.
(b) Several aldehydes can be found in starchy foods. Fixed amount of each aldehyde was heated with asparagine. The mass of acrylamide formed from each aldehyde is shown in Table 3.1 below.

Table 3.1

Aldehyde	Structure	Mass of acrylamide ($\mu \mathrm{g}$)
glucose		1454

ribose		2425
glyceraldehye		2669
glyoxal		3936

(i) In solution, glucose molecules can exist in an isomeric cyclic form. The oxygen of the hydroxyl group on carbon number 5 joins to the carbonyl carbon atom and the total number of hydroxyl groups remain unchanged. The mechanism for the formation of the isomeric cyclic form is similar to that for stage 1 in (a).

Draw the structural formula of glucose in the isomeric cyclic form.

(ii) Using the data in Table 3.1, state the relationship between the mass of acrylamide formed and the length of carbon chain of the aldehydes. Suggest a reason for it.

Higher mass of acrylamide obtained when shorter carbon chain is reacted.
Aldehydes with shorter carbon chain are more reactive.
Possible reasons:

- Carbonyl carbon of shorter carbon chain sugar is more electrophilic, more susceptible to nucleophilic attack from $\alpha-\mathrm{NH}_{2}$ of asparagine;
- Carbonyl carbon of shorter carbon chain is less sterically hindered for nucleophilic attack from $\alpha-\mathrm{NH}_{2}$ of asparagine;
- Long carbon chain such as ribose or glucose able to form cyclic (hemiacetal) structure, therefore lower the proportion of carbonyl group for nucleophilic attack.
(c) The structures of two amino acids, asparagine and aspartic acid are given below.

asparagine

aspartic acid
(i) Suggest a simple chemical test to distinguish between asparagine and aspartic acid.

Heat both with dilute NaOH in water bath.
Asparagine give off ammonia which turns moist red litmus paper blue but aspartic acid does not give off ammonia gas.
(ii) The three pKa values associated with aspartic acid are 1.88, 3.65 and 9.60. Suggest the major species present in solutions of aspartic acid with the following pH values.

- pH 3
- pH 7

pH 3

pH 7
(iii) The following equilibrium exists in an aqueous solution of asparagine at pH 2.02 .

Calculate the ratio of the concentration of asparagine zwitterion to the concentration of the protonated cation when the pH of the solution is 3.10 .

You may represent the cation as HA and the zwitterion as A^{-}in your working.

At $\mathrm{pH} 2.02=\mathrm{p} K_{\mathrm{a}}$, the equilibrium exists. The concentration of protonated cation and zwitterion would be the same. At pH 3.10, the equilibrium position is shifted to the right, concentration of zwitterion is expected to be larger than concentration of the protonated cation.

Use pH of solution $=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{\left[\mathrm{~A}^{-}\right]}{[\mathrm{HA}]}$
$3.10=2.02+\log _{10} \frac{\left[\mathrm{~A}^{-}\right]}{[\mathrm{HA}]}$
$\log _{10} \frac{\left[\mathrm{~A}^{-}\right]}{[\mathrm{HA}]}=1.08$
$\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=10^{1.08}=12.02=\underline{\mathbf{1 2 . 0}}$
[Total: 15]

4 (a) Prilocaine is a local anaesthesia used in dentistry.

prilocaine
It can be synthesised by reacting propylamine, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$, with a suitable alkyl halide.
(i) Draw the structure of the alkyl halide.

$$
\mathrm{X}=\mathrm{Cl}, \mathrm{Br} \text { or } \mathrm{I}
$$

Propylamine can be formed from bromoethane in 2 steps.
(ii) Suggest the reagents and conditions needed for each step.

Step 1: ethanolic KCN, heat under reflux
Step 2: H_{2} with Ni catalyst, heat OR LiAlH_{4} in dry ether
(b) Halothane is a general anaesthetic given by inhalation.

halothane
0.1 mol of (+)-halothane is warmed with 0.1 mol of aqueous sodium hydroxide.
(i) State which halogen atom reacts. Give a reason for your answer.

Bromine as the $\mathrm{C}-\mathrm{Br}$ bond is the weakest $\mathrm{C}-\mathrm{X}$ bond present.

The progress of the reaction can be followed using a polarimeter as the reactant rotates plane-polarised light while the resulting mixture is optically inactive.
(ii) Draw the mechanism for the reaction between halothane and sodium hydroxide.

Unimolecular nucleophilic substitution $\left(\mathrm{S}_{\mathrm{N}} 1\right.$)

(iii) Considering your answer to (b)(ii), suggest a reason why it is unexpected for halothane to undergo substitution via the mechanism drawn.

The presence of multiple electronegative atoms / electron-withdrawing groups intensify the positive charge on the carbocation intermediate, destabilising it.
(c) The presence of alkyl halides can be verified by warming the sample with aqueous sodium hydroxide, followed by addition of nitric acid and lastly silver nitrate.

A student used sulfuric acid instead of nitric acid, leading to the formation of silver(I) sulfate precipitate, $\mathrm{Ag}_{2} \mathrm{SO}_{4}$.
(i) Explain how the formation of silver(I) sulfate affects the test.

A ppt will be observed whether an alkylhalide was present / It gives a false positive result / cannot distinguish between white silver(I) sulfate and white silver chloride ppt
(ii) Calculate the solubility of silver(I) sulfate given that its K_{sp} value is 1.2×10^{-5}.
$\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s})=2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
$K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{SO}_{4}{ }^{2-}\right]$
$1.2 \times 10^{-5}=(2 \mathrm{~s})^{2}(\mathrm{~s})=4 \mathrm{~s}^{3}$
$\mathrm{s}=\underline{\mathbf{0 . 0 1 4 4} \mathrm{mol} \mathrm{dm}^{-3}}$
(iii) State and explain how the solubility of silver(I) sulfate is affected by the addition of aqueous ammonia.

Solubility increases / silver(I) sulfate ppt dissolves due to formation of soluble $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$complex.
(d) Table 4.1 contains thermochemical information related to silver(I) sulfate.

Table 4.1

Enthalpy change of formation of silver(I) sulfate	$-717 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy change of formation of gaseous sulfate anions	$+126 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy change of atomisation of silver	$+284 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy change of hydration of silver cations	$-473 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy change of hydration of sulfate anions	$-1035 \mathrm{~kJ} \mathrm{~mol}^{-1}$

(i) Using relevant information from the Data Booklet and Table 4.1, draw an energy cycle to determine the lattice energy of silver(I) sulfate.

By Hess' Law,

$$
L E=-126-2(731)-2(284)-717=\underline{-2873} \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(ii) Using your answer to (d)(i) and appropriate data in Table 4.1, calculate the standard enthalpy change of solution for silver(I) sulfate.

$$
\Delta H_{\text {sol }}=\sum \Delta H^{\ominus} \text { hyd }-L E=2(-473)-1035+2873=+892 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Section B

Answer one question from this section

5 (a) Fig 5.1 shows a sequence of reactions involving acrylic acid, the simplest unsaturated carboxylic acid.

Fig. 5.1
(i) Compound \mathbf{H} effervesces with sodium and compound \mathbf{J} reacts with 2,4-dinitrophenylhydrazine.

Suggest structures for compounds \mathbf{H} and \mathbf{J}.

(ii) Suggest reagents and conditions for steps 1 and 2 in Fig. 5.1.

Step 1: LiAlH_{4} in dry ether
Step 2: $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in dilute/aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat with immediate distillation
(iii) Compound G, an isomer of acrylic acid, is neutral and does not react with Tollens' reagent. Deduce the structure of \mathbf{G}.

OR

OR

OR

(b) α-hydroxyacrylic acid undergoes addition polymerisation to give a polymer, PHA.

(i) Suggest and explain the relative acidities of α-hydroxyacrylic acid and acrylic acid, $\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{H}$.
α-hydroxyacrylic acid is more acidic than acrylic acid.
The presence of the electron-withdrawing $-\mathbf{O H}$ group in the conjugate base of α-hydroxyacrylic acid disperses the negative charge on the COO^{-} group, making the conjugate base more stable $\sqrt{ }$ than that of acrylic acid.
(ii) Studies suggests that PHA interacts with divalent metal cations such as calcium and magnesium under alkaline conditions.

Suggest and explain the type of interaction that is likely to exist between PHA and the metal cations in alkaline medium.
lonic interactions.
Under alkaline conditions, the carboxylic acid groups in PHA are deprotonated/neutralised. The negatively charged carboxylate (COO^{-}) groups can form electrostatic forces of attraction with the positively charged metal cations.
(c) PHA can form intramolecular lactone rings between -COOH and -OH groups on adjacent repeat units. Part of the structure of PHA with an intramolecular ring is shown below.

(i) State the type of reaction occurring in the formation of the lactone ring.

Condensation

A series of experiments were carried out to investigate the rate of the lactone ring build-up of PHA as a function of pH at constant temperature.

The rate equation for the reaction is given as follows.

$$
\text { rate }=k[\mathrm{PHA}]^{m}\left[\mathrm{H}^{+}\right]^{n}
$$

The reaction was observed to follow pseudo first order kinetics with respect to PHA and the following graph of the observed rate constant against pH was obtained.

(ii) Suggest how the pseudo first order kinetics with respect to PHA was achieved experimentally.

The acid (to provide H^{+}ions) was used in large excess as compared to PHA.
(iii) From the graph, identify the pH range for which the value of \boldsymbol{n}, order of reaction with respect to H^{+}, is zero.

Explain your reasoning.
pH 1 to pH 2
Since reaction follows pseudo first order kinetics with respect to PHA, rate $=k[\mathrm{PHA}]$ where $k^{\prime}=k\left[\mathrm{H}^{+}\right]^{n}$

From pH 1 to pH 2 , the observed rate constant, k, was relatively constant, suggesting that the rate was independent of $\left[\mathrm{H}^{+}\right]$.
(iv) At a certain pH that lies within the range identified in (c)(iii), the observed rate constant was found to be $1.14 \times 10^{-4} \mathrm{~s}^{-1}$. Calculate the time taken for 75% of lactone rings to be formed at this pH .
$t_{\frac{1}{2}}=\frac{\ln 2}{k^{\prime}}=\frac{\ln 2}{0.000114}=6080.2 \mathrm{~s}$
Since $\frac{25}{100}=\left(\frac{1}{2}\right)^{n}$, number of half-lives passed, $\mathrm{n}=2$
Time taken $=6080.2 \times 2=\underline{\mathbf{1 2 2 0 0} \mathbf{s}}$
(v) Hence sketch a graph of percentage lactone ring formation against time, assuming that the reaction goes to completion. Label clearly how the percentage of lactone changes with time.

(d) The PHA samples used in the kinetic study was prepared by dilution of the reagent solution with heavy water, $\mathrm{D}_{2} \mathrm{O}$.
[Deuterium, $\mathrm{D}={ }^{2} \mathrm{H}$]
(i) Suggest, with reasoning, how the first ionisation energy of deuterium would compare with that of hydrogen.

The first ionisation energy of deuterium would be similar to / the same as that of hydrogen.

Deuterium and hydrogen have the same number of protons and the additional neutron present in the nucleus of deuterium is uncharged. Hence the effective nuclear charge/ electrostatic attraction between the valence electron and nucleus is similar / the same for deuterium and hydrogen.
(ii) Beams of D^{+}and H^{+}particles, at the same speed, were passed through an electric field.
Explain, qualitatively, how the angle and direction of deflection of the two beams would compare.

Since angle of deflection $\propto \frac{\text { charge }}{\text { mass }}$, the D^{+}particles (which are of the same charge but twice as heavy than H^{+}particles) will be deflected in the same direction but by half the angle of that of H^{+}particles.
(iii) Water enriched in heavier oxygen-18 isotope, $\mathrm{H}_{2}{ }^{18} \mathrm{O}$, is also commercially available.

Draw the orbital from which the electron is removed in the third ionisation energy of an oxygen-18 isotope.
${ }^{18} \mathrm{O}: 1 s^{2} 2 s^{2} 2 p^{4}$ and a $2 p$ electron is removed in the $3^{\text {rd }}$ ionisation energy.

[Total: 20]

6 (a) The direct oxidation of alcohols in a fuel cell represents potentially the most efficient method of obtaining useful energy from a renewable fuel.

Direct-ethanol fuel cell or DEFC is one common example of fuel cells where ethanol is fed directly into the cell to produce carbon dioxide. Hydrogen ions travel through the polymer electrolyte membrane (PEM) to the electrode to react with oxygen to produce water, while the electrons travel through the external electrical circuit to generate electrical power.

(i) Write the ion-electron half-equations for the reactions which take place at the electrodes of the DEFC, and hence an overall equation for the cell reaction.

Cathode: $\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
Anode: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CO}_{2}+12 \mathrm{H}^{+}+12 \mathrm{e}^{-}$
Overall equation: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
(ii) The cell is capable of producing an e.m.f of +1.62 V . By using suitable data from the Data Booklet, suggest a value for the E^{\ominus} of the $\mathrm{CO}_{2} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ electrode reaction.

$$
\begin{gathered}
E^{\ominus} \text { cell }=E_{\text {cathode }}^{\ominus}-E_{\text {anode }}^{\ominus} \\
+1.62=+1.23-E_{\text {anode }}^{\ominus} \\
E_{\text {anode }}=+1.23-1.62 \\
=-0.39 \mathrm{~V}
\end{gathered}
$$

(iii) Pyrogallol solution is an organic compound that absorbs oxygen efficiently. Explain qualitatively the change in the overall $E_{\text {cell }}$ value measured when the electrodes are contaminated with pyrogallol solution.
$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}-2 \mathrm{H}_{2} \mathrm{O}$
When a small amount of pyrogallol solution is added, it decreases the partial pressure of $\mathrm{O}_{2} /\left[\mathrm{O}_{2}\right]$. Hence equilibrium above will shift to the left to increase partial pressure of $\mathrm{O}_{2} /\left[\mathrm{O}_{2}\right]$.
E^{\ominus} cathode will be more negative/less positive and hence overall $E_{\text {cell }}$ value will be more negative/less positive.
(iv) Suggest a possible advantage of using the DEFC compared to a hydrogen fuel cell.

The cost of transportation will be lower as ethanol is in the liquid state. / It is safer to transport ethanol as it is less explosive than hydrogen / ethanol takes up less space than hydrogen.
(b) One method for the construction of the fuel cell involves electroplating a layer of platinum onto the surface of the PEM. The electrolyte used for this process is a solution of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ and the PEM is the cathode in the electrolytic cell.
(i) Write the half-equation for the reaction occurring at the cathode.

$$
\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pt}+4 \mathrm{NH}_{3}
$$

(ii) Calculate the mass of platinum deposited onto a PEM with surface area of $25 \mathrm{~cm}^{2}$ if a current of $3.5 \times 10^{-3} \mathrm{~A} \mathrm{~cm}^{-2}$ was passed through the circuit for 75 minutes.

$$
\begin{aligned}
\mathrm{Q} & =\text { It } \\
& =\left(3.5 \times 10^{-3}\right)(25)(75 \times 60) \\
& =393.75 \mathrm{C}
\end{aligned}
$$

Number of moles of electrons $=393.75 / 96500$

$$
=0.00408 \mathrm{~mol}
$$

Number of moles of platinum deposited $=0.00204$ mol
Mass of platinum $=2.04 \times 10^{-3} \times 195.1=\underline{\mathbf{0 . 3 9 8} \mathbf{g}}$
(c) Selective oxidation of alcohols to aldehydes and ketones is a key reaction in organic synthesis, both for fundamental research and industrial manufacturing.

When alkaline potassium manganate(VII) is added to a primary alcohol, the purple solution first becomes dark green and then produces a brown precipitate.
(i) State the identities of the dark green solution and the brown precipitate. You may find the use of Data Booklet to be relevant.

Dark green solution: $\mathrm{MnO}_{4}{ }^{2-}$ Brown ppt: MnO_{2}

When acidified potassium manganate(VII) is added to a secondary alcohol, the purple solution decolourises. Propan-2-ol reacts with acidified potassium manganate(VII) to yield propanone, according to the unbalanced equation as shown below.

$$
\mathrm{CH}_{3}{ }^{a} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{CH}_{3}{ }^{b} \mathrm{COCH}_{3}+\mathrm{Mn}^{2+}
$$

(ii) State the oxidation number of ${ }^{a} \mathrm{C}$ and ${ }^{b} \mathrm{C}$ respectively.

$$
\begin{aligned}
& { }^{a} \mathrm{C}-0 \\
& { }^{b} \mathrm{C}-+2
\end{aligned}
$$

(iii) Hence, or otherwise, determine the reacting mole ratio of propan-2-ol to potassium manganate(VII).

Since oxidation number of reacting carbon increases from 0 in propan-2-ol to +2 in propanone, there is a loss of 2 electrons per mole of propan-2-ol.
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
There is a gain of 5 electrons per mole of MnO_{4}^{-}
Since electrons lost = electrons gained in the reaction,
Reacting mole ratio of $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}: \mathrm{MnO}_{4}=5: 2$
(iv) Predict the organic products of the following reactions with $\mathrm{KMnO}_{4}(\mathrm{aq})$.

(d) Devise a synthetic pathway (in no more than 3 steps) for the following conversion.

In your answer, state the reagents and conditions required for each step as well as the structure of any intermediates formed.

Sn in conc HCl , heat under reflux, followed by NaOH (aq)

[Total:20]

Name:	Index Number:		Class:	

DUNMAN HIGH SCHOOL

Preliminary Examinations 2019

Year 6

H2 CHEMISTRY

9729/04
27 August 2019 2 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

1 Write your name, index number and class on this cover page.
2 Give details of the practical shift and laboratory where appropriate, in the boxes provided.
3 Write in dark blue or black pen.
4 You may use an HB pencil for any diagrams or graphs.
5 Do not use staples, paper clips, glue or correction fluid.
6 Protective eye goggles and gloves must be worn at ALL TIMES.

Answer ALL questions in the spaces provided on the Question Paper.

The use of an approved scientific calculator is expected, where appropriate.
You may lose marks if you do not show your working or if you do not use appropriate units.

Shift
Laboratory

The number of marks is given in brackets, [], at the end of each question or part question.

For Examiner's Use	
Question No.	Marks
1	
2	
3	
4	
Total	

Answer all questions in the spaces provided.
1 Determination of acid concentration and enthalpy change of neutralisation using calorimetry

When an acid is added into an alkali, an exothermic reaction takes place and the temperature of the mixture increases. Maximum heat is given out when stoichiometric amounts of H^{+}and OH^{-} are added together.

FA 1 is an aqueous solution prepared by mixing equal volumes of $\boldsymbol{y} \mathrm{mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl , and \boldsymbol{y} mol dm ${ }^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$
FA 2 is $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide, NaOH
In this question, you are to follow the neutralisation of known volumes of FA 2, NaOH , by measuring the highest temperature obtained as different volumes of FA 1 are added.

By measuring the maximum temperature rise for different mixtures of the two reagents, you are to determine the following.

- the value of \boldsymbol{y}, concentration of the acids present in FA 1
- the enthalpy change of neutralisation, $\Delta H_{\text {neut, }}$, for the reaction

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)
$$

(a) Method

1 Fill the burette with FA 2.
2 Support the Styrofoam cup in a $250 \mathrm{~cm}^{3}$ glass beaker.
3 Run $20.00 \mathrm{~cm}^{3}$ FA 2 from the burette into the Styrofoam cup. Stir and measure the temperature of this FA 2.
4 Measure $20 \mathrm{~cm}^{3}$ FA 1 in a measuring cylinder.
5 Tip the FA 1 in the measuring cylinder into the FA 2 cup, stir and record the maximum temperature obtained in the reaction.
6 Rinse and carefully dry the Styrofoam cup.
7 Repeat steps 1 to 6 three more times, each time using $20.00 \mathrm{~cm}^{3}$ of FA 2. Use $30.0 \mathrm{~cm}^{3}, 40.0 \mathrm{~cm}^{3}$ and $50.0 \mathrm{~cm}^{3}$ of FA 1 respectively in these different experiments.

Carry out two further experiments.
Choose volumes of FA 1 which will allow you to investigate more precisely the volume of FA 1 that produces the highest temperature rise when added to $20.00 \mathrm{~cm}^{3}$ of FA 2.

Record your results in an appropriate format in the next page. Record all measurements of volume, temperature and temperature change, ΔT.

(i) Experimental results

(ii) Plot $\Delta \boldsymbol{T}(y$-axis) against volume of FA 1 (x-axis) on the grid below.

Draw a line of best fit through the points where the temperature rise is increasing and another line through the points where the temperature rise is decreasing.

(iii) Read from the graph the maximum temperature change, $\Delta \boldsymbol{T}_{\text {max }}$, and the volume, $\boldsymbol{V}_{\text {neut }}$, of FA 1 needed to obtain this value. Record these values in the spaces provided below.

maximum temperature change, $\Delta \boldsymbol{T}_{\text {max }}=$
\qquad ${ }^{\circ} \mathrm{C}$
volume of FA 1 used at $\Delta \boldsymbol{T}_{\text {max }}=\boldsymbol{V}_{\text {neut }}=$

(b) Use your results from (a)(iii) to calculate:
(i) the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of the hydrogen ions in FA 1.
concentration of hydrogen ions in FA $1=$
(ii) Hence, the value of \boldsymbol{y}.
value of \boldsymbol{y} is
(iii) the heat change for the reaction and hence the enthalpy change of neutralisation, $\Delta H_{\text {neut }}$, for the reaction

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)
$$

[Assume that 4.18 J of energy is needed to raise the temperature of 1 g of the solution by 1 K]
(c) A student suggested using a burette rather than a measuring cylinder to measure the volume of FA 1 to improve the precision in volume measurement. However, he was advised not to do so by his teacher.

Suggest a disadvantage of using a burette and explain how the calculated $\Delta H_{\text {neut }}$ would be affected if volume of FA 1 had been added from a burette.

Disadvantage:
\qquad

Explanation:

\qquad
\qquad
\qquad
\qquad

2 Determination of calcium ion concentration using complexometric titration

The calcium content of milk and tap water and the amount of calcium carbonate in various solid samples can be determined using complexometric titrations.

This method uses ethylenediaminetetraacetic acid, EDTA, which forms a complex with calcium ions in a $1: 1$ ratio. A blue dye called Patton-Reeder indicator is used to identify the end-point. The dye forms a pink complex with calcium ions. As this complex is less stable than the EDTA complex, the dye is displaced by EDTA as the titration proceeds. The solution turns blue at the end-point due to the uncomplexed dye.

FA 3 is a brand of milk.
In 2(a), you perform titrations to determine the calcium content of milk.
You are also provided with
FA 2, $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide, NaOH
FA 4, $0.0170 \mathrm{~mol} \mathrm{dm}^{-3}$ EDTA
Patton-Reeder indicator
As EDTA is harmful to the environment, FA 4 should be disposed in the waste bottle. You should also wear gloves throughout the experiment.
(a) (i) 1. Fill the burette with FA 4.
2. Use a pipette to transfer $10.0 \mathrm{~cm}^{3}$ of FA $\mathbf{3}$ into a $250 \mathrm{~cm}^{3}$ conical flask.
3. Using appropriate measuring cylinders, add $36.0 \mathrm{~cm}^{3}$ of deionised water then $8.0 \mathrm{~cm}^{3}$ of FA 2 into the conical flask. Swirl and allow the solution to stand for about 2 minutes.
4. Add half a spatula of Patton-Reeder indicator into the conical flask and swirl the mixture to dissolve the indicator. The mixture is pink at this point.
5. Run FA 4 from the burette into the conical flask. The end-point is reached when the mixture loses all trace of purple and turns blue. As the colour change is gradual, you will find it helpful to compare against the original and / or final colour of another sample.
6. At the end of the experiment, contents of the conical flask should be disposed in the waste bottle.
7. Record your titration results, to an appropriate level of precision, in the space provided on the next page.

Titration results

(ii) From your titrations, obtain a suitable volume of FA 4, $V_{\text {FA }}$, to be used in your calculations. Show clearly how you obtained this volume.

$$
V_{F A 4}=
$$

cm^{3}
(b) (i) Calculate the concentration of calcium ions present in FA 3 using your answer in (a)(ii).

The nutritional label on the packaging states that this brand of milk contains 200 mg of calcium per $200 \mathrm{~cm}^{3}$ serving.
[1 g = 1000 mg]
(ii) Use your results from (b)(i) to comment if your titration results supports the claim on the nutritional label.
[$A_{r}: \mathrm{Ca}, 40.1$]
(c) Trace amounts of magnesium ions present in milk affects the accuracy of this experiment as magnesium ions also readily form a complex with EDTA.

Explain how step 3 of the procedure prevents this error.
\qquad
\qquad
\qquad

3 Investigation of some inorganic reactions

FA 5 is an aqueous solution containing two cations.
Carry out the following tests described in Table 3.1 and carefully record your observations.
Unless otherwise stated, the volumes given below are approximate and should be estimated rather than measured. Test and identify any gases evolved. If there are no observable change, write no observable change.

Table 3.1
(a)

	tests	observations
(i)	Add 1 cm depth of FA 5 to a test-tube. Add an equal volume of aqueous sodium nitrite.	
(ii)	Add 2 cm depth of FA 5 to a test-tube. Add 2 pieces of zinc into the test-tube. Warm the test-tube gently. Leave to stand until no further change is seen.	
While waiting, continue with the next tests		
(iii)	Add 1 cm depth of FA 5 to a test-tube. Add FA 2 slowly, with shaking, until no further change is seen. Filter the mixture. To 1 cm depth of the filtrate, add nitric acid dropwise until no further change is seen.	
(iv)	Add 1 cm depth of FA 5 to a test-tube. Add aqueous ammonia slowly with shaking, until no further change is seen. Filter the mixture.	

(v)	To 1 cm depth of the filtrate from (iv), add 1 cm depth of aqueous EDTA4- from the small vial with shaking. The mixture at the end of this test should be disposed in the waste bottle.				
(vi)	Add 4 cm depth of FA 5 to a test-tube. Add 2 cm depth of aqueous sodium carbonate. The total depth of the mixture should not exceed half the test-tube. Shake well. Leave to stand for a few minutes.				
Filter the resultant mixture.			$	$	(vii)
:---					
Transfer the residue from (vi) to a boiling tube. Heat gently then strongly until no further change is seen.					

(b) Consider your observations in Table 3.1.
(i) State the identity of the two cations present in FA 5.
\qquad and \qquad

The wavelengths and corresponding colours of visible light is shown in Figure 3.1.

Fig. 3.1
(ii) In terms of the magnitude of d-orbital splitting, account for the colour change observed in (a)(i).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

In (a)(v), a ligand exchange occurs with hexadentate EDTA ${ }^{4}$.
(iii) Write a balanced equation for the ligand exchange reaction in (a)(v).
(iv) Each donor atom on EDTA ${ }^{4-}$ binds to the metal centre with similar strength as an ammonia molecule and a water molecule.

Using this information and your answer to (b)(iii), estimate the enthalpy change for the reaction in (a)(v) and suggest why it occurs spontaneously.
\qquad
\qquad
\qquad
\qquad
\qquad
(v) Write a balanced equation for the reaction occurring in (a)(vii).
\qquad

4 Planning

When an aromatic amine is treated with nitrous acid, a reaction occurs in which diazonium salt is formed. This process is known as diazotisation. The equation below shows the reaction between phenylamine and nitrous acid to form benzenediazonium chloride, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \mathrm{Cl}{ }^{-}$.

Benzenediazonium chloride, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \mathrm{Cl}^{-}$, is not stable at temperature above $5^{\circ} \mathrm{C}$.
Nitrous acid is a highly toxic gas. Therefore, it is generally prepared during the reaction itself by reacting NaNO_{2} with a mineral acid.

A student followed the steps below to prepare benzenediazonium chloride.

1. $\quad 3.25 \mathrm{~cm}^{3}$ of phenylamine was placed in a $500 \mathrm{~cm}^{3}$ volumetric flask.
2. A mixture of $30 \mathrm{~cm}^{3}$ of concentrated hydrochloric acid and $30 \mathrm{~cm}^{3}$ of water was added into the flask containing phenylamine to dissolve it.
3. The solution mixture was stirred and cooled to $1^{\circ} \mathrm{C}$.
4. Solid NaNO_{2} was dissolved in $30 \mathrm{~cm}^{3}$ of water, then slowly and carefully added to the solution mixture, with stirring.
5. The resultant solution was made up to $500 \mathrm{~cm}^{3}$ with water, mixed well and kept cool below $5^{\circ} \mathrm{C}$. This resultant benzenediazonium chloride solution prepared is labelled solution B.
(a) Suggest why NaNO_{2} solution was added slowly and carefully in step 4.
\qquad
\qquad

When the temperature is above $5^{\circ} \mathrm{C}$, benzenediazonium chloride hydrolyses to give phenol, nitrogen gas and hydrochloric acid.

The temperature of a portion of $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{B} was raised to room temperature at constant pressure.
(b) (i) Calculate the theoretical maximum volume of N_{2} produced when $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{B} is hydrolysed at room temperature and pressure.
[M_{r} of phenylamine $=93.0$; density of phenylamine $=1.02 \mathrm{~g} \mathrm{~cm}^{-3}$; molar volume of gas at room temperature and pressure $=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$]

Another $25.0 \mathrm{~cm}^{3}$ portion of solution B was transferred to a boiling tube and the hydrolysis of benzenediazonium chloride was carried out at $40^{\circ} \mathrm{C}$.

The progress of the reaction can be monitored by measuring the volume of nitrogen gas produced over time. The volume of gas produced, V after time, t, is proportional to the concentration of benzenediazonium chloride that has been hydrolysed. The final volume of gas produced, $V_{\text {tinal }}$, is proportional to the original concentration of benzenediazonium chloride.

The order of reaction can be determined from these results.
(ii) Explain the significance of $V_{\text {tinal }}-V$.
\qquad
(iii) Sketch, on Fig 4.1, the graph of $V_{\text {final }}-V$ against time you would expect to obtain if the order of reaction with respect to $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \mathrm{Cl}{ }^{-}\right]$is one.

Fig 4.1

The volume of nitrogen produced was collected using the modified apparatus as shown in Fig. 4.2 below.

Fig. 4.2
At the start, the lower valve is closed and the upper valve is opened. The two burettes are filled with water and both levelled to $0.00 \mathrm{~cm}^{3}$. The upper valve is closed once the hydrolysis of benzenediazonium chloride begins. As gas is collected during the experiment, the water level in both burettes will differ slightly. The lower valve is opened and closed carefully from time to time to ensure that the water levels in the two burettes are the same.
(iv) Complete the diagram on Fig 4.2 to show the experimental set-up the student could have used to carry out experiment in (b) to measure the volume of nitrogen evolved at $40^{\circ} \mathrm{C}$.

Outline the steps involved in carrying out the experiment. You may omit the step to prepare the burettes above for gas collection before the reaction begins.

Your steps should include

- the apparatus you would use
- the reactants and conditions that you would use
- the measurements you would take.
\qquad
(v) Why is there a need to ensure that the water level in both burettes are the same during the experiment?
\qquad
\qquad
\qquad
(c) Benzenediazonium chloride hydrolyses in water according to the following steps.

Step 2:

Deduce the role of $\mathrm{H}_{2} \mathrm{O}$ and suggest the likely type of reaction occurring.
\qquad
\qquad
\qquad

DUNMAN HIGH SCHOOL

 Preliminary Examinations 2019 Year 6
H2 CHEMISTRY

Paper 4 Practical

INSTRUCTIONS TO CANDIDATES

1 Write your name, index number and class on this cover page.
2 Give details of the practical shift and laboratory where appropriate, in the boxes provided.
3 Write in dark blue or black pen.
4 You may use an HB pencil for any diagrams or graphs.
5 Do not use staples, paper clips, glue or correction fluid.
6 Protective eye goggles and gloves must be worn at ALL TIMES.

Answer ALL questions in the spaces provided on the Question Paper.

The use of an approved scientific calculator is expected, where appropriate. You may lose marks if you do not show your working or if you do not use appropriate units.

Shift
Laboratory

The number of marks is given in brackets, [], at the end of each question or part question.

For Examiner's Use	
Question No.	Marks
1	
2	
3	
4	
Total	

Answer all questions in the spaces provided.
1 Determination of acid concentration and enthalpy change of neutralisation using calorimetry

When an acid is added into an alkali, an exothermic reaction takes place and the temperature of the mixture increases. Maximum heat is given out when stoichiometric amounts of H^{+}and OH^{-} are added together.

FA 1 is an aqueous solution prepared by mixing equal volumes of $\boldsymbol{y} \mathrm{mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl , and $\boldsymbol{y} \mathrm{mol} \mathrm{dm}^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$
FA 2 is $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide, NaOH
In this question, you are to follow the neutralisation of known volumes of FA 2, NaOH , by measuring the highest temperature obtained as different volumes of FA 1 are added.

By measuring the maximum temperature rise for different mixtures of the two reagents, you are to determine the following.

- the value of \boldsymbol{y}, concentration of the acids present in FA 1
- the enthalpy change of neutralisation, $\Delta H_{\text {neut, }}$, for the reaction

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)
$$

(a) Method

1 Fill the burette with FA 2.
2 Support the Styrofoam cup in a $250 \mathrm{~cm}^{3}$ glass beaker.
3 Run $20.00 \mathrm{~cm}^{3}$ FA 2 from the burette into the Styrofoam cup. Stir and measure the temperature of this FA 2.
4 Measure $20 \mathrm{~cm}^{3}$ FA 1 in a measuring cylinder.
5 Tip the FA 1 in the measuring cylinder into the FA 2 cup, stir and record the maximum temperature obtained in the reaction.
6 Rinse and carefully dry the Styrofoam cup.
7 Repeat steps 1 to 6 three more times, each time using $20.00 \mathrm{~cm}^{3}$ of FA 2. Use $30.0 \mathrm{~cm}^{3}, 40.0 \mathrm{~cm}^{3}$ and $50.0 \mathrm{~cm}^{3}$ of FA 1 respectively in these different experiments.

Carry out two further experiments.
Choose volumes of FA 1 which will allow you to investigate more precisely the volume of FA 1 that produces the highest temperature rise when added to $20.00 \mathrm{~cm}^{3}$ of FA 2.

Record your results in an appropriate format in the next page. Record all measurements of volume, temperature and temperature change, ΔT.

(i) Experimental results

Expt No.	Vol of FA 1/ cm^{3}	Vol of FA 2/ cm^{3}	Temperature of FA 2/ ${ }^{\circ} \mathrm{C}$ OR initial temperature/ ${ }^{\circ} \mathrm{C}$	Maximum Temperature $/{ }^{\circ} \mathrm{C}$	$\Delta T /{ }^{\circ} \mathrm{C}$
1	20.0	20.00			
2	30.0	20.00			
3	40.0	20.00			
4	50.0	20.00			
$\mathbf{5}$	$\mathbf{3 5 . 0}$	$\mathbf{2 0 . 0 0}$			
$\mathbf{6}$	$\mathbf{2 5 . 0}$	$\mathbf{2 0 . 0 0}$			

(ii) Plot $\Delta \boldsymbol{T}$ (y-axis) against volume of FA 1 (x-axis) on the grid below.

Draw a line of best fit through the points where the temperature rise is increasing and another line through the points where the temperature rise is decreasing.

(iii) Read from the graph the maximum temperature change, $\Delta \boldsymbol{T}_{\text {max }}$, and the volume, $\boldsymbol{V}_{\text {neut }}$, of FA 1 needed to obtain this value. Record these values in the spaces provided below.

$$
\begin{aligned}
& \text { maximum temperature change, } \Delta \boldsymbol{T}_{\max }=\ldots \ldots .10 .0 \ldots \ldots \ldots \ldots .{ }^{\circ} \mathrm{C} \\
& \text { volume of } \mathbf{F A} 1 \text { used at } \Delta \boldsymbol{T}_{\max }=\boldsymbol{V}_{\text {neut }}=\ldots . .34 .0 \ldots \ldots \ldots \ldots . \mathrm{cm}^{3}
\end{aligned}
$$

(b) Use your results from (a)(iii) to calculate:
(i) the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of the hydrogen ions in FA 1.

Moles of OH^{-}used $=2.0 \times\left(\frac{20.00}{1000}\right)=0.0400 \mathrm{~mol}$
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
Total moles of H^{+}in FA 1 required for neutralisation $=0.0400 \mathrm{~mol}$
Total concentration of H^{+}in FA $1=\frac{0.0400}{0.0340}=1.1764=1.18 \mathrm{~mol} \mathrm{dm}^{-3}$
concentration of hydrogen ions in FA $1=$ \qquad $1.18 \mathrm{~mol} \mathrm{dm}^{-3}$
(ii) Hence, the value of \boldsymbol{y}.

Since FA 1 is an aqueous solution prepared by mixing equal volumes of $\boldsymbol{y} \mathrm{mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl , and \boldsymbol{y} mol dm^{-3} sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$;
mol ratio of H^{+}from $\mathrm{H}_{2} \mathrm{SO}_{4}$: H^{+}from HCl
2: 1
concentration of HCl in FA $1=\frac{1}{3} \times(1.1764)=0.392 \mathrm{~mol} \mathrm{dm}^{-3}$
Since equal volumes of both acids were mixed to obtain FA 1
Concentration of $\mathrm{HCl}(\mathrm{aq})$ before dilution $=\boldsymbol{y}=\mathbf{2} \times 0.392=0.784 \mathrm{~mol} \mathrm{dm}^{-3}$
value of \boldsymbol{y} is ... $\mathbf{0 . 7 8 4}$
(iii) the heat change for the reaction and hence the enthalpy change of neutralisation, $\Delta H_{\text {neut, }}$ for the reaction

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)
$$

[Assume that 4.18 J of energy is needed to raise the temperature of 1 g of the solution by 1 K]

$$
\begin{aligned}
\text { Heat released } & =m c \Delta T_{\max }=(20.00+34.0)(4.18)(10.0) \\
& =2257.2 \mathrm{~J}
\end{aligned}
$$

$$
\Delta H_{\text {neut }}=-\frac{2257.2}{0.0400}=-56430 \mathrm{~J} \mathrm{~mol}^{-1}=-56.4 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(c) A student suggested using a burette rather than a measuring cylinder to measure the volume of FA 1 to improve the precision in volume measurement. However, he was advised not to do so by his teacher.

Suggest a disadvantage of using a burette and explain how the calculated $\Delta H_{\text {neut }}$ would be affected if volume of FA 1 had been added from a burette.

Disadvantage
Takes longer to add FA 1 into FA 2.

Impact on $\Delta H_{\text {neut }}$
Since addition of FA 1 from a burette is a slow process, heat is lost during the slow process. Heat loss reduces $\Delta \boldsymbol{T}_{\max }$ and would result in a lower value for the heat change and so a lower numerical / less exothermic value for $\Delta H_{\text {neut }}$.

2 Determination of calcium ion concentration using complexometric titration

The calcium content of milk and tap water and the amount of calcium carbonate in various solid samples can be determined using complexometric titrations.

This method uses ethylenediaminetetraacetic acid, EDTA, which forms a complex with calcium ions in a $1: 1$ ratio. A blue dye called Patton-Reeder indicator is used to identify the end-point. The dye forms a pink complex with calcium ions. As this complex is less stable than the EDTA complex, the dye is displaced by EDTA as the titration proceeds. The solution turns blue at the end-point due to the uncomplexed dye.

FA 3 is a brand of milk.
In 2(a), you perform titrations to determine the calcium content of milk.
You are also provided with
FA 2, $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide, NaOH
FA 4, 0.0170 mol dm ${ }^{-3}$ EDTA
Patton-Reeder indicator
As EDTA is harmful to the environment, FA 4 should be disposed in the waste bottle. You should also wear gloves throughout the experiment.
(a) (i) 1. Fill the burette with FA 4.
2. Use a pipette to transfer $10.0 \mathrm{~cm}^{3}$ of FA 3 into a $250 \mathrm{~cm}^{3}$ conical flask.
3. Using appropriate measuring cylinders, add $36.0 \mathrm{~cm}^{3}$ of deionised water then $8.0 \mathrm{~cm}^{3}$ of FA 2 into the conical flask. Swirl and allow the solution to stand for about 2 minutes.
4. Add half a spatula of Patton-Reeder indicator into the conical flask and swirl the mixture to dissolve the indicator. The mixture is pink at this point.
5. Run FA 4 from the burette into the conical flask. The end-point is reached when the mixture loses all trace of purple and turns blue. As the colour change is gradual, you will find it helpful to compare against the original and / or final colour of another sample.
6. At the end of the experiment, contents of the conical flask should be disposed in the waste bottle.
7. Record your titration results, to an appropriate level of precision, in the space provided.

Titration results

	1	2
Final burette reading $/ \mathrm{cm}^{3}$	14.70	29.50
Initial burette reading $/ \mathrm{cm}^{3}$	0.00	14.70
Volume of FA 4 used $/ \mathrm{cm}^{3}$	14.70	14.80

(ii) From your titrations, obtain a suitable volume of FA 4, $\mathrm{V}_{\text {FA 4 }}$, to be used in your calculations. Show clearly how you obtained this volume.
$V_{F A 4}=\frac{14.70+14.80}{2}=14.75 \mathrm{~cm}^{3}$
(b) (i) Calculate the concentration of calcium ions present in FA 3 using your answer in (a)(ii).
$\mathrm{Ca}^{2+} \equiv E D T A$
$\frac{10.00}{1000} \times\left[\mathrm{Ca}^{2+}\right]=\frac{14.75}{1000} \times 0.0170$
$\left[\mathrm{Ca}^{2+}\right]=0.0251 \mathrm{~mol} \mathrm{dm}{ }^{-3}$

The nutritional label on the packaging states that this brand of milk contains 200 mg of calcium per $200 \mathrm{~cm}^{3}$ serving.
$[1 \mathrm{~g}=1000 \mathrm{mg}$]
(ii) Use your results from (b)(i) to comment if your titration results supports the claim on the nutritional label.
[$A_{r}: \mathrm{Ca}, 40.1$]
$\left[\mathrm{Ca}^{2+}\right]=0.0251 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
no. of moles of Ca^{2+} in $200 \mathrm{~cm}^{3}=0.0251 \times \frac{200}{1000}=5.025 \times 10^{-3} \mathrm{~mol}$
mass of Ca^{2+} in $200 \mathrm{~cm}^{3}=5.025 \times 10^{-3} \times 40.1=0.2015 \mathrm{~g}=201.5 \mathrm{mg}$
Yes, since the titration results is very close to the value in the nutritional label.
(c) Trace amounts of magnesium ions present in milk affects the accuracy of this experiment as magnesium ions also readily form a complex with EDTA.

Explain how step 3 of the procedure prevents this error.
Mg^{2+} is removed as $\mathrm{Mg}(\mathrm{OH})_{2}$ ppt.

3 Investigation of some inorganic reactions

FA 5 is an aqueous solution containing two cations.
Carry out the following tests described in Table 3.1 and carefully record your observations.
Unless otherwise stated, the volumes given below are approximate and should be estimated rather than measured. Test and identify any gases evolved. If there are no observable change, write no observable change.

Table 3.1
(a)

	tests	observations
(i)	Add 1 cm depth of FA 5 to a test-tube. Add an equal volume of aqueous sodium nitrite.	Blue solution turns green
(ii)	Add 2 cm depth of FA 5 to a test-tube. Add 2 pieces of zinc into the test-tube. Warm the test-tube gently. Leave to stand until no further change is seen.	Effervescence is observed. Colourless gas evolved extinguishes a lighted splint with a 'pop' sound. VGas is \underline{H}_{2}. Blue solution decolourises. Reddish-brown solid is deposited on zinc
While waiting, continue with the next tests		
(iii)	Add 1 cm depth of FA 5 to a test-tube. Add FA 2 slowly, with shaking, until no further change is seen. Filter the mixture. To 1 cm depth of the filtrate, add nitric acid dropwise until no further change is seen.	A blue ppt forms, and is insoluble in excess NaOH . A white ppt forms, and is soluble in excess NaOH to form a colourless solution. Residue is a blue solid. Filtrate is a colourless solution. white ppt reforms, and is soluble in excess acid
(iv)	Add 1 cm depth of FA 5 to a test-tube. Add aqueous ammonia slowly with shaking, until no further change is seen. Filter the mixture.	A blue ppt forms, dissolving in excess ammonia to form a deep blue solution. A white ppt forms, and is insoluble in excess ammonia. Residue is a white solid. Filtrate is a deep blue solution.
(v)	To 1 cm depth of the filtrate from (iv), add 1 cm depth of aqueous EDTA ${ }^{4-}$ from the small vial with shaking. The mixture at the end of this test should be disposed in the waste bottle.	deep blue solution turns (lighter) blue.

(vi)	Add 4 cm depth of FA 5 to a test-tube. Add 2 cm depth of aqueous sodium carbonate. The total depth of the mixture should not exceed half the test-tube. Shake well. Leave to stand for a few minutes. Filter the resultant mixture.A pale blue ppt forms. Blue solution decolourises. observed. Colourless gas evolved forms white ppt with limewater. Gas is $\mathbf{C O}_{2}$.	
(vii)	Transfer the residue from (vi) to a boiling tube. Heat gently then strongly until no further change is observed.	Residue is pale blue. Filtrate is a blue solid turns white and pale colourless solution
green. A mixture of white and black solid remain. water droplets form on the side of the test tube. Colourless gas evolved forms white ppt with limewater. Gas is CO_{2}.		

(b) Consider your observations in Table 3.1.
(i) State the identity of the two cations present in FA 5.

$$
\mathrm{Cu}^{2+} \text { and } \mathrm{A} \mathrm{l}^{3+}
$$

The wavelengths and corresponding colours of visible light is shown in Figure 3.1.

Fig. 3.1
(ii) In terms of the magnitude of d-orbital splitting, account for the colour change observed in (a)(i).

Upon addition of nitrite ligand, a green mixture of the yellow nitrite complex and the original blue $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ complex is obtained. The colour of light absorbed changes from orange $(600-640 \mathrm{~nm})$ to violet $(400-450 \mathrm{~nm})$. Since the light absorbed is of a shorter wavelength, nitrite is a stronger field ligand that results in a larger magnitude of d-orbital splitting.

OR

The blue $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ complex absorbs orange light ($600-640 \mathrm{~nm}$) while the green nitrite complex absorbs red light ($640-700 \mathrm{~nm}$). Since the light absorbed is of a longer wavelength, the magnitude of d-orbital splitting caused by ligand in complex is smaller.

In (a)(v), a ligand exchange occurs with hexadentate EDTA ${ }^{4}$.
(iii) Write a balanced equation for the ligand exchange reaction in (a)(v).

$$
\begin{equation*}
\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}(\mathrm{aq})+\mathrm{EDTA}^{4-}(\mathrm{aq}) \rightarrow[\mathrm{Cu}(\mathrm{EDTA})]^{2-}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \tag{1}
\end{equation*}
$$

(iv) Each donor atom on EDTA ${ }^{4-}$ binds to the metal centre with similar strength as an ammonia molecule and a water molecule.

Using this information and your answer to (b)(iii), estimate the enthalpy change for the reaction in (a)(v) and suggest why it occurs spontaneously.

As each donor atom on EDTA ${ }^{4-}$ binds to the Cu^{2+} centre with similar strength as an ammonia molecule and a water molecule, the strength of bonds broken is similar to the strength of bonds formed. Hence $\underline{\Delta H} \approx \mathbf{0}$.

There is an increase of aqueous species $(\Delta \mathrm{n}>0)$, hence $\Delta \mathrm{S}>0$. The disorder of the system increases. Since $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}, \underline{\mathrm{G}}<\mathbf{0}$ and the reaction is spontaneous.
(v) Write a balanced equation for the reaction occurring in (a)(vii).
$\mathrm{CuCO}_{3} \rightarrow \mathrm{CuO}+\mathrm{CO}_{2}$ OR Cu(OH) $)_{2} \rightarrow \mathrm{CuO}+\mathrm{H}_{2} \mathrm{O}$
[total: 14]

4 Planning

When an aromatic amine is treated with nitrous acid, a reaction occurs in which diazonium salt is formed. This process is known as diazotisation. The equation below shows the reaction between phenylamine and nitrous acid to form benzenediazonium chloride, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \mathrm{Cl}{ }^{-}$.

Benzenediazonium chloride, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \mathrm{Cl}^{-}$, is not stable at temperature above $5^{\circ} \mathrm{C}$.
Nitrous acid is a highly toxic gas. Therefore, it is generally prepared during the reaction itself by reacting NaNO_{2} with a mineral acid.

A student followed the steps below to prepare benzenediazonium chloride.

1. $3.25 \mathrm{~cm}^{3}$ of phenylamine was placed in a $500 \mathrm{~cm}^{3}$ volumetric flask.
2. A mixture of $30 \mathrm{~cm}^{3}$ of concentrated hydrochloric acid and $30 \mathrm{~cm}^{3}$ of water was added into the flask containing phenylamine to dissolve it.
3. The solution mixture was stirred and cooled to $1^{\circ} \mathrm{C}$.
4. Solid NaNO_{2} was dissolved in $30 \mathrm{~cm}^{3}$ of water, then slowly and carefully added to the solution mixture, with stirring.
5. The resultant solution was made up to $500 \mathrm{~cm}^{3}$ with water, mixed well and kept cool below $5^{\circ} \mathrm{C}$. This resultant benzenediazonium chloride solution prepared is labelled solution \mathbf{B}.
(a) Suggest why NaNO_{2} solution was added slowly and carefully in step 4.

Diazotisation is an exothermic reaction / To prevent temperature from going above 5 ${ }^{\circ} \mathrm{C}$.

When the temperature is above $5^{\circ} \mathrm{C}$, benzenediazonium chloride hydrolyses to give phenol, nitrogen gas and hydrochloric acid.

The temperature of a portion of $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{B} was raised to room temperature at constant pressure.
(b) (i) Calculate the theoretical maximum volume of N_{2} produced when $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{B} is hydrolysed at room temperature and pressure.
$\left[\mathrm{M}_{\mathrm{r}}\right.$ of phenylamine $=93.0$; density of phenylamine $=1.02 \mathrm{~g} \mathrm{~cm}^{-3}$; molar volume of gas at room temperature and pressure $=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$]

Mass of phenylamine used $=1.02 \times 3.25=3.315 \mathrm{~g}$
Moles of phenylamine used $=\frac{3.315}{93.0}=0.0356 \mathrm{~mol}$
Moles of benzenediazonium chloride prepared in $500 \mathrm{~cm}^{3}=0.0356 \mathrm{~mol}$
Moles of benzenediazonium chloride prepared in $25 \mathrm{~cm}^{3}$ portion $=\frac{25}{500} \times 0.0356$
$=0.00178 \mathrm{~mol}$
Moles of N_{2} produced $=0.00178 \mathrm{~mol}$
Volume of N_{2} produced at r.t.p. $=0.00178 \times 24.0 \mathrm{dm}^{3}=0.0428 \mathrm{dm}^{3}=\underline{42.8 \mathrm{~cm}^{3}}$
Another $25.0 \mathrm{~cm}^{3}$ portion of solution B was transferred to a boiling tube and the hydrolysis of benzenediazonium chloride was carried out at $40^{\circ} \mathrm{C}$.

The progress of the reaction can be monitored by measuring the volume of nitrogen gas produced over time. The volume of gas produced, V after time, t, is proportional to the concentration of benzenediazonium chloride that has been hydrolysed. The final volume of gas produced, $V_{\text {tinal }}$, is proportional to the original concentration of benzenediazonium chloride.

The order of reaction can be determined from these results.
(ii) Explain the significance of $V_{\text {final }}-V$.
$V_{\text {tinal }}-V$ is proportional to the concentration of benzenediazonium chloride yet to be hydrolysed
(iii) Sketch, on Fig 4.1, the graph of $V_{\text {final }}-V$ against time you would expect to obtain if the order of reaction with respect to $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \mathrm{Cl}{ }^{-}\right]$is one.

Fig 4.1

Fig. 4.2
At the start, the lower valve is closed and the upper valve is opened. The two burettes are filled with water and both levelled to $0.00 \mathrm{~cm}^{3}$. The upper valve is closed once the hydrolysis of benzenediazonium chloride begins. As gas is collected during the experiment, the water level in both burettes will differ slightly. The lower valve is opened and closed carefully from time to time to ensure that the water levels in the two burettes are the same.
(iv) Complete the diagram on Fig 4.2 to show the experimental set-up the student could have used to carry out experiment in (b) to measure the volume of nitrogen evolved at $40^{\circ} \mathrm{C}$.

Outline the steps involved in carrying out the experiment. You may omit the step to prepare the burettes above for gas collection before the reaction begins.

Your steps should include

- the apparatus you would use
- the reactants and conditions that you would use
- the measurements you would take.

1. Pipette $\mathbf{2 5 . 0} \mathbf{c m}^{3}$ of solution \mathbf{B} in a test-tube. (Place a magnetic stirrer in it.)
2. Stoppered the solution \mathbf{B} tightly and place it in a thermostatically-controlled water bath set at $40^{\circ} \mathrm{C}$.
3. Allow some time (10 minutes?) for the solution \mathbf{B} to reach thermal equilibrium.
4. After 10 min , close the upper valve/stopper the test-tube and start the stopwatch.
(The nitrogen gas evolved will push the water level in the left burette down and the right burette up.)
5. Open the lower valve to drain excess water so that the water level in both burettes are the same.
6. At every two minutes interval for 30 min , read and record the volume of gas evolved.
7. Continue the volume measurement until three constant readings are obtained.
(v) Why is there a need to ensure that the water level in both burettes are the same during the experiment?

So that gas is collected at constant / atmospheric pressure.
(c) Benzenediazonium chloride hydrolyses in water according to the following steps.

Step 1:

Step 2:

Deduce the role of $\mathrm{H}_{2} \mathrm{O}$ and suggest the likely type of reaction occurring. $\mathrm{H}_{2} \mathrm{O}$ acts as nucleophile. Type of reaction is (nucleophilic) substitution or $\mathrm{S}_{\mathrm{N}} 1$.

