Name:		Index Number:	Class:					
	HUA YI SECOND	OARY SCHOOL						
3E	Mid-Year Exam	nination 2017	3E					
	HEMISTRY)	5076/01						
	Paper 1 Multiple Choice		8 May 2017					
			30 min					
Candidates answer on the Multiple Choice Answer Sheet Additional Materials: Multiple Choice Answer Sheet								
	INSTRUCTIONS FIRST ne, Index Number and Class on t ncil.	he Answer Sheet in th	e spaces provided.					

Do not use staples, paper clips, highlighters, glue or correction fluid.

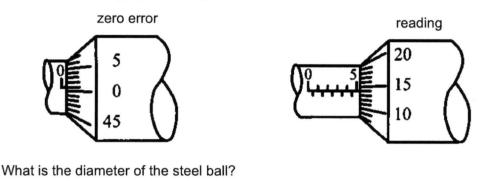
There are **twenty** questions on this paper. Answer **all** questions.

For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the one you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

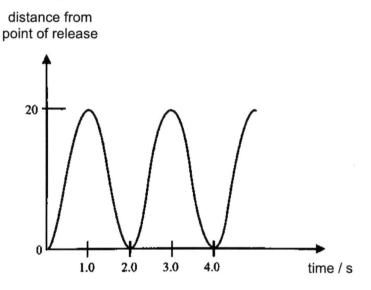
Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.


For Examiner's Use

Paper 1

This document consists of **10** printed pages including the cover page. © HYSS 2017 No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Hua Yi Secondary School.

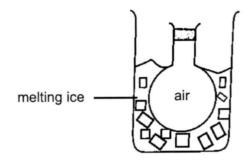

[Turn Over

1 The diameter of a steel ball is measured using a micrometer screw gauge. A student takes an initial zero reading and then a reading of the diameter. The two diagrams show the micrometer screw gauge readings.

Α	5.13 mm	В	5.15 mm
С	5.14 mm	D	5.55 mm

2 The bob of a simple pendulum is pulled to one side and released. The motion during the swing is shown on the graph below.

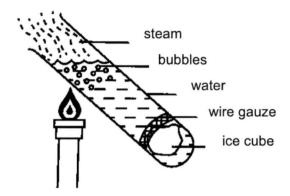
What is the period of the pendulum?


Α	1.0 s	В	2.0 s
С	3.0 s	D	4.0 s

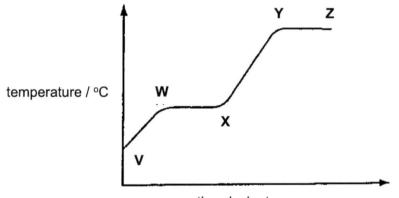
- 3 Which statement about a gravitational field is correct?
 - A gravitational field is a region in which an object experiences a force because of its mass.
 - **B** A gravitational field is a region in which an object experiences a force because it is charged.
 - **C** The gravitational field of the Earth acts outwards from its surface.
 - **D** The strength of the Moon's gravitational field is less than the Earth's because it has no atmosphere.

4 A ball is brought from the Earth to the Moon.

Which of these statements about the ball's inertia is true?


- A The inertia will decrease because weight decreases.
- **B** The inertia will decrease because mass decreases.
- **C** The inertia will remain the same because weight remains constant.
- D The inertia will remain the same because mass remains constant.
- 5 A round-bottomed flask is filled with air and tightly capped at room temperature. The flask is then placed in melting ice as shown in the diagram below. The flask stays the same size.

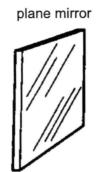
Which of the following is true about the kinetic energy and average spacing between the air molecules in the flask?


	kinetic energy	average spacing between molecules
Α	decreases	decreases
в	decreases	remains constant
С	remains constant	decreases
D	remains constant	remains constant

6 An experiment is carried out as shown in the diagram.

Why does the ice take a long time to melt?

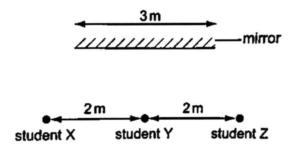
- A Water is a poor conductor of heat.
- B Convection cannot occur in water.
- C The gauze prevents thermal energy from reaching the ice.
- D Ice is a poor conductor of heat.
- 7 Some ice is placed in a beaker and heated. The graph shows the temperature of the beaker and its contents during the experiment.



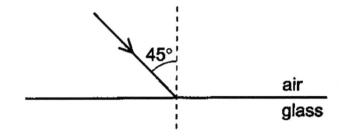
time / minutes

Between which two points on the graph does the beaker contain a mixture of liquid and gas?

Α	Y and Z	В	W and X
С	X and Y	D	V and W

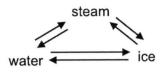

8 A woman stands in front of a plane mirror. She sees an image of herself in the mirror.

The woman moves 2.0 m further away from the mirror. What happens to the distance between the woman and her image?


- A decreases by 2.0 m
- B decreases by 4.0 m
- C increases by 2.0 m
- D increases by 4.0 m
- **9** Three students stand 2 m apart in front of a plane mirror which is 3 m long. Student Y is standing opposite the mid-point of the mirror.

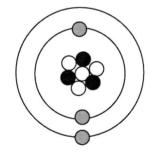
How many students can see the images of the other two?

Α	0	В	1
С	2	D	3


10 The diagram shows a ray of light entering a glass block of refractive index 1.67 at an angle of incidence of 45°.

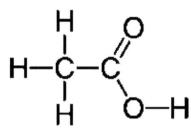
By how many degrees does the light ray change direction when entering the glass?

Α	15°	в	20°
С	25°	D	45°


11 In which conversion do water molecules gain speed?

- A steam \rightarrow ice
- B steam → water
- **c** water \rightarrow ice
- D water → steam
- 12 Ethanol boils at 78 °C and water boils at 100 °C. Ethanol and water are miscible with each other.

Which method is used to separate a mixture of these two liquids?


- A evaporation
- B filtration
- C fractional distillation
- **D** simple distillation
- 13 Which of the following is **not** a molecule?
 - A Ar
 - **B** Cl₂
 - C HC/
 - **D** P₄
- 14 The diagram below represents an atom of the element **Z**.

Which symbol represents this element?

- $A \frac{3}{7}Z$
- **B** ${}^{7}_{3}$ **Z**
- c ⁷₁₀Z
- D ¹⁰₇Z

- **15** Sodium reacts with chlorine to form an ionic compound. Which of the following statements about the compound formed is false?
 - A Chlorine gains an electron from sodium to form a negative ion.
 - B Sodium gains seven electrons to form a positive ion.
 - C The chemical formula of the compound is NaCl.
 - **D** The electrostatic forces of attraction between sodium ions and chloride ions are strong.
- 16 The diagram below shows a structural formula of a compound.

How many electrons are involved in bonding in a molecule of this compound?

- **A** 7
- **B** 8
- **C** 14
- **D** 16

17 Which pair of elements form a compound by sharing electrons?

- A carbon and chlorine
- B lithium and iodine
- **C** neon and oxygen
- D potassium and bromine
- **18** Substance **T** has the following properties.
 - 1. white crystalline solid at room temperature
 - 2. melts at 65 °C
 - 3. does not conduct electricity in solid or molten state

Which of the following statements about substance T is correct?

- A Substance **T** has a giant ionic structure.
- **B** Substance **T** has a simple covalent structure.
- **C** Substance **T** is lithium chloride.
- D Substance T is silver.

19 When sodium metal reacts with oxygen gas, a compound is formed.

Which of the following shows the correct chemical formula and name of the compound?

	chemical formula	chemical name
A	NaO	sodium oxide
B	Na ₂ O	sodium oxide
C	NaO	sodium oxygen
D	Na ₂ O	sodium oxygen

20 An equation is shown.

$CaCO_3 + \mathbf{x}HC \rightarrow CaC_2 + \mathbf{y}CO_2 + H_2O$

Which numbers will correctly balance this equation?

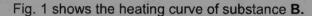
	x	V
A	1	1
в	1	2
С	2	1
D	2	2

End of Paper

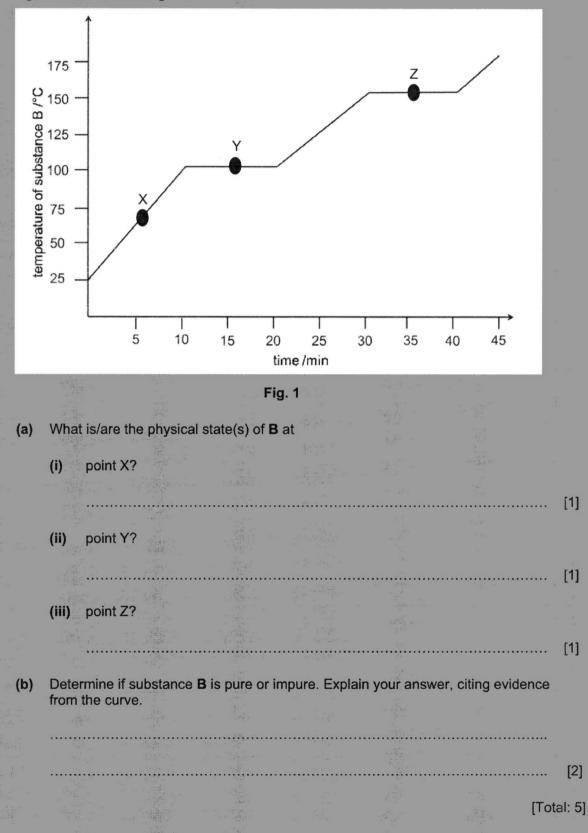
Г					Т			T												_			ſ		1	E
	c	4	₽Ĥ	hellum 2	20	θŇ	10 nation	40	¥	18 18	84		krypton 36	131	Хе	S4			_	88				175 Lu buteblum 71	1.	Lr Iawrenolum 103
	II/				19	ш	fluorine	35.5	CI	chlorine 17	80	ĥ	bromine 35	127	1	sotine 53		i t	astatine	85				173 Yb ytterthum 70	1	NO nobelium 102
	5				16	0	oxygen 8		S	suffur 16	62	ጽ	seientum 34	128	Te	tellurtum 52		ı 6	Ę					E T 1	1	Md Tendelevium 101
	>				14	z	nårogen 7		٩	f5 15	75	As	arsenic 33		S.	antimony 51	000		bismuth	83				167 문다 유명	1	Fin fermium foo
	2				12	υ	carbon			tt 14	73	99	gemantum 32		ซ		202	2 6	a the	83				165 Ho holmkm	1	
S	=				11	Ċ	5 5	27	A!	akuminium. 13	70		gadium 31	115	Ę	48 48	THE.	Ş i	thailtum	81				162 Dy dysproslum 66	1	88
emen											65	ž		112	3	cadmum 4.8	-05	Ş I	routy Konty	80				159 Tb Mathum	' i	BK berkelium 97
he Ele											64	3	copper 29	108	βÅ	silver 47	407	in a	6 7 6					157 Gd gadoilinlum 64	1,	Cm Be Be
e of t											56		nickei 28	106	Pd	paladum 46	30*	Ē		78				152 Eu europium 63	.	Arri americken 95
Groun											23	ර	cobalt 27	103	臣	45	103	781	F	_				150 Sm samarium 62	1	Pu pittonium 94
riodic		***	I	hydrogen 1							8	Fe	linn 26	101	Γ.	ruthentum 44	400	2	S	76				– Prometrium 64	1	Np neptunkum 93
The Periodic Table of the Elements					-						55	Mn	manganese 25			43	405		F	_				144 144 - Pr Nd Pm presective sector for an efficient 50 60 61	38	u urankum 92
È											52	Ⴆ	chromium 24	96		DCGentr	42	101	geten	_				†41 Pr presodymtum 50		Pa protactinium 91
											5	>	vanadum 23	83	q	niotium 41	*0*	ie f	tantakum	73				t Ce Ce	232	thorkum 90
											48		trankum 22	9.	Ъ	Zinconium 40	470	۲.	ž	72					c mass	
											45	ഗ്ഗ	scandium 21	68	≻	yttrium 39	0.04	62	amm	- 22	– Ac actintum 89 †	l series	series		a = relative atomic mass	X = atomic symbol b = proton (atomic) number
	=				თ	B	trenyêkum d		Мд	magnesium 12	40	ပီ	calckum 20	88	ې م	strontium 38	10.4	121	R S	56	Ra radium 88	hanok	ctinoid		a∎ Tél	X = an b = bn
	-				2		itthem b	23	Na		39		potassium 21	85		S S		133	a Eng		- Fr Refer	*58-71 Lanthanoid series	H90-103 Actinoid series		Key a	× ª
							~ e	2		\$ ÷:			82			5 5 5			8	ß	fra 87	ŝ	₽		К	

Name:		Inc	lex Number:	Class:	
	#x +*	HUA YI SEC	ONDARY SCHO	OL	3E
3E	A DECEMBER OF	Mid-Year	Examination 201	7	
		iviid=1 odi		,	
	SCIENCE	(CHEMIST	RY)		5076/03
	Paper 3				4 May 2017
					1 hour
	Additional Ma	terials: NIL		1070	
			ing Kanang Kanggang		
READ THESE IN	STRUCTIONS	EIDST			
Write in dark blue You may use a so Do not use staple	or black pen. oft pencil for an s, paper clips,	glue or correc	tion fluid.		
Write in dark blue You may use a so Do not use staple The use of an app Section A	or black pen. oft pencil for an s, paper clips, proved scientifi	glue or correc	tion fluid.	appropriate.	
Write in dark blue You may use a so Do not use staple The use of an app Section A Answer all question	or black pen. oft pencil for an os, paper clips, proved scientific ons.	glue or correc c calculator is	tion fluid. expected, where		
Do not use staple The use of an app Section A Answer all questio Write your answe	or black pen. oft pencil for an os, paper clips, proved scientific ons.	glue or correc c calculator is	tion fluid. expected, where		
Write in dark blue You may use a so Do not use staple The use of an app Section A Answer all questio Write your answer Section B	or black pen. oft pencil for an os, paper clips, proved scientifie ons. rs in the space	glue or correc c calculator is	tion fluid. expected, where		
Write in dark blue You may use a so Do not use staple The use of an app Section A Answer all question Write your answer Section B Answer all question	or black pen. oft pencil for an os, paper clips, proved scientifie ons. rs in the space ons.	glue or correc c calculator is s provided on	tion fluid. expected, where the question pap	er.	
Write in dark blue You may use a so Do not use staple The use of an app Section A Answer all questic Write your answer Section B Answer all questic Write your answer The number of ma	or black pen. oft pencil for an os, paper clips, proved scientifie ons. rs in the space ons. rs in the space arks is given in	glue or correc c calculator is s provided on s provided on brackets [] a	tion fluid. expected, where the question pap the question pap t the end of each	er.	juestion.
Write in dark blue You may use a so Do not use staple The use of an app Section A Answer all questic Write your answer Section B Answer all questic Write your answer The number of ma	or black pen. oft pencil for an os, paper clips, proved scientifie ons. rs in the space ons. rs in the space arks is given in	glue or correc c calculator is s provided on s provided on brackets [] a	tion fluid. expected, where the question pap the question pap t the end of each	er. er. question or part o	
Write in dark blue You may use a so Do not use staple The use of an app Section A Answer all questic Write your answer Section B Answer all questic Write your answer The number of ma	or black pen. oft pencil for an os, paper clips, proved scientifie ons. rs in the space ons. rs in the space arks is given in	glue or correc c calculator is s provided on s provided on brackets [] a	tion fluid. expected, where the question pap the question pap t the end of each	er. er. question or part o	
Write in dark blue You may use a so Do not use staple The use of an app Section A Answer all questic Write your answer Section B Answer all questic Write your answer The number of ma	or black pen. oft pencil for an os, paper clips, proved scientifie ons. rs in the space ons. rs in the space arks is given in	glue or correc c calculator is s provided on s provided on brackets [] a	tion fluid. expected, where the question pap the question pap t the end of each	er. question or part of FOR EXAMIN Section A	
Write in dark blue You may use a so Do not use staple The use of an app Section A Answer all questic Write your answer Section B Answer all questic Write your answer The number of ma	or black pen. oft pencil for an os, paper clips, proved scientifie ons. rs in the space ons. rs in the space arks is given in	glue or correc c calculator is s provided on s provided on brackets [] a	tion fluid. expected, where the question pap the question pap t the end of each	er. er. question or part o	
Write in dark blue You may use a so Do not use staple The use of an app Section A Answer all questic Write your answer Section B Answer all questic Write your answer The number of ma	or black pen. oft pencil for an os, paper clips, proved scientifie ons. rs in the space ons. rs in the space arks is given in	glue or correc c calculator is s provided on s provided on brackets [] a	tion fluid. expected, where the question pap the question pap t the end of each	er. question or part of FOR EXAMIN Section A	
Write in dark blue You may use a so Do not use staple The use of an app Section A Answer all questic Write your answer Section B Answer all questic Write your answer The number of ma	or black pen. oft pencil for an os, paper clips, proved scientifie ons. rs in the space ons. rs in the space arks is given in	glue or correc c calculator is s provided on s provided on brackets [] a	tion fluid. expected, where the question pap the question pap t the end of each	er. question or part of FOR EXAMIN Section A	
Write in dark blue You may use a so Do not use staple The use of an app Section A Answer all questic Write your answer Section B Answer all questic Write your answer The number of ma	or black pen. oft pencil for an os, paper clips, proved scientifie ons. rs in the space ons. rs in the space arks is given in	glue or correc c calculator is s provided on s provided on brackets [] a	tion fluid. expected, where the question pap the question pap t the end of each	er. question or part of FOR EXAMIN Section A	
Write in dark blue You may use a so Do not use staple The use of an app Section A Answer all questic Write your answer Section B Answer all questic Write your answer	or black pen. oft pencil for an os, paper clips, proved scientifie ons. rs in the space ons. rs in the space arks is given in	glue or correc c calculator is s provided on s provided on brackets [] a	tion fluid. expected, where the question pap the question pap t the end of each	er. question or part of FOR EXAMIN Section A Section B	

[Turn Over]

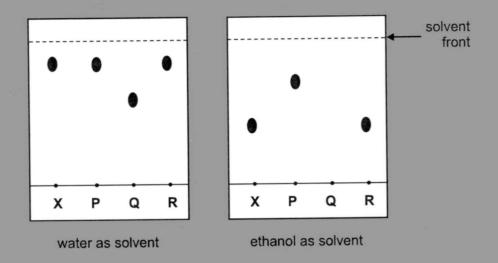

Setter: Mdm Nurul Dini

Section A (30 marks)


2

Answer all questions.

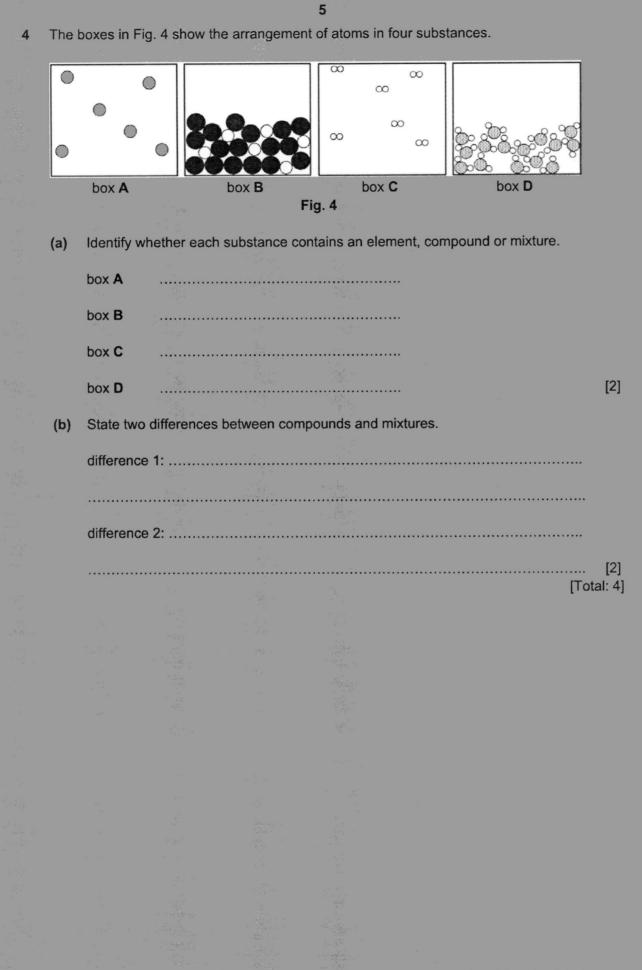
Write your answers in the spaces provided on the question paper.


1

Sec 3E Science (Chemistry) P3 Mid-Year Exam 2017

Hua Yi Secondary School

2 The ink, X, from a forged letter was analysed with three other inks, P, Q and R, taken from the pens of three suspects. Two chromatograms are shown below were obtained using different solvents, water and ethanol.

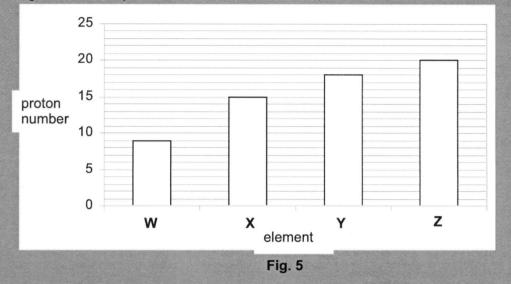

(a) Explain, using the results from the chromatogram, why it was necessary to carry out the second chromatogram using a different solvent.

		[2]
(b)	Which ink, P, Q or R, has been used to write the forged letter?	
		[1]
(c)	Explain why ink Q produces a spot in water but not in ethanol.	
		[1]
	[Tot	al: 4]

	(i)	measu	ure 22.5 c	m ³ of solutior	into a beaker			
	.,							
						••••••	••••••	
	(ii)	add ex	cactly 25.0) cm ³ of solut	ion to each of	several beak	ers	
		•••••	••••••	••••••	•••••••••••••••••••••••••••••••••••••••	••••••	•••••••	
(b)	appai	re P o ratus ir cture P	Fig. 3 ca	of sand, am an be used to	monium chlor separate one	de and sod of the subst	lium chloride ances that is	e. The found
					— — co	otton plug		
						— filter funn	el	
			mixture I	P		6/	vaporating d	ish
					L hast			
					heat Fig. 3			
					. igi u			
	(i)	After m	nixture P i	s heated, what	at substances	will be left as	residue?	
					to obtain pur t is left in (b)(i)		samples of	each
		** **			1999 	••••••		÷
					••••••			· · · · · · · · · · · · · · · · · · ·
		•••••	•••••••••••••••••••••••••••••••••••••••	•••••	·····	• • • • • • • • • • • • • • • • • • • •	•••••	

Sec 3E Science (Chemistry) P3 Mid-Year Exam 2017

Hua Yi Secondary School



Sec 3E Science (Chemistry) P3 Mid-Year Exam 2017

Hua Yi Secondary School

5

Fig. 5 shows the proton number of four elements, W, X, Y and Z.

6

(a) Which element has atoms that could form ions with the biggest negative charge? [1] (b) State the electronic configuration of the element which has the most number of valence electrons. [1] Element Z reacts with element W to form a white solid Q. (c) (i) State the chemical formula of Q. [1] (ii) Draw the 'dot-and-cross' diagram of Q.

State a property th	hat Q would have.	
otato a proporty a		
••••••		

Sec 3E Science (Chemistry) P3 Mid-Year Exam 2017

Hua Yi Secondary School

[2]

7

Complete Table 6 by giving the appropriate name or chemical formula.

6

(a)

name	chemical formula
potassium nitrate	
	MgCO ₃

[3]

(b) Solid lithium metal reacts explosively with water to produce hydrogen gas and a solution of lithium hydroxide.

Write a balanced chemical equation, including state symbols, for this reaction.

[Total: 5]

End of Section A

8

Section B (20 marks)

Answer ALL questions.

Write your answers in the spaces provided on the question paper.

7 Methane (CH₄) is a colourless gas which reacts with chlorine gas to form tetrachloromethane (CCl₄) and hydrogen chloride (HCl). The reaction requires UV light to activate the chlorine. The reaction is as shown below:

 CH_4 (g) + $4Cl_2$ (g) $\rightarrow CCl_4$ (g) + 4HCl (g)

The solubility and density of the products of this reaction are given in Table 7.

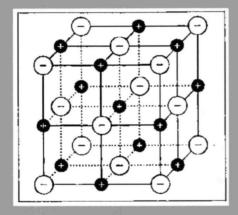
Table 7

name of gas	solubility of gas in water	density of gas compared to air
tetrachloromethane	insoluble	higher
hydrogen chloride	highly soluble	higher

- (a) Using the Kinetic Particle Theory, describe the movement and arrangement of the particles of methane at room temperature.
- (b) Explain why methane is a gas at room temperature.

(c) Draw the 'dot-and-cross' diagram to show the bonds in methane. You only need to show outer shell electrons.

Sec 3E Science (Chemistry) P3 Mid-Year Exam 2017


Hua Yi Secondary School

[2]

(d) Assuming that methane has completely reacted with chlorine gas, describe, with a use of a diagram, the steps required to obtain a pure sample of tetrachloromethane from the products of the reaction.

[2]

(e) A student wanted to draw the structure of hydrogen chloride gas. The student's drawing is shown in Fig. 7.1.

Do you agree with the student's representation of the structure of hydrogen chloride gas? Explain your answer.

[2] [Total: 10] [TURN OVER]

Sec 3E Science (Chemistry) P3 Mid-Year Exam 2017

8 Table 8 shows the information of five different particles.

Table 8

		particle		relative mass	rela	ative charge	7
		A	138-	2		+2	-
		В		0		-1	
		С		1		+1	
		D		4		+2	1
		E		9		0	
(a)	Which partic	le is an electr	on? Explain	your answer.		696 - 55 S	
		······		•••••••••••	••••••	••••••	[1]
(b)	State the ide	entity of partic	le C .				
							E41
	******	••••••	••••••	••••••••	••••••	•••••	[1]
(c)	Which partic Explain your	le could be r answer.	nade up of t	wo protons but	t no neutrons	s in the nucleus	s?
	•••••	••••••	••••••	••••••		•••••••••••••••••••	
							101
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••••	•••••••	••••••	•••••••••••••••••••••••••	[2]
(d)	Which two p	articles could	represent th	e nuclei of isoto	opes? Explain	n your answer.	
	,	·····		•••••••		••••••	
	•••••	••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	
			•••••				
		• • • • • • • • • • • • • • • • • • • •	•••••		••••••	••••••••••••••••••••••	[3]
			· · · · · · · · · · · · · · · · · · ·				
(e)				the difference		mical reactivitie	s.
		••••••••••••••••	••••••••••••	•••••••••	and the second sec	••••••••••••••••••••••	• • •
					••••••		
	•••••	••••••			••••••	•••••••••••••••••••••••	
							101
	************	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •			[3]
						IT.	stal. 10
						[10	otal: 10
			n an	f Deve			
			End	of Paper			

Hua Yi Secondary School

Sec 3E Science (Chemistry) P3 Mid-Year Exam 2017

Hua Yi Secondary School

	The Periodic Table of Elements																
								Gro	oup								
1												111	IV	V	VI	VII	0
				Key			1 H hydrogen 1										2 He helium 4
3	4		proton	(atomic) n	umber	i '						5	6	7	8	9	10
Li	Be			mic syml								в	С	N	0	F	Ne
lithium	beryllium			name								boron	carbon	nitrogen	oxygen	fluorine	neon
7	9		relativ	/e atomic	mass							11	12	14	16	19	20
1 1	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Аг
sodium	magnesium											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
23	24	04	~	00	0.4	00	00	27	28	29	30	31	32	33	34	35	36
19	20	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe		28 Ni	29 Cu	Zn	Ga	Ge	As	Se	Br	Kr
K	Ca calcium	SC	l I titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	salenium	bromine	krypton
potassium 39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Ŷ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
rubidium	stroatium	yttrium	zirconium	muidain	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
85	88	89	91	93	96	-	101	103	106	108	112	115	119	122	128	127	131
55	56	57 - 71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	та	w	Re	Ôs	Ir	Pt	Au	Hg	11	Pb	Bi	Po	At	Rn
caesium	barium		hafnium	lantalum	tungsten	rhonium	osmium	iridium 192	platinum 195	gold 197	mercury 201	1hallium 204	kead 207	bismuth 209	potonium	astatine	radon
133	137	89-103	178	181	184	186	190	102	195	111	112	204	114	200	116		
87	88	89-103	104	105	106	107 Bh	Hs	Mt	Ds	Rg	Cn		F/		Lv		
Fr	Ra		Rf Rutherlordium	Db dubnium	Sg seaborgium	bahrium	hassium -		darmstatium				flerovium		Ivermorium		
			-	-	-	-	-	-	-	_	-		-		-		
													,				
la	anthanoid	s	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			lanihanum	cerium	praseodymium		promethium	samarium	europium 150	gadolinium	terbium 159	dysprosium 163	holmium 165	erbium 167	thutium 169	ytterbium 173	lutetium 175
			139	140	141	144		150 94	152 95	157 96	97	98	99	100	103	102	103
	actinoids		89	90	91	92	93				Bk	Cf	Es	Fm	Md	No	Lr
			Ac	Th	Pa protactinium	Uuranium	Np	Pu	Am americium	Cm	berkelium	californium			mendelevium	muledon	lawrencium
			actinium	232	231	238	перилишт		amencium		-	-	-	-	-	-	-
The volur	me of one	mole of a					e and pre	ssure (r.t	.p.).								

1

HUA YI SECONDARY SCHOOL

MID-YEAR EXAMINATION

SECONDARY 3 EXPRESS 2017 Marking Scheme

SCIENCE (CHEMISTRY)

Paper 1 [20 marks]

11	12	13	14	15	16	17	18	19	20
D	С	A	В	В	D	A	В	С	С

Paper 3

Section B

1ai	Solid	1
aii	Solid + Liquid	1
aiii	Liquid + Gas	1
b	Substance B is pure . ;	1
	Substance B has a fixed melting point of 100 °C / fixed boiling	1
	point of 160 °C. (no marks if temperature is not given);	
2a	The results from the first chromatogram with water shows that ink	1
	X can either be from ink P or R.	
	Thus, the identification of the culprit cannot be determined.	1
b	Ink R	1
С	Ink Q is soluble in water but not in ethanol.	1
3ai	Measuring cylinder or burette	1
ii	Pipette	1
bi	Sand and sodium chloride	1
ii	Add water to the mixture of sand and sodium chloride to dissolve the sodium chloride.	1
	After filtration of the mixture, sand will be left as residue while	1
	sodium chloride solution will be obtained as filtrate.	·
	To obtain dry sample of sodium chloride, evaporate the solution	1
	to dryness.	
4a	Box A: element	
	Box B: mixture	
	Box C: element	
	Box D: compound	
	(any 2 correct = 1 mark)	2
b	Any two of the differences:	

	 Components in mixtures can be separated by physical means but components in compounds can only be separated by chemical means.; Chemical properties of mixture is the same as those of its components but chemical properties of a compound are different from those of its constituent elements. Little or no energy change is involved in making mixtures but energy change is involved in making compounds. Components in mixtures are not mixed in a fixed ratio but constituent elements in a compound are combined in a fixed ratio 	2
5a	X	1
b	2.8.8	1
ci	1m – correct bonding	
	1m – correct number of electrons and charge on ions	2
cii	ZW ₂	1
ciii	 Any of the following properties: High melting and boiling point Conducts electricity only in molten and aqueous state Soluble in water but insoluble in organic solvents 	1
6a	KNO3	1
0a	Magnesium carbonate NH ₃	1
b	Li (s) + H ₂ O (l) → LiOH (aq) + H ₂ (g)	2
	1m – correct chemical formula & correctly balanced 1m – correct state symbols	

Section C [20 marks]

7(a)	methane particles are moving randomly in all directions ; particles are arranged randomly and are far apart	1
b	methane is a covalent substance and has a low boiling point. Little energy is required to overcome the weak intermolecular forces of attraction between methane molecules.	1; 1;
С		
		2
d	To obtain tetrachloromethane, displacement of water method is used. Hydrogen chloride will dissolve in water while tetrachloromethane will be collected in the gas jar as it is insoluble in water.	2m for diagram (with labels)
7e	No, the structure that the student drew was that of a giant ionic structure. However, hydrogen chloride has a simple covalent structure.	1 1
8a	B.	
oa	An electron has negligible relative mass and has a charge of - 1.	1
b	Hydrogen ion	1
с	A, a proton has a relative mass of 1 and carries a positive charge of +1 .	1
d	A and D They contain the same number of positive charges thus	1

е	E has an electronic structure of 2.2 while lithium has an electronic	1
	structure of 2.1 . Elements belonging to same group have the	1
	same chemical reactivities due to the same number of	1
	valence electrons. Since E and lithium belong to different	
	groups, they have different chemical reactivities.	