	_
L	

GAN ENG SENG SCHOOL Mid-Year Examination 2017

5076/01

12 May 2017

1 hour

CANDIDATE NAME	
CLASS	INDEX NUMBER

SCIENCE (PHYSICS, CHEMISTRY)

Sec 3 Express

Paper 1 Multiple Choice

Additional Materials: OTAS

Additional Materials. OTAG

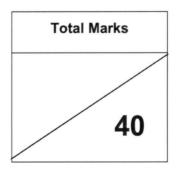
Calculators are allowed in the examination.

READ THESE INSTRUCTIONS FIRST

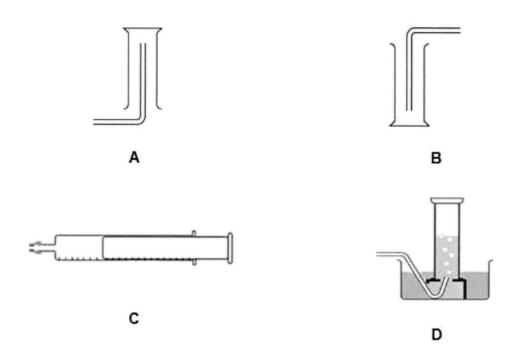
Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, class and index number on the cover page and shade in your index number on OTAS.

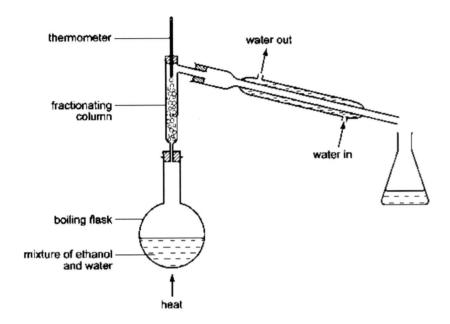

There are **forty** questions in this paper. Answer **all** questions. For each question there are four possible answers $\bf A$, $\bf B$, $\bf C$, and $\bf D$.

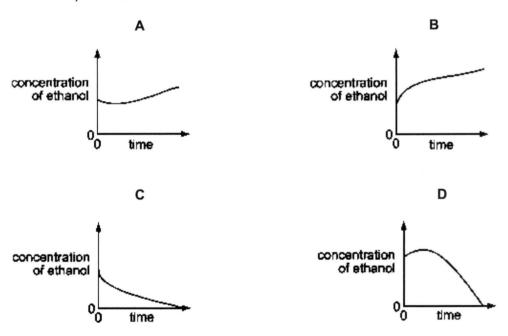
Choose the one you consider correct and record your choice in **soft pencil** on the separate OTAS.


Read the instructions on the OTAS very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

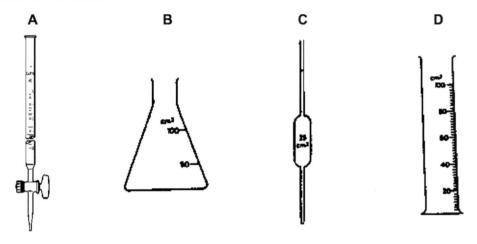
A copy of periodic table is printed on page 10.


21 Carbon dioxide is a gas that is soluble in water and denser than air.
Which of the following is most appropriate in collecting and measuring the volume of carbon dioxide produced in an experiment?


- 22 What is the correct sequence for obtaining pure salt from a mixture of sand and salt?
 - A Add water, evaporate
 - B Add water, filter
 - C Add water, filter, evaporate
 - D Filter, add water, evaporate

23 The apparatus shown is used to distil a dilute solution of ethanol in water.

[B.P.: ethanol, 78 °C; water 100°C]

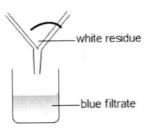

Which graph shows the change in concentration of the ethanol in the boiling flask as the distillation proceeds?

24 Which ions are present in an aqueous solution of Magnesium sulfate?

- В
- Mg²⁺, SO₃²⁻, H⁺ and OH²⁻ C
- D Mg²⁺, SO₄²⁻, H⁺ and OH⁻

25 Which of the following pieces of apparatus is most suitable for accurately measuring out 23.8 cm3 of water?

26 Sulfur and selenium, Se, are in the same group of the Periodic Table.


From this, we would expect selenium to form compounds having the formulae

- Se₂O, Na₂Se and NaSeO₄
- SeO₂, Na₂Se and NaSeO₄
- SeO₂, Na₂Se and Na₂SeO₄
- SeO₃, NaSe and NaSeO₄

27 Which statement describes ionic bonding?

- A lattice of ions in a sea of electrons.
- Electrostatic attraction between oppositely charged ions.
- Sharing of electrons between atoms to gain noble gas configuration. C
- Transfer of electrons from atoms of a non-metal to the atoms of a metal.

A mixture containing two solids is added to excess water, stirred and filtered. A blue filtrate and a white residue are obtained after filtration.

Given that,

solid	colour	solubility in water
W	blue	insoluble
X	blue	soluble
Y	white	insoluble
Z	white	soluble

Determine which two solids were present in the mixture.

- A W and X
- B W and Y
- C X and Y
- D X and Z

29 The table shows the boiling points of some gases present in air.

gas	boiling point / °C
argon	-186
helium	-269
neon	-246
nitrogen	-196
oxygen	-183

When air is cooled to -250°C, some of these gases liquefy.

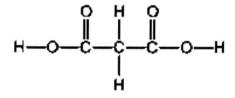
Which of the following gases will not liquefy?

- A Argon
- **B** Helium
- C Neon
- D Nitrogen

30 The table contains information on the structure of four particles.

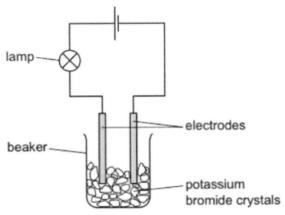
particle	proton number	number of protons	number of neutrons	number of electrons
Mg	12	12	w	12
Mg ²⁺	12	12	12	×
F	Y	9	10	9
F-	9	9	10	z

What are the values of W, X, Y and Z in the table above?


	W	X	Υ	Z
Α	10	12	9	10
В	12	10	9	10
С	12	10	10	9
D	12	12	10	9

31 An atom of element Z has 14 neutrons and 13 protons.

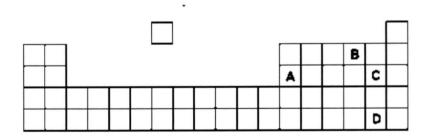
It forms a positive ion.


How many electrons does the ion of Z have?

- **A** 10
- **B** 13
- C 14
- **D** 27
- 32 Why does ammonia gas diffuse faster than hydrogen chloride gas?
 - A Ammonia has a higher boiling point than hydrogen chloride.
 - B Ammonia is a base, hydrogen chloride is an acid.
 - C The ammonia molecule contains more atoms than a hydrogen chloride molecule.
 - **D** The relative molecular mass of ammonia is smaller than that of hydrogen chloride.
- 33 Which statements would be true of the compound which has the formula shown?

- A It has 3 different elements with 14 paired of shared electrons.
- **B** It has 8 paired of unshared electrons with 3 different elements.
- C It has a total of 3 atoms.
- **D** It is an ionic bonding.

34 The experiment shown is used to test potassium bromide crystals.

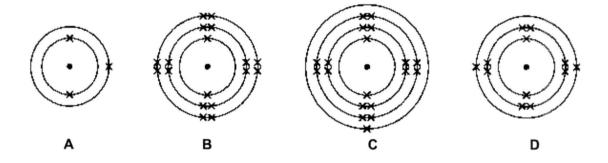

The lamp does not light.

Distilled water is then added to the beaker and the lamp lights.

Which statement explains these results?

- A Electrons are free to move in the solution when potassium bromide dissolves.
- B Metal ions are free to move when potassium bromide melts.
- **C** Metal ions are free to move when potassium reacts with water.
- D Oppositely charged ions are free to move in the solution when potassium bromide dissolves.
- 35 The positions of four elements are shown on the outline of part of the Periodic Table.

Which element is a solid non-metal at r.t.p.?


- 36 What will be observed if chlorine gas is added to the sodium fluoride solution instead of a bromine solution?
 - A A brown solution will be formed.
 - **B** A greenish yellow solution will be formed.
 - C A yellowish solution will be formed.
 - D No visible reaction.

37 An element is in Period 3 and Group VII of the Periodic Table.

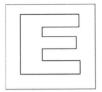
Which statement about this element is correct?

- A The element will form 1+ ions.
- **B** The element will have 3 electrons in its outer shell.
- **C** The element will have 7 electrons in its outer shell.
- **D** The element will have 7 shells of electrons in its atom.
- 38 The diagram shows the arrangement of electrons in the atoms of four different elements.

Which is the least reactive of the four elements?

- 39 Which molecule has only four electrons involved in covalent bonds?
 - A N_2
 - B H₂S
 - C CO₂
 - D Cl₂
- 40 Manganese(II) chloride has the formula MnCl₂ while copper(II) phosphate has the formula Cu₃(PO₄)₂. What is the formula of manganese(II) phosphate?
 - A MnPO₄
 - B Mn₂PO₄
 - C Mn₂(PO₄)₃
 - $D Mn_3(PO_4)_2$

END OF PAPER


Colours of Some Common Metal Hydroxides

Calcium hydroxide	White
Copper(II) hydroxide	Light blue
Iron(II) hydroxide	Green
Iron(III) hydroxide	Red-brown
Lead(II) hydroxide	White
Zinc hydroxide	White

The Periodic Table of Elements

_	Fr francium	33 mg CS SS	Rb Rb 85	38 38 38		-
lanthanoids actinoids	Radium Ra	56 Barium 137	=	Ca 40		=
v v	adinoids	57 – 71 lantharcada	39 89 89	Scandium 45		
57 La lanthanum 139 89 Ac Ac actrium	Rd Rd -	Hf Hafnium 178	40 Zr zircomum 91			
58 Ce Ce 140 140 Th Thorium	105 Db dubnium	73 181 181	Nb Nb 93	23 Vanadum 51	proton (atomic) number atomic symbol name relative atomic mass	Key
59 Pr pracodymium 141 91 Pa probactinium 231	106 Sg seatorglen	W lungsten	Mo molybdenum 96	chronium 52	humber bol made	
60 Nd neodymiu 144 92 92 U urenium 238	107 Bh behrlum	-	43 To technetum			
Pm promethaum sain Np nephumium plu	108 He hassium	76 Os 198	Ru Ru 101	88 7 8		hydrogen
- Region 94	109 Mt meibnerium	192	Thedium	50 to 27		Group
63 EU 1152 95 AITI 1 americium	Mt Ds Rg Cn weither demand reentgeham copernaum	78 Pt platinum 195	46 Pd palladum 106	58 <u>R</u> ≥ 28		дир
gedolinum 157 96 CITI	111 Rg roenigenum -	79 Au 197	47 108			
159 159 159	112 Cri experimentaria	88 왕1 왕1	Cd csdmilum 112	8 1 1 8		
dysprosium house of the cell formium einer einer cell formium einer cell formium einer cell formium einer ce		81 204	49 In Indum 115	Ga gallium 70	5 B bean 11 13 A! sluminum 27	
67 Ho holmlum 165 99 Es einesteineum	114 F/ Nerovium	29 E P 82	56 119	32 Ge germanium 73	canbon 12 14 Si	⋜
68 Er erbum 167 100 Fm fermium					7 N ninogen 14 15 Phosphorus	<
69 Tm thullum 169 101 Md mendelevum	LV	Po Polanium	Te billunum 128	34 Selenium 79	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	≤
70 Yb ytentum 173 102 No nobelium		- 85 - 85	53 L lodine 127	8 in 93	10 10 17 17 C2 chlarine 35.5	VII
Lu Lutebum 175 103 Lr Ibrwendum		- index	54 Xe Xenon 131	Kypton 84	20 No 10	2 4 milian

The volume of one mole of any gas is 24 dm² at room temperature and pressure (r.t.p.).

GAN ENG SENG SCHOOL Mid-Year Examination 2017

CANDIDATE NAME		
CLASS	INDEX NUMBER	

SCIENCE (PHYSICS, CHEMISTRY) Sec 3 Express

5076/03 08 May 2017 1 hour 15 minutes

Paper 3

Candidates answer on the Question Paper.

Calculators are allowed in the examination.

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid/tape.

Section A

Answer all questions in the spaces provided.

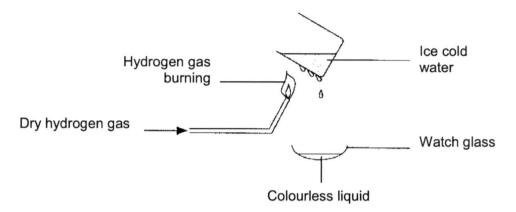
Section B

Answer all three questions, the last question is in the form either/or.

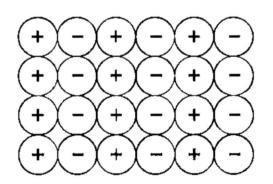
Write your answers on the question paper itself.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.


A copy of the Periodic Table is on page 12.

	For Examiner's Use
Section A	
Section B (answer 2 questions)	
B 1	
B 2	
В 3	
Total	65


Section A [45 marks]

Answer ALL the questions in the spaces provided.

A1 The diagram shows hydrogen gas being burnt.

	(a)	Name two elements that are involved in the reaction.			
			••••••		
	(b)	(i)	Name the colourless liquid.	[1]	
		(ii)	How would you show that the colourless liquid is a pure substance?	[1]	
A2			um oxide is made up of positive and negative ions arranged in an orderly of form a giant three-dimensional structure.		
	(a)	Des	cribe the structure and bonding present in magnesium oxide.	[3]	
	(b)	The	following diagram shows a possible arrangement of the ions in magnesium		

oxide.

				3			
		(i)	Why is this not a feasible a	rrangement of ions in ma	gnesium oxide?	[1]	
				tf th lane in magnet	olum ovido	[1]	
		(ii)	Draw the correct arrangem	ent of the ions in magnes	sium oxide.	ניו	
А3	Com	plete	the table below.			[3]	
		Nan	ne of compound	Formula			
		Lith	ium hydride				
		Pho	sphoric acid				
				NH ₄ NO ₃			
A4	(a)	Drav	va 'dot and cross' diagram de. Show only the valence e	to show the arrangement	ent of electrons in nitrogen	[2]	
		uloxi	de. Show only the valence e	iecti oris.			

(b) The table shows the atomic number and mass number of element X and Y (which are not the actual chemical symbols of the elements).

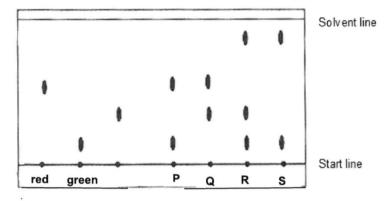
Element	Atomic number	Mass number	
x	19	39	
Y	17	35	

(i)	Write the electronic structure of Y.	[1]

	(ii)	Are the atoms of X like answer.	ely to form positiv	re or negative ions?	' Give a reason	for your	[2]
					•••••		
A5	In th	e diagram, A, B, C, D,	E and F represer	nt the particles in di	fferent substanc	es.	[5]
		0 0 0 0 0 0 0 0 0	B		key çarbon atom oxygen atom hydrogen atom	• • •	
		A	B				
		Q		00			
		000	9	0000			
		D	Some Source	F			
		ch one of A, B, C, D, E		sents the following?	?		
	(a)	Pure oxygen:					
	(b)	Pure water:					
	(c)	A mixture consisting o					
	(d)	A mixture of compoun					
	(e)	A gaseous compound	present in air:		•••••		
A6	The	graph below shows the	heating curve fo	r a pure substance.			
		Tem	perature/ °C				
			200 -				
			100 -	→ Stag	ge B		

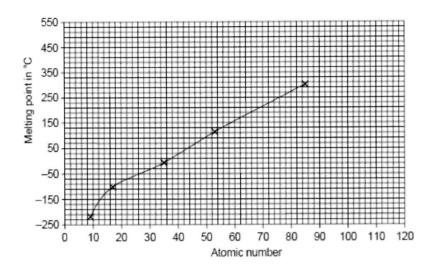
.....

Time/ min


[1]

(a) What is the boiling point of the substance?

	(b)	Describe and explain the movements of the particles from the beginning to the end of stage ${\bf B}.$	[2]
	(c)	Label X on the graph to show the substance existing as a mixture of liquid and gas.	[1]
Α7	Nam	ne a suitable piece of laboratory apparatus to measure each of the following:	[3]
	(a)	Measuring exactly 20.6 cm ³ of hydrochloric acid.	
	(b)	Collecting 15.0 cm ³ of oxygen gas from a chemical reaction.	
	(c)	Holding dilute sodium chloride while it is being heated to obtain its crystals	
A 8		e experimental set up below shows a separation technique used to obtain different stances from seawater.	
		Thermometer	
		Sea water Boiling chips distillate	
	(a)	What is the function of a condenser?	[1]
	(b)	What is the purpose of adding boiling chips in the round bottomed flask?	[1]
	(c)	Why is the bulb of the thermometer placed at the mouth of the condenser?	[1]
	(d)	Draw arrows on the diagram to show how the water enters and leaves the condenser.	[1]


(e)	Explain why a fractionating column is not needed in the above experimental set-up to separate the substances in seawater.	[2]

A9 A student carried out paper chromatography on some ink dyes P, Q, R and S using ethanol as a solvent. The chromatogram is shown below as it is placed in the boiling tube. The results are compared with red, green and blue ink dyes.

(a)	From the chromatogram, do ink dyes P , Q , R and S have fixed melting points? Explain your reason.	[2]
(b)	Which ink dyes contain the most soluble dye?	[1]
(c)	Which ink could be purple in colour?	[1]
(d)	Why is it necessary to cover the boiling tube?	[1]

A10 The graph below shows the melting points of the Group VII elements.

(a)	Desc	cribe how the melting points change as the atomic number increases.	[1]
(b)	Write	e an equation for the reaction when chlorine gas is bubbled into aqueous ssium iodide.	[1]
(c)		nseptium, Uus, is a Group VII element with an atomic number of 117. It is a erheavy artificial chemical element.	
	(i)	Use the graph above to predict its melting point.	[1]
	(ii)	Predict one other physical property of ununseptium.	[1]
	(ii)		ניו
	(iii)	Predict what will happen when ununseptium is added into a solution of potassium iodide. Give a reason for your answer.	[2]

SECTION B [20 marks]

Answer $\underline{\textbf{two}}$ questions from this section.

B1 The table below shows the formulae and melting points of oxides formed from the elements in Period 3 across Group I to Group VII.

Formula of oxide	Melting point/°C
Na₂O	1280
MgO	2900
Al ₂ O ₃	2140
SiO ₂	1610
P ₄ O ₆	420
SO ₂	39
Cl ₂ O ₇	-69

(a)	Describe how the melting point of the oxides changes across Period 3.	[2]
(b)	A student predicted that the melting point of aluminium oxide will be higher than that of sodium oxide. Suggest why the student predicted in this way.	[2]
(c)	Explain, in terms of structure and bonding, why the melting point of sulfur dioxide is much lower than that of magnesium oxide.	[3]

(d)	Sodium oxide and phosphorus oxide exist as white solids at room temperature. A [3] student was given two unlabelled white solids and was informed that one of them was sodium oxide and the other, phosphorus oxide.
	Describe a simple test, other than checking the melting point of the solids, which can be conducted to determine the identities of the two solids. Your answer must include the observations expected for each solid.

			10	
B2	Whe	n a sol	id is heated, it melts.	
	(a)	(i)	Use the ideas of the Kinetic Particle Theory to explain why a solid melts when it is heated.	[2]
		(ii)	The temperature remains constant during melting. Explain the above statement.	[1]
	(b)	In the	has the properties of a solid but the structure of a liquid. e Victoria and Albert museum in London, 17 th century glasses are turning the because small cracks are forming on the surface of the glass.	
			Small cracks in glass	
		Glass oxide.	is composed of silicon dioxide and alkaline metal oxides, particularly sodium	
		(i)	The cracks are caused by the <i>diffusion</i> of sodium ions to the surface and hydrogen ion away from the surface.	[2]
			Define diffusion.	
		(ii)	Explain why sodium and hydrogen ions do not diffuse at the same rate.	[2]

Draw a dot and cross diagram for the compound, sodium oxide

[3]

B3 Lithium, sodium and potassium are elements in Group I of the Periodic Table.

The following table shows the reactions of these metals with oxygen.

Element	Reaction with oxygen
Lithium	Burns quickly with a red flame to give a white solid residue
Sodium	Burns very quickly with a bright yellow flame to give a white solid residue
Potassium	Burns violently with a lilac flame to give a white solid residue

(a)		ng M as the symbol of an alkali metal, write a general equation for the reaction ween an alkali metal and oxygen, with state symbols.	[2]
(b)	(i)	What is the white solid residue obtained in each reaction?	[1]
	(ii)	Predict the bonding in the white solids, explaining your answer.	[2]
(c)		ng the information in the table shown above, describe the trend in the reactivity of alkali metals towards oxygen.	[2]
	Pro	vide reasons for your answers.	
(d)		lain the order of reactivity of the three alkali metals with reference to their stronic structures.	[3]

The Periodic Table of Elements

	0	7 £	Malium 4	10	Š	nean	50	18	₹	argen	\$	88	궃	knypton	æ	T,	×e	31 131	88	ē	radon	1				
	- I			6		fluoring	19	17	ij	chlorine	35.5	32	ă	bromine	8	53	_	127	92	₹	astaline	1				
	N			စ	0	павумо	16	16	Ø	suffue	32	82	Se	selenium	20	52	e L	128	\$	2	polanium	1	116	<u>></u>	nemorium	•
	>			\vdash			_	\vdash		9	_	\vdash		_	_	-		antimony 122				_	\vdash		=_	1
	2			⊢		-	-	\vdash		-	_	\vdash		_	-	_		2 C	\vdash		-	_	\vdash	ŭ,	erovium	-
	=			\vdash			-	_		_	_	\vdash		- 00		_		115	-			_				1
				_						-		e	7	zinc	8	48	S	cadmilum 112	88	£	швиспу	Ŕ	112	5	ADELINCALINI ADELINCALINI	-
																		108	ſ						7	- 1
٩												28	Z	nickel	8	46	ď	106	78	置	platinum	195	5	පී	ormetadillumiro	•
Group												\vdash		_	_	_	_	medium 103			_	-		_	<u>ජි</u>	\dashv
		- I	hydrogen 1									-		_	_	\vdash		101	\vdash		_	_	\vdash	_	_	⊣
				J								52	Ā	nanganese	ß	43	P	technetium	75	æ	menium	186	107	듄	Dohrlam	
				Imbor	mpol		ic mass					-	_	_	_	-		mdybdenum 96	-	_	_		-	_	_	\dashv
			Key	(atomic) nu	mic symb	name	e atomic n							F				nablum 93			_				_	-
				proton (atomic	ato		relain					22	F	Manium	48	40	Ž	zirconum 91	7.2	Ï	Hafnium	178	104	₹	Authorlandum	-
				_				8				21	တိ	maipuese	45	39	>	mputh 88	57-71	anthanoide			89 - 103	actinoids	_	
	=			4	æ	beryllium	ത	12	Mg	magnesium	74							efrontium 88			barium	137			Malum	'
	-			6	5	Hhiera	r~											rubidium 85					87	ŭ	francium	•

The volume of one mole of any gas is 24 dm² at room temperature and pressure (r.t.p.).

GAN ENG SENG SCHOOL Mid-Year Examination 2017

CANDIDATE
NAME

CLASS

ANSWERS		
	INDEX NUMBER	

SCIENCE (PHYSICS, CHEMISTRY)

5076/01 12 May

Sec 3 Express

Paper 1 Multiple Choice

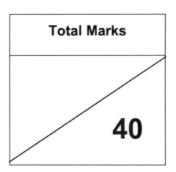
Additional Materials: OTAS

Calculators are allowed in the examination.

READ THESE INSTRUCTIONS FIRST

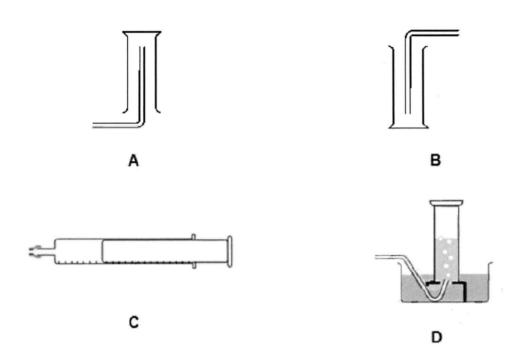
Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.


Write your name, class and index number on the cover page and shade in your index number on OTAS.

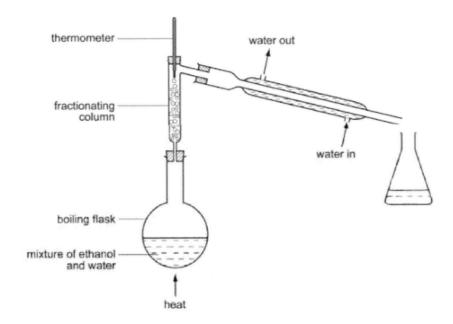
There are **forty** questions in this paper. Answer four possible answers **A**, **B C**, and **D**.

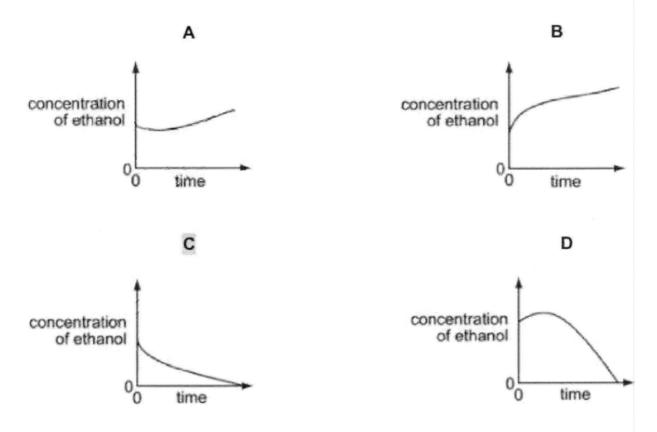
Choose the one you consider correct and record your choice in **soft pencil** on the separate OTAS.


Read the instructions on the OTAS very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of periodic table is printed on page **10**.

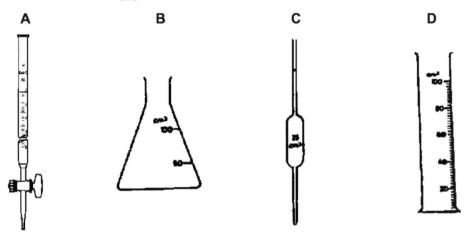
Carbon dioxide is a gas that is soluble in water and denser than air.


Which of the following is most appropriate in collecting and measuring the volume of carbon dioxide produced in an experiment? [C]


- 22 What is the correct sequence for obtaining pure salt from a mixture of sand and salt?
 - A Add water, evaporate
 - B Add water, filter
 - C Add water, filter, evaporate
 - D Filter, add water, evaporate

23 The apparatus shown is used to distil a dilute solution of ethanol in water.

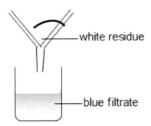
[B.P.: ethanol, 78 °C; water 100°C]


Which graph shows the change in concentration of the ethanol in the boiling flask as the distillation proceeds?

24 Which ions are present in an aqueous solution of Magnesium sulfate?

- A Mg_2^+ , SO^{4-} , H_2^+ and OH^-
- **B** M_2^+ , SO_4^{2-} , H^{2+} and OH^-
- C Mg²⁺, SO₃²⁻, H⁺ and OH²⁻
- D Mg²⁺, SO₄²⁻, H⁺ and OH⁻

Which of the following pieces of apparatus is most suitable for accurately measuring out 23.8 cm³ of water? [A]



26 Sulfur and selenium, Se, are in the same group of the Periodic Table.

From this, we would expect selenium to form compounds having the formulae

- A Se₂O, Na₂Se and NaSeO₄
- B SeO₂, Na₂Se and NaSeO₄
- C SeO, Na Se and Na SeO4
- D SeO₃, NaSe and NaSeO₄
- 27 Which statement describes ionic bonding?
 - A lattice of ions in a sea of electrons.
 - B Electrostatic attraction between oppositely charged ions.
 - C Sharing of electrons between atoms to gain noble gas configuration.
 - **D** Transfer of electrons from atoms of a non-metal to the atoms of a metal.

28 A mixture containing two solids is added to excess water, stirred and filtered. A blue filtrate and a white residue are obtained after filtration.

Given that,

solid	colour	solubility in water			
w	blue	insoluble			
x	blue	soluble			
Y	white	insoluble			
Z	white	soluble			

Determine which two solids were present in the mixture.

- A W and X
- B W and Y
- C X and Y
- D X and Z

29 The table shows the boiling points of some gases present in air.

boiling point / °C
-186
-269
-246
-196
-183

When air is cooled to -250°C, some of these gases liquefy.

Which of the following gases will not liquefy?

- A Argon
- **B** Helium
- C Neon
- **D** Nitrogen

30 The table contains information on the structure of four particles.

particle	proton number	number of protons	number of neutrons	number of electrons
Mg	12	12	w	12
Mg ²⁺	12	12	12	×
F	Y	9	10	9
F-	9	9	10	z

What are the values of W, X, Y and Z in the table above?

	W	Х	Y	Z
Α	10	12	9	10
В	12	10	9	10
С	12	10	10	9
D	12	12	10	9

31 An atom of element Z has 14 neutrons and 13 protons.

It forms a positive ion.

How many electrons does the ion of Z have?

A 10

B 13

C 14

D 27

32 Why does ammonia gas diffuse faster than hydrogen chloride gas?

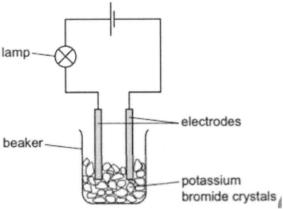
A Ammonia has a higher boiling point

B Ammonia is a base, hydrogen chloride is an acid.

C The ammonia molecule contains more atoms than a hydrogen chloride molecule.

The relative molecular mass of ammonia is smaller than that of hydrogen chlridde.

33 Which statements would be true of the compound which has the formula shown?

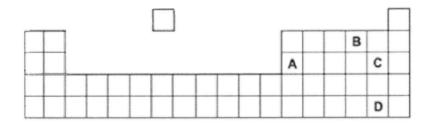

A It has 3 different elements with 14 paired of shared electrons.

B It has 8 paired of unshared electrons with 3 different elements.

C It has a total of 3 atoms.

D It is an ionic bonding.

34 The experiment shown is used to test potassium bromide crystals.

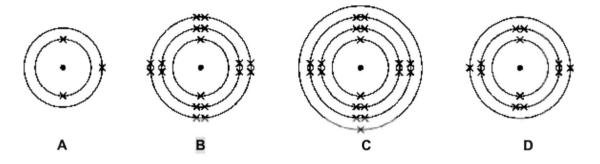

The lamp does not light.

Distilled water is then added to the beaker and the lamp lights.

Which statement explains these results?

- A Electrons are free to move in the solution when potassium bromide dissolves. Metal ions are free to move when potassium bromide melts.
- C Metal ions are free to move when potassium reacts with water.
- D Oppositely charged ions are free to move in the solution when potassium bromide dissolves.
- 35 The positions of four elements are shown on the outline of part of the Periodic Table.

Which element is a solid non-metal at r.t.p.? [D]


- 36 What will be observed if chlorine gas is added to the sodium fluoride solution instead of a bromine solution?
 - A A brown solution will be formed.
 - B A greenish yellow solution will be formed.
 - C A yellowish solution will be formed.
 - D No visible reaction.
- 37 An element is in Period 3 and Group VII of the Periodic Table.

Which statement about this element is correct?

- A The element will form 1+ ions.
- **B** The element will have 3 electrons in its outer shell.
- C The element will have 7 electrons in its outer shell.
- **D** The element will have 7 shells of electrons in its atom.

38 The diagram shows the arrangement of electrons in the atoms of four different elements.

Which is the least reactive of the four elements?

- 39 Which molecule has only four electrons involved in covalent bonds?
 - A N_2
 - B H₂S
 - C CO₂
 - D Cl₂
- 40 Manganese(II) chloride has the formula MnCl₂ while copper(II) phosphate has the formula Cu₃(PO₄)₂. What is the formula of manganese(II) phosphate?
 - A MnPO₄
 - B Mn₂PO₄
 - C Mn₂(PO₄)₃
 - $D Mn_3(PO_4)_2$

END OF PAPER

Colours of Some Common Metal Hydroxides

Calcium hydroxide	White
Copper(II) hydroxide	Light blue
Iron(II) hydroxide	Green
Iron(III) hydroxide	Red-brown
Lead(II) hydroxide	White
Zinc hydroxide	White