

Catholic Junior College

 JC 2 Preliminary Examinations
Higher 2

CANDIDATE NAME
 CLASS

CHEMISTRY

9729/01
Paper 1 Multiple Choice
Wednesday 29 August 2018 1 hour

Additional Materials: Multiple Choice Answer Sheet Data Booklet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.
Do not use staples, paper clips, glue or correction fluid.
Write your name, class and NRIC/FIN number on the Answer Sheet in the spaces provided.
There are thirty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.
Read the instructions on the Answer Sheet very carefully.
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.
The use of an approved scientific calculator is expected, where appropriate.

1 A sample of tungsten contains four naturally occurring isotopes, ${ }^{182} \mathrm{~W},{ }^{183} \mathrm{~W},{ }^{184} \mathrm{~W}$ and ${ }^{186} \mathrm{~W}$.

The relative atomic mass of tungsten in this sample is 183.9. What is the percentage of the isotope ${ }^{182} \mathrm{~W}$ in this sample?

Isotope	Relative Abundance (\%)
${ }^{182} \mathrm{~W}$	$?$
${ }^{183} \mathrm{~W}$	$?$
${ }^{184} \mathrm{~W}$	30.6
${ }^{186} \mathrm{~W}$	28.6

A $\quad 10.5$
C $\quad 26.4$
B $\quad 14.4$
D 40.8
$220 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ of potassium ferrate(VI), $\mathrm{K}_{2} \mathrm{FeO}_{4}$, reacts with sodium ethanedioate, $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, in an acidic medium to produce $144 \mathrm{~cm}^{3}$ of carbon dioxide gas at room temperature and pressure.

The half equation of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ is shown as follows:

$$
2 \mathrm{CO}_{2}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}
$$

What is the final oxidation state of the iron-containing species after the reaction?
A $\quad+1$
B $\quad+2$
C $\quad+3$
D $\quad+4$

3 When attracted by a strong magnet, some species are able to exhibit paramagnetism. Such species contain unpaired electrons which are able to spin in a way which aligns parallel to the magnetic field.

Which of the following species in the ground state is able to exhibit paramagnetism?
10
$2 \mathrm{Al}^{+}$
$3 \quad \mathrm{Ti}^{2+}$
$4 \mathrm{Cu}^{+}$

A 1 and 3 only
B 2 and 4 only
C 1, 3 and 4 only
D 2, 3 and 4 only

4 Phosphorus(V) chloride, PCl_{5} dissolves in a suitable polar solvent to produce two ions, $\left[\mathrm{PCl}_{4}\right]^{+}$and $\left[\mathrm{PCl}_{6}\right]^{-}$.

Which of the following shows the correct shape for $\mathrm{PCl}_{5},\left[\mathrm{PCl}_{4}\right]^{+}$and $\left[\mathrm{PCl}_{6}\right]^{-}$?

	PCl_{5}	$\left[\mathrm{PCl}_{4}\right]^{+}$	$\left[\mathrm{PCl}_{6}\right]^{-}$
A	trigonal planar	square planar	square pyramidal
B	trigonal bipyramidal	square planar	octahedral
C	trigonal planar	distorted tetrahedral	square pyramidal
D	trigonal bipyramidal	tetrahedral	octahedral

5 The table shows the boiling point of some halogenoalkanes.

compound	boiling point/ ${ }^{\circ} \mathrm{C}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	12.3
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$	34.8
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$	70.0

Which of the following correctly explains the difference in the boiling point?
1 the electronegativity difference between the halogen and carbon increases from $\mathrm{C}-\mathrm{Cl}$ to $\mathrm{C}-\mathrm{I}$
2 the strength of permanent dipole-permanent dipole attraction increases from $\mathrm{C}-\mathrm{Cl}$ to $\mathrm{C}-\mathrm{I}$
3 the strength of instantaneous dipole-induced dipole attraction increases from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$
4 the bond energy of $\mathrm{C}-\mathrm{X}$ bond decreases from $\mathrm{C}-\mathrm{Cl}$ to $\mathrm{C}-\mathrm{I}$
A 1 and 2 only
B 2 and 4 only
C 3 only
D 3 and 4 only

6 Which of the following changes will result in the greatest decrease in the density of a fixed mass of ideal gas?

Pressure	Temperature/ \mathbf{K}
halves	halves
halves	doubles
doubles	halves
doubles	doubles

7 Consider the following reactions.

Reaction 1: $\mathrm{CH}_{3}{ }^{+}+\mathrm{Br}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{Br}$
Reaction 2: $\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}+\mathrm{HBO}_{3}{ }^{2-}$

Which of the following statement is not true about the reactions above?
A Both reactions are acid-base reactions.
B In reaction 2, $\mathrm{HPO}_{4}{ }^{2-}$ acts as the Brønsted-Lowry base.
C In reaction 2, $\mathrm{HBO}_{3}{ }^{2-}$ is the conjugate acid of $\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$.
D In reaction 1, a dative covalent bond is formed between $\mathrm{CH}_{3}{ }^{+}$and Br^{-}.

8 Which of the following sketches shows the correct trend in the stated property for the elements in the third period of the Periodic Table?
A

C

B
Melting Point $/{ }^{\circ} \mathrm{C}$

D
Electrical Conductivity / S m ${ }^{-1}$

9 Compounds of Period 3 elements dissolve in water to form aqueous solutions that are acidic, basic or neutral.

Which of the following sequence shows the order of increasing resultant pH when the compounds are added to water?
A $\mathrm{NaCl}, \mathrm{MgCl}_{2}, \mathrm{SiCl}_{4}$
C $\quad \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO}, \mathrm{SO}_{2}$
B $\mathrm{AlCl}_{3}, \mathrm{SiCl}_{4}, \mathrm{PCl}_{5}$
D $\mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{SiO}_{2}, \mathrm{MgO}$

10 Phosphine reacts with hydrogen iodide to form phosphonium iodide in the reaction shown below:

$$
\mathrm{PH}_{3}(\mathrm{~g})+\mathrm{HI}(\mathrm{~g}) \rightarrow \mathrm{PH}_{4}^{+} \mathrm{I}^{-}(\mathrm{s}) \quad \Delta H^{\ominus}=-145.2 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \Delta \mathrm{S}^{\ominus}=-570.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Which of the following statement is true for the above reaction?
1 The products are less disordered than the reactants.
2 The reaction is non-spontaneous under standard conditions.
3 As temperature increases, the reaction becomes more spontaneous.

A 1 only
B 2 only
C 1 and 2 only
D 1, 2 and 3 only

11 The reaction of acidified aqueous potassium iodide with aqueous hydrogen peroxide:

$$
2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

is thought to involve the following steps:

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{OI}^{-} & \text {(slow) } \\
\mathrm{OI}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{HOI} & \text { (fast) } \\
\mathrm{HOI}+\mathrm{H}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O} & \text { (fast) } \tag{fast}
\end{array}
$$

Which of the following conclusion can be drawn from this information?
1 The acid is acting as a catalyst only.
2 The reaction is pseudo-first order with respect to $\mathrm{H}_{2} \mathrm{O}_{2}$.
3 The reaction rate is independent of the pH of the solution.

A 1 only
B 3 only
C 1 and 2 only
D 1,2 and 3 only

12 A first-order decomposition reaction is shown below.

$$
\mathrm{AB}(\mathrm{~g}) \rightarrow \mathrm{A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g})
$$

The half-life of the reaction was found to be 3.47 s .
What is the time taken for $\mathrm{AB}(\mathrm{g})$ to reach one-third of its initial concentration?
A 3.0 s
B $\quad 3.5 \mathrm{~s}$
C $\quad 5.5 \mathrm{~s}$
D $\quad 7.0 \mathrm{~s}$

13 The graph below shows how the number of moles of compound \mathbf{L} varies with temperature at two different pressures of \mathbf{P}_{1} and $\mathbf{P}_{\mathbf{2}}$ respectively.
\mathbf{L} could be any of the following compounds shown in the equation at equilibrium.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-197 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

No. of moles of \mathbf{L}

What is the correct identity of \mathbf{L} and the correct magnitude of pressures $\mathbf{P}_{\mathbf{1}}$ and $\mathbf{P}_{\mathbf{2}}$?

	Identity of \mathbf{L}	magnitude of pressures $\mathbf{P}_{\mathbf{1}}$ and $\mathbf{P}_{\mathbf{2}}$
A	SO_{2}	$\mathbf{P}_{\mathbf{1}}>\mathbf{P}_{\mathbf{2}}$
B	SO_{2}	$\mathbf{P}_{\mathbf{1}}<\mathbf{P}_{\mathbf{2}}$
C	SO_{3}	$\mathbf{P}_{1}>\mathbf{P}_{\mathbf{2}}$
D	SO_{3}	$\mathbf{P}_{1}<\mathbf{P}_{\mathbf{2}}$

14 When nitrogen dioxide, NO_{2}, and nitrogen monoxide, NO , is mixed, the gases react to form dinitrogen trioxide, $\mathrm{N}_{2} \mathrm{O}_{3}$. The reaction is shown in the following equilibrium.

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})
$$

The graph below shows how the ΔG^{\ominus} varies with temperature for the above reaction.

Using the graph above, deduce which of the following statement is true about the reaction at equilibrium?

A At point \mathbf{X}, more NO_{2} is present as compared to that at point \mathbf{Y}.
B At point \mathbf{X}, the K_{c} value is likely to be greater than 1 .
C At point \mathbf{Y}, the rate of forward reaction is greater than that of backward reaction.
D At point \mathbf{Z}, more $\mathrm{N}_{2} \mathrm{O}_{3}$ is present compared to that at point \mathbf{Y}.

15 The pH changes when $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ is added dropwise to $10.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$ as shown below.

At which point on the graph does $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}$, where K_{a} is the acid dissociation constant of the weak acid?

Volume of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ added $/ \mathrm{cm}^{3}$

16 Coordination complexes with more than one type of ligand can exist in a number of stereoisomeric forms.

For example, the chromium(III) complex $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$can refer to the two stereoisomers as shown:

How many stereoisomers can the cobalt(III) complex [Co (trien) $\left.\mathrm{Cl}_{2}\right]^{+}$have? (trien $=\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCH}_{2}\right)_{2}$, a tetradentate ligand)
A 1
B 2
C 3
D 4

17 Cyclopentane undergoes substitution with bromine.
What is a possible by-product of this reaction?
A

C

B

D

18 3-chlorobenzoic acid can be synthesized from benzene in three steps.

3-chlorobenzoic acid

Which of the following is the best method for this synthesis?

	Step 1	Step 2	Step 3
A	$\mathrm{Cl}_{2}, \mathrm{AlCl}_{3}$	$\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{AlCl}_{3}$	$\mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}$
B	$\mathrm{Cl}_{2}, \mathrm{AlCl}_{3}$	$\mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{AlCl}_{3}$
C	$\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{AlCl}_{3}$	$\mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{Cl}_{2}, \mathrm{AlCl}_{3}$
D	$\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{AlCl}_{3}$	$\mathrm{Cl}_{2}, \mathrm{AlCl}_{3}$	$\mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}$

19 The structure of a β-atlantone derivative is shown below.

When it is completely reacted with hydrogen in the presence of platinum when heated, how many chiral centres does the product molecule possess?
A 2
B 3
C 4
D 5

20 Which of the following correctly lists the compounds in order of decreasing acidity in aqueous solution?

A

B

C

D

21 Equal amounts of compounds $\mathbf{W}, \mathbf{X}, \mathbf{Y}$ and \mathbf{Z} are added separately to four test-tubes containing equal concentrations of ethanolic silver nitrate solution in a heated water bath. No precipitate forms in two of the tubes. In the other two tubes, precipitates form at different rates.

W

X

Y

Z

Which statements are correct?
1 The compounds which do not form a precipitate are \mathbf{X} and \mathbf{Z}.
2 The colour of the precipitate which forms the fastest is white.
3 The precipitate which forms the fastest weighs more than the other precipitate.
A 1, 2 and 3
B 1 and 3 only
C 2 and 3 only
D 1 only

22 The following reaction gives a mixture of organic products.

Which of the following statements are true?
1 The organic products formed are mainly alcohols.
2 The predominant type of reaction occurring is nucleophilic substitution.
3 There is a pair of cis-trans isomers among the organic products.
A 1, 2 and 3
B 1 and 2 only
C 2 and 3 only
D 3 only

23 Chlorogenic acids account for up to 8% of the composition of unroasted coffee beans. More than 40 different varieties have been identified in green coffee beans, with 5 -caffeoylquinic acid being the most prevalent.

The structure of 5 -caffeoylquinic acid is shown below.

5-caffeoylquinic acid
How many moles of aqueous sodium hydroxide, sodium hydrogencarbonate and phosphorus(V) chloride will react with one mole of 5 -caffeoylquinic acid at room temperature?

	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NaHCO}_{3}(\mathrm{aq})$	$\mathrm{PCl}_{5}(\mathbf{s})$
A	6	3	6
B	5	1	3
C	4	3	4
D	3	1	4

24 The structure of a polypeptide chain is shown below.

Which of the following will be formed when this polypeptide chain is heated under reflux with $6 \mathrm{~mol} \mathrm{dm}^{-3}$ of $\mathrm{NaOH}(\mathrm{aq})$?
1

2

3

4

A 1 and 3 only
B 2 and 4 only
C 1, 3 and 4 only
D 1, 2, 3 and 4

25 Methoxide anion, $\mathrm{CH}_{3} \mathrm{O}^{-}$, can be generated when methanol reacts with sodium metal. The following reaction shows how methoxide anion reacts with an organic compound under suitable conditions.

Which of the following is the correct mechanism for the above reaction?
A electrophilic addition
B electrophilic substitution
C nucleophilic addition
D nucleophilic substitution

26 Ketenes contain a carbon involved in both alkene and ketone functional groups. It is a reactive compound which undergoes cycloaddition reaction readily with unsaturated compounds to form cyclic rings. One example of such a reaction is shown below.

Which of the following is the correct product formed for the following cycloaddition reaction?

A
B
C
D

27 Use of the Data Booklet is relevant to this question.
When a current is passed through a solution of butanoic acid, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$, the following reaction occurs at the cathode.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}
$$

Oxygen is produced at the anode.
Which volume of oxygen, measured at room temperature and pressure, is produced when 0.015 mol of butanoic acid is electrolysed?
A $\quad 90 \mathrm{~cm}^{3}$
B $\quad 180 \mathrm{~cm}^{3}$
C $\quad 360 \mathrm{~cm}^{3}$
D $\quad 720 \mathrm{~cm}^{3}$

28 Some standard reduction potentials are given below.

$$
\begin{array}{lr}
\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Br}^{-} & +1.07 \mathrm{~V} \\
\mathrm{Cr}_{2} \mathrm{O}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} & +1.33 \mathrm{~V} \\
\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-} & +1.36 \mathrm{~V} \\
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} & +1.52 \mathrm{~V}
\end{array}
$$

Which oxidation is not feasible under standard conditions?
A chloride ions by acidified manganate(VII) ions
B bromide ions by chlorine
C manganese(II) ions by acidified dichromate(VI) ions
D chromium(III) ions by chlorine

29 A compound of chromium with the general formula $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ forms an aqueous solution. When this solution is treated with an excess of aqueous silver nitrate, only two third of the total chloride present is precipitated as AgCl .

Which of the following represents the structure of the chromium-containing ion present in the original compound?
A Cr^{3+}
C $\quad\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]^{2+}$
B $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
D $\quad\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$

30 The chromium picolinate complex is soluble in water and the visible absorption spectrum of the complex is shown below:
[A visible absorption spectrum is a graph depicting the absorption of radiation by a material over a range of visible light wavelengths.]

What is the most likely colour of the chromium picolinate complex?
A violet
C yellow
B blue
D green

Catholic Junior College

 JC 2 Preliminary Examinations
Higher 2

CANDIDATE NAME \square
CLASS
2T

CHEMISTRY

9729/01
Paper 1 Multiple Choice
Wednesday 29 August 2018
1 hour
Additional Materials: Multiple Choice Answer Sheet
Data Booklet

> WORKED SOLUTIONS

This document consists of 29 printed pages.

1 A sample of tungsten contains four naturally occurring isotopes, ${ }^{182} \mathrm{~W},{ }^{183} \mathrm{~W},{ }^{184} \mathrm{~W}$ and ${ }^{186} \mathrm{~W}$.

The relative atomic mass of tungsten in this sample is 183.9. What is the percentage of the isotope ${ }^{182} \mathrm{~W}$ in this sample?

Isotope	Relative Abundance (\%)
${ }^{182} \mathrm{~W}$	$?$
${ }^{183} \mathrm{~W}$	$?$
${ }^{184} \mathrm{~W}$	30.6
${ }^{186} \mathrm{~W}$	28.6

A $\quad 10.5$
C $\quad 26.4$
B 14.4
D 40.8

Answer: C

Let the percentage of ${ }^{182} \mathrm{~W}$ be x.
The percentage of ${ }^{183} \mathrm{~W}$ would be $100-30.6-28.6-x=40.8-x$
Thus,

$$
\begin{gathered}
183.9=\frac{182 x+183(40.8-x)+184(30.6)+186(28.6)}{100} \\
x=26.4
\end{gathered}
$$

$220 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ of potassium ferrate(VI), $\mathrm{K}_{2} \mathrm{FeO}_{4}$, reacts with sodium ethanedioate, $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, in an acidic medium to produce $144 \mathrm{~cm}^{3}$ of carbon dioxide gas at room temperature and pressure.

The half equation of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ is shown as follows:

$$
2 \mathrm{CO}_{2}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}
$$

What is the final oxidation state of the iron-containing species after the reaction?
A $\quad+1$
B $\quad+2$
C +3
D +4

Answer: C
Oxidation state of Fe in $\mathrm{K}_{2} \mathrm{FeO}_{4}=+6$
Amt of $\mathrm{FeO}_{4}{ }^{2-}$ reacted $=\frac{20}{1000} \times 0.100=0.002 \mathrm{~mol}$
Amt of CO_{2} formed $=144 \div 24000=0.006 \mathrm{~mol}$
Amt of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ reacted $=1 / 2 \times 0.006=0.003 \mathrm{~mol}$

Ratio of $\mathrm{FeO}_{4}{ }^{2-}: \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}=0.002: 0.003$
$2 \mathrm{FeO}_{4}{ }^{2-} \equiv 3 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
3 mol of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ will produce 6 mol of e^{-}and 2 mol of $\mathrm{FeO}_{4}{ }^{2-}$ will accept 6 mol of e^{-}.
Therefore, 1 mol of $\mathrm{FeO}_{4}{ }^{2-}$ will accept 3 mol of e^{-}.
Since $\mathrm{FeO}_{4}{ }^{2-}$ is reduced from an oxidation state of +6 to +3 .

3 When attracted by a strong magnet, some species are able to exhibit paramagnetism. Such species contain unpaired electrons which are able to spin in a way which aligns parallel to the magnetic field.

Which of the following species in the ground state is able to exhibit paramagnetism?
10
$2 \mathrm{Al}{ }^{+}$
$3 \quad \mathrm{Ti}^{2+}$
$4 \mathrm{Cu}^{+}$

A 1 and 3 only
B 2 and 4 only
C 1,3 and 4 only
D 2, 3 and 4 only

Answer: A (1 and 3 only)

$1 \quad 0: 1 s^{2} 2 s^{2} 2 p^{4}\left(2 p_{x}{ }^{2}, 2 p_{y}{ }^{1}, 2 p_{z}{ }^{1}\right)$ there are 2 unpaired electrons in $2 p$ orbital
$2 \quad \mathrm{Al} \mathrm{l}^{+}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2}$ there are no unpaired electrons
$3 \quad \mathrm{Ti}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2}$ there are 2 unpaired electrons in 3d orbital
$4 \quad \mathrm{Cu}^{+}$: $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}$ there are no unpaired electrons

4 Phosphorus(V) chloride, PCl_{5} dissolves in a suitable polar solvent to produce two ions, $\left[\mathrm{PCl}_{4}\right]^{+}$and $\left[\mathrm{PCl}_{6}\right]^{-}$.

Which of the following shows the correct shape for $\mathrm{PCl}_{5},\left[\mathrm{PCl}_{4}\right]^{+}$and $\left[\mathrm{PCl}_{6}\right]^{-}$?

	PCl_{5}	$\left[\mathrm{PCl}_{4}\right]^{+}$	$\left[\mathrm{PCl}_{6}\right]^{-}$
A	trigonal planar	square planar	square pyramidal
B	trigonal bipyramidal	square planar	octahedral
C	trigonal planar	distorted tetrahedral	square pyramidal
D	trigonal bipyramidal	tetrahedral	octahedral

Answer: D
PCl_{5} : 5 bond pairs 0 lone pairs of electrons; shape is trigonal bipyramidal $\left[\mathrm{PCl}_{4}\right]^{+}: 4$ bond pairs 0 lone pairs of electrons; shape is tetrahedral [$\left.\mathrm{PCl}_{6}\right]^{-}: 6$ bond pairs 0 lone pairs of electrons; shape is octahedral

octahedral

5 The table shows the boiling point of some halogenoalkanes.

compound	boiling point $/{ }^{\circ} \mathrm{C}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	12.3
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$	34.8
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$	70.0

Which of the following correctly explains the difference in the boiling point?
1 the electronegativity difference between the halogen and carbon increases from $\mathrm{C}-\mathrm{Cl}$ to $\mathrm{C}-\mathrm{I}$

2 the strength of permanent dipole-permanent dipole attraction increases from $\mathrm{C}-\mathrm{Cl}$ to $\mathrm{C}-\mathrm{I}$

3 the strength of instantaneous dipole-induced dipole attraction increases from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$

4 the bond energy of $\mathrm{C}-\mathrm{X}$ bond decreases from $\mathrm{C}-\mathrm{Cl}$ to $\mathrm{C}-\mathrm{I}$

A 1 and 2 only
B 2 and 4 only
C 3 only
D 3 and 4 only
Answer: C (3 only)
N.B. H-bonding > pd-pd> id-id only if size of electron cloud of molecules are similar.

1 the electronegativity difference between the halogen and carbon should decrease from $\mathrm{C}-\mathrm{Cl}$ to $\mathrm{C}-\mathrm{I}$
Statement does not explain for the trend of increasing boiling point from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$.

2 the strength of permanent dipole-permanent dipole attraction decreases from $\mathrm{C}-\mathrm{Cl}$ to $\mathrm{C}-\mathrm{I}$

The statement of option 2 is incorrect and does not explain for the trend of increasing boiling point from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$.

3 the strength of instantaneous dipole-induced dipole attraction increases from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$
Statement is correct as the total number of electrons increases from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$ and due to the increase in id-id attraction, the boiling point increases from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$.

4 the bond energy of $\mathrm{C}-\mathrm{X}$ bond decreases from $\mathrm{C}-\mathrm{Cl}$ to $\mathrm{C}-\mathrm{I}$
Statement is correct but boiling does not break the $\mathrm{C}-\mathrm{X}$ bond, so this does not explain for the trend of increasing boiling point from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$.

6 Which of the following changes will result in the greatest decrease in the density of a fixed mass of ideal gas?

Pressure Temperature/ K
A halves halves
B halves doubles
C doubles halves
D doubles doubles

Answer: B
Density, $\rho=\frac{m}{V}$
Hence, $\rho=\frac{p M_{r}}{R T}$
From the formula above, the greatest decrease in density is brought about when pressure decreases and temperature increases.

7 Consider the following reactions.
Reaction 1: $\mathrm{CH}_{3}{ }^{+}+\mathrm{Br}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{Br}$
Reaction 2: $\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}+\mathrm{HBO}_{3}{ }^{2-}$

Which of the following statement is not true about the reactions above?

A Both reactions are acid-base reactions.
B In reaction 2, $\mathrm{HPO}_{4}{ }^{2-}$ acts as the Brønsted-Lowry base.
C In reaction 2, $\mathrm{HBO}_{3}{ }^{2-}$ is the conjugate acid of $\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$.
D In reaction 1, a dative covalent bond is formed between $\mathrm{CH}_{3}{ }^{+}$and Br^{-}.

Answer: C
For Reaction 1:
$\mathrm{CH}_{3}{ }^{+}: \mathrm{Br}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{Br}$
$\mathrm{CH}_{3}{ }^{+}$behaves as the Lewis acid (electron pair acceptor) while Br^{-}behaves as the Lewis base (electron pair donor). Hence it is an acid-base reaction (option A is true) which involves the formation of a dative covalent bond. (option D is true)

For Reaction 2:
$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}+\mathrm{HBO}_{3}{ }^{2-}$
$\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$behaves as the Brønsted-Lowry acid (H^{+}donor) while $\mathrm{HPO}_{4}{ }^{2-}$ behaves as the Brønsted-Lowry base (H^{+}acceptor). Hence it is an acid-base reaction. (option B is true) $\mathrm{HBO}_{3}{ }^{2-}$ is the conjugate base of $\mathrm{H}_{2} \mathrm{BO}_{3}^{-}$(option C is not true)
8 Which of the following sketches shows the correct trend in the stated property for the elements in the third period of the Periodic Table?
A

C

B
Melting Point $/{ }^{\circ} \mathrm{C}$

D
Electrical Conductivity / S m ${ }^{-1}$

Answer: C

Graph A shows the trends of ionic radius across period 3 elements, not atomic radius. Atomic radius across period should be this.

Correct shape of the melting point of period 3 elements should be this:

Correct shape of electrical conductivity of period 3 elements should be this:

9 Compounds of Period 3 elements dissolve in water to form aqueous solutions that are acidic, basic or neutral.

Which of the following sequence shows the order of increasing resultant pH when the compounds are added to water?
A $\mathrm{NaCl}, \mathrm{MgCl}_{2}, \mathrm{SiCl}_{4}$
C $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO}, \mathrm{SO}_{2}$
B $\mathrm{AlCl}_{3}, \mathrm{SiCl}_{4}, \mathrm{PCl}_{5}$
D $\mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{SiO}_{2}, \mathrm{MgO}$

Answer: D. pH 2, pH 7, pH 9

10 Phosphine reacts with hydrogen iodide to form phosphonium iodide in the reaction shown below:

$$
\mathrm{PH}_{3}(\mathrm{~g})+\mathrm{HI}(\mathrm{~g}) \rightarrow \mathrm{PH}_{4}^{+} \mathrm{I}^{-}(\mathrm{s}) \quad \Delta H^{\ominus}=-145.2 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \Delta \mathrm{S}^{\ominus}=-570.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Which one of the following statement is true for the above reaction?
1 The products are less disordered than the reactants.
2 The reaction is non-spontaneous under standard conditions.
3 As temperature increases, the reaction becomes more spontaneous.

A 1 only
B 2 only
C 1 and 2 only
D 1, 2 and 3 only

Answer: C

1 True. Since $\Delta S^{\theta}=-570.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ (negative value), disorderness of the system has occurred.
2 True.
At 298K, $\Delta G^{\theta}=\Delta H^{\theta}-\mathrm{T} \Delta S^{\theta}=(-145.2)-(298)(-570.8 / 1000)$

$$
=+24.9 \mathrm{~kJ} \mathrm{~mol}^{-1}>0 \text { (non-spontaneous reaction) }
$$

3 False. Since both ΔH^{θ} and ΔS^{θ} have negative values, the reaction is only spontaneous at low temperature (so that the magnitude of $-\mathrm{T} \Delta \mathrm{S}^{\ominus}$ (+ve) decreases).

11 The reaction of acidified aqueous potassium iodide with aqueous hydrogen peroxide:

$$
2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

is thought to involve the following steps:

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{OI}^{-} & \text {(slow) } \\
\mathrm{II}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{HOI} & \text { (fast) } \\
\mathrm{HOI}+\mathrm{H}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O} & \text { (fast) }
\end{array}
$$

Which of the following conclusion can be drawn from this information?
1 The acid is acting as a catalyst only.
2 The reaction is pseudo-first order with respect to $\mathrm{H}_{2} \mathrm{O}_{2}$.
3 The reaction rate is independent of the pH of the solution.

A 1 only
B 3 only
C 1 and 2 only

D 1, 2 and 3 only

Answer: B

1 False. H^{+}is consumed in Step 2 and 3 and are not regenerated. Hence the acid $\left(\mathrm{H}^{+}\right)$is not acting as a catalyst, it is a reactant in this reaction.
2 False.
Since the first step is the slow step, the rate equation is

$$
\text { rate }=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]
$$

The reaction is first-order with respect to both $\mathrm{H}_{2} \mathrm{O}_{2}$ and I^{-}. Statement 2 can only be true if a large concentration of I^{-}is used so that the rate equation can be simplified to

$$
\text { rate }=k^{\prime}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right] \quad \text { where } \mathrm{k}^{\prime}=\mathrm{k}\left[\mathrm{I}^{-}\right]
$$

However, it is not mentioned in the question that a large concentration of I^{-}is used in the experiment.
3 True. The rate equation does not involve H^{+}, hence the pH does not affect the reaction rate

12 A first-order decomposition reaction is shown below.

$$
\mathrm{AB}(\mathrm{~g}) \rightarrow \mathrm{A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g})
$$

The half-life of the reaction was found to be 3.47 s .
What is the time taken for $\mathrm{AB}(\mathrm{g})$ to reach one-third of its initial concentration?
A $\quad 3.0$ s
B $\quad 3.5 \mathrm{~s}$
C $\quad 5.5 \mathrm{~s}$
D $\quad 7.0 \mathrm{~s}$

Answer: C
Using the following formula,
$\frac{c_{t}}{c_{o}}=\left(\frac{1}{2}\right)^{\mathrm{n}}, \quad$ where $\mathrm{n}=$ no. of half-lives $=\frac{\text { time taken }}{\boldsymbol{t}_{1 / 2}}$
If [AB] is $\frac{1}{3}$ of the initial concentration, $\frac{c_{t}}{c_{o}}=\left(\frac{1}{3}\right)$
$\frac{1}{3}=\left(\frac{1}{2}\right)^{n}$
$\lg \left(\frac{0.5}{1.5}\right)=n \lg \left(\frac{1}{2}\right)$
$\mathrm{n}=1.585$
time taken $=1.585 \times 3.47=5.5 \mathrm{~s}$

13 The graph below shows how the number of moles of compound \mathbf{L} varies with temperature at two different pressures of \mathbf{P}_{1} and $\mathbf{P}_{\mathbf{2}}$ respectively.
\mathbf{L} could be any of the following compounds shown in the equation at equilibrium.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta H=-197 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

No. of moles of \mathbf{L}

Temperature
What is the correct identity of \mathbf{L} and the correct magnitude of pressures $\mathbf{P}_{\mathbf{1}}$ and $\mathbf{P}_{\mathbf{2}}$?

	Identity of \mathbf{L}	magnitude of pressure
A	SO_{2}	$\mathbf{P}_{1}>\mathbf{P}_{\mathbf{2}}$
B	SO_{2}	$\mathbf{P}_{1}<\mathbf{P}_{\mathbf{2}}$
C	SO_{3}	$\mathbf{P}_{1}>\mathbf{P}_{\mathbf{2}}$
D	SO_{3}	$\mathbf{P}_{1}<\mathbf{P}_{\mathbf{2}}$

Answer: C

Since forward reaction is exothermic, higher temperatures will favour the backward endothermic reaction. At higher temperature, $\left[\mathrm{SO}_{2}\right]$ and $\left[\mathrm{O}_{2}\right]$ increases while $\left[\mathrm{SO}_{3}\right]$ decreases. Thus the two downward-sloping graphs applies to SO_{3}.

At a higher pressure, forward reaction is favoured since the product has less moles of gaseous particles, therefore $\left[\mathrm{SO}_{3}\right]$ increases.
Thus, $\mathbf{P}_{\mathbf{1}}>\mathbf{P}_{\mathbf{2}}$.

14 When nitrogen dioxide, NO_{2}, and nitrogen monoxide, NO , is mixed, the gases react to form dinitrogen trioxide, $\mathrm{N}_{2} \mathrm{O}_{3}$. The reaction is shown in the following equilibrium.

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})
$$

The graph below shows how the ΔG^{\ominus} varies with temperature for the above reaction.

Using the graph above, deduce which of the following statement is true about the reaction at equilibrium?

A At point \mathbf{X}, more NO_{2} is present as compared to that at point \mathbf{Y}.
B At point \mathbf{X}, the K_{c} value is likely to be greater than 1.
C At point \mathbf{Y}, the rate of forward reaction is greater than that of backward reaction.
D At point \mathbf{Z}, more $\mathrm{N}_{2} \mathrm{O}_{3}$ is present compared to that at point \mathbf{Y}.

Answer: B

Since the reaction is at equilibrium, rate of forward reaction = rate of backward reaction for all points X, Y and Z. (option C is incorrect)

At point $\mathbf{X}, \underline{\Delta G^{\theta}<0}$, P.O.E lies more to the right and forward reaction occurs more readily compared to backward reaction.
Since $K_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{3}\right]}{\left[\mathrm{NO}_{2}\right][\mathrm{NO}]}$,
Therefore K_{c} value is likely to be greater than 1 at point \mathbf{X}. (option \mathbf{B} is correct)
At point $\mathbf{Y}, \Delta G^{\theta}=0$.
Comparing point \mathbf{X} and \mathbf{Y}, less NO_{2} gas is present at \mathbf{X} since P.O.E lies more to the right at point \mathbf{X} compared to point \mathbf{Y}. (option \mathbf{A} is wrong)

At point $\mathbf{Z}, \Delta G^{\theta}>0$, P.O.E lies more to the left and backward reaction occurs more readily compared to forward reaction. K_{c} is lesser than 1 . Therefore, at point \mathbf{Z}, less $\mathrm{N}_{2} \mathrm{O}_{3}$ gas is present as compared to that at point \mathbf{Y}. (option D is wrong)

15 The pH changes when $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ is added dropwise to $10.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$ as shown below.

At which point on the graph does $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}$, where K_{a} is the acid dissociation constant of the weak acid?

Volume of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ added/ cm^{3}

Answer: D
For $\mathrm{pH}=\mathrm{p} \mathrm{K}_{\mathrm{a}},\left[\mathrm{A}^{-}\right]=[\mathrm{HA}]$
$\mathrm{HA}+\mathrm{NaOH} \rightarrow \mathrm{NaA}+\mathrm{H}_{2} \mathrm{O}$
At A, species present: NaOH and NaA
At equivalence point B, A^{-}ion hydrolyses in water, $\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}+\mathrm{OH}^{-}$
At C, $\left[\mathrm{A}^{-}\right] \neq[\mathrm{HA}]$
At D,
$n_{\text {HA }} \quad=20.00 / 1000 \times 0.100$
$=2 \times 10^{-3} \mathrm{~mol}$
nон- $\quad=10.0 / 1000 \times 0.100$
$=1 \times 10^{-3} \mathrm{~mol}$
n_{A} - formed $\quad=1 \times 10^{-3} \mathrm{~mol}$
$\mathrm{n}_{\text {HA }}$ unreacted $=2 \times 10^{-3} \mathrm{~mol}-1 \times 10^{-3} \mathrm{~mol}$
$=1 \times 10^{-3} \mathrm{~mol}$
At $\mathrm{D},\left[\mathrm{A}^{-}\right]=[\mathrm{HA}]$

16 Coordination complexes with more than one type of ligand can exist in a number of stereoisomeric forms.

For example, the chromium(III) complex $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$can refer to the two stereoisomers as shown:

How many stereoisomers can the cobalt(III) complex [$\mathrm{Co}($ (trien $\left.) \mathrm{Cl}_{2}\right]^{+}$have? (trien $=\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCH}_{2}\right)_{2}$, a tetradentate ligand)
A 1
B 2
C 3
D 4

Answer: C
There are three stereoisomers for $\left[\mathrm{Co}(\text { trien }) \mathrm{Cl}_{2}\right]^{+}$.

Middle two N in same plane.

Three N in same plane.

All four N in same plane.

17 Cyclopentane undergoes substitution with bromine.
What is a possible by-product of this reaction?
A

C

B

D

Answer: D

In \mathbf{A}, \mathbf{B} and \mathbf{C}, the cyclopentane units are sharing carbon atoms, whereas in \mathbf{D}, the carbon atoms of each cyclopentane unit are separate from other cyclopentane units. In free radical substitution, the termination step between two alkyl radicals gives rise to a new C-C bond, and the number of carbon atoms in the product should be the sum of that in the alkyl radicals.

The radical formed should be

Hence the termination step between two alkyl radicals should be:

18 3-chlorobenzoic acid can be synthesized from benzene in three steps.

3-chlorobenzoic acid
Which of the following is the best method for this synthesis?

	Step 1	Step 2	Step 3
A	$\mathrm{Cl}_{2}, \mathrm{AlCl}_{3}$	$\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{AlCl}_{3}$	$\mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}$
B	$\mathrm{Cl}_{2}, \mathrm{AlCl}_{3}$	$\mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{AlCl}_{3}$
C	$\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{AlCl}_{3}$	$\mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{Cl}_{2}, \mathrm{AlCl}_{3}$
D	$\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{AlCl}_{3}$	$\mathrm{Cl}_{2}, \mathrm{AlCl}_{3}$	$\mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: C

In this synthesis, we need to substitute $-\mathrm{CH}_{3}$ (which is subsequently oxidised to $-\mathrm{CO}_{2} \mathrm{H}$) and -Cl onto the benzene ring. Since both $-\mathrm{CH}_{3}$ and -Cl are 2,4-directing, but we want a 1,3-disubstituted product, we need to get $-\mathrm{CH}_{3}$ on the ring first so that we can oxidise it to $-\mathrm{CO}_{2} \mathrm{H}$, which is 3 -directing.
Option \mathbf{A} : $-\mathrm{CH}_{3}$ is substituted on 2 - and 4 -positions instead of the 3 -position.

Option B: No alkyl side-chain for KMnO_{4} to oxidise in Step 2.

Option C:

Option $\mathbf{D}:-\mathrm{Cl}$ is substituted on 2 - and 4-positions instead of the 3-position.

19 The structure of a β-atlantone derivative is shown below.

When it is completely reacted with hydrogen in the presence of platinum when heated, how many chiral centres does the product molecule possess?
A 2
B 3
C 4
D 5

Concept: Alkenes, Carbonyl Compounds: Reduction using $\mathrm{H}_{2} / \mathrm{Pt}$

Answer: D
Reduction of $\mathrm{C}=\mathrm{C}$ bonds and the ketone functional group gives the following product, which has 4 chiral centres:

20 Which of the following correctly lists the compounds in order of decreasing acidity in aqueous solution?

A

B

C

D

Answer: B

Electron-withdrawing group	$-\mathrm{NO}_{2},-\mathrm{Cl}$
Electron-donating group	$-\mathrm{CH}_{3}$

***Refer to Pg 17 of Data Booklet for the list of electron-donating groups (which activate ring reactivity) and electron-withdrawing groups (which deactivate ring reactivity).

Note that

- electron-withdrawing groups increase acid strength by dispersing the negative charge on O atom and stabilizing the carboxylate ion; while
- electron-donating groups intensify the negative charge on O atom and destabilise the carboxylate ion.

Hence option B is correct.
For the other options,
A \& D The correct order should be

C Note that the following compound

is an acyl chloride and undergoes hydrolysis readily to give HCl which is a strong acid, hence it is the strongest acid.
Hence, the correct order should be

$>$

>

21 Equal amounts of compounds $\mathbf{W}, \mathbf{X}, \mathbf{Y}$ and \mathbf{Z} are added separately to four test-tubes containing equal concentrations of ethanolic silver nitrate solution in a heated water bath. No precipitate forms in two of the tubes. In the other two tubes, precipitates form at different rates.

W

X

Y

Z

Which statements are correct?
1 The compounds which do not form a precipitate are \mathbf{X} and \mathbf{Z}.
2 The colour of the precipitate which forms the fastest is white.
3 The precipitate which forms the fastest weighs more than the other precipitate.

A 1, 2 and $3 \quad$ B 1 and 3 only C 2 and 3 only D 1 only

Answer: B

1 In both \mathbf{X} and \mathbf{Z}, and halogen is directly connected to the benzene ring. This results in a stronger $\mathbf{C}-\mathbf{X}$ bond, hence \mathbf{X} and \mathbf{Z} do not undergo nucleophilic substitution. \checkmark The C-I bond is weaker than the $\mathrm{C}-\mathrm{Cl}$ bond, hence it will break more readily. The colour of the precipitate should be yellow instead of white (which is the colour of $\mathrm{AgCl})$, since it is AgI that forms the fastest.
3 Since equal amounts (i.e., no. of moles) of the compounds \mathbf{W} to \mathbf{Z} are used, the same no. of moles of precipitate should form for \mathbf{X} and \mathbf{Z}. The M_{r} of AgI is greater than that of AgCl , so the AgI precipitate should weigh more than the AgCl precipitate.

22 The following reaction gives a mixture of organic products.

Which of the following statements are true?
1 The organic products formed are mainly alcohols.
2 The predominant type of reaction occurring is nucleophilic substitution.
3 There is a pair of cis-trans isomers among the organic products.
A 1, 2 and 3
B 1 and 2 only
C 2 and 3 only
D 3 only

Answer: D
The reaction type is elimination. HBr can be eliminated from carbons $1 \& 2$, or carbons $2 \& 3$, to give three products, among which there is a pair of cis-trans isomers.

Do not confuse this reaction with the nucleophilic substitution of Br by OH^{-}, which takes place preferably under aqueous conditions instead of ethanolic conditions.

23 Chlorogenic acids account for up to 8% of the composition of unroasted coffee beans. More than 40 different varieties have been identified in green coffee beans, with 5 -caffeoylquinic acid being the most prevalent.

The structure of 5-caffeoylquinic acid is shown below.

5-caffeoylquinic acid
How many moles of aqueous sodium hydroxide, sodium hydrogencarbonate and phosphorus(V) chloride will react with one mole of 5 -caffeoylquinic acid at room temperature?

	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NaHCO}_{3}(\mathrm{aq})$	$\mathrm{PCl}_{5}(\mathbf{s})$
A	6	3	6
B	5	1	3
C	4	3	4
D	3	1	4

Answer: D
Note:

- $\mathrm{NaOH}(\mathrm{aq})$ will react with phenols and carboxylic acids only.
- $\mathrm{NaHCO}_{3}(\mathrm{aq})$ will react with carboxylic acids only.
- $\mathrm{PCl}_{5}(\mathrm{~s})$ will react with alcohols and carboxylic acids only.

24 The structure of a polypeptide chain is shown below.

Which of the following will be formed when this polypeptide chain is heated under reflux with $6 \mathrm{~mol} \mathrm{dm}^{-3}$ of $\mathrm{NaOH}(\mathrm{aq})$?
1
2
3

4

A 1 and 3 only
B 2 and 4 only
C 1, 3 and 4 only
D 1, 2, 3 and 4

Answer: A (1 and 3 only)

Upon hydrolysis with $\mathrm{NaOH}(\mathrm{aq})$, the correct products should be:

Option 2 is wrong as there should not be $-\mathrm{NH}_{3}{ }^{+}$present when NaOH is used.
Option 4 is wrong as the amide group $\left(-\mathrm{CONH}_{2}\right)$ of the R -group should also be hydrolysed

25 Methoxide anion, $\mathrm{CH}_{3} \mathrm{O}^{-}$, can be generated when methanol reacts with sodium metal. The following reaction shows how methoxide anion reacts with an organic compound under suitable conditions.

Which of the following is the correct mechanism for the above reaction?
A electrophilic addition
B electrophilic substitution
C nucleophilic addition
D nucleophilic substitution

Answer: D
Methoxide anion, $\mathrm{CH}_{3} \mathrm{O}^{-}$, is a nucleophile (lone pair of electrons to be donated) which is attracted to the electron deficient \mathbf{C} of the benzene ring bonded to Cl . (Due to the presence of 3 electron withdrawing NO_{2} groups, the $\mathrm{C}-\mathrm{Cl}$ bond is highly polarised and weakened)
Since the benzene ring is restored at the end of the reaction, this reaction is a substitution reaction instead of an addition reaction. Hence, the correct mechanism of this reaction is a nucleophilic substitution.
(Note that under normal conditions, $\mathrm{C}-\mathrm{Cl}$ bond of chlorobenzene does have partial double bond character and will NOT be hydrolysed.)

26 Ketenes contain a carbon involved in both alkene and ketone functional groups. It is a reactive compound which undergoes cycloaddition reaction readily with unsaturated compounds to form cyclic rings. One example of such a reaction is shown below.

Which of the following is the correct product formed for the following cycloaddition reaction?

A

B

C

D

Answer: D
A and B cannot be the correct answer as there would be a loss of 1 C from the reactants to molecules A and B.
C is not the correct answer because there is an addition of 2 H due to a missing $\mathrm{C}=\mathrm{C}$. (by comparing the M_{r} of the reactants and C). In the given reaction, the number of H and C and O should still stay the same after the cycloaddition reaction.
Recognising the pattern,

Ketene

27 Use of the Data Booklet is relevant to this question.

When a current is passed through a solution of butanoic acid, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$, the following reaction occurs at the cathode.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}
$$

Oxygen is produced at the anode.
Which volume of oxygen, measured at room temperature and pressure, is produced when 0.015 mol of butanoic acid is electrolysed?
A $\quad 90 \mathrm{~cm}^{3}$
B $\quad 180 \mathrm{~cm}^{3}$
C $\quad 360 \mathrm{~cm}^{3}$
D $\quad 720 \mathrm{~cm}^{3}$

Answer: C

The half-equation for the oxidation of water to produce oxygen (under acidic conditions) is as follows:

$$
2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}
$$

Hence, $\mathrm{O}_{2} \equiv 4 \mathrm{e}^{-} \equiv \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
No. of moles of $\mathrm{O}_{2}=0.0150 \mathrm{~mol}$
Volume of $\mathrm{O}_{2}=0.0150 \times 24000=360 \mathrm{~cm}^{3}$

28 Some standard reduction potentials are given below.

$\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Br}^{-}$	+1.07 V
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$	+1.33 V
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-}$	+1.36 V
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	+1.52 V

Which oxidation is not feasible under standard conditions?

A chloride ions by acidified manganate(VII) ions
B bromide ions by chlorine
C manganese(II) ions by acidified dichromate(VI) ions
D chromium(III) ions by chlorine

Answer: C
A chloride ions by acidified manganate(VII) ions
$E_{\text {cell }^{\theta}}=1.52-1.36>0 \quad \checkmark$
B bromide ions by chlorine
$E_{\text {cell }}{ }^{\ominus}=1.36-1.07>0$
C manganese(II) ions by acidified dichromate(VI) ions
$E_{\text {cell }}{ }^{\text {o }}=1.33-1.52<0 \quad x$
D chromium(III) ions by chlorine
$E_{\text {cell }}{ }^{\theta}=1.36-1.33>0$

29 A compound of chromium with the general formula $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ forms an aqueous solution. When this solution is treated with an excess of aqueous silver nitrate, only two third of the total chloride present is precipitated as AgCl .

Which of the following represents the structure of the chromium-containing ion present in the original compound?
A Cr^{3+}
C $\quad\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]^{2+}$
B $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
D $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$

Answer: C

Since only two third of the total chloride present is precipitated as AgCl , the complex of the chromium compound is $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]^{2+} \cdot 2 \mathrm{Cl}^{-}$, where $2 \mathrm{Cl}^{-}$are free ions and are not bonded to the central metal ion through dative bonding and thus free to react with silver ions to form AgCl ppt.

30 The chromium picolinate complex is soluble in water and the visible absorption spectrum of the complex is shown below:
[A visible absorption spectrum is a graph depicting the absorption of radiation by a material over a range of visible light wavelengths.]

What is the most likely colour of the chromium picolinate complex?
A violet
C yellow
B blue
D green

Answer: C

In general, the observed colour of an object corresponds to the wavelengths that are not absorbed by the object. The colour observed is complementary of the colour of light (wavelengths) absorbed. Since the complex absorbed light in the violet/blue region, the colour observed will be yellow/orange.

Catholic Junior College

JC2 Preliminary Examination

Higher 2

CANDIDATE NAME \square

CLASS

```
2T
```


CHEMISTRY

9729/02
Paper 2 Structured Questions
Friday 17 August 2018

Candidates answer on the Question Paper.
Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer all questions in the spaces provided on the Question Paper.

The use of an approved scientific calculator is expected, where appropriate.
A Data Booklet is provided.
At the end of examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

Answer all the questions in the spaces provided.

1 In atmospheric chemistry, NO_{x} is a generic term for the nitrogen oxides that are most prevalent for air pollution, namely nitric oxide (NO) and nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$. These gases contribute to the formation of smog and acid rain, as well as tropospheric ozone. In the atmosphere, dinitrogen pentoxide $\left(\mathrm{N}_{2} \mathrm{O}_{5}\right)$ is an important reservoir of the NO_{x} species that are responsible for ozone depletion.
(a) In the laboratory, the kinetics involving the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ into NO_{2} and O_{2} can be investigated by dissolving it in an organic solvent such as tetrachloromethane, CCl_{4}. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ was found to be a first-order reaction.

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Table 1.1 below shows the variation of $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ with time.

Time $/ \mathrm{s}$	$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] / \mathrm{mol} \mathrm{dm}^{-3}$	$\ln \left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$
0	0.910	
300	0.750	
600	0.640	
1200	0.440	
3000	0.160	

Table 1.1
(i) State the rate equation for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$.
\qquad
(ii) The rate equation for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ can also be expressed as:

$$
\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{\mathrm{t}}=-\mathrm{kt}+\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}
$$

where $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}$ is the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ and $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ is the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ at time, t.

Using relevant data in Table 1.1, calculate the values for $\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ and complete Table 1.1.
(iii) Using the following axes and relevant data in Table 1.1, plot a graph of In $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ against time (in second), showing how the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ changes with time.

In $\mathrm{N}_{2} \mathrm{O}_{5}$ (
[2]
(iv) Using your graph, determine a value for the rate constant, k, for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$. State the units of k clearly.
(v) Hence determine a value for the half-life of the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$. State the units clearly.
(vi) Outline another experiment to determine the rate constant, k , for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in tetrachloromethane.

You are provided with the same solution of $\mathrm{N}_{2} \mathrm{O}_{5}$ used in the experiment described in (a).

No details regarding use of specific glassware are required.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The NO_{2} produced in the decomposition reaction in (a) can exist in equilibrium with dinitrogen tetroxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

An experiment was conducted at $25^{\circ} \mathrm{C}$ by varying initial concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} contained in a closed reaction vessel. The initial and equilibrium concentrations of the two gases are shown in Table 1.2.

Experiment No	Initial concentration $/ \mathrm{mol} \mathrm{dm}^{-3}$		Equilibrium concentration $/ \mathrm{mol} \mathrm{dm}^{-3}$	
	$\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]$	$\left[\mathrm{NO}_{2}\right]$	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$	$\left[\mathrm{NO}_{2}\right]$
1	0.000	0.200	0.0898	0.0204
2	0.600	0.040	0.594	0.0523
3	0.500	0.030	0.491	0.0475
4	0.446	0.050	0.448	0.0457
5	0.670	0.000	0.643	0.0547

Table 1.2
(i) State Le Chatelier's Principle.
\qquad
\qquad
\qquad
(ii) State what will be observed when the pressure in the reaction vessel is decreased.
\qquad
\qquad
(iii) Identify the experiment that gives the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{4}: \mathrm{NO}_{2}$ in the ratio 15:1.
(iv) Based on the experiment identified in (b)(iii), calculate a value for the equilibrium constant, K_{c}.
(v) For reversible reactions involving gases, the concentrations of the gaseous reactants and products can also be expressed in terms of their partial pressures, and the value of the corresponding K_{p} can then be determined.
K_{p} and K_{c} is related by the following expression:

$$
K_{\mathrm{p}}=K_{\mathrm{c}}(0.0821 \mathrm{~T})^{\Delta \mathrm{n}}
$$

where $\Delta n=$ moles of gaseous products - moles of gaseous reactants based on given stoichiometric equation and T is temperature in Kelvin.

Using your answer in (b)(iv) and the above expression, calculate a value for the K_{p} for the reversible reaction between $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2}.

2 (a) Marine organisms such as crabs use peptide signaling molecules such as glycyl-L-histidyl-L-Iysine (GHK) to detect predators. In order for this peptide signaling molecule to function in water, it must exist in the form of a zwitterion.

However, due to the increase in carbon dioxide levels in the ocean, the pH of the ocean decreases as shown in Fig. 2. This affects the structure and function of the peptide signaling molecule and thus affecting the survival of these marine organisms.

Fig. 2
(i) State what is meant by a zwitterion.
\qquad
(ii) Explain briefly why GHK, as a zwitterion, is highly soluble in water.
\qquad
\qquad
(iii) Write an equation showing how the pH of the ocean decreases due to rising concentration of CO_{2}.
\qquad

The structure of GHK is shown below where R, which is the histidine side chain, need not be considered for this question.

GHK
(iv) Circle any chiral carbon atom on the above structure, GHK.
(v) There can be three $\mathrm{p} K_{\mathrm{a}}$ values associated with GHK: 2.80, 7.98, 11.44. Make use of these $\mathrm{p} K_{a}$ values to suggest the major species present in solutions of GHK at pH 7.
[2]
(vi) Use the graph in Fig. 2 to determine from which year onwards, more than 50\% of GHK in marine organisms no longer can function as a signaling molecule. Explain why this is so.
\qquad
\qquad
\qquad
\qquad
(b) Bioactive molecules containing dehydrotyrosine derivatives such as erbstatin and 4-hydroxy cinnamaldehyde found in marine organisms are responsible for antibacterial properties.

(i) State and explain whether erbstatin or 4-hydroxy cinnamaldehyde has a higher boiling point.
\qquad
\qquad
\qquad

The synthesis of erbstatin involved the following step.

(ii) Given that NaOH is used as a base to form ${ }^{-} \mathrm{CH}_{2} \mathrm{NO}_{2}$ as a nucleophile, suggest the type of reaction in the above step.

Another step in the synthesis of erbstatin is shown below.

(iii) Suggest suitable reagents for the above step.
\qquad
(iv) Describe a simple chemical test to distinguish between 4-hydroxy cinnamaldehyde and 2,5-dimethoxybenzaldehyde as shown below.

\qquad
\qquad
\qquad

3 (a) d-block elements are remarkably similar to each other in physical properties. In general, they are hard, dense and good conductors of heat and electricity. Transition elements belong to d-block elements in the Periodic Table.

Although all d-block elements are metals, they do show significant physical differences when compared to s-block elements i.e., Group 1 and 2 metals.

The graph below shows the densities of the elements Sc to Cu .

(i) Suggest why the densities of the elements increase from Sc to Cu .
\qquad
\qquad
\qquad
(ii) The graph below shows the first (dashed line) and second (solid line) ionisation energies (IE) for the element K to Cu inclusive.

Explain why the first ionisation energy remains relatively constant from Sc to Cu .
\qquad
\qquad
\qquad
(iii) Explain briefly why is the second ionisation energy of potassium so much higher than that of the other elements.
\qquad
\qquad
(b) Scandium, copper and zinc are d-block elements. However, copper is a transition element while scandium and zinc are not.
(i) Define the term transition element.
\qquad
\qquad
(ii) State the full electronic configuration of Sc^{3+}.
\qquad
(iii) Explain why scandium is not classified as a transition element.
\qquad
\qquad
(c) X and Y are period 3 elements.

Element \mathbf{X} forms a white oxide that is slightly soluble in cold water. Its chloride dissolves in water to form a weakly acidic solution.

Element \mathbf{Y} forms two oxides. 0.03 moles of one of the two oxides produces 7.00 g of white precipitate when mixed with excess barium chloride solution. The white precipitate is insoluble in dilute strong acid. A solution is obtained when equimolar of the oxide of element \mathbf{Y} is added to the oxide of element \mathbf{X} with water.

Identify the elements \mathbf{X}, \mathbf{Y}, and the oxide of \mathbf{Y}.

Explain the observations with the aid of relevant equations.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4 (a) Carbonyl compounds occur naturally, giving many signature flavours. For example, benzaldehyde in almonds and 2-oxopropanal in burnt sugar.

benzaldehyde

2-oxopropanal
(i) Suggest a simple chemical test that could distinguish between the two compounds above. State the observations expected for each compound and the products (if any) that gives the observations.

Reagents and conditions: \qquad

	Observations:	Products:
benzaldehyde		
2-oxopropanal		

(ii) Benzaldehyde undergoes a possible reaction sequence as shown below to form mandelic acid, which is used as an antibacterial agent.

State the reagents and conditions for steps 1 and 2.
Step 1: \qquad
Step 2: \qquad
(b) Another class of naturally occurring organic compounds is halogenoalkanes, e.g. bromomethane found in vegetables, chloromethane found in algae and trichloromethane found in termites.
(i) With bromomethane and chloromethane as examples, describe and explain briefly the relative reactivities of bromo- and chloro-compounds with respect to hydrolysis.
\qquad
\qquad
\qquad
(ii) This difference in reactivity can also be observed in organic reactions. Suggest the structural formulae of the compounds formed in the boxes below. The final product is a cyclic compound.

(c) Trichloromethane was previously used as an anesthetic, but chronic exposure can harm the liver where it is metabolised to toxic phosgene, COCl_{2}. This reaction can also take place slowly in the presence of oxygen and light, as represented below.

(i) Construct a fully labelled energy cycle relating the reactants and products of this reaction to their gas phase atoms. Use your cycle to calculate the enthalpy change of the above reaction.

Your cycle should include relevant data from the Data Booklet together with the following data shown below:

The enthalpy change of vaporisation of $\mathrm{CHCl}_{3}(\mathrm{I})$ is $+31 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(ii) Predict, with reasons, the sign of the entropy change of the reaction in (c)(i).
\qquad
\qquad
\qquad
(iii) Hence, state the sign of the standard Gibbs free energy change and comment on the spontaneity of the reaction.
\qquad
\qquad
(a) Benzene is an important precursor in the production of many chemicals. 3-phenylpropan-1-ol is an example of an organic compound which contains the benzene ring as a substituent.
(i) The following reaction scheme shows the reactions of 3-phenylpropan-1-ol. Suggest the structural formulae of compounds $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} in the boxes below.

(ii) Using the reaction scheme for the reactions of 3-phenylpropan-1-ol, state the reagents and conditions for reactions I and II.

Reaction I

\qquad
Reaction II
(b) There is another form of important organic compounds which are derived from benzene. Benzene derivatives are formed when one of the hydrogens on the ring is replaced with a different functional group.
Benzoic acid and phenol are examples of such benzene derivatives which exhibit acidic character when dissolved in water.

The K_{a} values of benzoic acid, carbonic acid and phenol are given in the table below.

acid	structural formula	$K_{\mathrm{a}} / \mathrm{mol} \mathrm{dm}^{-3}$
benzoic acid		6.3×10^{-5}
carbonic acid		
phenol		

Both benzoic acid and phenol are reacted with sodium hydroxide to form sodium benzoate and sodium phenoxide respectively.
(i) Draw the organic product formed when CO_{2} is bubbled through a solution of aqueous sodium phenoxide.
(ii) However, no reaction occurs when CO_{2} is bubbled through a solution of aqueous sodium benzoate. Explain why this is so.
\qquad
\qquad
\qquad
\qquad
(c) Cumene, $\mathrm{C}_{9} \mathrm{H}_{12}$, is another benzene derivative that can be used to produce phenol and propanone.

When a sample of cumene is reacted with limited chlorine in the presence of UV light, only two monochlorinated products, \mathbf{X} and \mathbf{Y} are formed. Only compound \mathbf{X} has a chiral carbon. Both \mathbf{X} and \mathbf{Y} react with reagent \mathbf{W} separately under heat to form hydrocarbon \mathbf{Z}. Hydrocarbon \mathbf{Z} is able to decolourise aqueous bromine.
(i) State reagent \mathbf{W}.
\qquad
(ii) In the space below, give the structural formula of compound \mathbf{X}, \mathbf{Y} and \mathbf{Z}.

Compound X	Compound Y	Compound Z

(d) As an aromatic compound, benzene undergoes electrophilic substitution reactions. Like benzene, furan, a heterocyclic five-membered aromatic ring with one O atom and four carbon atoms, is also able to undergo electrophilic substitution reactions under suitable conditions.

Outline the mechanism of the reaction below, clearly showing all the steps involved.

furan

Catholic Junior College

JC2 Preliminary Examination
Higher 2

CANDIDATE NAME

\square
CLASS

CHEMISTRY

Paper 2 Structured Questions
9729/02
Friday 17 August 2018 2 hours

Candidates answer on the Question Paper.
Additional Materials: Data Booklet

WORKED SOLUTIONS

This document consists of 19 printed pages.

Answer all the questions in the spaces provided.

1 In atmospheric chemistry, NO_{x} is a generic term for the nitrogen oxides that are most prevalent for air pollution, namely nitric oxide (NO) and nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$. These gases contribute to the formation of smog and acid rain, as well as tropospheric ozone. In the atmosphere, dinitrogen pentoxide $\left(\mathrm{N}_{2} \mathrm{O}_{5}\right)$ is an important reservoir of the NO_{x} species that are responsible for ozone depletion.
(a) In the laboratory, the kinetics involving the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ into NO_{2} and O_{2} can be investigated by dissolving it in an organic solvent such as tetrachloromethane, CCl_{4}. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ was found to be a first-order reaction.

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Table 1.1 below shows the variation of $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ with time.

Time $/ \mathrm{s}$	$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] / \mathrm{mol} \mathrm{dm}^{-3}$	$\ln \left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$
0	0.910	$\mathbf{- 0 . 0 9 4 3}$
300	0.750	$\mathbf{- 0 . 2 8 8}$
600	0.640	$\mathbf{- 0 . 4 4 6}$
1200	0.440	$\mathbf{- 0 . 8 2 1}$
3000	0.160	$\mathbf{- 1 . 8 3}$

Table 1.1
(i) State the rate equation for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$.

$$
\begin{equation*}
\text { Rate }=k\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right] \tag{1}
\end{equation*}
$$

(ii) The rate equation for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ can also be expressed as:

$$
\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{\mathrm{t}}=-\mathrm{kt}+\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{\circ}
$$

where $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}$ is the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ and $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ is the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ at time, t.

Using relevant data in Table 1.1, calculate the values for $\operatorname{In}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ and complete Table 1.1.
(iii) Using the following axes and relevant data in Table 1.1, plot a graph of In $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right.$] against time (in second), showing how the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ changes with time.

[2]
(iv) Using your graph, determine a value for the rate constant, k, for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$. State the units of k clearly.

$$
\begin{aligned}
& \text { Using the points }(100,-0.155) \text { and }(2850,-1.75) \\
& \begin{aligned}
\mathrm{k} & =- \text { gradient } \\
& =-\left[\frac{-0.155-(-1.75)}{100-2850}\right] \\
& =5.80 \times 10^{-4} \mathrm{~s}^{-1}
\end{aligned}
\end{aligned}
$$

(v) Hence determine a value for the half-life of the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$. State the units clearly.

$$
\begin{aligned}
t_{1 / 2} & =\frac{\ln 2}{k} \\
& =\frac{\ln 2}{5.80 \times 10^{-4}} \\
& =1195 \mathrm{~s}
\end{aligned}
$$

(vi) Outline another experiment to determine the rate constant, k , for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in tetrachloromethane.

You are provided with the same solution of $\mathrm{N}_{2} \mathrm{O}_{5}$ used in the experiment described in (a).

No details regarding use of specific glassware are required.

1. Measure the volume of gases (NO_{2} and O_{2}) produced OR the colour ..ntensity of the brown NO_{2} gas (using a colorimeter) at regular time intervals from the start of reaction
2. Plot a graph of "volume of gases produced against time", OR "coloour intensity against time" and determine the half-life from the graph.
3..Use.the.equation. $\mathbf{t}_{1 / 2}=\frac{I n 2}{\dddot{K}^{2}}$.to determine the.value.of.k.
\qquad
\qquad
(b) The NO_{2} produced in the decomposition reaction in (a) can exist in equilibrium with dinitrogen tetroxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

An experiment was conducted at $25^{\circ} \mathrm{C}$ by varying initial concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} contained in a closed reaction vessel. The initial and equilibrium concentrations of the two gases are shown in Table 1.2.

Experiment No	nitial concentration $/ \mathrm{mol} \mathrm{dm}^{-3}$		Equilibrium concentration $/ \mathrm{mol} \mathrm{dm}^{-3}$	
	$\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]$	$\left[\mathrm{NO}_{2}\right]$	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$	$\left[\mathrm{NO}_{2}\right]$
1	0.000	0.200	0.0898	0.0204
2	0.600	0.040	0.594	0.0523
3	0.500	0.030	0.491	0.0475
4	0.446	0.050	0.448	0.0457
5	0.670	0.000	0.643	0.0547

Table 1.2
(i) State Le Chatelier's Principle.

Le Chatelier's Principle states that if a change (e.g. change in concentration, pressure and temperature) is made to a system in equilibrium, the system reacts in such a way as to tend to oppose the change, and a new equilibrium is formed.
(ii) State what will be observed when the pressure in the reaction vessel is decreased.
The brown colour of the gas $\left(\mathrm{NO}_{2}\right)$ darkens.
\qquad
(iii) Identify the experiment that gives the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{4}: \mathrm{NO}_{2}$ in the ratio 15:1.

Experiment 2

\qquad
(iv) Based on the experiment identified in (b)(iii), calculate a value for the equilibrium constant, K_{c}.

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}} & =\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]} \\
& =\frac{(0.0523)^{2}}{(0.594)} \\
& =4.60 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

(v) For reversible reactions involving gases, the concentrations of the gaseous reactants and products can also be expressed in terms of their partial pressures, and the value of the corresponding K_{p} can then be determined. K_{p} and K_{c} is related by the following expression:

$$
K_{\mathrm{p}}=K_{\mathrm{c}}(0.0821 \mathrm{~T})^{\Delta \mathrm{n}}
$$

where $\Delta \mathrm{n}=$ moles of gaseous products - moles of gaseous reactants based on given stoichiometric equation and T is temperature in Kelvin.

Using your answer in (b)(iv) and the above expression, calculate a value for the K_{p} for the reversible reaction between $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2}.

$$
\begin{aligned}
\mathrm{K}_{\mathrm{p}} & =\mathrm{K}_{\mathrm{c}}(0.0821 \mathrm{~T})^{\Delta \mathrm{n}} \\
& =\left(4.60 \times 10^{-3}\right)(0.0821)(298)^{(2-1)} \\
& =0.113
\end{aligned}
$$

2 (a) Marine organisms such as crabs use peptide signaling molecules such as glycyl-L-histidyl-L-lysine (GHK) to detect predators. In order for this peptide signaling molecule to function in water, it must exist in the form of a zwitterion.

However, due to the increase in carbon dioxide levels in the ocean, the pH of the ocean decreases as shown in Fig. 2. This affects the structure and function of the peptide signaling molecule and thus affecting the survival of these marine organisms.

Fig. 2
(i) State what is meant by a zwitterion.

Zwitterion is a species where it is dipolar ion and have no nett charge.
(ii) Explain briefly why GHK, as a zwitterion, is highly soluble in water.

GHK as a zwitterion is able to form ion-dipole attraction with water molecules.
mictures.
(iii) Write an equation showing how the pH of the ocean decreases due to rising concentration of CO_{2}.

$$
\begin{equation*}
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \tag{1}
\end{equation*}
$$

The structure of GHK is shown below where R, which is the histidine side chain, need not be considered for this question.

GHK
(iv) Circle any chiral carbon atom on the above structure, GHK.

(v) There can be three $\mathrm{p} K_{\mathrm{a}}$ values associated with GHK: 2.80, 7.98, 11.44. Make use of these $\mathrm{p} K_{\mathrm{a}}$ values to suggest the major species present in solutions of GHK at pH 7 .

(vi) Use the graph in Fig. 2 to determine from which year onwards more than 50\% of GHK in marine organisms no longer can function as a signaling molecule. Explain why this is so.
2050. For GHK no longer function as a signaling molecule, it cannot exist as a zwitterion which both the $-\mathrm{NH}_{2}$ groups are protonated. Since the pKa value of $-\mathrm{NH}_{2}$ is 7.98 , the pH value lower than that will result in $-\mathrm{NH}_{2}$ to be protonated \qquad
(b) Bioactive molecules containing dehydrotyrosine derivatives such as erbstatin and 4hydroxy cinnamaldehyde found in marine organisms are responsible for antibacterial properties.

4-hydroxy cinnamaldehyde
(i) State and explain whether erbstatin or 4-hydroxy cinnamaldehyde has a higher boiling point.

Erbstatin has a higher bọiling point
since it can form more extensive intermolecular hydrogen bonds therefore requires more energy to overcome the intermolecular hydrogen bonds in Erbstatin compared to 4-hydroxy cinnamaldehyde:

The synthesis of erbstatin involved the following step.

(ii) Given that NaOH is used as a base to form ${ }^{-} \mathrm{CH}_{2} \mathrm{NO}_{2}$ as a nucleophile, suggest the type of reaction in the above step.
Condensation OR Addition-elimination

Another step in the synthesis of erbstatin is shown below.

(iii) Suggest suitable reagents for the above step.

(iv) Describe a simple chemical test to distinguish between 4-hydroxy cinnamaldehyde and 2,5-dimethoxybenzaldehyde as shown below.

3 (a) d-block elements are remarkably similar to each other in physical properties. In general, they are hard, dense and good conductors of heat and electricity. Transition elements belong to d-block elements in the Periodic Table.

Although all d-block elements are metals, they do show significant physical differences when compared to s-block elements i.e., Group 1 and 2 metals.

The graph below shows the densities of the elements Sc to Cu .

(i) Suggest why the densities of the elements increase from Sc to Cu .

From Sc to Cu , relative atomic mass increases and atomic radius decreases
slightly(or remain invariant). The elements have a more close-packed
structure and thus have a higher mass per unit volume, which is density.
(ii) The graph below shows the first (dashed line) and second (solid line) ionisation energies (IE) for the element K to Cu inclusive.

Explain why the first ionisation energy remains relatively constant from Sc to Cu .
From Sc to Cu , the number of protons increases, hence the nuclear charge
increases. Electrons are added to the inner 3d subshell which provides increased effective shielding between nucleus and valence 4s electron. Therefore, increase
in nuclear charge almost cancel out the increase in shielding effect (effective nuclear charge increases slightly). Energy required to remove the 2 puter 4s electrons from Sc to Cu is almost constant.
(iii) Explain briefly why is the second ionisation energy of potassium so much higher than that of the other elements.

The second electron in K to be removed is from an inner 3p orbital which is more strongly attracted by the nucleus as it experiences less shielding.
[1]
(b) Scandium, copper and zinc are d-block elements. However, copper is a transition element while scandium and zinc are not.
(i) Define the term transition element.

A transition element is a d-block element which forms one or more
stable ions with partially filled d subshells.
(ii) State the full electronic configuration of Sc^{3+}.
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
(iii) Explain why scandium is not classified as a transition element.

Sc is not a transition element as it only forms stable Sc^{3+} ion which has
empty d subshell.
(c) \mathbf{X} and \mathbf{Y} are period 3 elements.

Element \mathbf{X} forms a white oxide that is slightly soluble in cold water. Its chloride dissolves in water to form a weakly acidic solution.

Element \mathbf{Y} forms two oxides. 0.03 moles of one of the two oxides produces 7.00 g of white precipitate when mixed with excess barium chloride solution. The white precipitate is insoluble in dilute strong acid. A solution is obtained when equimolar of the oxide of element \mathbf{Y} is added to the oxide of element \mathbf{X} with water.

Identify the elements \mathbf{X}, \mathbf{Y}, and the oxide of \mathbf{Y}.
Explain the observations with the aid of relevant equations.
Element X: Magnesium Element Y: Sulfur
Formula of the oxide of element $\mathrm{Y}: \mathrm{SO}_{3}$
$\mathrm{MgO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})$ when MgO reacts with water, sparingly soluble $\mathrm{Mg}(\mathrm{OH})_{2}$ is formed
$\mathrm{MgCl}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$
MgCl_{2} hydrolyses slightly to form a weakly acidic solution of pH 6.5
$\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{+}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
Upon addition of excess barium chloride solution, $\mathrm{BaSO}_{4}(\mathrm{~s})$ is formed.
7.00 g of white ppt corresponds to the mass of $0.03 \mathrm{~mol}^{2}$ of BaSO_{4}.
$\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{BaCl}_{2}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq})$
$\mathrm{OR} \mathrm{SO}_{4}{ }^{2+} \mathrm{Ba}^{2+}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})$
$\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{MgO}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})$
[Total: 15]

4 (a) Carbonyl compounds occur naturally, giving many signature flavours. For example, benzaldehyde in almonds and 2-oxopropanal in burnt sugar.

benzaldehyde

2-oxopropanal
(i) Suggest a simple chemical test that could distinguish between the two compounds above. State the observations expected for each compound and the products (if any) that gives the observations.

Reagents and conditions: . I_{2} (aq), $\mathrm{NaOH}(\mathrm{aq})$, heat or Fehling's reagent/solution, heat

	Observations:	Products:
benzaldehyde	No Yellow ppt seen. OR No Red ppt seen.	No products
2-oxopropanal	Yellow ppt seen. OR Red ppt seen.	$\mathrm{CHI}_{3}(\mathrm{~s})$ for iodoform $\mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})$ for Fehling's $R e a g e n t ~ u s e d ~$

[3]
(ii) Benzaldehyde undergoes a possible reaction sequence as shown below to form mandelic acid, which is used as an antibacterial agent.

State the reagents and conditions for steps 1 and 2.
Step 1: $\mathrm{HCN}(\mathrm{aq})$, trace amount of NaOH (aq), cold $10-20^{\circ} \mathrm{C}$ \qquad
Step 2: Dilute $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, heat under reflux
(b) Another class of naturally occurring organic compounds is halogenoalkanes, e.g. bromomethane found in vegetables, chloromethane found in algae and trichloromethane found in termites.
(i) With bromomethane and chloromethane as examples, describe and explain briefly the relative reactivities of bromo- and chloro-compounds with respect to hydrolysis.
$\mathrm{CH}_{3} \mathrm{Br}$ would be more reactive towards hydrolysis than $\mathrm{CH}_{3} \mathrm{Cl}$. This is
because the $\mathrm{C}-\mathrm{Br}$ bond is weaker than $\mathrm{C}-\mathrm{Cl}$ bond and would be more
easily broken during hydrolysis.
(ii) This difference in reactivity can also be observed in organic reactions. Suggest the structural formulae of the compounds formed in the boxes below. The final product is a cyclic compound.

(c) Trichloromethane was previously used as an anesthetic, but chronic exposure can harm the liver where it is metabolised to toxic phosgene, COCl_{2}. This reaction can also take place slowly in the presence of oxygen and light, as represented below.

(i) Construct a fully labelled energy cycle relating the reactants and products of this reaction to their gas phase atoms. Use your cycle to calculate the enthalpy change of the above reaction.

Your cycle should include relevant data from the Data Booklet together with the following data shown below:

The enthalpy change of vaporisation of $\mathrm{CHCl}_{3}(\mathrm{I})$ is $+31 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

$\Delta H_{r}=2(31)+2[\underline{410}+3(\underline{340})]+\underline{496}-[2(\underline{740}+2(\underline{340}))+2(\underline{431})]$
[3]
$=-284 \mathrm{~kJ} \mathrm{~mol}^{-1}(3 . \mathrm{s.f}$.
9729/02/CJC JC2 Preliminary Examination 2018
(ii) Predict, with reasons, the sign of the entropy change of the reaction in (c)(i).

Entropy change of the reaction should be positive as the number of moles
of gas increases from 1 mole to 4 moles, there are more ways of arranging
the particles, hence the system increases in disorderness.
(iii) Hence, state the sign of the standard Gibbs free energy change and comment on the spontaneity of the reaction.
$\Delta G=\Delta H-T \Delta S$, standard Gibbs free energy change should be negative, since the enthalpy change is negative, and entropy change is positive. Thus, the reaction is always spontaneous at all temperature.
[Total: 15]

5 (a) Benzene is an important precursor in the production of many chemicals. 3-phenylpropan-1-ol is an example of an organic compound which contains the benzene ring as a substituent.
(i) The following reaction scheme shows the reactions of 3-phenylpropan-1-ol. Suggest the structural formulae of compounds $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} in the boxes below.

Compound B

Compound C

[4]
(ii) Using the reaction scheme for the reactions of 3-phenylpropan-1-ol, state the reagents and conditions for reactions I and II.

Reaction $I \quad \mathrm{KMnO}_{4}$, dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat under reflux
Reaction II $\quad \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat under reflux
(b) There is another form of important organic compounds which are derived from benzene. Benzene derivatives are formed when one of the hydrogens on the ring is replaced with a different functional group.
Benzoic acid and phenol are examples of such benzene derivatives which exhibit acidic character when dissolved in water.

The K_{a} values of benzoic acid, carbonic acid and phenol are given in the table below.

acid	structural formula	$K_{\mathrm{a}} / \mathbf{m o l ~ d m}^{-3}$
benzoic acid		6.3×10^{-5}
carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.5×10^{-7}
phenol		1.3×10^{-10}

Both benzoic acid and phenol are reacted with sodium hydroxide to form sodium benzoate and sodium phenoxide respectively.
(i) Draw the organic product formed when CO_{2} is bubbled through a solution of aqueous sodium phenoxide.

(ii) However, no reaction occurs when CO_{2} is bubbled through a solution of aqueous sodium benzoate. Explain why this is so.
CO_{2} dissolves in water to give carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$ which is a weaker acid
$\left(\mathrm{K}_{\mathrm{a}}=4.5 \times 10^{-7}\right)$ compared to benzoic acid $\left(\mathrm{K}_{\mathrm{a}}=6.3 \times 10^{-5}\right)$ and therefore it
is not able to donate proton to benzoate ion to form benzoic acid.
\qquad
(c) Cumene, $\mathrm{C}_{9} \mathrm{H}_{12}$, is another benzene derivative that can be used to produce phenol and propanone.

When a sample of cumene is reacted with limited chlorine in the presence of UV light, only two monochlorinated products, \mathbf{X} and \mathbf{Y} are formed. Only compound \mathbf{X} has a chiral carbon. Both \mathbf{X} and \mathbf{Y} react with reagent \mathbf{W} under heat to form hydrocarbon \mathbf{Z}. Hydrocarbon \mathbf{Z} is able to decolourise aqueous bromine.
(i) State reagent \mathbf{W}.

NaOH dissolved in ethanol! alcoholic NaOH/ NaOH (alce) \qquad
(ii) In the space below, give the structural formula of compound \mathbf{X}, \mathbf{Y} and \mathbf{Z}.
Compound \mathbf{X}
(d) As an aromatic compound, benzene undergoes electrophilic substitution reactions. Like benzene, furan, a heterocyclic five-membered aromatic ring with one O atom and four carbon atoms, is also able to undergo electrophilic substitution reactions under suitable conditions.

Outline the mechanism of the reaction below, clearly showing all the steps involved.

furan

Catholic Junior College JC2 Preliminary Examinations
Higher 2

CANDIDATE NAME

CLASS

CHEMISTRY

Paper 3 Free Response

Candidates answer on separate paper.
Additional Materials: Answer Paper
Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions.

Section B

Answer one question.
A Data Booklet is provided.
The use of an approved scientific calculator is expected, where appropriate.

At the end of examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

Section A

Answer all the questions in this section.
1 Propene is a colourless gas that is produced in large quantities by the petrochemical industry. It is used in the production of synthetic rubber and as a propellant in aerosols.
(a) When propene reacts with HBr, 2-bromopropane is produced as the major product.

$$
\mathrm{CH}_{2}=\mathrm{CHCH}_{3}+\mathrm{HBr} \rightarrow \mathrm{CH}_{3} \mathrm{CHBrCH}_{3}
$$

(i) Describe the mechanism of the above reaction, using curly arrows to show the movement of electrons.
(ii) When propene reacts with BrCl , 1-bromo-2-chloropropane is produced as the major product.

$$
\mathrm{CH}_{2}=\mathrm{CHCH}_{3}+\mathrm{BrCl} \rightarrow \mathrm{CH}_{2} \mathrm{BrCHClCH}_{3}
$$

With reference to your answer in (i), explain why the two reactions give major products with bromine in different positions.
(iii) The product of the reaction in (ii) has a chiral carbon, but it is optically inactive. Explain why this is so.
(b) 2-bromopropane reacts with hot aqueous sodium hydroxide, whereas 2-bromopropene does not. Suggest reasons for this difference in reactivity.
(c) Propene can undergo mild oxidation in the presence of cold acidified potassium manganate(VII), to give $\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$.
(i) State the IUPAC name of the product of the above reaction.
(ii) Construct the half-equation for the oxidation of propene as described above.
(iii) Hence, write the equation for the overall reaction, showing clearly the stoichiometry of reaction between propene and manganate(VII) ions.
(d) At room temperature and pressure, $28 \mathrm{~cm}^{3}$ of propene was bubbled into $40.0 \mathrm{~cm}^{3}$ of $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ acidified $\mathrm{KMnO}_{4}(\mathrm{aq})$. The resulting solution was titrated against $\mathrm{Fe}^{2+}(\mathrm{aq})$ of concentration $0.0750 \mathrm{~mol} \mathrm{dm}{ }^{-3}$.
(i) State the colour change at endpoint for this titration.
(ii) Given that 5 moles of Fe^{2+} react with 1 mole of $\mathrm{MnO}_{4}{ }^{-}$, determine the volume of $\mathrm{Fe}^{2+}(\mathrm{aq})$ needed to reach endpoint.
(e) A mixture of propene $\left(M_{r}=42.0\right)$ and 2-bromopropane ($\left.M_{r}=122.9\right)$ kept in a vessel of volume of $3.60 \mathrm{dm}^{3}$ maintained at $75^{\circ} \mathrm{C}$ exerts a pressure of $1.66 \times 10^{5} \mathrm{~Pa}$. The mole fraction of propene in the mixture is 0.28 .
Find the mass of the mixture of gases.

2 Copper is a transition metal, and is one of the metals used to make coins, along with silver and gold. Most copper is used in electrical equipment such as wiring and motors. It also has uses in construction and industrial machinery.
(a) One of the characteristic properties of copper is its ability to form coloured aqueous complexes shown in Fig 2.1.

Fig. 2.1
(i) State the complex ion \mathbf{A}.
(ii) Draw the structure of complex ion \mathbf{A}.
(iii) EDTA ${ }^{4-}$ is a hexadentate ligand. Deduce the formula of the complex ion \mathbf{B}.
(iv) Suggest why complex \mathbf{B} is readily formed from complex \mathbf{A}.
(v) Explain why aqueous Cu^{2+} ions are blue in colour.
(vi) The numerical value of the solubility product, $K_{\text {sp }}$ of $\mathrm{Cu}(\mathrm{OH})_{2}$ is 2.20×10^{-20} at $25^{\circ} \mathrm{C}$. Write the expression for $K_{\text {sp }}$ and state its units. Calculate the solubility of $\mathrm{Cu}(\mathrm{OH})_{2}$ at $25^{\circ} \mathrm{C}$.
(b) When an aqueous solution of ammonia is shaken with an organic solvent, trichloromethane, at room temperature, the following equilibrium is set up between the two immiscible liquids.

$$
\mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{3} \text { (organic) } \quad \text { equilibrium } 1
$$

The equilibrium constant, K_{c}, for this reaction is 0.04 .
Water that is contaminated with copper(II) sulfate is harmful to crops, animals and humans. Some water that has been contaminated with $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \operatorname{copper}(\mathrm{II})$ sulfate was allowed to reach dynamic equilibrium at room temperature with an excess of ammonia and trichloromethane. The aqueous layer was found to contain $0.660 \mathrm{~mol} \mathrm{dm}^{-3}$ of ammonia, some of which reacted with $\mathrm{Cu}^{2+}(\mathrm{aq})$ according to the following equation

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{nNH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{\mathrm{n}}\right]^{2+}
$$

The organic layer contained $0.0104 \mathrm{~mol} \mathrm{dm}^{-3}$ of ammonia.
(i) Define the term dynamic equilibrium.
(ii) Explain the relative solubility of ammonia in water and trichloromethane in terms of the intermolecular forces involved.
(iii) Hence, in terms of the position of equilibrium, explain why the value of K_{c} for equilibrium 1 is relatively low.
(iv) By calculating $\left[\mathrm{NH}_{3}(\mathrm{aq})\right]$ present, show that the value of n in $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{n}\right]^{2+}$ is 4.
(c) Another characteristic property of transition metal ion is its ability to catalyse reactions.
The rate of the reaction between iodide and peroxodisulfate(VI) ions

$$
\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \longrightarrow 2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})
$$

is very slow. If a small amount of aqueous transition metal, cobalt(II) ions is added to the mixture, the rate of reaction increases.
(i) By considering relevant half equations from the Data Booklet, construct chemical equations to show how cobalt(II) ions behave as a catalyst in this reaction. No calculation is required.
(ii) Suggest another transition metal ion, which will be able to catalyse this reaction.

3 (a) Analgesics are medicines used to relieve pain. The two most common analgesics in the market are aspirin and paracetamol. Their structures and corresponding $\mathrm{pK} \mathrm{a}_{\mathrm{a}}$ values are shown in Table 3.1.

Table 3.1

Name of analgesic	Structure	pKa value
Aspirin		
Paracetamol		3.49

(i) Explain the difference in the $\mathrm{p} K_{\mathrm{a}}$ values between aspirin and paracetamol.

Paracetamol can be synthesised from phenol in a 3-step process shown in Fig 3.1.

Fig. 3.1
(ii) Suggest the structures for intermediates \mathbf{X} and \mathbf{Y}.
(iii) Suggest the reagents and conditions required for step 1 to 3.
(b) The use of aspirin has been shown to increase the risk of gastrointestinal bleeding. Hence, buffering agents are added to aspirin to mitigate the problem of gastrointestinal bleeding. These buffering agents work by preventing the aspirin from concentrating in the walls of the stomach. Common buffering agents used include magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$, and calcium carbonate, CaCO_{3}.

Some relevant standard enthalpy change of hydration values and lattice energy of $\mathrm{Mg}(\mathrm{OH})_{2}$, are shown in Table 3.2.

Table 3.2

Enthalpy term	Value $/ \mathrm{kJ} \mathrm{mol}^{-1}$
Standard enthalpy change of hydration of $\mathrm{Mg}^{2+}(\mathrm{g})$	-1926
Standard enthalpy change of hydration of $\mathrm{OH}^{-}(\mathrm{g})$	-460
Lattice energy of $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$	-2998

Using relevant data in the table above, construct an energy level diagram to determine the standard enthalpy change of solution, $\Delta H_{s o l}{ }^{\circ}$, of $\mathrm{Mg}(\mathrm{OH})_{2}$ in water.
(c) Compound \mathbf{A} is an unsaturated ester containing a benzene ring and has a molecular formula of $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$. A reacts with neutral FeCl_{3} to give violet colouration. A reacts with H_{2} in the presence of Ni to produce compound B $\left(\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}\right)$. B exhibits enantiomerism whereas \mathbf{A} does not.

On heating with acidified KMnO_{4}, A gives three organic products, $\mathbf{C}, \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{5}$, \mathbf{D}, $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ and propanone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$. 1 mole of C reacts with excess PCl_{5} to produce 2 moles of HCl . Effervescence is observed when a small piece of sodium metal is added to \mathbf{D}.

Suggest the structures for \mathbf{A} to \mathbf{D} and explain the reactions described.
[Total: 20]

Section B

Answer one question from this section.
4 (a) The decomposition of calcium and magnesium carbonates has industrial application as flame retardants due to the endothermic nature of these reactions.
(i) Write an equation showing the thermal decomposition of calcium carbonate.
(ii) Compare and explain the decomposition temperature of calcium and magnesium carbonates.
(iii) Separate samples of calcium carbonate and magnesium carbonate of the same mass, were decomposed completely under constant heating and the variation of the masses of the two samples were measured.

Sketch a graph of the mass of solid against time for the two separate samples, indicating clearly the time when decomposition was complete and the final mass for each sample. No calculations are required.
(iv) Besides absorption of heat to slow down the spread of a flame, suggest another reason why CaCO_{3} acts as a flame retardant.
(b) One way to study reaction mechanisms is to deduce the rate equation from kinetics experiments, such as that for the redox reaction between manganate (VII) ions and ethanedioate ions.

$$
2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})+16 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+10 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A study of the kinetics of this reaction was carried with a suitable catalyst and with $\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right.$] at $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ and data collected are shown in Table 4.1

Table 4.1

time $/ \mathrm{min}$	$\left[\mathrm{MnO}_{4}-\right] / \mathrm{mol} \mathrm{dm}^{-3}$
0	0.0200
3	0.0160
6	0.0128
9	0.0104
12	0.0084
15	0.0068
18	0.0056

(i) Plot the data on suitable axes, using the graph paper provided.
(ii) Use your graph to determine the order of reaction with respect to $\left[\mathrm{MnO}_{4}^{-}\right]$, showing your working clearly including construction lines on your graph. [2]
(iii) Given that the reaction is first order with respect to $\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]$ and zero order with respect to $\left[\mathrm{H}^{+}\right]$, give the rate equation for the reaction.
(iv) Determine the initial rate from the graph and use it, together with your rate equation, to calculate the rate constant for the reaction, stating its units. [2]
(v) Without the initial addition of the catalyst, the reaction is initially slow then speeds up due to autocatalyst, Mn^{2+}, produced, and finally slows down due to low concentration of reactants remaining.

Sketch a graph $\left[\mathrm{MnO}_{4}^{-}\right]$against time if the experiment was repeated without the initial addition of catalyst.
(c) Another way to study reaction mechanisms is to make deductions from the ease of obtaining the products as well as the identity of products formed.

2-bromobutane undergo nucleophilic substitution with nitrile, CN^{-}, relatively faster, as compared to the reaction of 2-chlorobutane with nitrile, CN^{-}.
(i) Under suitable conditions, an initially optically pure (only one enantiomer) sample of 2-bromobutane can undergo reaction with CN^{-}, and produce a mixture which is almost optically inactive.

Name the mechanism that has taken place for this, and give the structures of the products formed.
(ii) A suitable condition that favours the reaction mechanism in (i) can be the use of neutral polar solvent (e.g. propanone) instead of non-polar solvents. Suggest why this is the case in consideration of the mechanism stating clearly the interactions involved.
(iii) Explain why 2-chlorobutane reacts more slowly with nucleophiles, relating to the steps in the mechanism in (i). Quote relevant values from the Data Booklet to substantiate your answer.
[Total: 20]

5 (a) The decomposition of hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, can be used to produce H_{2} gas as shown in the following reaction.

$$
\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow 2 \mathrm{H}_{2}+\mathrm{N}_{2}
$$

(i) Draw a dot-and-cross diagram showing the bonding in $\mathrm{N}_{2} \mathrm{H}_{4}$.
(ii) Use your diagram to suggest the shape of $\mathrm{N}_{2} \mathrm{H}_{4}$ about nitrogen atom.
(iii) Use your diagram to suggest the bond angle about N atom in $\mathrm{N}_{2} \mathrm{H}_{4}$.
(iv) The boiling points of hydrazine, nitrogen and ammonia are shown in Table 5.1

Table 5.1

compound	boiling point/ ${ }^{\circ} \mathrm{C}$
$\mathrm{N}_{2} \mathrm{H}_{4}$	114
NH_{3}	-33
$\mathrm{~N}_{2}$	-196

Suggest an explanation for the difference in boiling points of these three compounds.
(b) Hydrazine can be used in a fuel cell to generate electricity. At the anode, nitrogen gas is produced from hydrazine in alkaline medium. At the cathode, oxygen gas is being supplied into water.
(i) Construct half equations for the anode and cathode reactions.
(ii) Hence, write the overall equation.
(iii) The cell is capable of producing an e.m.f. of 1.56 V under standard conditions. By using suitable data from the Data Booklet, suggest a value of the E^{\ominus} of the anode.
(iv) Calculate $\Delta \mathrm{G}$ for the reaction.
(v) State one possible advantage of using fuel cell compared to burning hydrocarbons in car engines.
(c) Local anesthesia is used in surgeries where it is applied to numb the feelings of a specific part of a body. Lidocaine and procaine are examples of local anesthesia shown in Fig 5.1

lidocaine

procaine

Fig. 5.1
The final step of the synthesis of lidocaine is shown in Fig 5.2.

Fig. 5.2
(i) Suggest a reagent for the above reaction.
(ii) Suggest how the basicity of N_{A} might compare to that of N_{B}. Give reasons for your answers.
(iii) A possible single chemical test to distinguish procaine and lidocaine involves the use of acidified potassium dichromate. Explain the chemistry involved, including any observation. Draw the structures of the products for the positive test.
(iv) Suggest another reagent that can also be used to distinguish between lidocaine and procaine.

Catholic Junior College JC2 Preliminary Examinations
Higher 2
\square

CHEMISTRY
Paper 3 Free Response
9729/03
Friday 24 August 2018
2 hours
Candidates answer on separate paper.
Additional Materials: Answer Paper
Data Booklet

READ THESE INSTRUCTIONS FIRST

WORKED SOLUTIONS

Section A

Answer all the questions in this section.

1 Propene is a colourless gas that is produced in large quantities by the petrochemical industry. It is used in the production of synthetic rubber and as a propellant in aerosols.
(a) When propene reacts with HBr, 2-bromopropane is produced as the major product.

$$
\mathrm{CH}_{2}=\mathrm{CHCH}_{3}+\mathrm{HBr} \rightarrow \mathrm{CH}_{3} \mathrm{CHBrCH}_{3}
$$

(i) Describe the mechanism of the above reaction, using curly arrows to show the movement of electrons.

Electrophilic addition

Correct partial charges, lone pair of electrons, slow/fast steps
Correct curly arrows
Correct secondary carbocation intermediate
(ii) When propene reacts with BrCl , 1-bromo-2-chloropropane is produced as the major product.

$$
\mathrm{CH}_{2}=\mathrm{CHCH}_{3}+\mathrm{BrCl} \rightarrow \mathrm{CH}_{2} \mathrm{BrCHClCH}_{3}
$$

With reference to your answer in (i), explain why the two reactions give major products with bromine in different positions.

Br is more electronegative than H but less electronegative than Cl , hence Br acquires a partial positive charge in BrCl . Thus, Br adds first to form the more stable carbocation where the positive charge is on the second carbon
(iii) The product of the reaction in (ii) has a chiral carbon, but it is optically inactive. Explain why this is so.

There is equal chance of Cl attacking the trigonal planar carbon in the carbocation intermediate from either side of the plane. Thus, both enantiomers are formed in equal amounts/a racemic mixture is formed.
(b) 2-bromopropane reacts with hot aqueous sodium hydroxide, whereas 2-bromopropene does not. Suggest reasons for this difference in reactivity. [2]

In 2-bromopropene, p orbitals of Br overlap with π bond (one of the lone pairs of electrons on Br is delocalised into the $\mathrm{C}=\mathrm{C} \pi$ bond), hence there is a partial double bond character for the $\mathrm{C}-\mathrm{Br}$ bond. This makes the $\mathrm{C}-\mathrm{Br}$ bond stronger and harder to break for nucleophilic substitution to occur.

The carbon of the $\mathrm{C}-\mathrm{Br}$ bond also has a lower partial positive charge and is less susceptible to nucleophilic attacks.

The electron rich $\mathrm{C}=\mathrm{C} \pi$ bond will repel the negatively charged incoming nucleophile, hence the attack of the nucleophile will be less likely to occur.
(c) Propene can undergo mild oxidation in the presence of cold acidified potassium manganate(VII), to give $\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$.
(i) State the IUPAC name of the product of the above reaction.

Propane-1,2-diol
(ii) Construct the half-equation for the oxidation of propene as described above.
$\mathrm{CH}_{2}=\mathrm{CHCH}_{3}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
(iii) Hence, write the equation for the overall reaction, showing clearly the stoichiometry of reaction between propene and manganate(VII) ions.
$5 \mathrm{CH}_{2}=\mathrm{CHCH}_{3}+2 \mathrm{MnO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{H}^{+} \rightarrow 5 \mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+2 \mathrm{Mn}^{2+}$
(d) At room temperature and pressure, $28 \mathrm{~cm}^{3}$ of propene was bubbled into $40.0 \mathrm{~cm}^{3}$ of $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ acidified $\mathrm{KMnO}_{4}(\mathrm{aq})$. The resulting solution was titrated against $\mathrm{Fe}^{2+}(\mathrm{aq})$ of concentration $0.0750 \mathrm{~mol} \mathrm{dm}{ }^{-3}$.
(i) State the colour change at endpoint for this titration.

Pink/red-brown to colourless/yellow
(ii) Given that 5 moles of Fe^{2+} react with 1 mole of $\mathrm{MnO}_{4}{ }^{-}$, determine the volume of $\mathrm{Fe}^{2+}(\mathrm{aq})$ needed to reach endpoint.

No. of moles of propene $=\frac{28}{24000}$

$$
=1.167 \times 10^{-3} \mathrm{~mol}
$$

No. of moles of MnO_{4}^{-}reacted with propene $=\frac{1.167 \times 10^{-3}}{5} \times 2$

$$
=4.667 \times 10^{-4} \mathrm{~mol}
$$

No. of moles of MnO_{4}^{-}originally $=\frac{40.0}{1000} \times 0.0200$

$$
=8.000 \times 10^{-4} \mathrm{~mol}
$$

$$
\begin{aligned}
\text { No. of moles of } \mathrm{MnO}_{4}^{-} \text {left } & =8.000 \times 10^{-4}-4.667 \times 10^{-4} \\
& =3.333 \times 10^{-4} \mathrm{~mol}
\end{aligned}
$$

No. of moles of $\mathrm{Fe}^{2+}=3.333 \times 10^{-4} \times 5$

$$
=1.667 \times 10^{-3} \mathrm{~mol}
$$

Volume of $\mathrm{Fe}^{2+}=\frac{1.667 \times 10^{-3}}{0.0750} \times 1000$

$$
=22.2 \mathrm{~cm}^{3}
$$

(e) A mixture of propene $\left(M_{r}=42.0\right)$ and 2-bromopropane $\left(M_{r}=122.9\right)$ kept in a vessel of volume of $3.60 \mathrm{dm}^{3}$ maintained at $75^{\circ} \mathrm{C}$ exerts a pressure of $1.66 \times 10^{5} \mathrm{~Pa}$. The mole fraction of propene in the mixture is 0.28 .

Find the mass of the mixture of gases.
[Total: 20]

$$
\begin{aligned}
& \begin{aligned}
\text { Average } \mathrm{M}_{\mathrm{r}} & =0.28 \times 42.0+(1-0.28) \times 122.9 \\
& =100.2 \\
\mathrm{pV}= & \frac{m}{M_{r}} \mathrm{RT} \\
\mathrm{~m} \quad & =\frac{p V M_{r}}{R T} \\
& =\frac{1.66 \times 10^{5} \times 3.60 \times 10^{-3} \times 100.2}{8.31 \times(75+273)} \\
& =20.7 \mathrm{~g}
\end{aligned}
\end{aligned}
$$

2 Copper is a transition metal, and is one of the metals used to make coins, along with silver and gold. Most copper is used in electrical equipment such as wiring and motors. It also has uses in construction and industrial machinery.
(a) One of the characteristic properties of copper is its ability to form coloured aqueous complexes shown in Fig 2.1.

Fig. 2.1
(i) State the complex ion \mathbf{A}.
$\left[\mathrm{CuCl}_{4}\right]^{2-}$
(ii) Draw the structure of complex ion \mathbf{A}.

(iii) EDTA $^{4-}$ is a hexadentate ligand. Deduce the formula of the complex ion \mathbf{B}.
(iv) Suggest why complex \mathbf{B} is readily formed from complex \mathbf{A}. ligands will be displaced by the stronger EDTA ${ }^{4-}$ ligands. OR EDTA ${ }^{4-}$ is a stronger ligand than Cl^{-}.
(v) Explain why aqueous Cu^{2+} ions are blue in colour.

When ligands approach/are attached/bonded to the copper ion, they will cause the incompletely/ partially-filled/3d ${ }^{9}$ degenerate d-orbitals to split into two slightly different energy levels, d and d*[OR] two groups of non-degenerate d-orbitals with small energy gap.

When electrons from the lower lying d-orbitals absorbs energy (orange colour) in the visible light region, it will be excited to the higher energy d^{*} orbital. This is known as $\underline{d-d^{*}}$ electronic transition.

The complementary colours, which is not absorbed which is blue is seen/ the colour observed is complementary to the colour that is absorbed.
(vi) The numerical value of the solubility product, $K_{\text {sp }}$ of $\mathrm{Cu}(\mathrm{OH})_{2}$ is 2.20×10^{-20} at $25^{\circ} \mathrm{C}$. Write the expression for $K_{\text {sp }}$ and state its units. Calculate the solubility of $\mathrm{Cu}(\mathrm{OH})_{2}$ at $25^{\circ} \mathrm{C}$.
$\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
$K_{\text {sp }}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
Units: $\mathrm{mol}^{3} \mathrm{dm}^{-9}$
Let the solubility of $\mathrm{Cu}(\mathrm{OH})_{2}$ be $x \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\begin{aligned}
& K_{\mathrm{sp}}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=x(2 x)^{2} \\
& 2.20 \times 10^{-20}=4 x^{3} \\
& x=1.77 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

(b) When an aqueous solution of ammonia is shaken with an organic solvent, trichloromethane, at room temperature, the following equilibrium is set up between the two immiscible liquids.

$$
\mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{3}(\text { organic })
$$

equilibrium 1
The equilibrium constant, K_{c}, for this reaction is 0.04 .
Water that is contaminated with copper(II) sulfate is harmful to crops, animals and humans. Some water that has been contaminated with $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ copper(II) sulfate was allowed to reach dynamic equilibrium at room temperature with an excess of ammonia and trichloromethane. The aqueous layer was found to contain $0.660 \mathrm{~mol} \mathrm{dm}^{-3}$ of ammonia, some of which reacted with $\mathrm{Cu}^{2+}(\mathrm{aq})$ according to the following equation

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{nNH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{n}\right]^{2+}
$$

The organic layer contained $0.0104 \mathrm{~mol} \mathrm{dm}^{-3}$ of ammonia.
(i) Define the term dynamic equilibrium.

Dynamic equilibrium refers to a reversible reaction in which the forward rate of reaction is equal to the reverse rate of reaction. There is no net change in the concentrations of the reactants and the products.
(ii) Explain the relative solubility of ammonia in water and trichloromethane in terms of the intermolecular forces involved.

Ammonia is able to form hydrogen bonding with water, which is much stronger than the permanent dipole-permanent dipole attractions with trichloromethane molecules. Due to the strong forces of attraction between ammonia and water molecules, ammonia is highly soluble in water.
(iii) Hence, in terms of the position of equilibrium, explain why the value of K_{c} for equilibrium 1 is relatively low.
Therefore, the position of equilibrium lies largely to the left and K_{c} for this reaction is relatively low.
(iv) By calculating $\left[\mathrm{NH}_{3}(\mathrm{aq})\right]$ present, show that the value of n in $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{n}\right]^{2+}$ is 4.
$0.04=\frac{\left[\mathrm{NH}_{3}(\text { organic })\right]}{\left[\mathrm{NH}_{3} \text { (aqueous) }\right]}$
$0.04=\frac{0.0104}{\left[\mathrm{NH}_{3} \text { (aqueous) }\right]}$
$\left[\mathrm{NH}_{3}\right.$ (aqueous) $]=\frac{0.0104}{0.04}=0.26 \mathrm{~mol} \mathrm{dm}^{-3}$
Concentration of NH_{3} which reacted with $\mathrm{Cu}^{2+}(\mathrm{aq})=0.660-0.26$ $=0.40 \mathrm{~mol} \mathrm{dm}^{-3}$
Mol ratio of $\mathrm{Cu}^{2+}: \mathrm{NH}_{3}=0.100: 0.400=1: 4$
n is 4 .
(c) Another characteristic property of transition metal ion is its ability to catalyse reactions.

The rate of the reaction between iodide and peroxodisulfate(VI) ions

$$
\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \longrightarrow 2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})
$$

is very slow. If a small amount of aqueous transition metal, cobalt(II) ions is added to the mixture, the rate of reaction increases.
(i) By considering relevant half equations from the Data Booklet, construct chemical equations to show how cobalt(II) ions behave as a catalyst in this reaction. No calculation is required.

$$
\begin{gathered}
\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{Co}^{2+} \longrightarrow \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{Co}^{3+} \\
\text { catalyst } \\
2 \mathrm{Co}^{3+}+2 \mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}+2 \mathrm{Co}^{2+} \\
\\
\text { catalyst regenerated }
\end{gathered}
$$

(ii) Suggest another transition metal ion, which will be able to catalyse this reaction.
$\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Mn}^{3+}, \mathrm{Mn}^{2+}, \mathrm{VO}_{2}{ }^{+}, \mathrm{VO}^{2+}$.
$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{SO}_{4}{ }^{2-} \quad \mathrm{E}^{\circ}=+2.01 \mathrm{~V}$
$\mathrm{I}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{I}^{-} \quad \mathrm{E}^{\circ}=+0.54 \mathrm{~V}$
(Transition metal ion redox system requires a E° of between +0.54 V and +2.01V.)

3 (a) Analgesics are medicines used to relieve pain. The two most common analgesics in the market are aspirin and paracetamol. Their structures and corresponding $\mathrm{pK} K_{\mathrm{a}}$ values are shown in Table 3.1.

Table 3.1

Name of analgesic	Structure	PKa value
Aspirin		

(i) Explain the difference in the $\mathrm{p} K_{\mathrm{a}}$ values between aspirin and paracetamol.

Aspirin is a stronger acid than paracetamol (due to its lower $\mathrm{p} K_{\mathrm{a}}$ value) because in the carboxylate ion of aspirin, the negative charge on oxygen atom can be delocalised to a greater extent over the C atom and both O atoms. Hence the carboxylate ion is more resonancestabilised. Position of equilibrium lies more to the right and aspirin dissociates to a larger extent.

For the phenoxide ion of paracetamol, the negative charge is only delocalised into the benzene ring and hence is less stable. Hence position of equilibrium lies less to the right and paracetamol dissociates to a smaller extent compared to that of Aspirin.

Paracetamol can be synthesised from phenol in a 3-step process shown in Fig 3.1.

Fig. 3.1
(ii) Suggest the structures for intermediates \mathbf{X} and \mathbf{Y}.

X

Y
(iii) Suggest the reagents and conditions required for step 1 to 3 .

Step 1: dilute HNO_{3}
Step 2: 1. Sn, conc HCl, heat under reflux; 2. NaOH (aq)
Step 3: $\mathrm{CH}_{3} \mathrm{COCl}$
(b) The use of aspirin has been shown to increase the risk of gastrointestinal bleeding. Hence buffering agents are added to aspirin to mitigate the problem of gastrointestinal bleeding. These buffering agents work by preventing the aspirin from concentrating in the walls of the stomach. Common buffering agents used include magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$, and calcium carbonate, CaCO_{3}.

Some relevant standard enthalpy change of hydration values and lattice energy of $\mathrm{Mg}(\mathrm{OH})_{2}$, are shown in Table 3.2.

Table 3.2

Enthalpy term	Value $/ \mathrm{kJ} \mathrm{mol}^{-1}$
Standard enthalpy change of hydration of $\mathrm{Mg}^{2+}(\mathrm{g})$	-1926
Standard enthalpy change of hydration of $\mathrm{OH}^{-}(\mathrm{g})$	-460
Lattice energy of $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$	-2998

Using relevant data in the table above, construct an energy level diagram to determine the standard enthalpy change of solution, $\Delta H_{s o l}{ }^{\circ}$, of $\mathrm{Mg}(\mathrm{OH})_{2}$ in water.

Energy/
 kJ mol ${ }^{-1}$

$$
\begin{aligned}
\Delta H_{\text {sol }} & =- \text { lattice energy }+\Sigma \Delta H_{\text {hyd }} \\
& =-(-2998)+(-1926-2 \times 460) \\
& =+152 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

(c) Compound \mathbf{A} is an unsaturated ester containing a benzene ring and has a molecular formula of $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$. A reacts with neutral FeCl_{3} to give violet colouration. A reacts with H_{2} in the presence of Ni to produce compound \mathbf{B} $\left(\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}\right)$. B exhibits enantiomerism whereas \mathbf{A} does not.

On heating with acidified KMnO_{4}, A gives three organic products, $\mathbf{C}, \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{5}$, D, $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ and propanone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$. 1 mole of C reacts with excess PCl_{5} to produce 2 moles of HCl . Effervescence is observed when a small piece of sodium metal is added to \mathbf{D}.

Suggest the structures for \mathbf{A} to \mathbf{D} and explain the reactions described.

Observation/data	Type of reaction	Deduction	Structure
A reacts with neutral FeCl_{3} to give violet colouration.	-	A is a phenol/ contains a phenolic group.	-
A reacts with H_{2} in the presence of Ni to produce compound B $\left(\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}\right)$.	catalytic addition/ reduction of $\mathrm{C}=\mathrm{C}$ bond	A is likely to contain only one $\mathrm{C}=\mathrm{C}$ bond since there is an addition of 2 H atoms in B.	-
B exhibits enantiomerism whereas A does not.	-	B contains a chiral carbon whereas A does not.	-
On heating with acidified KMnO_{4}, \mathbf{A} gives three organic products, C, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{5}$, D, $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ and propanone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$.	Acidic hydrolysis of ester, oxidative cleavage and side-chain oxidation	Hydrolysis of ester occurred to form a carboxylic acid and an alcohol. There is side chain oxidation on the benzene ring since there is loss of 1 C atom (or formation of 1 mol of CO_{2}).	-
1 mole of C reacts with excess PCl_{5} to produce 2 moles of HCl .	Nucleophilic substitution of -OH group	C is likely to contain a benzene ring with $\underline{2}$ carboxylic acid groups and 1 phenol group.	 c

Effervescence is observed \quad when a small \quad piece of sodium metal is added to \mathbf{D}.	Redox reaction	D is likely to be a tertiary alcohol since it is not oxidised by acidic KMnO_{4}.	 D

Hence structures of \mathbf{A} and \mathbf{B} are

A

B
[Total: 20]

Section B

Answer one question from this section.
(a) The decomposition of calcium and magnesium carbonates has industrial application as flame retardants due to the endothermic nature of these reactions.
(i) Write an equation showing the thermal decomposition of calcium carbonate.
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(ii) Compare and explain the decomposition temperature of calcium and magnesium carbonates.
CaCO_{3} decomposes at a higher temperature as compared to MgCO_{3}. This is because Ca^{2+} has a larger ionic radius than $\mathbf{M g}^{2+}$, and a lower charge density. Thus Ca^{2+} polarises the carbonate ion to a lesser extent hence the $\mathrm{C}-\mathrm{O}$ bonds are stronger which require higher temperature to break.
(iii) Separate samples of calcium carbonate and magnesium carbonate of the same mass, were decomposed completely under constant heating and the variation of the masses of the two samples were measured.

Sketch a graph of the mass of solid against time for the two separate samples, indicating clearly the time when decomposition was complete and the final mass for each sample. No calculations are required.

(iv) Besides absorption of heat to slow down the spread of a flame, suggest another reason why CaCO_{3} acts as a flame retardant.
CO_{2} released can displace the oxygen required for a combustion.
(b) One way to study reaction mechanisms is to deduce the rate equation from kinetics experiments, such as that for the redox reaction between manganate (VII) ions and ethanedioate ions.

$$
2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})+16 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+10 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A study of the kinetics of this reaction was carried with a suitable catalyst and with $\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right.$] at $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ and data collected are shown in Table 4.1

Table 4.1

time $/ \mathrm{min}$	$\left[\mathrm{MnO}_{4}-\right] / \mathrm{mol} \mathrm{dm}^{-3}$
0	0.0200
3	0.0160
6	0.0128
9	0.0104
12	0.0084
15	0.0068
18	0.0056

(i) Plot the data on suitable axes, using the graph paper provided.
(ii) Use your graph to determine the order of reaction with respect to $\left[\mathrm{MnO}_{4}^{-}\right]$, showing your working clearly including construction lines on your graph. [2]
(iii) Given that the reaction is first order with respect to $\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right.$], give the rate equation for the reaction.
(iv) Determine the initial rate from the graph and use it, together with your rate equation, to calculate the rate constant for the reaction, stating its units. [2]
(v) Without the initial addition of the catalyst, the reaction is initially slow then speeds up due to autocatalyst, Mn^{2+}, produced, and finally slows down due to low concentration of reactants remaining.

Sketch a graph $\left[\mathrm{MnO}_{4}^{-}\right]$against time if the experiment was repeated without the initial addition of catalyst.
(ii) Using half-lives,
$1^{\text {st }}$ half-life $=2^{\text {nd }}$ half-life $=9.6 \mathrm{~min}$
Since both half-lives are constant, the order of reaction with respect to $\left[\mathrm{MnO}_{4}^{-}\right]$is 1 .
(iii) rate $=k\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]\left[\mathrm{MnO}_{4}^{-}\right]$
(iv) rate $=-\frac{0.0200-0.0020}{0-12}$

$$
=0.00150 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}
$$

$\mathbf{k}=\frac{\text { rate }}{\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2}\right]\left[\mathrm{MnO}_{4}^{-}\right]}=\frac{0.00150}{2.00(0.0200)}=\mathbf{0 . 0 3 7 5 \mathrm { mol } ^ { - 1 } \mathrm { dm } ^ { 3 } \mathrm { min } ^ { - 1 }}$

$\underbrace{(v)}_{\text {time }}$
(c) Another way to study reaction mechanisms is to make deductions from the ease of obtaining the products as well as the identity of products formed.

2-bromobutane undergo nucleophilic substitution with nitrile, CN^{-}, relatively faster, as compared to the reaction of 2-chlorobutane with nitrile, CN^{-}.
(i) Under suitable conditions, an initially optically pure (only one enantiomer) sample of 2-bromobutane can undergo reaction with CN^{-}, and produce a mixture which is almost optically inactive.

Name the mechanism that has taken place for this, and give the structures of the products formed.

Mechanism: Nucleophilic substitution reaction ($\mathrm{S}_{\mathrm{N}} 1$)

(ii) A suitable condition for the reaction in (i) can be the use of neutral polar solvent (e.g. propanone) instead of non-polar solvents. Suggest why this is the case in consideration of the mechanism stating clearly the interactions involved.

Polar solvents can help to stabilise the carbocation formed, due to the ion-dipole interactions between the carbocation and polar solvent molecules, which allows the reaction to proceed via $\mathrm{S}_{\mathrm{N}} 1$ mechanism.
(iii) Explain why 2-chlorobutane reacts more slowly with nucleophiles, relating to the steps in the mechanism in (i). Quote relevant values from the Data Booklet to substantiate your answer.
$B E(C-C l)=340 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{BE}(\mathrm{C}-\mathrm{Br})=280 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The $\mathrm{C}-\mathrm{Cl}$ bond is stronger than $\mathrm{C}-\mathrm{Br}$ bond, and the breaking of this bond is involved in the slow or rate-determining step (required if $\mathrm{S}_{\mathbf{N}} 1$ given in (i)), hence the reaction is slower with 2-chlorobutane
[Total: 20]
(a) The decomposition of hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, can be used to produce H_{2} gas as shown in the following reaction.

$$
\begin{equation*}
\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow 2 \mathrm{H}_{2}+\mathrm{N}_{2} \tag{1}
\end{equation*}
$$

(i) Draw a dot-and-cross diagram showing the bonding in $\mathrm{N}_{2} \mathrm{H}_{4}$.

(ii) Use your diagram to suggest the shape of $\mathrm{N}_{2} \mathrm{H}_{4}$ about nitrogen atom. Trigonal pyramidal
(iii) Use your diagram to suggest the bond angle about N atom in $\mathrm{N}_{2} \mathrm{H}_{4}$. 107°
(i) The boiling points of hydrazine, nitrogen and ammonia are shown in Table 5.1

Table 5.1

compound	boiling point $/{ }^{\circ} \mathrm{C}$
$\mathrm{N}_{2} \mathrm{H}_{4}$	114
NH_{3}	-33
$\mathrm{~N}_{2}$	-196

Suggest an explanation for the difference in boiling points of these three compounds.

All three compounds have simple molecular structures.
The hydrogen bonding between NH_{3} molecules is stronger than the instantaneous dipole-induced dipole (id-id) attraction between N_{2} molecules. Greater amount of energy required to overcome the intermolecular H -bonding in $\mathbf{N H}_{3}$ than the intermolecular id-id in \mathbf{N}_{2}. Thus, boiling point of NH_{3} is higher.

The hydrogen bonding between hydrazine molecules is more extensive (2 hydrogen bonds per molecule) than between NH_{3} molecules (1 hydrogen bond per molecule). Greater amount of energy required to overcome the more extensive intermolecular Hydrogen bonding in hydrazine molecules than in $\mathbf{N H}_{3}$. Thus, boiling point of hydrazine is higher.
(b) Hydrazine can be used in a fuel cell to generate electricity. At the anode, nitrogen gas is produced from hydrazine in alkaline medium. At the cathode, oxygen gas is being supplied into water.
(i) Construct half equations for the anode and cathode reactions.

Anode: $\mathrm{N}_{2} \mathrm{H}_{4}+4 \mathrm{OH}^{-} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}+4 \mathrm{e}^{-}$
Cathode: $\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}$
(ii) Hence, write the overall equation.
$\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
(iii) The cell is capable of producing an e.m.f. of 1.56 V under standard conditions. By using suitable data from the Data Booklet, suggest a value of the E^{\ominus} of the anode.
$E^{\ominus}{ }_{\text {cell }}=E^{\ominus}{ }_{\text {red }}-E^{\ominus}{ }_{\text {oxi }}$
$1.56=+0.40-E^{\circ}{ }_{\text {oxi }}$
$\mathrm{E}^{\circ}{ }_{\mathrm{oxi}}=-1.16 \mathrm{~V}$
(iv) Calculate $\Delta \mathrm{G}$ for the reaction.
$\Delta \mathbf{G}=-\mathrm{nFE}^{\circ}{ }_{\text {cell }}$
$=-\frac{4 \times 96500 \times 1.56}{1000}$
$=-602 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(v) State one possible advantage of using fuel cell compared to burning hydrocarbons in car engines.
It is pollution free. (only harmless/inert gases are produced, in this case, $\mathrm{H}_{2} \mathrm{O}$ and N_{2})
It has a high power to mass ratio.
It is highly efficient.
(c) Local anesthesia is used in surgeries where it is applied to numb the feelings of a specific part of a body. Lidocaine and procaine are examples of local anesthesia shown in Fig 5.1

lidocaine

procaine

Fig. 5.1
The final step of the synthesis of lidocaine is shown in Fig 5.2.

Fig. 5.2
(i) Suggest a reagent for the above reaction.

(ii) Suggest how the basicity of N_{A} might compare to that of N_{B}. Give reasons for your answers.
N_{A} is less basic than N_{B} due to the lone pair of electrons on nitrogen atom in the amide bond is being delocalised into the $\mathrm{C}=\mathrm{O}$ group, making it less available to accept a proton.
(iii) A possible single chemical test to distinguish procaine and lidocaine involves the use of acidified potassium dichromate. Explain the chemistry involved, including any observation. Draw the structures of the products for the positive test.

Hydrolysis of ester or amide bond, followed by oxidation of alcohol formed of procaine.
Orange potassium dichromate turns green with procaine.

(iv) Suggest another reagent that can also be used to distinguish between lidocaine and procaine.

Aqueous bromine/ bromine in hexane
[Total: 20]

Catholic Junior College JC 2 Preliminary Examinations Higher 2

CLASS
2T

CHEMISTRY

9729/04
Paper 4 Practical
Thursday 16 August 2018
2 hours 30 minutes
Candidates answer on the Question Paper

READ THESE INSTRUCTIONS FIRST

Write your class and name on all the work you hand in.
Give details of the practical shift and laboratory, where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions in the spaces provided on the Question Paper.
The use of an approved scientific calculator is expected, where appropriate.
You may lose marks if you do not show you working or if you do not use appropriate units.

Qualitative Analysis Notes are printed on pages 14 and 15.
At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

This document consists of $\mathbf{1 5}$ printed pages and $\mathbf{1}$ blank page.
$1 \mathbf{Z}$ is an oxidising agent. You are required to use a solution of iodine in potassium iodide to determine the mass of \mathbf{Z} needed to liberate 1 mole of iodine from potassium iodide.

FA3 is an aqueous solution of iodine, I_{2}, in potassium iodide, KI .
FA4 is a 0.100 mol dm ${ }^{-3}$ aqueous sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$.
FA5 is an aqueous solution containing $2.00 \mathrm{~g} \mathrm{dm}^{-3} \mathbf{Z}$, an oxidising agent.
You are to follow the following procedure and record your results as instructed.

Titration 1

1 By using a pipette, transfer $25.0 \mathrm{~cm}^{3}$ of FA3, an aqueous solution of iodine in potassium iodide, into a conical flask.
2 Titrate the iodine present with FA4, $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium thiosulfate, from a burette until the solution becomes colourless.
3 Repeat the titration as many times as you think necessary to obtain accurate results.
4 Record your results of titration in a suitable tabulated form below.
Titration of iodine in FA3 with FA4

Summary

\qquad cm^{3} of FA3 required \qquad cm^{3} of FA4 for titration.

Show which results you used to obtain this value of the volume of FA4 by placing a tick $(\sqrt{ })$ under the readings used.
(a) Calculate how many moles of sodium thiosulfate were contained in the volume of FA4 found necessary to react with $25.0 \mathrm{~cm}^{3}$ of FA3.
\qquad
(b) Calculate how many moles of I_{2} present in $25.0 \mathrm{~cm}^{3}$ of FA 3 using the following equation for the reaction between iodine and thiosulfate ions.

$$
\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \quad \rightarrow \quad 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})
$$

Moles of $\mathrm{I}_{2}=$ \qquad

Titration 2

1 By using a pipette, transfer $25.0 \mathrm{~cm}^{3}$ of FA3, an aqueous solution of iodine in potassium iodide, into a conical flask and then using a second pipette, add $25.0 \mathrm{~cm}^{3}$ of FA5, an aqueous solution containing $2.00 \mathrm{~g} \mathrm{dm}^{-3}$ of the oxidising agent, \mathbf{Z}.
2 Titrate the total iodine present with FA4, $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium thiosulfate, from a burette as before until the solution becomes colourless.
3 Repeat the titration as many times as you think necessary to obtain accurate results.
4 Record your results of titration in a suitable tabulated form below.
Titration of total iodine now in FA3 with FA4

Summary

$\ldots \ldots . . \mathrm{cm}^{3}$ of FA3 to which $25.0 \mathrm{~cm}^{3}$ of FA5 had been added required \qquad cm^{3} of FA4 for titration.

Show which results you used to obtain this value of the volume of FA4 by placing a tick $(\sqrt{ })$ under the readings used.
(c) Calculate how many moles of sodium thiosulfate were contained in the volume of FA4 found necessary to react with the total iodine in the flask after $25.0 \mathrm{~cm}^{3}$ of FA3 and 25.0 cm^{3} of FA5 had been mixed.
\qquad
(d) Calculate how many moles of I_{2} present in the flask after $25.0 \mathrm{~cm}^{3}$ of FA3 and $25.0 \mathrm{~cm}^{3}$ of FA5 had been mixed.

$$
\text { Moles of } \mathrm{I}_{2}=
$$

\qquad
(e) Calculate how many moles of I_{2} were liberated from potassium iodide in the flask by $25.0 \mathrm{~cm}^{3}$ of FA5.
(f) Calculate the mass of \mathbf{Z} present in $25.0 \mathrm{~cm}^{3}$ of FA5.

Mass of $\mathbf{Z}=$ \qquad
(g) Hence, from (e) and (f), calculate the mass of \mathbf{Z} needed to liberate 1 mole of I_{2}.

Mass of $\mathbf{Z}=$ \qquad

2 You are required to determine the basicity of an acid by carrying out some experiments with aqueous sodium hydroxide.

FA1 is a $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide, NaOH .
FA2 is a $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous acid which is either monobasic with the formula HA, or dibasic with the formula $\mathbf{H}_{2} A$.

By using the results of the following experiments, you are to going to determine the basicity of FA2.

You are to follow the following procedure and record your results as instructed.

Experiment 1

1 By using a measuring cylinder, pour $25 \mathrm{~cm}^{3}$ of FA1 into the Styrofoam cup provided and record the steady temperature. Rinse the thermometer with deionised water.
2 Use another $50 \mathrm{~cm}^{3}$ measuring cylinder to measure $25 \mathrm{~cm}^{3}$ of FA2 and record its temperature.
3 Carefully add FA2 to FA1, stir with the thermometer and record the highest temperature reached.
4 Record your results in the table provided below.

	Experiment 1	Experiment 2	Experiment 3
Initial temperature of FA1 $/{ }^{\circ} \mathrm{C}$			
Initial temperature of FA2 $/{ }^{\circ} \mathrm{C}$			
Highest temperature $/{ }^{\circ} \mathrm{C}$			
Mean initial temperature $/{ }^{\circ} \mathrm{C}$			
Temperature rise, $\Delta \mathrm{T} /{ }^{\circ} \mathrm{C}$			

Experiment 2

Thoroughly rinse out the Styrofoam cup with deionised water and repeat the experiment using $25 \mathrm{~cm}^{3}$ of FA1 and $50 \mathrm{~cm}^{3}$ of FA2. Record your results in the table above.

Experiment 3

Thoroughly rinse out the Styrofoam cup with deionised water and repeat the experiment using $50 \mathrm{~cm}^{3}$ of FA1 and $25 \mathrm{~cm}^{3}$ of FA2. Record your results in the table above.
(a) Complete the table of results by calculating the mean initial temperature of FA1 and FA2 for each of the three experiments. When calculating mean initial temperatures for Experiments 2 and 3, ignore the fact that the volumes mixed are unequal.

Fill in the corresponding rises in temperatures, $\Delta \mathrm{T}$ in the table provided above.
(b) Use your results to deduce the basicity of the acid.
(c) Write a full equation for the reaction between FA1 and FA2. Do not omit spectator ions.
\qquad
(d) Calculate the amount of heat evolved in Experiment 1.

Assume 4.3 J are required to raise the temperature of $1 \mathrm{~cm}^{3}$ of solution by $1.0^{\circ} \mathrm{C}$.

Heat evolved $=$ \qquad [1]
(e) Using your answers to (c) and (d), calculate the enthalpy of neutralisation, $\Delta \mathrm{H}_{n}$, per mole of water formed.

$$
\Delta H_{n}=
$$

\qquad

Assessment of Planning Skills

You are provided with $150 \mathrm{~cm}^{3}$ of each of three solutions, FA6, FA7 and FA8. You are to identify which of these solutions correspond to the following solutions:
$1 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide, NaOH
$2 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl
$1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl
You are also provided with the following apparatus:
A thermometer
A plastic cup
2 measuring cylinders
You are to plan a simple experiment which will allow an identification of the three solutions to be made, using only the apparatus and materials listed above and deionised water. (Note that you are not provided with any pH indicator).

You are not required to carry out the plan but you have to present your results in an appropriate manner based on your plan so that the identification can be made.

PLAN
\qquad

RESULTS
\qquad

3 You are to determine the identity of FA9.
Carry out the following experiments on the solid FA 9 which contains the sodium cation and one anion from the following list: $\mathrm{CO}_{3}{ }^{2-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{NO}_{2}{ }^{-}, \mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{SO}_{3}{ }^{2-}$.

In all tests, reagents should be added gradually until no further change is observed, with shaking after each addition.

Record your observations you make from them in the spaces provided.
Your answer should include
(i) details of colour change and precipitate formed, if any;
(ii) the identity of gases evolved, if any, and details of the test used to identify the gas.

You should indicate clearly at what stage in a test a change occurs.
No additional or confirmatory tests for ions present should be attempted.

Test	
(a) Place one third of the solid FA9 in a test-tube and heat strongly until the solid melts and a gas is given off.	
Identify the gas evolved.	
Continue the strong heating for 2-3	
minutes then leave the tube to cool	
and retain the residue for test (d).	
(Melt a second sample of FA9 and	
heat for 2-3 minutes. Leave this to	
cool and retain for test (h).	

Test	
(d) Dissolve the residue from (a) in deionised water about 3 cm depth and divide the solution into three parts. Use these tests for (e) to (g).	
(e) To one part of the solution from (d), add aqueous potassium iodide followed dilute sulfuric acid.	
(f) To the second part of the solution from (d), add aqueous potassium manganate(VII) followed by dilute sulfuric acid.	
(g) To the third part of the solution from (d), add aqueous sodium hydroxide and a half spatula full of aluminium powder.	
Warm gently.	
(h) Take the second sample of solid,	
heated FA9 that you prepared in (a).	

What anion is present in FA9 before it is heated? \qquad
What anion is present in FA9 after it is heated? \qquad
In test (e), the anion is behaving as \qquad
In test (f), the anion is behaving as \qquad

Hence, write a balanced chemical equation for the thermal decomposition of FA9.
\qquad

Assessment of Planning Skills

Each of the solutions FA10, FA11 and FA12 contains one of the cations $\mathrm{Al}^{3+}, \mathrm{Mg}^{2+}$ and Zn^{2+} ions but not in that order.

You are provided with a set of test-tubes and the following reagents:
Aqueous ammonia, NH_{3}
Dilute hydrochloric acid, HCl
Aqueous sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$
Aqueous sodium hydroxide, NaOH
You are required to devise and perform an experiment which will enable you to identify the cation present in each of the solutions FA10, FA11 and FA12. You may only use any of the reagents provided above and no other reagent. You should aim to use the minimum number of reactions, where possible.

This space below is for you to plan your steps which should then be recorded, together with the observations you make in the table in the next page.

PLAN

\qquad

In the table below, record all of your observations, and the identity of a cation as soon as this is established.

Reagent added	Observations and identities of cations		
	FA10	FA11	FA12

Deduction

Solution FA10 contains the cation \qquad
Solution FA11 contains the cation \qquad
Solution FA12 contains the cation \qquad
[Total: 20]

Qualitative Analysis Notes

[ppt. = precipitate]

(a) Reactions of aqueous cations

cation	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$	ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	no ppt. (if reagents are pure)	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt., turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), $\mathrm{Mn}^{2+}(\mathrm{aq})$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

(b) Reactions of anions

anion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives pale cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-(\mathrm{aq})}$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	SO_{2} liberated with dilute acids; gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in dilute strong acids)

(c) Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	"pops" with a lighted splint
oxygen, O_{2}	relights a glowing splint
sulfur dioxide, SO_{2}	turns aqueous acidified potassium manganate(VII) from purple to colourless

(d) Colour of halogens

halogen	colour of element	colour in aqueous solution	colour in hexane
chlorine, Cl_{2}	greenish yellow gas	pale yellow	pale yellow
bromine, Br_{2}	reddish brown gas / liquid	orange	orange-red
iodine, I_{2}	black solid / purple gas	brown	purple

BLANK PAGE

WORKED SOLUTIONS

$1 \quad Z$ is an oxidising agent. You are required to use a solution of iodine in potassium iodide to determine the mass of \mathbf{Z} needed to liberate 1 mole of iodine from potassium iodide.

FA3 is an aqueous solution of iodine, I_{2}, in potassium iodide, KI.
FA4 is a 0.100 mol dm ${ }^{-3}$ aqueous sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$.
FA5 is an aqueous solution containing $2.00 \mathrm{~g} \mathrm{dm}^{-3} \mathbf{Z}$, an oxidising agent.
You are to follow the following procedure and record your results as instructed.

Titration 1

1 By using a pipette, transfer $25.0 \mathrm{~cm}^{3}$ of FA3, an aqueous solution of iodine in potassium iodide, into a conical flask.
2 Titrate the iodine present with FA4, $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium thiosulfate, from a burette until the solution becomes colourless.

3 Repeat the titration as many times as you think necessary to obtain accurate results.
4 Record your results of titration in a suitable tabulated form below.

Titration of iodine in FA3 with FA4

	Rough	Accurate		
Final burette reading $/ \mathrm{cm}^{3}$	19.90	39.60	19.70	
Initial burette reading $/ \mathrm{cm}^{3}$	0.00	19.90	0.00	
			19.70	19.70
Volume of FA4 used $/ \mathrm{cm}^{3}$	19.90	$\sqrt{3}$	$\sqrt{ }$	

Summary

$25.0 \mathrm{~cm}^{3}$ of FA3 required $19.70 \mathrm{~cm}^{3}$ of FA4 for titration.

Show which results you used to obtain this value of the volume of FA4 by placing a tick $(\sqrt{ })$ under the readings used.

At least 2 sets of burette readings taken.
Burette readings recorded to 2 d.p.
Precision of $\mathrm{V}_{\mathrm{FA} 4} \pm 0.10 \mathrm{~cm}^{3}$ and correct average of $\mathrm{V}_{\mathrm{FA} 4}$ taken.
(a) Calculate how many moles of sodium thiosulfate were contained in the volume of FA4 found necessary to react with $25.0 \mathrm{~cm}^{3}$ of FA3.

$$
\begin{aligned}
\text { Amount of } \begin{aligned}
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} & =\left(\frac{19.70}{1000} \times 0.100\right) \mathrm{mol} \\
& =1.97 \times 10^{-3} \mathrm{~mol} \\
\text { Moles of } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} & =1.97 \times 10^{-3}
\end{aligned} \text {. }
\end{aligned}
$$

(b) Calculate how many moles of I_{2} present in $25.0 \mathrm{~cm}^{3}$ of FA3 using the following equation for the reaction between iodine and thiosulfate ions.

```
            \(\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})\)
Amount of \(I_{2}=\left(\frac{1}{2} \times 1.97 \times 10^{-3}\right) \mathrm{mol}\)
    \(=9.85 \times 10^{-4} \mathrm{~mol}\)
                                    Moles of \(\mathbf{I}_{2}=1.97 \times 10^{-3}\)
```


Titration 2

1 By using a pipette, transfer $25.0 \mathrm{~cm}^{3}$ of FA3, an aqueous solution of iodine in potassium iodide, into a conical flask and then using a second pipette, add $25.0 \mathrm{~cm}^{3}$ of FA5, an aqueous solution containing $2.00 \mathrm{~g} \mathrm{dm}^{-3}$ of the oxidising agent, \mathbf{Z}.
2 Titrate the total iodine present with FA4, $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium thiosulfate, from a burette as before until the solution becomes colourless.
3 Repeat the titration as many times as you think necessary to obtain accurate results.
4 Record your results of titration in a suitable tabulated form below.
Titration of total iodine now in FA3 with FA4

	Rough	Accurate		
Final burette reading $/ \mathrm{cm}^{3}$	29.70	29.50	29.50	
Initial burette reading $/ \mathrm{cm}^{3}$	0.00	0.00	0.00	
Volume of FA4 used $/ \mathrm{cm}^{3}$	29.70	29.50	29.50	
$\sqrt{\|r\|} \sqrt{ }$				

Summary

$25.0 \mathrm{~cm}^{3}$ of FA3 to which $25.0 \mathrm{~cm}^{3}$ of FA5 had been added required $29.50 \mathrm{~cm}^{3}$ of FA4 for titration.

Show which results you used to obtain this value of the volume of FA4 by placing a tick ($\sqrt{ }$) under the readings used.

Precision of $\mathrm{V}_{\mathrm{FA} 4} \pm 0.10 \mathrm{~cm}^{3}$ and correct average of $\mathrm{V}_{\mathrm{FA} 4}$ taken.
Accuracy of titration results.
(c) Calculate how many moles of sodium thiosulfate were contained in the volume of FA4 found necessary to react with the total iodine in the flask after $25.0 \mathrm{~cm}^{3}$ of FA3 and 25.0 cm^{3} of FA5 had been mixed.

$$
\text { Amount of } \begin{aligned}
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} & =\left(\frac{29.50}{1000} \times 0.100\right) \mathrm{mol} \\
& =2.95 \times 10^{-3} \mathrm{~mol}
\end{aligned}
$$

$$
\text { Moles of } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=2.95 \times 10^{-3}
$$

(d) Calculate how many moles of I_{2} present in the flask after $25.0 \mathrm{~cm}^{3}$ of FA3 and $25.0 \mathrm{~cm}^{3}$ of FA5 had been mixed.

$$
\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \longrightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq}
$$

$$
\begin{aligned}
\text { Amount of } \mathbf{I}_{2} & =\left(\frac{1}{2} \times 2.95 \times 10^{-3}\right) \mathrm{mol} \\
& =1.475 \times 10^{-3} \mathrm{~mol}
\end{aligned}
$$

$$
\text { Moles of } \mathrm{I}_{2}=1.475 \times 10^{-3}
$$

(e) Calculate how many moles of I_{2} were liberated from potassium iodide in the flask by $25.0 \mathrm{~cm}^{3}$ of FA5.
[Turn over

$$
\begin{aligned}
\text { Amount of } I_{2} \text { liberated } & =\left(1.475 \times 10^{-3}-9.85 \times 10^{-4}\right) \mathrm{mol} \\
& =4.90 \times 10^{-4} \mathrm{~mol}
\end{aligned}
$$

(f) Calculate the mass of \mathbf{Z} present in $25.0 \mathrm{~cm}^{3}$ of FA5.

$$
\begin{aligned}
\text { Mass of } Z & =\left(\frac{25.0}{1000} \times 2.00\right) \mathrm{g} \\
& =0.0500 \mathrm{~g}
\end{aligned}
$$

(g) Hence, from (e) and (f), calculate the mass of \mathbf{Z} needed to liberate 1 mole of I_{2}.

$$
\text { Mass of } Z \text { needed to liberate } 1 \mathrm{~mol} \text { of } \mathrm{I}_{2}=\left(\frac{0.0500}{4.90 \times 10^{-4}}\right) \mathrm{g}
$$

$$
=102 \mathrm{~g}
$$

Mass of $Z=102 \mathrm{~g}$
[Total: 17]

2 You are required to determine the basicity of an acid by carrying out some experiments with aqueous sodium hydroxide.

FA1 is a $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide, NaOH .
FA2 is a $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous acid which is either monobasic with the formula HA , or dibasic with the formula $\mathbf{H}_{2} A$.

By using the results of the following experiments, you are to going to determine the basicity of FA2.

You are to follow the following procedure and record your results as instructed.

Experiment 1

1 By using a measuring cylinder, pour $25 \mathrm{~cm}^{3}$ of FA1 into the Styrofoam cup provided and record the steady temperature. Rinse the thermometer with deionised water.
2 Use another $50 \mathrm{~cm}^{3}$ measuring cylinder to measure $25 \mathrm{~cm}^{3}$ of FA2 and record its temperature.
3 Carefully add FA2 to FA1, stir with the thermometer and record the highest temperature reached.
4 Record your results in the table provided below.

	Experiment 1	Experiment 2	Experiment 3
Initial temperature of FA1 $/{ }^{\circ} \mathrm{C}$	31.0	31.0	31.0
Initial temperature of FA2 $/{ }^{\circ} \mathrm{C}$	31.0	31.0	31.0
Highest temperature $/{ }^{\circ} \mathrm{C}$	37.9	35.6	40.1
Mean initial temperature $/{ }^{\circ} \mathrm{C}$	31.0	31.0	31.0
Temperature rise, $\Delta \mathrm{T} /{ }^{\circ} \mathrm{C}$	6.9	4.6	9.1

Experiment 2

Thoroughly rinse out the Styrofoam cup with deionised water and repeat the experiment using $25 \mathrm{~cm}^{3}$ of FA1 and $50 \mathrm{~cm}^{3}$ of FA2. Record your results in the table above.

Experiment 3

Thoroughly rinse out the Styrofoam cup with deionised water and repeat the experiment using $50 \mathrm{~cm}^{3}$ of FA1 and $25 \mathrm{~cm}^{3}$ of FA2. Record your results in the table above.
(a) Complete the table of results by calculating the mean initial temperature of FA1 and FA2 for each of the three experiments. When calculating mean initial temperatures for Experiments 2 and 3, ignore the fact that the volumes mixed are unequal.

Fill in the corresponding rises in temperatures, $\Delta \mathrm{T}$ in the table provided above.
Initial temperatures of FA1, FA2 \& highest temperatures taken and recorded to 1 decimal place.
Correct mean initial temperatures recorded.
Correct $\Delta \mathrm{T}$ recorded.
[Turn over
(b) Use your results to deduce the basicity of the acid.

From Expts 2 and 3 (Total volume of the reaction mixture is the same, $75 \mathrm{~cm}^{3}$).

Expt 2:	$\begin{aligned} & \mathrm{NaOH}(\mathrm{aq}) \\ & 0.0250 \end{aligned}$	$+\underset{0.0250}{\mathrm{HA}(\mathrm{aq})}$	$\rightarrow \mathrm{NaA}(\mathrm{aq})$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}(I) \\ & 0.0250 \mathrm{~mol} \end{aligned}$
	$2 \mathrm{NaOH}(\mathrm{aq})$	$+\mathrm{H}_{2} \mathrm{~A}(\mathrm{aq})$	$\rightarrow \mathrm{Na}_{2} \mathrm{~A}(\mathrm{aq})$	$+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
	0.0250	0.0125		0.0250 mol
Expt 3:	$\begin{aligned} & \mathrm{NaOH}(\mathrm{aq}) \\ & 0.0250 \end{aligned}$	$+\begin{array}{r} \mathrm{HA}(\mathrm{aq}) \\ 0.0250 \end{array}$	$\rightarrow \mathrm{NaA}(\mathrm{aq})+$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ & 0.0250 \mathrm{~mol} \end{aligned}$
	$\begin{aligned} & 2 \mathrm{NaOH}(\mathrm{ao} \\ & 0.0500 \end{aligned}$	$\text { q) }+\begin{aligned} & \mathrm{H}_{2} \mathrm{~A}(\mathrm{aq} \\ & 0.0250 \end{aligned}$	$\longrightarrow \mathrm{Na}_{2} \mathrm{~A}(\mathrm{aq})$	$\text { q) }+\frac{2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})}{0.0500 \mathrm{n}}$

Since the rise in temperature, $\Delta \mathrm{T}$, is greater in Expt 3 as compared to that of Expt 2 (almost twice), FA2 is a dibasic acid, $\mathrm{H}_{2} \mathrm{~A}$.

If the acid is monobasic, then the rise in temperature, $\Delta \mathrm{T}$, in Expts 2 and $\mathbf{3}$ should be the same.
(c) Write a full equation for the reaction between FA1 and FA2. Do not omit spectator ions.

$$
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~A}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{~A}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(I) \quad \begin{gather*}
\text { state symbols not } \\
\text { required } \tag{1}
\end{gather*}
$$

(d) Calculate the amount of heat evolved in Experiment 1.

Assume 4.3 J are required to raise the temperature of $1 \mathrm{~cm}^{3}$ of solution by $1.0^{\circ} \mathrm{C}$.
Heat evolved $=(50 \times 4.3 \times 6.9) \mathrm{J}$

$$
=1483.5 \mathrm{~J}
$$

Heat evolved = 1483.5 J
(e) Using your answers to (c) and (d), calculate the enthalpy of neutralisation, $\Delta \mathrm{H}_{\mathrm{n}}$, per mole of water formed.

$$
\begin{aligned}
& \underset{0.0250}{2 \mathrm{NaOH}(\mathrm{aq})}+\underset{\substack{\mathrm{H}_{2} \mathrm{~A}(\mathrm{aq}) \\
0.0125}}{\longrightarrow \mathrm{Na}_{2} \mathrm{~A}(\mathrm{aq})+\underset{\mathrm{a}}{2 \mathrm{H}_{2} \mathrm{O}(I)}} \begin{aligned}
0.0250 \mathrm{~mol}
\end{aligned} \\
& \Delta \mathrm{H}_{\mathrm{n}} \\
& =-\left(\frac{1483.5}{0.0250}\right) \mathrm{J} \mathrm{~mol}^{-1} \\
& \\
& =-59.3 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

$$
\Delta \mathrm{H}_{\mathrm{n}}=-59.3 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Assessment of Planning Skills

You are provided with $150 \mathrm{~cm}^{3}$ of each of three solutions, FA6, FA7 and FA8. You are to identify which of these solutions correspond to the following solutions:
$1 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide, NaOH
$2 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl
$1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl
You are also provided with the following apparatus:
A thermometer
A Styrofoam cup
2 measuring cylinders
You are to plan a simple experiment which will allow an identification of the three solutions to be made, using only the apparatus and materials listed above and deionised water. (Note that you are not provided with any pH indicator).

You are not required to carry out the plan but you have to present your results in an appropriate manner based on your plan so that the identification can be made.

PLAN

1 Using a measuring cylinder, pour $30 \mathrm{~cm}^{3}$ of FA6 into the Styrofoam cup provided and record its temperature using the thermometer. Rinse the thermometer with deionised water.

2 Using another measuring cylinder to measure $30 \mathrm{~cm}^{3}$ of FA7 and add it to FA6 in the Styrofoam cup. Stir, using the thermometer and record the highest temperature rise.
3 Thoroughly rinse out the Styrofoam cup with deionised water and repeat the Expt using $30 \mathrm{~cm}^{3}$ of FA6 and $30 \mathrm{~cm}^{3}$ of FA8.
4 Thoroughly rinse out the Styrofoam cup with deionised water and repeat the Expt using $30 \mathrm{~cm}^{3}$ of FA7 and $30 \mathrm{~cm}^{3}$ of FA8.
(Refer to table 1 in results. The base, NaOH can be identified.)
5 Thoroughly rinse out the Styrofoam cup with deionised water and repeat the Expt using $30 \mathrm{~cm}^{3}$ of FA6 and $15 \mathrm{~cm}^{3}$ of FA7.

6 Thoroughly rinse out the Styrofoam cup with deionised water and repeat the Expt using $30 \mathrm{~cm}^{3}$ of FA6 and $15 \mathrm{~cm}^{3}$ of FA8.
(Refer to table 2 in results. The acid, HCl of higher concentration can be identified.)
(Note: Specific volumes must be mentioned and the permutations of the respective solutions must be evident enough to allow identification possible. However, the total volume used for each of the three solutions used cannot exceed $150 \mathrm{~cm}^{3}$ given.)

RESULTS

Table 1

$\mathrm{V}_{\mathrm{FA} 6} / \mathrm{cm}^{3}$	30	30	-
$\mathrm{V}_{\mathrm{FA} 7} / \mathrm{cm}^{3}$	30	-	30
$\mathrm{~V}_{\mathrm{FA} 8} / \mathrm{cm}^{3}$	-	30	30
$\Delta \mathrm{~T} /{ }^{\circ} \mathrm{C}$	T 1	T 1	No change

FA7 + FA8, no change in temperature, so they do not react with each other. So, FA7 and FA8 are both acids.

Therefore, FA6 is NaOH .
Table 2

$\mathrm{V}_{\mathrm{FAG}} / \mathrm{cm}^{3}$ (base)	30	30
$\mathrm{~V}_{\mathrm{FA} 7} / \mathrm{cm}^{3}$	15	-
$\mathrm{V}_{\mathrm{FA} 8} / \mathrm{cm}^{3}$	-	15
$\Delta \mathrm{~T} /{ }^{\circ} \mathrm{C}$	T 1	T 2

Assume that T1 > T2.
Since the rise in temperature is higher for reaction between FA7 and the base, therefore FA7 is HCl of higher concentration ($2 \mathrm{~mol} \mathrm{dm}^{-3}$).

[Total: 18]

3 You are to determine the identity of FA9.
Carry out the following experiments on the solid FA 9 which contains the sodium cation and one anion from the following list: $\mathrm{CO}_{3}{ }^{2-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{NO}_{2}{ }^{-}, \mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{SO}_{3}{ }^{2-}$.

In all tests, reagents should be added gradually until no further change is observed, with shaking after each addition.

Record your observations you make from them in the spaces provided.
Your answer should include
(i) details of colour change and precipitated formed, if any;
(ii) the identity of gases evolved, if any, and details of the test used to identify the gas.

You should indicate clearly at what stage in a test a change occurs.
No additional or confirmatory tests for ions present should be attempted.

Test	Observation [9]
(a) Place one third of the solid FA9 in a test-tube and heat strongly until the solid melts and a gas is given off.	FA9 melts to give a yellow liquid which then resolidifies to a give a white solid. Effervescence observed.
Identify the gas evolved.	Gas evolved rekindles/relights a glowing splint. O_{2} liberated.
Continue the strong heating for 2-3 minutes then leave the tube to cool and retain the residue for test (d).	White residue.
Melt a second sample of FA9 and heat for 2-3 minutes. Leave this to cool and retain for test (h).	
(b) Using a dropper, place 1 cm depth of aqueous of sodium hydroxide into a test-tube and tip into it the remaining solid FA9.	FA9 dissolves / no ppt.
Warm gently and retain for test (c).	Damp red litmus, no change. No NH ${ }_{3}$ gas
liberated.	
(c) Cool the test-tube and solution from	
(b).	
Add a half spatula full of aluminium powder and warm gently.	Gas liberated turns damp red litmus blue.
NH3 gas evolved.	

Test	Observation
(d) Dissolve the residue from (a) in deionised water about 3 cm depth and divide the solution into three parts. Use these tests for (e) to (g).	
(e) To one part of the solution from (d), add aqueous potassium iodide followed dilute sulfuric acid.	Brown solution / iodine liberated.
(f) To the second part of the solution from (d), add aqueous potassium manganate(VII) followed by dilute sulfuric acid.	Purple acidified KMnO_{4} is decolourised.
(g) To the third part of the solution from (d), add aqueous sodium hydroxide and a half spatula full of aluminium powder. Warm gently.	Gas liberated turns damp red litmus blue. NH_{3} gas evolved.
(h)Take the second sample of solid, heated FA9 that you prepared in (a). Add to dilute sulfuric acid and warm gently.	Brown fumes liberated.

What anion is present in FA9 before it is heated? $\quad \mathrm{NO}_{3}{ }^{-}$
What anion is present in FA9 after it is heated? $\quad \mathrm{NO}_{2}{ }^{-}$
In test (e), the anion is behaving as an oxidising agent.
In test (f), the anion is behaving as a reducing agent.

Hence, write a balanced chemical equation for the thermal decomposition of FA9.
$\mathrm{NaNO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{NaNO}_{2}(\mathrm{~s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$

Assessment of Planning Skills

Each of the solutions FA10, FA11 and FA12 contains one of the cations $\mathrm{Al}^{3+}, \mathrm{Mg}^{2+}$ and Zn^{2+} ions but not in that order.

You are provided with a set of test-tubes and the following reagents:
Aqueous ammonia, NH_{3}
Dilute hydrochloric acid, HCl
Aqueous sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$
Aqueous sodium hydroxide, NaOH
You are required to devise and perform an experiment which will enable you to identify the cation present in each of the solutions FA10, FA11 and FA12. You may only use any of the reagents provided above and no other reagent. You should aim to use the minimum number of reactions, where possible.

This space below is for you to plan your steps which should then be recorded, together with the observations you make in the table in the next page.

PLAN

1 Add aqueous ammonia, NH_{3} till excess to separate samples of the 3 solutions.
If a white ppt is obtained and dissolves in excess NH_{3}, suggests the presence of $\mathbf{Z n}^{2+}$.

2 Add aqueous sodium hydroxide, NaOH till excess to separate samples of the remaining 2 solutions.

If a white ppt is obtained and dissolves in excess NaOH , suggests the presence of Al^{3+}, if insoluble in excess $\mathrm{NaOH}, \mathrm{Mg}^{2+}$.

In the table below, record all of your observations, and the identity of a cation as soon as this is established.

Reagent added	Observations and identities of cations		
	FA10	FA11	FA12
$\mathrm{NH}_{3}(\mathrm{aq})$	White ppt soluble in excess. Zn^{2+}	-	-
$\mathrm{NaOH}(\mathrm{aq})$	-	White ppt soluble in excess. Al^{3+}	White ppt insoluble in excess. $\mathbf{M g}^{2+}$

Deduction

Solution FA10 contains the cation $\mathbf{Z n}^{\mathbf{2 +}}$
Solution FA11 contains the cation Al^{3+}
Solution FA12 contains the cation $\mathbf{M g}^{\mathbf{2 +}}$

Qualitative Analysis Notes

[ppt. = precipitate]

(a) Reactions of aqueous cations

cation	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$	ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	no ppt. (if reagents are pure $)$	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [Ca2+(aq)]	no ppt.
chromium(III), $\mathrm{Cr}^{3+}(\mathrm{aq})$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
copper(II), $\mathrm{Cu}^{2+}(\mathrm{aq})$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt., turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), $\mathrm{Mn}^{2+}(\mathrm{aq})$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

[Turn over

(b) Reactions of anions

anion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives pale cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $I^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	SO_{2} liberated with dilute acids; gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in dilute strong acids)

(c) Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	"pops" with a lighted splint
oxygen, O_{2}	relights a glowing splint
sulfur dioxide, SO_{2}	turns aqueous acidified potassium manganate(VII) from purple to colourless

(d) Colour of halogens

halogen	colour of element	colour in aqueous solution	colour in hexane
chlorine, Cl_{2}	greenish yellow gas	pale yellow	pale yellow
bromine, Br_{2}	reddish brown gas / liquid	orange	orange-red
iodine, I_{2}	black solid / purple gas	brown	purple

