Name : ()	Class:
------------	--------

ST JOSEPH'S INSTITUTION

MID-YEAR EXAMINATION 2017 SECONDARY 2

LOWER SECONDARY SCIENCE PAPER 1

12 MAY 2017 45 minutes 1100 – 1145 hrs

Additional Materials:

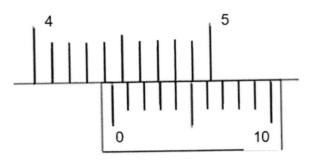
MCQ Answer Sheet

READ THESE INSTRUCTIONS FIRST

- Answer all questions by shading your answers in the appropriate spaces in the MCQ Answer Sheet.
- 2. Use a 2B pencil only. Make sure all amendments on the MCQ Answer Sheet are thoroughly erased using a soft eraser.
- 3. Use pi (π) value preprogrammed in calculator.
- 4. Do not use staples, paper clips, highlighters, glue or correction fluid/tape.

The Periodic Table of Elements

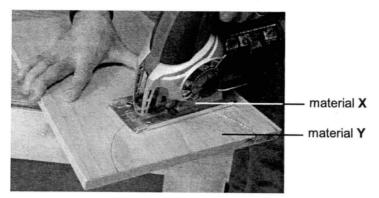
	0	2	£	helium 4	10	Se	neon OC	18	٩Ľ	argon 40	36	궃	krypton 84	54	×e	xenon	86	R	radon				
					0	ட	fluorine 19	17	Ö	chlorine 35.5	35	ă	bromine 80	53	Ι	iodine 127	85	At	astatine				
	>				8	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ъ	polonium	116		livermorium	1
	>				7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209				
	≥				9	O	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	119 119	82	Вр	lead 207	114	F/	flerovium	ı
	=				2	ш	boron 11	13	AI	aluminium 27	31	Ğ	gallium 70	49	I	indium 115	81	11	thallium 204				
											8	Zu	z inc 65	48	Ö	cadmium 112	88	훗	mercury 201	112	บ็	copernicium	ı
											53	3	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium	1
Group												-				_			platinum 195			g	
Ö											27	ပိ	cobalt 59	45	몺	rhodium 103	77	I.	iridium 192	109	ğ	meitnerium	ı
		-:	I.	hydrogen 1															osmium 190				
											25	Mn	manganese 55	43	ည	technetium	75		rhenium 186		В	pohrium	ı
					number	poq	mass				24	ర	n chromium n 52	42	Mo	m molybdenum tec 96	74	>	tungsten 184	106	Sg	seaborgium	ı
				Key	proton (atomic) number	atomic symbo	name relative atomic mass					>	vanadi 51	41	g	niobiu 93	73		tantalum 181	105	8	dubnium	ı
					proton	atc	relati				22		titanium 48	40	Zr	zirconium 91	72	Ϊ	hafnium 178	104	¥	Rutherfordium	ı
											21	တွ	scandium 45	39		yttrium 89	57 – 71	lanthanoids		89 – 103	actinoids		
	=				4	Be	peryllium 9	12	Mg	magnesium 24	20	S	calcium 40	38	ഗ്	strontium 88	99	Ba	barium 137	88	Ra	radium	ı
	-				ε	<u>ا</u> د	lithium 7	7	. Sa	sodium 23	19	Y	potassium 39	37	&	rubidium 85	55	රි	caesium 133	87	ΐ.	francium	ı


71	3	etium	75	83		encium	1
H			_	┞		10	
70	ΥÞ	vtterbiun	173	102	2	nobeliun	1
69	T	thulium	169	101	Md	mendelevium	ı
68	ய்	erbium	167	100	Fm	fermium	ı
29	웃	holmium	165	66	ES	einsteinium	1
99	ò	dysprosium	163	86	ರ	californium	ı
99	Tp	terbium	159	97	益	berkelium	ı
8	gg	gadolinium	157	96	S	curium	1
63	П	europium	152	95	Am	americium	1
62	Sm	samarium	150	94	P	plutonium	1
61	Pm	promethium	1	93	ď	neptunium	1
09	B	neodymium	144	92	⊃	uranium	238
69	ď	praseodymium	40 141 1	91	Ва	protactinium	231
58	Ö	cerium	140	90	노	thorium	232
22	Гa	lanthanum	139	68	Ac	actinium	ı
lanthanoids				actinoids			

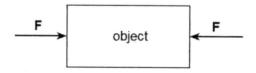
The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

Section A (30 marks)

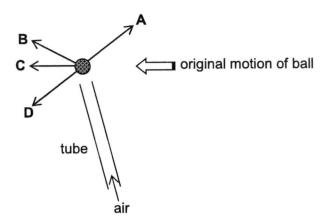
There are thirty questions in this section. Answer **all** questions. For each question there are four possible answers, **A**, **B**, **C** and **D**. Choose the one you consider correct and shade your choice in the appropriate oval in the answer sheet provided.


A1 A pair of vernier calipers is used to measure the thickness of a textbook. The diagram below shows the reading on the vernier calipers. What is the thickness of the textbook?

- A 4.04 cm
- **B** 4.34 cm
- **C** 4.44 cm
- **D** 5.18 cm
- A2 A measuring cylinder contains 100 cm³ of water. An irregularly-shaped object, of mass 50 g, is slowly lowered into the cylinder.


 Given that the density of the object is 5.0 g/cm³ and it is completely immersed, what is the new reading on the measuring cylinder?
 - **A** 105 cm³
 - **B** 110 cm³
 - **C** 150 cm³
 - **D** 155 cm³
- A3 The diameter of the Earth is about 10 Mm, while the diameter of an atom is 0.5 nm. How many atoms, when lined up next to each other, make up the diameter of the Earth?
 - **A** 2×10^7
 - **B** 2×10^{10}
 - **C** 2×10^{16}
 - **D** 2×10^{17}

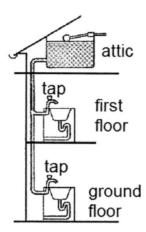
A4 The diagram below shows a process of using material X to cut material Y.


Which one of the following statements is most appropriate for the above diagram?

- A Material X can support a heavy load without breaking, but material Y cannot.
- B Material X will sink in water, but material Y will float in water.
- **C** When both materials are rubbed together, only material **Y** has scratches.
- Material X can bend without breaking and returns to its original shape after bending, but material Y cannot.
- A5 Which of the following is/are possible when an object, as shown below, experiences two equal and opposite forces?

- I. If the object is at rest, it will continue to remain stationary.
- II. If the object is moving, it will accelerate.
- III. If the object is moving, it will continue to move at constant velocity.
- A I only
- B I and II only
- C I and III only
- **D** I, II and III

A6 A lightweight ball moves across a table and passes the end of a tube through which air is blown. In which direction will the ball now move?



A7 A cheetah runs very quickly to catch its prey. The air resistance experienced by the cheetah and the friction between the cheetah and the ground vary with the conditions.

Which one of the following conditions below will the cheetah reach its maximum speed?

	Air resistance	Friction with ground
Α	High	Low
В	High	High
C	Low	Low
D	Low	High

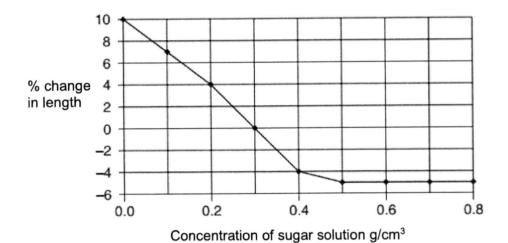
A8 A household water supply has a water tank in the attic.

The rate of water flow at the tap on the ground floor is faster than the rate of water flow at the tap on the first floor. Which one of the following statements is a likely reason for the phenomenon?

- A Water pressure increases with height of the water column.
- **B** Water pressure decreases with height of the water column.
- **C** Water has to travel further to get to the tap on the ground floor.
- **D** The tap on the ground floor is closer to sea level where the pressure is zero.

An interesting Science fair exhibit at a primary school involves putting small pieces of solid dry ice into a balloon (with the aid of a funnel). The balloon "magically" inflates although no one is inflating it.

Answer questions A9 and A10 below.


- **A9** Which one of the following describes the process that inflated the balloon?
 - A Boiling of carbon dioxide
 - **B** Evaporation of carbon dioxide
 - C Melting of carbon dioxide
 - D Sublimation of carbon dioxide
- A10 Which one of the following statements correctly describes the arrangement and movement of particles inside the inflated balloon?
 - A Closely-packed, vibrating about fixed positions
 - B Closely-packed, sliding past each other
 - C Far apart, vibrating about fixed positions
 - **D** Far apart, moving rapidly in random directions

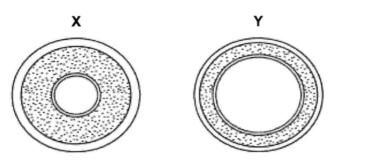
A11 Which of these processes happening in a cell requires energy from respiration?

Key ✓ Energy required × Energy not required

	Diffusion	Osmosis
Α	✓	✓
В	✓	×
С	×	✓
D	×	×

A12 Cylinders of potato tissue were placed in different concentrations of a sugar solution. The graph shows the percentage change in length of the cylinders of potato tissue.

Which solution has the same water potential as the potato tissue?


- **A** 0.0 g/cm³
- **B** 0.2 g/cm³
- **C** 0.3 g/cm³
- **D** 0.5 g/cm³

A13 What are the possible end-product and effect of anaerobic respiration in muscle?

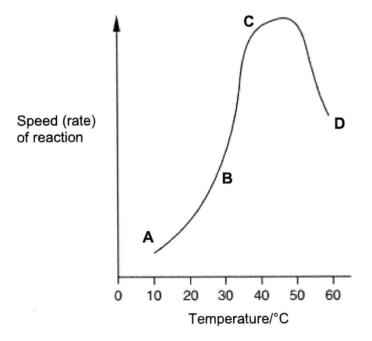
	End product	Effect
Α	carbon dioxide	muscle contraction
В	ethanol	loss of coordination
С	water	muscle relaxation
D	lactic acid	oxygen debt

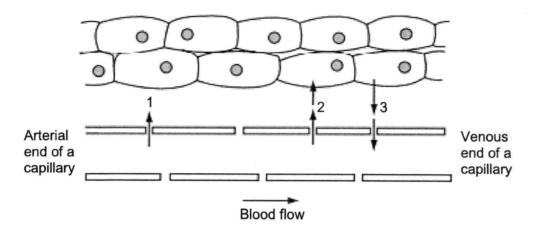
- A14 Through which sequence does carbon dioxide pass as it leaves the lungs for the environment outside the human body?
 - A In the alveoli \rightarrow alveolar wall \rightarrow capillary wall \rightarrow blood
 - **B** Capillary wall \rightarrow blood \rightarrow in the alveoli \rightarrow alveolar wall
 - **C** Blood \rightarrow capillary wall \rightarrow alveolar wall \rightarrow in the alveoli
 - **D** Alveolar wall \rightarrow in the alveoli \rightarrow blood \rightarrow capillary wall
- A15 The diagram shows cross-sections of three types of blood vessel, not drawn to the same scale.

Z

What are X, Y and Z?

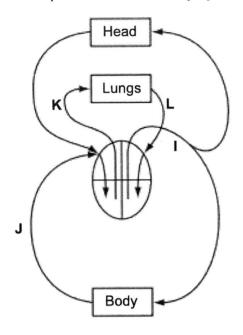
	X	Υ	Z
Α	artery	capillary	vein
В	artery	vein	capillary
C	vein	artery	capillary
D	vein	capillary	artery


A16 The diagram shows a villus.


After a meal containing starch and oil, which substance(s) is/are absorbed mainly into vessel **P** and vessel **Q** respectively?

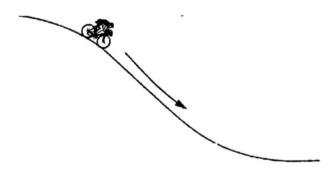
	Vessel P	Vessel Q
Α	amino acids	water
В	fats	glucose
С	glucose	amino acids
D	water	fats

A17 The graph shows the effect of temperature on a chemical reaction which is controlled by enzymes. At which point are most product molecules being released?

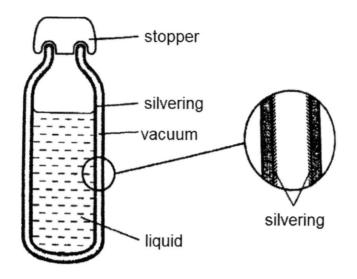

A18 The diagram represents a tissue with an adjacent capillary.

Which substances can 1, 2 and 3 represent?

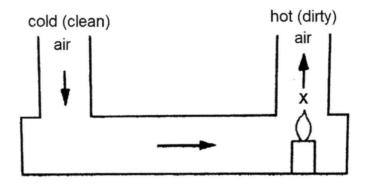
	1	2	3
Α	glucose	tissue fluid	carbon dioxide
В	oxygen	carbon dioxide	glucose
С	tissue fluid	glucose	oxygen
D	tissue fluid	oxygen	carbon dioxide


A19 The diagram represents part of the circulatory system.

Which one of the following sets represent possible blood pressures (in kPa) for the vessels at I, J, K and L?


	1	J	K	L
Α	1	4	2	16
В	4	16	2	1
С	16	2	4	1
D	16	4	1	2

A20 A cyclist speeds up as he travels down a slope. How does his energy change?


	Gravitational potential energy	Kinetic energy
Α	Decreases	Decreases
В	Decreases	Increases
С	Increases	Decreases
D	Increases	Increases

A21 The diagram shows a vacuum flask and an enlarged view of a section through the flask wall.

The main reason for the silvering is to reduce heat transfer by.....

- A Conduction only
- **B** Convection only
- C Radiation only
- **D** Convection and radiation
- A22 The diagram shows a model of a convection system.

What happens to the volume and density of a fixed mass of air at ${\bf X}$ to make it move upwards?

	Volume	Density
Α	Increases	Decreases
В	Increases	Increases
С	Remains unchanged	Increases
D	Remains unchanged	Decreases

A23 Which types of surface are the best absorbers and emitters of infra-red radiation?

	Best absorber	Best emitter
Α	Black and dull	Black and dull
В	Black and shiny	White and shiny
С	White and dull	White and dull
D	White and shiny	Black and shiny

A24 The rate at which thermal energy is conducted through a material depends on its state. What is the correct order of thermal conduction?

	Best conductor	$\xrightarrow{\hspace*{1cm}}$	Worst conductor
Α	Gas	Liquid	Solid
В	Solid	Liquid	Gas
С	Solid	Gas	Liquid
D	liquid	gas	Solid

- A25 A car of mass 1200 kg is travelling at a speed of 30 m/s. The brakes are applied to bring the car to a stop. What is the loss in kinetic energy as the car decelerates to rest?
 - **A** 40 J
 - **B** 36 000 J
 - C 540 000 J
 - **D** 1 080 000 J
- A26 The neutron particle
 - A has a mass of 1g.
 - **B** has a mass equal to that of a proton.
 - **C** has a charge equal but opposite to that of an electron.
 - **D** is present in all atoms.
- A27 Which one of the following statements is true about an atom?
 - A The number of neutrons is equal to the number of protons.
 - **B** A positive ion is formed when electrons are added to an atom.
 - **C** A positive ion contains more protons than electrons.
 - **D** The atomic number is equal to the number of particles inside the nucleus.

- **A28** The atoms of an element X have the electronic configuration 2,8,6. Which one of the following statements about element X is correct?
 - A It forms an ion of charge 2+.
 - **B** It reacts with metals and also non-metals.
 - C It has 6 protons in the outer shell of an atom.
 - **D** It forms an ionic compound with oxygen.
- A29 In which one of the following sets do all the compounds contain only ionic bonds?
 - A Methane, ammonia, water.
 - B Calcium oxide, magnesium oxide, sodium oxide.
 - C Potassium chloride, carbon dioxide, magnesium sulfide.
 - **D** Copper(II) sulfate, hydrogen chloride, sulfur dioxide.
- A30 The structure of silicon carbide can be described in the diagram below:

Which one of the following statements about silicon carbide is true?

- A Silicon atoms now contain 4 valence electrons each.
- **B** Carbon atoms now contain 4 valence electrons each.
- **C** Silicon carbide is a covalent compound.
- **D** Silicon carbide is an ionic compound.

Name :	()	Class :
Tullo :	•	,	

ST JOSEPH'S INSTITUTION

MID-YEAR EXAMINATION 2017 SECONDARY 2

LOWER SECONDARY SCIENCE PAPER 2

12 MAY 2017 1 hour 45 minutes 0800 – 0945 hrs

Additional Materials:

NIL

READ THESE INSTRUCTIONS FIRST

- 1. Answer all the questions in the spaces provided on the question paper.
- 2. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working.
- 3. Use pi (π) value preprogrammed in calculator.
- 4. Express your final answer in 3 significant figures where appropriate, show all working, and include units in all your working.
- 5. Do not use staples, paper clips, highlighters, glue or correction fluid/tape.

					Se	ction A				
A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11
Λ1	1/12	710	1	1.0	1					

5	Section B	
B1	B2	B3

For Markers	Use
Section A	/40
Section B	/30
Total	/70

This document consists of 22 printed pages.

[Turn over]

The Periodic Table of Elements

			, §		(1)	5.0	1_	_	50	100	_	L to	I_	m.	5-	L		u ₀	Γ		***************************************
	0	ř~	helium 4	¥	Ž	7 <u>a</u> e	1=	٨	arg 94	3	×	kryb 0,80	25	×	xen 13	88	æ	rack			
	=			6	ட	fluorine 19	17	Ö	chlorine 35.5	35	ă	bromine 80	53		iodine 127	85	¥	astatine			
	>			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	Te	tellurium 128	84	Ро	polonium	116	<u>ک</u>	ivermonum
	>			7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	æ	bismuth 209			***************************************
	2			9	O	carbon 12	14	Ö	silicon 28	32	Ge	germanium 73	20	S	i 10	82	8	lead 207	114	ī	flerovium
	=			5	ω	boron 11	13	¥	aluminium 27	31	Ga	gallium 70	49	Ľ	indium 115	81	11	thallium 204			***************************************
									-	30	Zu	zinc 65	48	8	cadmium 112	80	f	mercury 201	112	5	copernicium
										1			1					197	1		=
dn										28	Z	nickel 59	46	В	palladium 106	78	立	platinum 195	110	S	larmstadfium n
Group										27	රි	cobalt 59	45	쮼	modium 103	77	Ħ	iridium 192	109	¥	meitnerium d
		← I	hydrogen 1							-			+	-		+-		190	t-		
				•						25	Ž	manganese 55	43	2	technetium	75	å	menium 186	107	뜝	pohrium
				nmber	_	nass				24	ర	chromium 1	42	Wo	molybdenum 96	74	3	tungsten 184	106	Ŝ	seaborgium
			Key	proton (atomic) number	atomic symbol	name relative atomic mass				23	>	vanadium 51	41	g	niobium r	73	₽ a	tantalum 181	105		dubnium
				proton	ato	relativ				22	F	titanium 48	Γ		zirconium 91	Γ	Ï	hafnium 178	104	ž	Rutherfordum
			1	L. ,,,,,,,,,,,						21	တွ	scandium 45	39	>	yttrium 89	57 - 71	lanthanoids	***************************************	89 - 103	actinoids	
	=			4	8	beryllium 9	12	Mg	magnesium 24	20	ပ္ပ	calcium 40	T		strontium 88	T	Ba	barium 137	88	Ra	madjum -
	_			3		Ifhium 7	1		E	19	×	potassium 39	37	8	rubidium 85	55	Š	caesium 133	87	ن	francium

				-				-	The same of the sa	The same of the sa		_	-		
noids	22	28	29	09	61	62	63	64	65	99	67	68	69	20	71
	ra B	ပိ	ā	ğ	Pa	Sm	П	ලි	<u>م</u>	<u>a</u>	운	ய்	E	χ	r.
	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbinm	thulium	ytterbium	lutetium
	139	140	141	144	1	35	152	157	159	163	165	167	169	173	175
oids	89	90	91	92	93	94	95	96	97	88	66	100	101	102	103
	Ac	F	Ра	>	å	2	Am	S	益	Ö	Es	Ē	Md	2	ב
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	perkelium	californium	einsteinium	ferminm	mendelevium	nobelium	lawrencium
	ı	232	231	238	1	1	ı	ı	ł	ı	ì	1	ı	ı	ı

The volume of one mole of any gas is 24dm³ at room temperature and pressure (r.t.p.).

Section A (40 marks)

Answer all questions in the spaces provided.

A1 A student is attempting to measure the length of the pencil using the ruler as shown in Fig. A1.

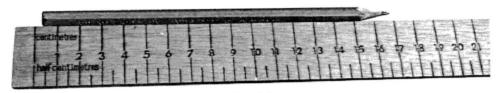


Fig. A1

a)	Estimate the length of the pencil to the precision of the ruler.
	[2]
b)	Suggest two ways that the measurement can be improved, without changing the ruler or using additional apparatus.
	(1)
	(2)

Fig. A2.1 shows a box hanging on a spring balance on Earth. The reading on the spring balance is shown in **Fig. A2.2**.

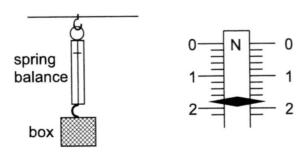


Fig A2.1

Fig. A2.2

a) Deduce the mass of the box.

Mass	=	_	_	_		12	_	_	-	_	_	_	_	_	_	_	_	_	_	_		[1	1	1

- b) The south pole of a magnet is placed near the bottom of the box. The reading on the spring balance decreases to 0.6 N.
 - i State the value of the magnetic force acting on the box by the magnet.

.....[1]

ii Suggest what can be deduced about the contents of the box.

.....[1]

A3 Jeremy, a civil engineer, is in charge of the design and construction of a bridge in a town. Fig. A3.1 shows the side view of a proposed design of a bridge, supported by 5 cylindrical pillars.

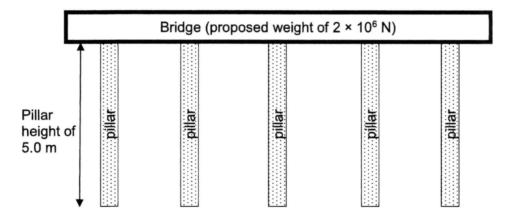
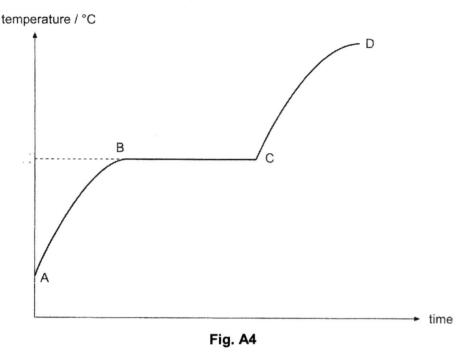


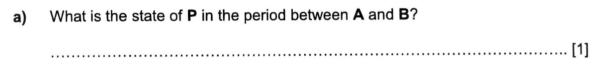
Fig. A3.1

Table A3.2 shows two possible types of raw material that can be used to make the five pillars.

Material	Maximum pressure that the material can support / N m ⁻²	Cost per unit volume / \$
Reinforced steel	4 000 000	500
High grade concrete	400 000	170

Table A3.2


a)	State and explain one important physical property that Jeremy should consider when selecting the raw material to make the pillars.
	[1]
b)	The proposed weight of the bridge is 2×10^6 N. Assuming that the pillars are evenly spaced apart, how much weight must one pillar support?
	Weight =[1]
c)	Fig. A3.3 shows an individual cylindrical pillar under the bridge.
	cross-sectional area pillar height of 5.0 m
	Fig. A3.3 (not drawn to scale)
	Using information from Table A3.2 , calculate the minimum cross-sectional area of one pillar when using reinforced steel
	cross-sectional area =[1]


e table.		
Material	Volume required to make one pillar / m ³	Cost to make one pillar / \$
Reinforced steel		
High grade concrete		
orking:		
sed on your answer pillars.	s in d) , explain which material J	leremy should us
pillars.	s in d) , explain which material J	

high grade concrete

ii

A4 Fig. A4 below shows the melting process of a substance P.

b) Draw the arrangement of the particles of P in this state.

[1]

c) State, with a reason, whether substance P is likely to be a mixture or a compound.

.....[1]

A5 Fig. **A5** shows the mean distance that gas molecules must travel during gas exchange between air in the lungs and blood in the circulatory system in birds and mammals. This distance is known as the thickness of the blood-gas barrier.

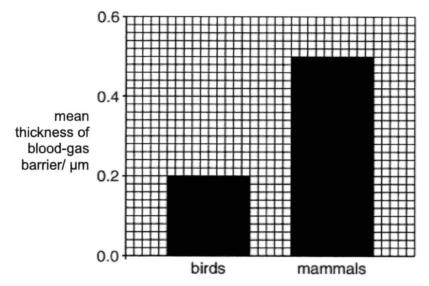
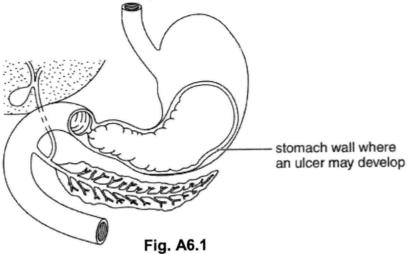



Fig. A5
Name two gases that cross the blood-gas barrier during gas exchange.

a)

	1		
	2		[1]
b)	i	Use information from Fig. A5 to compare the thickness of the blood-g barrier in birds and mammals.	as
		[1]
	ii	Briefly explain how the difference in thickness of the blood-gas barrisuggests that movement of birds by flying require more energy the movement by mammals on land.	an
			•••

A6 Fig. A6.1 shows some parts of the human alimentary canal and associated organs.

a) The pain from the stomach ulcer may be relieved by taking a drug that reduces the amount of acid produced by the cells in the stomach wall. Identify this acid and state its function in the stomach.

Name of acid:	
Function:	
	[1]

b) Fig. A6.2 shows a villus found in the small intestine.

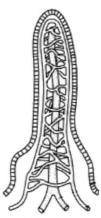


Fig. A6.2

There are many factors affecting the rate of diffusion of digested food substances into the villus. State **one** structural adaptation of the villi and explain how that adaptation increases the rate of diffusion into the villi.

Structural adaptation:	
Explanation:	
[2	1

A7 Fig. A7.1 shows a vertical section through a human heart viewed from the front. Two chambers, **V** and **W**, are labelled.

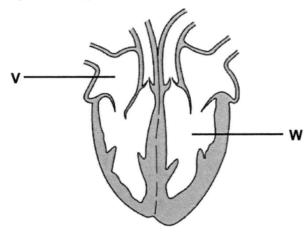


Fig. A7.1

With reference to Fig. A7.1, complete Table A7.2.

Chamber	Name of chamber	Name of blood vessel connected to this chamber
V		
w		

Table A7.2

[2]

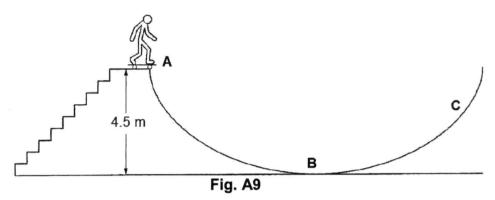

A8 Fig. **A8** shows the design of a solar cooker. A metal cooking pot, containing water, is placed in the cooker. A lid covers over the pot. When the cooker is in operation, it heats up the water using infrared radiation from the Sun.

Fig. A8

a)	Explain why the inside of the large curved dish is covered with shiny metal foil.
	[1]
b)	Suggest the best colour to paint the outside of the metal cooking pot. Explain your answer.
c)	Why does the cooking pot have a lid?
	[1]

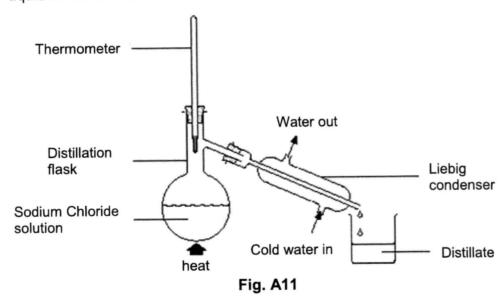
A9 Fig. A9 shows a boy standing on his skateboard at the top of a rough track. The total weight of the boy and the skateboard is 580 N.

a) How much work is done by the boy in carrying his skateboard from the bottom to the top of the stairs?

- b) The boy travels on his skateboard along the rough track until he reaches point **C**, where he stops momentarily.
 - i Explain why point **C** is lower than point **A**.

ii As the boy moves down the track from point **A** to point **B**, state the energy conversion that occurs.

.....[1]


A10 Use the Periodic Table to help you to complete the Table A10.

Particle	No. of protons	No. of neutrons	No. of electrons	Electronic configuration
magnesium atom				2,8,2
	8	8	10	
nitride ion	7	7		

Table A10

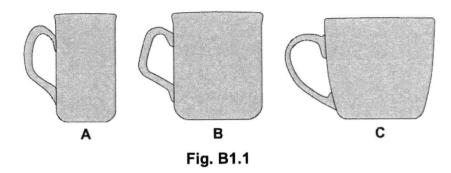
[3]

A11 Fig. **A11** below shows the experimental setup that is used to separate solid-liquid mixtures such as sodium chloride solution.

a) The distillate collected is a colourless liquid that melts at 0°C and boils at 100°C.

Write down the chemical name and formula of this distillate and hence state whether this substance exists as atoms, ions or molecules at room temperature.

Chemical name :....

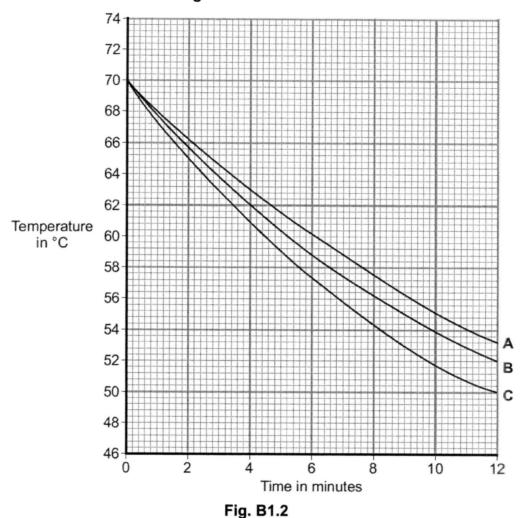

Chemical formula:	
Exists as :	[2]

b) The substance that will remain in the round-bottomed flask is a white solid known as sodium chloride, which is an example of an ionic compound. In the space below, using dot and cross diagram, draw the full electronic structure of sodium chloride.
[2]

Section B (30 marks)

Answer all the questions in the spaces provided on the question paper.

B1 Fig. B1.1 shows three plastic cups **A**, **B** and **C**.


Energy is transferred from hot water in the plastic cups to the surroundings.

a) Explain,

i	to the cups by conduction.
	[2]
ii	how energy is transferred from the surface of hot water to the surroundings by convection.
	[2]

b) An experiment was carried out to determine the relationship between rate of cooling and surface area of water in contact with air. An equal amount of water was poured into cups A, B and C and the temperature of the water was recorded at regular time intervals.

The results are shown on Fig. B1.2.

State the initial temperature of the water in each cup.

......[1]

ii After a few hours, the temperature of the water in each of the cups was 25°C. Suggest why the temperature does not fall below 25°C.

.....

iii	Which cup, A , B , or C has the greatest rate of cooling? Using the graph, give a reason for your answer.
	[2]
iv	The investigation was repeated using a plastic bowl shown in Fig B1.3. The

The investigation was repeated using a plastic bowl shown in **Fig B1.3**. The same volume of water and starting temperature were used.

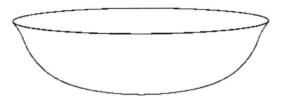


Fig. B1.3

Draw another line on **Fig B1.2** which could represent the temperature of the water in this bowl over the same period of time. [2]

B2

a) From the list of substances below, select one which is the most suitable to match the particle diagram on the left.

brass	nitrogen & oxy	gen	zinc	fluorine	
carbon dioxi	de & chlorine	ste	eel	copper	
sodium chlo	ride	water		oxygen	
% 8	\$				
	<u></u>				
•	8				
					[5]

b) Table B2 below shows the atomic structure of five particles represented by the letters A to E. The particles are atoms or ions. The letters are NOT the symbols of the elements.

Particle	Electrons	Protons	Neutrons
Α	8	8	6
В	10	10	8
С	10	12	12
D	10	12	14
E	18	15	14

	E	18	15	14		
Table B2						
i	Which particle	e is an atom of a nobl	e gas?			
					[1]	
ii	Draw the full of	electronic structure of	f particle D .		[1]	
iii	A exists as diatomic molecules. Using the dot & cross diagram, draw the electronic structure of one such molecule (showing only valence electrons) in the space below. Then state the chemical formula of this molecule.				ctrons)	
	Drawing:				[2]	
		Chemica	al formula:		[1]	

B3 Fig. B3.1 shows the effect of exercise on the concentration of oxygen in the blood and the concentration of lactic acid in the muscles of a healthy person over a 5-minute period.

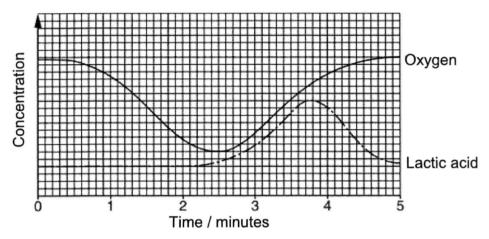


Fig. B3.1

a)	Use Fig. B3.1 to find the time at which the person started to exercise.		
		[1]	
b)	i	Write the word equation of the process that causes the build-up of lactic acid in the person exercising.	
		[1]	
	ii	Write the word equation of the process that causes the change in oxygen concentration during the first 2 minutes on Fig. B3.1 .	
		[1]	
c)	i	The digestion of food provides substances required for the process stated in B3 b) . Define digestion.	
		[1]	
	ii	Describe how digested food substance moves from the small intestine into the blood capillary.	
		[2]	

Fig. B3.2 shows red blood cells from a healthy person and from a person with sickle cell anaemia. Crescent shape Biconcave shape Non-elastic Elastic Sticky Non-sticky Person with sickle cell anaemia **Healthy person** Fig. B3.2 Fig. B3.3 shows the flow of red blood cells through a blood vessel in a healthy person and in a person with sickle cell anaemia. Person with sickle cell anaemia **Healthy person** Fig. B3.3 With reference to Fig. B3.2 and Fig. B3.3 suggest how the oxygen and lactic acid graphs on Fig. B3.1 might be different if the person suffers from sickle cell anaemia. Oxygen graph: Lactic acid graph:

d)

i	Suggest two explanations for the change in the oxygen and lactic acid graphs of a person with the sickle cell anaemia condition.
	[2]

End of paper

Answers to LSS Sec 2 – Paper 2 Mid-Year Examination 2017

Section A

a) b)	Place mark Alignmark Not preceding ii	w ÷ g 1.8 ÷ 10 [½] 1.8 – 0.6 = 1.2 Another magnithe box. Not accepted: when placed in the box.		0.5 cm eading (more like g downwards is in	1 1		
b)	m = = i	W ÷ g 1.8 ÷ 10 [½] 0.18 kg [½] 1.8 – 0.6 = 1.2 Another magnithe box. Not accepted: are materials when placed in	2 N net with the south pole facing contents are magnetic. Mag that experience a magnetic a	g downwards is in	1		
b)	i ii	1.8 ÷ 10 [½] 0.18 kg [½] 1.8 – 0.6 = 1.2 Another magnithe box. Not accepted: are materials when placed in	2 N net with the south pole facing contents are magnetic. Mag that experience a magnetic a	gnetic materials	1		
	ii	Another magn the box. Not accepted: are materials when placed i	net with the south pole facing contents are magnetic. Mag that experience a magnetic a	gnetic materials			
2)		the box. Not accepted: are materials when placed i	: contents are magnetic. Mag that experience a magnetic a	gnetic materials	1		
3/	Ctr		in a magnotte note.				
aj	Thi		onsidered to ensure that the p	oillars do not break			
	Not	accepted: du	weight of the bridge. urability: vague, must be a	specific physical	1		
b)	2 ×	$10^6 \div 5 = 400$	000 N (accept 4 × 10 ⁵ N)		1		
c)	i	Area = F / P =	= 400 000 / 4 000 000 = 0.1 ו	m²	1		
	ii	Area = F / P =	= 400 000 / 400 000 = 1 m ²		1		
d)	Wo	orking absent: z	zero marks				
		Material	Volume required to make one pillar / m³	Cost to make one pillar / \$			
	Reinforced 0.5 250 steel						
	High grade 5 850 concrete						
	c)	b) 2 × c) i ii d) Wo	property b) 2 × 10 ⁶ ÷ 5 = 400 c) i Area = F / P ii Area = F / P d) Working absent: Material Reinforced steel High grade	property 2 × 10 ⁶ ÷ 5 = 400 000 N (accept 4 × 10 ⁵ N)	Display		

	Cos	Volume of high grade concrete for one pillar = $1 \times 5 = 5 \text{ m}^3$ Cost of high grade concrete for one pillar = $170 \times 5 = \$850$								
e)										
a)	P is	a solid	1							
b)	1		1							
c)	Cor	mpound [1], melts at fixed temperature	2							
a)										
b)	i	thicker in mammals or thinner in birds (by 2.5 times/use of comparative figures – not compulsory)	1							
	ii	thinner barrier in birds results in faster/greater gas exchange/diffusion more oxygen supplied/more carbon dioxide removed suggest greater rate of aerobic respiration suggest higher energy demand by muscles in birds for flight	2							
a)			1							
	Pro	Provides acidic environment for stomach enzymes								
	a) b) c) a)	a) Hydroninte Face	Cost of reinforced steel for one pillar = 500 x 0.5 = \$250 Volume of high grade concrete for one pillar = 1 x 5 = 5 m³ Cost of high grade concrete for one pillar = 170 x 5 = \$850 e) He should use reinforced steel because it is three times cheaper than concrete. a) P is a solid b) Drawing must show particles in orderly arrangement and closely packed. c) Compound [1], melts at fixed temperature a) 1 Carbon dioxide 2 Oxygen (vice versa) b) i thicker in mammals or thinner in birds (by 2.5 times/use of comparative figures – not compulsory) ii thinner barrier in birds results in faster/greater gas exchange/diffusion more oxygen supplied/more carbon dioxide removed suggest greater rate of aerobic respiration suggest higher energy demand by muscles in birds for flight a) Hydrochloric acid Provides acidic environment for stomach enzymes b) Structural adaptation: one cell thick wall / microvilli in the small intestine / network of blood capillaries Factor increasing rate of diffusion: thinner barrier leads to faster							

A7	-									
	cha	amber	Na	me of chambe		of blood vess d away from o				
	V Right Atrium Vena cava									
		w		Left ventricle Aorta						
A8	a)	Shin	y meta	l is a good ref	lector of therr	nal radiation		1		
	b)	Black	k. It is	a good absort	oer of thermal	radiation.		2		
	c)	1		neat loss to the	e surrounding	s through		1		
A9	a)	580	x 4.5 =	: 2610 N				1		
	b)	 b) i Choose one: Some of the energy is converted to thermal energy (accept heat) There is work done against friction. 								
		ii		Gravitational potential energy → kinetic energy + heat (+ sound). No ½ mark.						
A10		Partic	le	No. of protons	No. of neutrons	No. of electrons	Electronic configurati on			
	m	agnes		12	12	12	2,8,2			
	Oxide ion 8 8 10 2,8									
	nitride ion 7 7 10 2,8									
A11	a)		ter [0.	5]	1	1				
) [0.5] lecules	s [1]				2		

b)	Dot-and-cross diagram of NaCl	
	- if all dots / crosses [-1 mark] - no charge in square brackets [-1 mark]	2

Section B

B1	a)	i	Heat is conducted from the water through the body of the cup. Particles nearer the water gain energy and vibrate faster. They collide with neighbouring particles and transfer their energy.	2
		ii	Heat is removed from the surface of the water through convection. The air near the water surface is heated and becomes less dense. Less dense air rises and cooler air sinks. This cycle is repeated which causes the water to cool down.	2
	b)	i	70°C	1
	,			
		ii	The water is in thermal equilibrium with its surroundings at room temperature of 25°C.	1
		iii	C Choose any one: The decrease in temperature over the same period of time is the greatest for cup. C has the steepest line	2
		iv	Downward sloping	1
			Steeper than A, B and C	1
B2	a)	Box Box Box Box	1: water 2: nitrogen & oxygen 3: sodium chloride 4: oxygen 5: brass or steel ark each	5
		1 111	ark each	5
	b)	i	В	1
		ii	Dot and cross diagram of 2+ ion	1
		iii	Dot and cross diagram of oxygen molecule	2
			Formula: A ₂	1

В3	a)	0.3-	-0.4 minutes	1
	b)	i	glucose → energy + lactic acid	1
		ii	glucose + oxygen → energy + carbon dioxide + water	1
	c)	i	The mechanical & chemical breaking down of food into smaller components that can be absorbed into the blood stream.	1
		ii	Digested substances in small intestine move from area of high concentration to the area of lower concentration in the blood stream by process of diffusion. Or Active transport also occurs if the concentration of digested food substances in the small intestine is lower than that in the blood capillary.	2
	d)	i	O ₂ line not as high at start/ finish O ₂ line drops more quickly / Or reverse argument lactic acid line rises sooner/ higher / takes longer to return to normal	2
		ii	Any two of following: • reduction in surface area / volume • so less haemoglobin →less AW oxygen + carriage / absorption / in blood (cell) • loss of elasticity + more difficult to move through blood vessels sticky + may clump together / clot • (causing) blockage of blood vessel →reduction of blood flow (to tissue)	2

Answers to LSS Sec 2 – Paper 1 Mid-Year Examination 2017

Section A

1	С	11	D		21	С
2	В	12	С		22	Α
3	С	13	D		23	Α
4	С	14	С		24	В
5	С	15	В		25	С
6	В	16	В		26	В
7	В	17	С		27	С
8	Α	18	D	-	28	В
9	D	19	С		29	В
10	D	20	Α		30	С

Name : () Class :
----------	-----------

ST JOSEPH'S INSTITUTION

MID-YEAR EXAMINATION 2017 SECONDARY 2

LOWER SECONDARY SCIENCE PAPER 1

12 MAY 2017 45 minutes 1100 - 1145 hrs

Additional Materials: MCQ Answer Sheet

READ THESE INSTRUCTIONS FIRST

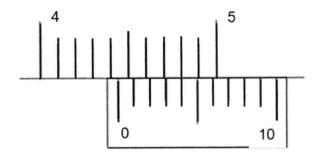
- 1. Answer all questions by shading your answers in the appropriate spaces in the MCQ Answer Sheet.
- 2. Use a 2B pencil only. Make sure all amendments on the MCQ Answer Sheet are thoroughly erased using a soft eraser.
- 3. Use pi (π) value preprogrammed in calculator.
- 4. Do not use staples, paper clips, highlighters, glue or correction fluid/tape.

This document consists of 14 printed pages.

[Turn over]

The Periodic Table of Elements

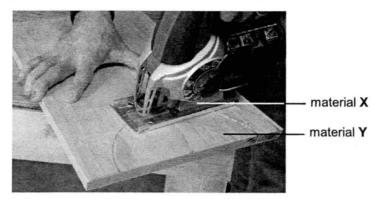
	0	7 T	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	×e	xenon 131	86	R	radon			
				6	ш	fluorine 19	17	Ö	chlorine 35.5	35	ă	bromine 80	53	П	iodine 127	85	At	astatine			
	>			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	e H	tellurium 128	84	8	polonium	116		livermorium -
	>			7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209			
	2			9	O	carbon 12	14	: <u>s</u>	silicon 28	32	Ge	germanium 73	20	S	tin 119	82	В	lead 207	114	F/	flerovium
	≡			2	М	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
										8	Zu	zinc 65	48	පි	cadmium 112	8	롼	mercury 201	112	င်	copernicium —
										83	J	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -
2100	9									28	Z	nickel 59	46	В	palladium 106	78	亡	platinum 195	110	Ds	darmstadtium —
1	5									27	ပိ	cobalt 59	45	몺	rhodium 103	77	ŀ	iridium 192	109	¥	meitnerium -
		← I	hydrogen 1							26	Pe	iron 56	44	R	ruthenium 101	9/	Š	osmium 190	108	£	hassium
										25		Ε			technetium -					윰	bohrium
				nmber	lod	mass				24	ర	chromium 52	42	Wo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
			Key	proton (atomic) number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41		niobium 93	73	ц Д	tantalum 181	105	음	dubnium -
				broton	atc	relati				22	iΞ	titanium 48	40	Zr	zirconium 91	7.5	Ξ	hafnium 178	104	抷	Rutherfordium -
										21	တွ	scandium 45	39	>	yttrium 89	57 - 71	lanthanoids		89 - 103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	S	calcium 40	38	ഗ്	strontium 88	99	Ba	barium 137	88	Ra	radium
	-			3	<u>'</u>	lithium 7	11		sodium 23	19	¥	potassium 39	37	&	rubidium 85	25	ర	caesium 133	87	<u>ن</u>	francium


Г		<u>-</u>				En	
71	7	lutetiu	175	103	۲	lawrenci	1
70	Υb	ytterbium	173	102	2	nobelium	1
69	E	thulium	169	101	Md	mendelevium	ı
68	ய்	erbinm	167	100	Fm	fermium	ı
29	웃	holmium	165	66	Es	einsteinium	ı
99	à	dysprosium	163	86	ರ	californium	ı
	Tb					_	
64	В	gadolinium	157	96	S	curium	ı
	En					_	ı
62	Sm	samarinm	150	94	Pu	plutonium	1
19	Pm	promethium	1	63	ď	neptunium	ı
09	P	neodymium	144	92	\supset	uranium	238
69	ď	nic	141	91	Ба	Ē	231
58	Ö	cerium	140	90	Ļ	thorium	232
25	Ę	lanthanum	139	68	Ac	actinium	1
lanthanoids				actinoids			

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

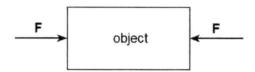
Section A (30 marks)

There are thirty questions in this section. Answer **all** questions. For each question there are four possible answers, **A**, **B**, **C** and **D**. Choose the one you consider correct and shade your choice in the appropriate oval in the answer sheet provided.

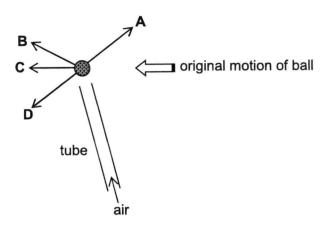

A1 A pair of vernier calipers is used to measure the thickness of a textbook. The diagram below shows the reading on the vernier calipers. What is the thickness of the textbook?

- A 4.04 cm
- **B** 4.34 cm
- C 4.44 cm
- **D** 5.18 cm
- A2 A measuring cylinder contains 100 cm³ of water. An irregularly-shaped object, of mass 50 g, is slowly lowered into the cylinder.

 Given that the density of the object is 5.0 g/cm³ and it is completely immersed, what is the new reading on the measuring cylinder?
 - A 105 cm³
 - **B** 110 cm³
 - C 150 cm³
 - **D** 155 cm³
- A3 The diameter of the Earth is about 10 Mm, while the diameter of an atom is 0.5 nm. How many atoms, when lined up next to each other, make up the diameter of the Earth?
 - **A** 2×10^7
 - **B** 2×10^{10}
 - $C 2 \times 10^{16}$
 - **D** 2×10^{17}


A4 The diagram below shows a process of using material X to cut material Y.

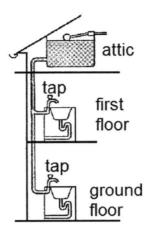
Which one of the following statements is most appropriate for the above diagram?


- A Material X can support a heavy load without breaking, but material Y cannot.
- **B** Material **X** will sink in water, but material Y will float in water.
- **C** When both materials are rubbed together, only material **Y** has scratches.
- **D** Material **X** can bend without breaking and returns to its original shape after bending, but material **Y** cannot.

A5 Which of the following is/are possible when an object, as shown below, experiences two equal and opposite forces?

- I. If the object is at rest, it will continue to remain stationary.
- II. If the object is moving, it will accelerate.
- III. If the object is moving, it will continue to move at constant velocity.
- A I only
- B I and II only
- C I and III only
- D I, II and III

A6 A lightweight ball moves across a table and passes the end of a tube through which air is blown. In which direction will the ball now move?



A7 A cheetah runs very quickly to catch its prey. The air resistance experienced by the cheetah and the friction between the cheetah and the ground vary with the conditions.

Which one of the following conditions below will the cheetah reach its maximum speed?

	Air resistance	Friction with ground
Α	High	Low
В	High	High
С	Low	Low
D	Low	High

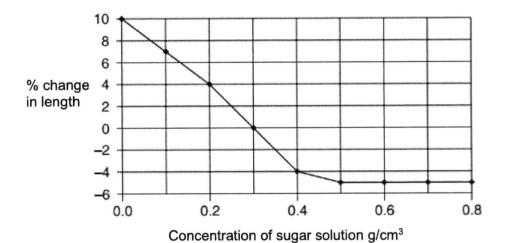
A8 A household water supply has a water tank in the attic.

The rate of water flow at the tap on the ground floor is faster than the rate of water flow at the tap on the first floor. Which one of the following statements is a likely reason for the phenomenon?

- A Water pressure increases with height of the water column.
- **B** Water pressure decreases with height of the water column.
- **C** Water has to travel further to get to the tap on the ground floor.
- **D** The tap on the ground floor is closer to sea level where the pressure is zero.

An interesting Science fair exhibit at a primary school involves putting small pieces of solid dry ice into a balloon (with the aid of a funnel). The balloon "magically" inflates although no one is inflating it.

Answer questions A9 and A10 below.

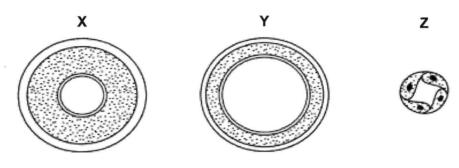

- A9 Which one of the following describes the process that inflated the balloon?
 - A Boiling of carbon dioxide
 - B Evaporation of carbon dioxide
 - C Melting of carbon dioxide
 - D Sublimation of carbon dioxide
- Which one of the following statements correctly describes the arrangement and movement of particles inside the inflated balloon?
 - A Closely-packed, vibrating about fixed positions
 - B Closely-packed, sliding past each other
 - C Far apart, vibrating about fixed positions
 - **D** Far apart, moving rapidly in random directions

A11 Which of these processes happening in a cell requires energy from respiration?

Key ✓ Energy required × Energy not required

	Diffusion	Osmosis
Α	✓	✓
В	✓	×
С	×	✓
D	×	×

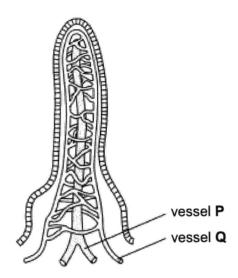
A12 Cylinders of potato tissue were placed in different concentrations of a sugar solution. The graph shows the percentage change in length of the cylinders of potato tissue.


Which solution has the same water potential as the potato tissue?

- **A** 0.0 g/cm³
- **B** 0.2 g/cm³
- **C** 0.3 g/cm³
- **D** 0.5 g/cm³

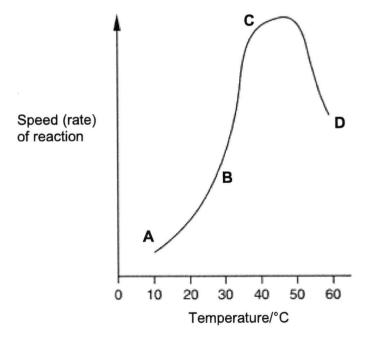
A13 What are the possible end-product and effect of anaerobic respiration in muscle?

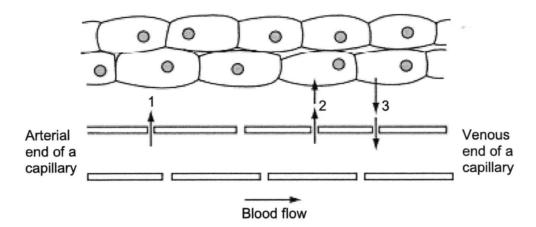
	End product	Effect
Α	carbon dioxide	muscle contraction
В	ethanol	loss of coordination
С	water	muscle relaxation
D	lactic acid	oxygen debt


- A14 Through which sequence does carbon dioxide pass as it leaves the lungs for the environment outside the human body?
 - **A** In the alveoli \rightarrow alveolar wall \rightarrow capillary wall \rightarrow blood
 - **B** Capillary wall \rightarrow blood \rightarrow in the alveoli \rightarrow alveolar wall
 - **C** Blood \rightarrow capillary wall \rightarrow alveolar wall \rightarrow in the alveoli
 - **D** Alveolar wall \rightarrow in the alveoli \rightarrow blood \rightarrow capillary wall
- A15 The diagram shows cross-sections of three types of blood vessel, not drawn to the same scale.

What are X, Y and Z?

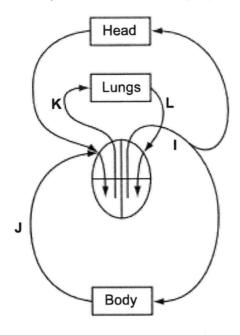
	X	Υ	Z
Α	artery	capillary	vein
В	artery	vein	capillary
C	vein	artery	capillary
D	vein	capillary	artery


A16 The diagram shows a villus.


After a meal containing starch and oil, which substance(s) is/are absorbed mainly into vessel **P** and vessel **Q** respectively?

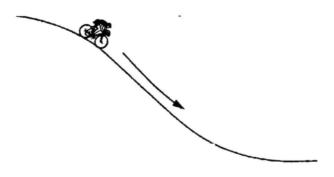
	Vessel P	Vessel Q
Α	amino acids	water
В	fats	glucose
С	glucose	amino acids
D	water	fats

A17 The graph shows the effect of temperature on a chemical reaction which is controlled by enzymes. At which point are most product molecules being released?

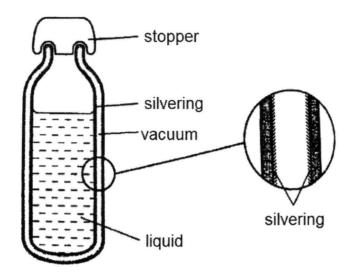

A18 The diagram represents a tissue with an adjacent capillary.

Which substances can 1, 2 and 3 represent?

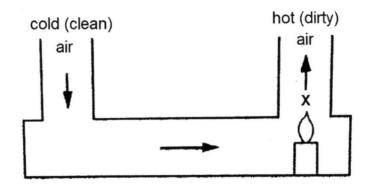
	1	2	3
Α	glucose	tissue fluid	carbon dioxide
В	oxygen	carbon dioxide	glucose
C	tissue fluid	glucose	oxygen
D	tissue fluid	oxygen	carbon dioxide


A19 The diagram represents part of the circulatory system.

Which one of the following sets represent possible blood pressures (in kPa) for the vessels at I, J, K and L?


	ı	J	K	L
Α	1	4	2	16
В	4	16	2	1
С	16	2	4	1
D	16	4	1	2

A20 A cyclist speeds up as he travels down a slope. How does his energy change?


	Gravitational potential energy	Kinetic energy
Α	Decreases	Decreases
В	Decreases	Increases
С	Increases	Decreases
D	Increases	Increases

A21 The diagram shows a vacuum flask and an enlarged view of a section through the flask wall.

The main reason for the silvering is to reduce heat transfer by.....

- A Conduction only
- **B** Convection only
- C Radiation only
- **D** Convection and radiation
- **A22** The diagram shows a model of a convection system.

What happens to the volume and density of a fixed mass of air at **X** to make it move upwards?

	Volume	Density
Α	Increases	Decreases
В	Increases	Increases
C	Remains unchanged	Increases
D	Remains unchanged	Decreases

A23	Which typ	oes of	surface	are	the	best	absorbers	and	emitters	of	infra-red
	radiation?)									

	Best absorber	Best emitter
Α	Black and dull	Black and dull
В	Black and shiny	White and shiny
С	White and dull	White and dull
D	White and shiny	Black and shiny

A24 The rate at which thermal energy is conducted through a material depends on its state. What is the correct order of thermal conduction?

	Best conductor	\longrightarrow	Worst conductor
Α	Gas	Liquid	Solid
В	Solid	Liquid	Gas
C	Solid	Gas	Liquid
D	liquid	gas	Solid

- A25 A car of mass 1200 kg is travelling at a speed of 30 m/s. The brakes are applied to bring the car to a stop. What is the loss in kinetic energy as the car decelerates to rest?
 - A 40 J
 - **B** 36 000 J
 - C 540 000 J
 - **D** 1 080 000 J
- A26 The neutron particle
 - A has a mass of 1g.
 - **B** has a mass equal to that of a proton.
 - **C** has a charge equal but opposite to that of an electron.
 - **D** is present in all atoms.
- **A27** Which one of the following statements is true about an atom?
 - A The number of neutrons is equal to the number of protons.
 - **B** A positive ion is formed when electrons are added to an atom.
 - **C** A positive ion contains more protons than electrons.
 - **D** The atomic number is equal to the number of particles inside the nucleus.

- A28 The atoms of an element X have the electronic configuration 2,8,6. Which one of the following statements about element X is correct?
 - A It forms an ion of charge 2+.
 - **B** It reacts with metals and also non-metals.
 - C It has 6 protons in the outer shell of an atom.
 - **D** It forms an ionic compound with oxygen.
- A29 In which one of the following sets do all the compounds contain only ionic bonds?
 - A Methane, ammonia, water.
 - B Calcium oxide, magnesium oxide, sodium oxide.
 - C Potassium chloride, carbon dioxide, magnesium sulfide.
 - D Copper(II) sulfate, hydrogen chloride, sulfur dioxide.
- A30 The structure of silicon carbide can be described in the diagram below:

Which one of the following statements about silicon carbide is true?

- A Silicon atoms now contain 4 valence electrons each.
- **B** Carbon atoms now contain 4 valence electrons each.
- C Silicon carbide is a covalent compound.
- **D** Silicon carbide is an ionic compound.

Name : ()	Class:
------------	--------

ST JOSEPH'S INSTITUTION

MID-YEAR EXAMINATION 2017 SECONDARY 2

LOWER SECONDARY SCIENCE PAPER 2

12 MAY 2017 1 hour 45 minutes 0800 – 0945 hrs

Additional Materials:

NIL

READ THESE INSTRUCTIONS FIRST

- 1. Answer all the questions in the spaces provided on the question paper.
- 2. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working.
- 3. Use pi (π) value preprogrammed in calculator.
- 4. Express your final answer in 3 significant figures where appropriate, show all working, and include units in all your working.
- 5. Do not use staples, paper clips, highlighters, glue or correction fluid/tape.

					Se	ction A				
A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11
								1		

	Section	В
B1	B2	B3

For Markers	Use
Section A	/40
Section B	/30
Total	/70

This document consists of 22 printed pages.

[Turn over]

The Periodic Table of Elements

			n) {	=		m	Ę.		~		5	_	<u></u>		uo				Ę	_		_	Ę	T			
	0	7 -	ř	4	10	ž	neo	7	18	Ā	argo	4	36	조	krypt	84	54	×	xenc	13	86	Ř	rado				
	=				6	ட	fluorine	18	17	Ö	chlorine	35.5	35	ä	bromine	80	53	_	iodine	127	35	¥	astatine				
	>				8	0	oxygen	16	16	ഗ	sulfur	32	34	Se	selenium	79	52	Те Т	tellurium	128	84	Po	polonium	116	>	livermonum	1
	>				7	z	nitrogen	14	15	۵.	spronge	31	33	As	arsenic	75	51	Sp	antimony	122	83	ā	bismuth				
	Λ				9	O	carbon	71	14	S	silicon	28	32	Ge	germanium	73	20	rs,	tiv	119	82	8	lead 207	114	ī	flerovium	ı
	=				5	ω	poron		5	¥	aluminium	27	31	Ğa	gallium	20	49	Ľ	indium	115	81	F	thallium 204				MENSON
								1		-			30	Zu	zinc	65	48	පි	cadmium	112	80	Ĕ	mercury 201	112	5	copemicium	1
																							pold 197	Т		Ę	
dn													28	Ž	nickel	59	46	В	palladium	106	78	缸	platinum 195	110	Os	darmstadtium	ı
Group													27	රි	coball	59	45	쮼	modium	103	77	Ļ	ridium 192	100	ž	meitnerium	ı
		- 1	hydronen	1									26	P.	iron	56	44	Z.	ruthenium	101	76	ő	osmium 190	108	¥	hassium	ı
			•										25	Ĕ	manganese	55	43	ည	technetium		75	æ	menium 186	107	윮	pohrium	ı
					nmper	<u> </u>		Hass					24	ర	chromium	52	42	ω	molybdenum	96	74	≥	tungsten 184	106	S	seaborgium	1
				Key	proton (atomic) number	atomic symbol	name	relative atomic mass					23	>	vanadium	51	41	£	niobium	93	73	B	tantalum 181	105	ದೆ	dubnium	ı
					proton	ato	inclusion	Leigin					22	F	titanium	48	40	72	zirconium	91	72	Ï	hafnium 178	104	ž	Rutherfordum	-
				,									21	Sc	scandium	45		>		88	57 - 71	lanthanoids		89 - 103	actinoids		
	=				4	ക	peryllium	â	12	Ø	magnesium	24	20	ပ္ပ	calcium	40	38	ঠে	strontium	88	26	Ba	barium 137	88	Ra	radium	ı
	_				က		ithium 7		=	Š		23	19	¥	potassium	39	37	8	rubidium	85	22	ర	caesium 133	87	ŭ	francium	ı

L	2	59	90	61	62	Г	84	85	99	67	88	80	70	71
3		3		5	3		5	3	3	ò	3	5	2	-
8		Ž		Æ	Sm		B	٩	2	운	ш	Ē	2	3
cerium preseodymium ne	E	neodymium		promethium	samanum		gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
140 141		144		1	150		157	159	163	165	167	169	173	175
89 90 91 92		82		93	94	95	96	97	88	66	100	101	102	103
Th Pa				g	2		S	盉	Ö	Ës	E	Md	2	۲
thorium protactinium t	_	uranium		neptunium	plutonium	_	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
232 231		238		ı	ı		ı	ı	ı	ı	ı	ı	ı	ì

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).

Section A (40 marks)

Answer all questions in the spaces provided.

A1 A student is attempting to measure the length of the pencil using the ruler as shown in Fig. A1.

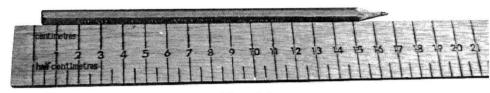


Fig. A1

a)	Estimate the length of the pencil to the precision of the ruler.
	[2]
b)	Suggest two ways that the measurement can be improved, without changing the ruler or using additional apparatus.
	(1)

A2 Fig. A2.1 shows a box hanging on a spring balance on Earth. The reading on the spring balance is shown in **Fig. A2.2**.

(2)

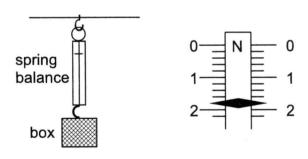


Fig A2.1

Fig. A2.2

a) Deduce the mass of the box.

Mass	=													ı	1	ı
iviass	_													- 1		ł

- b) The south pole of a magnet is placed near the bottom of the box. The reading on the spring balance decreases to 0.6 N.
 - ${f i}$ State the value of the magnetic force acting on the box by the magnet.

[1]

- ii Suggest what can be deduced about the contents of the box.
 -[1]
- A3 Jeremy, a civil engineer, is in charge of the design and construction of a bridge in a town. Fig. A3.1 shows the side view of a proposed design of a bridge, supported by 5 cylindrical pillars.

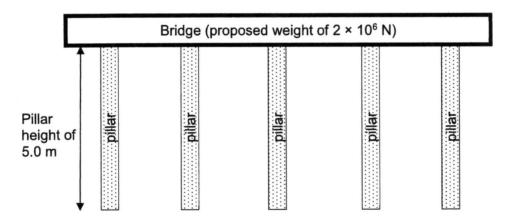


Fig. A3.1

Table A3.2 shows two possible types of raw material that can be used to make the five pillars.

Material	Maximum pressure that the material can support / N m ⁻²	Cost per unit volume / \$
Reinforced steel	4 000 000	500
High grade concrete	400 000	170

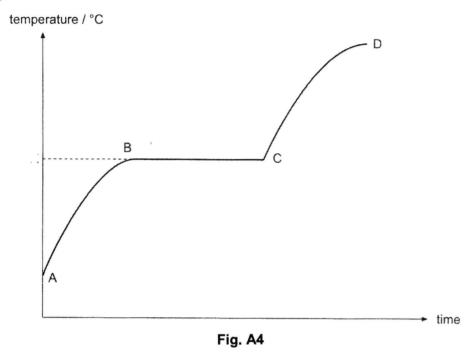
Table A3.2

a)	State and explain one important physical property that Jeremy should consider when selecting the raw material to make the pillars.
	[1]
b)	The proposed weight of the bridge is 2×10^6 N. Assuming that the pillars are evenly spaced apart, how much weight must one pillar support?
	Weight =[1]
c)	Fig. A3.3 shows an individual cylindrical pillar under the bridge.
	cross-sectional area pillar height of 5.0 m

Fig. A3.3 (not drawn to scale)

Using information from **Table A3.2**, calculate the minimum cross-sectional area of **one** pillar when using

i reinforced steel


cross-sectional area =[1]

		cross-sectional	area =[1]
d)		oropriate material for constructions. Show your working clearly in	
	Material	Volume required to make <u>one</u> pillar / m ³	Cost to make one pillar / \$
	Reinforced steel		
	High grade concrete		
	Working:		[2]
e)	Based on your answer the pillars.	s in d) , explain which material .	Jeremy should use to make
			[1]

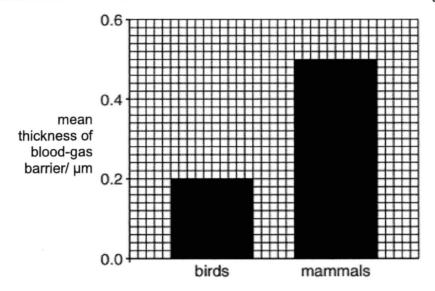
high grade concrete

ii

A4 Fig. A4 below shows the melting process of a substance P.

a) What is the state of **P** in the period between **A** and **B**?

b) Draw the arrangement of the particles of P in this state.

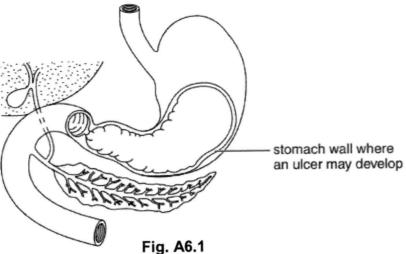


c) State, with a reason, whether substance P is likely to be a mixture or a compound.

.....[1]

[1]

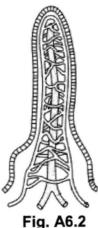
A5 Fig. A5 shows the mean distance that gas molecules must travel during gas exchange between air in the lungs and blood in the circulatory system in birds and mammals. This distance is known as the thickness of the blood-gas barrier.



a)

Fig. A5
Name **two** gases that cross the blood-gas barrier during gas exchange.

	1	
	2	
b)	i	Use information from Fig. A5 to compare the thickness of the blood-gas barrier in birds and mammals.
		[1
	ii	Briefly explain how the difference in thickness of the blood-gas barrie suggests that movement of birds by flying require more energy that movement by mammals on land.


A6 Fig. A6.1 shows some parts of the human alimentary canal and associated organs.

a) The pain from the stomach ulcer may be relieved by taking a drug that reduces the amount of acid produced by the cells in the stomach wall. Identify this acid and state its function in the stomach.

Name of acid:
Function:
[1]

b) Fig. A6.2 shows a villus found in the small intestine.

There are many factors affecting the rate of diffusion of digested food substances into the villus. State **one** structural adaptation of the villi and explain how that adaptation increases the rate of diffusion into the villi.

Structural adaptation:	
Explanation:	
	[21

A7 Fig. A7.1 shows a vertical section through a human heart viewed from the front. Two chambers, V and W, are labelled.

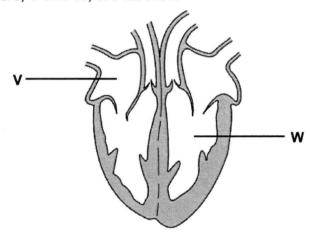


Fig. A7.1

With reference to Fig. A7.1, complete Table A7.2.

Chamber	Name of chamber	Name of blood vessel connected to this chamber
V		
w		

Table A7.2

[2]

A8 Fig. **A8** shows the design of a solar cooker. A metal cooking pot, containing water, is placed in the cooker. A lid covers over the pot. When the cooker is in operation, it heats up the water using infrared radiation from the Sun.

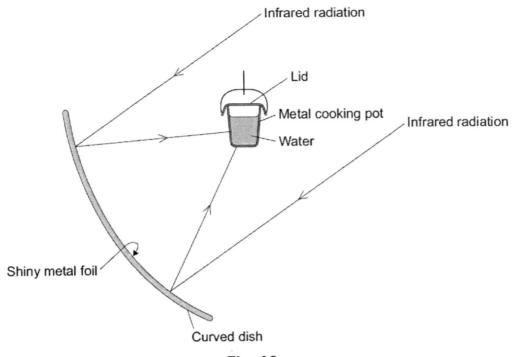
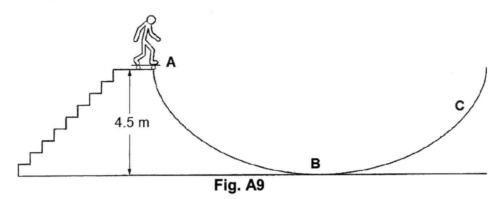



Fig. A8

a)	Explain why the inside of the large curved dish is covered with shiny metal foil.
	[1]
b)	Suggest the best colour to paint the outside of the metal cooking pot. Explain your answer.
c)	Why does the cooking pot have a lid?
	[1]

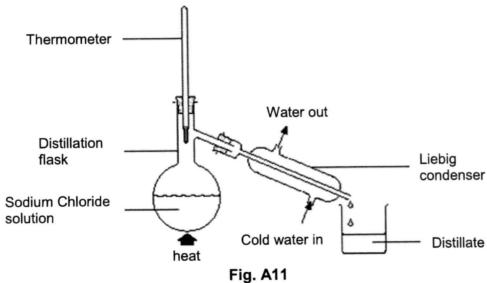
A9 Fig. A9 shows a boy standing on his skateboard at the top of a rough track. The total weight of the boy and the skateboard is 580 N.

a) How much work is done by the boy in carrying his skateboard from the bottom to the top of the stairs?

- b) The boy travels on his skateboard along the rough track until he reaches point **C**, where he stops momentarily.
 - i Explain why point C is lower than point A.

 	[1]

- ii As the boy moves down the track from point **A** to point **B**, state the energy conversion that occurs.
 -[1]


A10 Use the Periodic Table to help you to complete the Table A10.

Particle	No. of protons	No. of neutrons	No. of electrons	Electronic configuration
magnesium atom				2,8,2
	8	8	10	
nitride ion	7	7		

Table A10

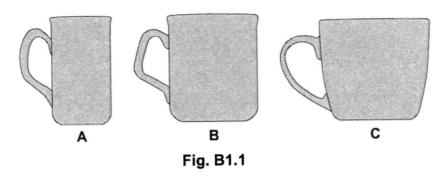
[3]

Fig. A11 below shows the experimental setup that is used to separate solidliquid mixtures such as sodium chloride solution.

The distillate collected is a colourless liquid that melts at 0°C and boils at 100°C. a)

Write down the chemical name and formula of this distillate and hence state whether this substance exists as atoms, ions or molecules at room temperature.

Chemical name:.....


Chemical formula:	
Exists as :	[2]

b) The substance that will remain in the round-bottomed flask is a white solid known as sodium chloride, which is an example of an ionic compound. In the space below, using dot and cross diagram, draw the full electronic structure of sodium chloride.

Section B (30 marks)

Answer all the questions in the spaces provided on the question paper.

B1 Fig. B1.1 shows three plastic cups A, B and C.

Energy is transferred from hot water in the plastic cups to the surroundings.

a)	Exp	lain
u,		ш.,

i	using the kinetic model of matter, how energy is transferred from hot water to the cups by conduction.
	[2]
	[2]
ii	how energy is transferred from the surface of hot water to the surroundings by convection.
	[2]

b) An experiment was carried out to determine the relationship between rate of cooling and surface area of water in contact with air. An equal amount of water was poured into cups A, B and C and the temperature of the water was recorded at regular time intervals.

The results are shown on Fig. B1.2.

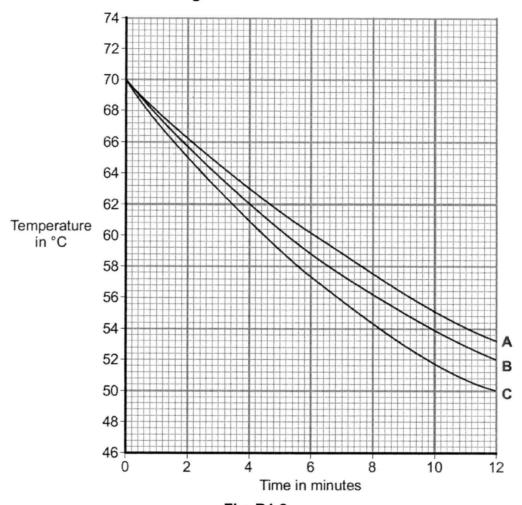


Fig. B1.2

State the initial temperature of the water in each cup.

i

ii After a few hours, the temperature of the water in each of the cups was 25°C. Suggest why the temperature does not fall below 25°C.

iii	Which cup, A , B , or C has the greatest rate of cooling? Using the graph, give a reason for your answer.
	[2]

The investigation was repeated using a plastic bowl shown in **Fig B1.3**. The same volume of water and starting temperature were used.

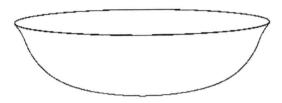


Fig. B1.3

Draw another line on **Fig B1.2** which could represent the temperature of the water in this bowl over the same period of time. [2]

B2

a) From the list of substances below, select one which is the most suitable to match the particle diagram on the left.

brass	nitrogen & ox	ygen zi	inc fluor	ine
carbon dio	xide & chlorine	steel	copp	er
sodium chl	oride	water	oxyg	en
				······································
%				
•				
				[5]

b) Table B2 below shows the atomic structure of five particles represented by the letters A to E. The particles are atoms or ions. The letters are NOT the symbols of the elements.

Particle	Electrons	Protons	Neutrons
Α	8	8	6
В	10	10	8
С	10	12	12
D	10	12	14
E	18	15	14

Table B2

	14510 52	
i	Which particle is an atom of a noble gas?	
		. [1]
ii	Draw the full electronic structure of particle D .	[1]
iii	A exists as diatomic molecules. Using the dot & cross diagram, draw electronic structure of one such molecule (showing only valence electronic in the space below. Then state the chemical formula of this molecule.	the
	Drawing:	[2]
	Chemical formula:	[1]

Fig. B3.1 shows the effect of exercise on the concentration of oxygen in the blood and the concentration of lactic acid in the muscles of a healthy person over a 5-minute period.

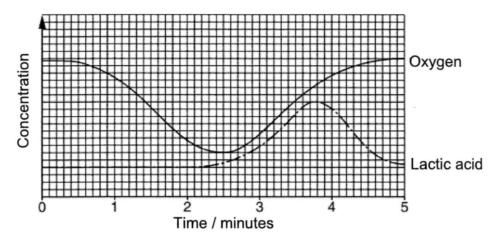
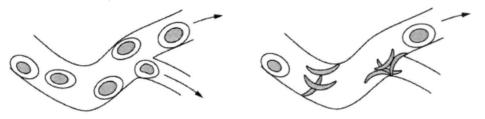


Fig. B3.1

a)	Use	e Fig. B3.1 to find the time at which the person started to exercise.
		[1]
b)	i	Write the word equation of the process that causes the build-up of lactic acid in the person exercising.
		[1]
	ii	Write the word equation of the process that causes the change in oxygen concentration during the first 2 minutes on Fig. B3.1 .
		[1]
c)	i	The digestion of food provides substances required for the process stated in B3 b) . Define digestion.
		[1]
	ii	Describe how digested food substance moves from the small intestine into the blood capillary.

Fig. B3.2 shows red blood cells from a healthy person and from a person with sickle cell anaemia.

- Biconcave shape
- Elastic
- Non-sticky


Healthy person

- Crescent shape
- Non-elastic
- Sticky

Person with sickle cell anaemia

Fig. B3.2

Fig. B3.3 shows the flow of red blood cells through a blood vessel in a healthy person and in a person with sickle cell anaemia.

Healthy person

Person with sickle cell anaemia

Fig. B3.3

d)	i	With reference to Fig. B3.2 and Fig. B3.3 suggest how the oxygen and lactic acid graphs on Fig. B3.1 might be different if the person suffers from sickle cell anaemia.
		Oxygen graph:
		Lactic acid graph:

Í	Suggest two explanations for the change in the oxygen and lactic acid graphs of a person with the sickle cell anaemia condition.
	[2]

End of paper

Answers to LSS Sec 2 – Paper 2 Mid-Year Examination 2017

Section A

	a)	16.0 cm								
	b)	Put the pencil above the marking on the ruler Place the pencil such that the left side is aligned with the 1 cm mark. Align the pencil to the side of the ruler with the 0.5 cm markings.								
			accepted: par cautions)	allax error or take average r	reading (more like					
A2 a) m = W ÷ g = 1.8 ÷ 10 [½] = 0.18 kg [½]										
	b)	i	1.8 – 0.6 = 1.	2 N		1				
		ii	the box. Not accepted are materials	net with the south pole facing that experience a magnetic in a magnetic field.	ignetic materials	1				
A3 a) Strength. This property is considered to ensure that the pillars do not break under the heavy weight of the bridge. Not accepted: durability: vague, must be a specific physical						1				
	b)	2 ×	pperty 10 ⁶ ÷ 5 = 400	000 N (accept 4 × 10 ⁵ N)		1				
	c)	i	Area = F / P	= 400 000 / 4 000 000 = 0.1	m ²	1				
		ii Area = F / P = 400 000 / 400 000 = 1 m ²								
	d) Working absent: zero marks Material Volume required to make Cost to make									
			Reinforced	one pillar / m³ 0.5	one pillar / \$ 250					
			steel			1				
				Reinforced	Reinforced 0.5	1.0				

		diffu diffu	ctor increasing rate of diffusion: thinner barrier leads to faster usion rates / many villi increase surface area leads to faster usion rate / increase network of blood capillaries increase face area to volume ratio	2			
	b)		actural adaptation: one cell thick wall / microvilli in the small stine / network of blood capillaries				
A6	a)		rochloric acid vides acidic environment for stomach enzymes	1			
		ii	thinner barrier in birds results in faster/greater gas exchange/diffusion more oxygen supplied/more carbon dioxide removed suggest greater rate of aerobic respiration suggest higher energy demand by muscles in birds for flight	2			
,	b)	i	thicker in mammals or thinner in birds (by 2.5 times/use of comparative figures – not compulsory)	1			
A5	a)		arbon dioxide xygen (vice versa)	1			
	c)	Cor	mpound [1], melts at fixed temperature	2			
	b)	1	wing must show particles in orderly arrangement and sely packed.	1			
A4	a)	P is	a solid	1			
	e)		should use reinforced steel because it is three times cheaper n concrete.	1			
	Volume of high grade concrete for one pillar = 1 x 5 = 5 m ³ Cost of high grade concrete for one pillar = 170 x 5 = \$850						
			ume of reinforced steel for one pillar = $0.1 \times 5 = 0.5 \text{ m}^3$ st of reinforced steel for one pillar = $500 \times 0.5 = 250				

A7					•			
	ch	ambei	Na	ame of chamb		of blood vest od away from		
		V		Right Atrium	·	Vena cav	a	
		W		Left ventricle		Aorta		1
A8	a)	Shin	y meta	al is a good re	flector of ther	mal radiation		1
	b)	b) Black. It is a good absorber of thermal radiation.						2
	c)	convection/evaporation.					1	
A9	a)	580	x 4.5 =	= 2610 N				1
	 b) i Choose one: Some of the energy is converted to thermal energy (accept heat) There is work done against friction. 							1
		ii		tational poten d). No ½ mark		kinetic energ	y + heat (+	1
A10					***************************************			
		Partic	le	No. of protons	No. of neutrons	No. of electrons	Electronic configurati on	
	m	agnes atom		12	12	12	2,8,2	
	0	xide	ion	8	8	10	2,8	
	nitride ion 7 7 10 2,8							3
A11	a)	H ₂ 0	er [0.5 [0.5] ecules					2

b)	Dot-and-cross diagram of NaCl	
	- if all dots / crosses [-1 mark] - no charge in square brackets [-1 mark]	2

Section B

B1	a)	i	Heat is conducted from the water through the body of the cup. Particles nearer the water gain energy and vibrate faster. They collide with neighbouring particles and transfer their energy.	2
		ii	Heat is removed from the surface of the water through convection. The air near the water surface is heated and becomes less dense. Less dense air rises and cooler air sinks. This cycle is repeated which causes the water to cool down.	2
	b)	·i	70°C	1
		ii	The water is in thermal equilibrium with its surroundings at room temperature of 25°C.	1
		iii	C Choose any one: The decrease in temperature over the same period of time is the greatest for cup. C has the steepest line	2
		iv	Downward sloping Steeper than A, B and C	1
В2	a)	Box Box Box Box	1: water 2: nitrogen & oxygen 3: sodium chloride 4: oxygen 5: brass or steel ark each	5
	b)	i	В	1
		ii	Dot and cross diagram of 2+ ion	1
		iii	Dot and cross diagram of oxygen molecule	2
			Formula: A ₂	1

В3	a)	0.3–0.4 minutes						
	b)	i	glucose → energy + lactic acid					
		ii glucose + oxygen → energy + carbon dioxide + water						
	c)	i	The mechanical & chemical breaking down of food into smaller components that can be absorbed into the blood stream.	1				
		ii	Digested substances in small intestine move from area of high concentration to the area of lower concentration in the blood stream by process of diffusion. Or Active transport also occurs if the concentration of digested food substances in the small intestine is lower than that in the blood capillary.	2				
	d)	i	O ₂ line not as high at start/ finish O ₂ line drops more quickly / Or reverse argument lactic acid line rises sooner/ higher / takes longer to return to normal	2				
		ii	Any two of following: • reduction in surface area / volume • so less haemoglobin →less AW oxygen + carriage / absorption / in blood (cell) • loss of elasticity + more difficult to move through blood vessels sticky + may clump together / clot • (causing) blockage of blood vessel →reduction of blood flow (to tissue)	2				

Answers to LSS Sec 2 – Paper 1 Mid-Year Examination 2017

Section A

1	С	11	D	21	С
2	В	12	С	22	Α
3	С	13	D	23	Α
4	С	14	С	24	В
5	С	15	В	25	С
6	В	16	В	26	В
7	В	17	С	27	С
8	Α	18	D	28	В
9	D	19	C	29	В
10	D	20	Α	30	С